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Singularity and symmetry analyses of
mathematical models of epidemics
M.C. Nuccia and P.G.L. Leacha,b*

1. Introduction
In the modelling of epidemics using systems of first-order

ordinary differential equations, the traditional approach has
been that of analysis from the viewpoint of dynamical systems.
This is not surprising as most systems of differential equations
are not integrable and so the qualitative description of the system
offered by the theory of dynamical systems is regarded as better
than no description at all. Indeed, when it comes to any analysis
which is not numerical, the models of epidemiology—in
common with similar fields such as ecology—have essentially
been the preserve of dynamical systems, whereas in other areas
of scientific endeavour, physics and engineering immediately
come to mind, the more quantitative analyses due to Lie and
Painlevé have become dominant in recent decades. This is not to
gainsay the value of applications of the theory of dynamical
systems in the more exact sciences, but it does seem curious that
in the newer fields that are tending towards becoming exact
sciences there has not been an adoption, let alone an enthusiastic
adoption, of singularity and symmetry methods.

In this paper we seek to promote the use of singularity and
symmetry analyses for epidemiological models as a standard
routine. These analyses complement the results obtained
through the methods of dynamical systems and consequently
offer the prospect of providing greater information about the
evolution in time of the system under consideration. In the two
following sections we provide a brief outline of the methods of
symmetry and singularity analyses so that this paper is complete
in itself. The following section comprises a selection of examples
treated in terms of the analyses of Lie and Painlevé which illus-
trate the methodology and at the same time illustrates some of
the questions which can arise in terms of the analysis.

2. The elements of symmetry analysis
In January 2001, the first Whiteman prize for notable exposition

on the history of mathematics was awarded to Thomas Hawkins
by the American Mathematical Society. In the citation, published
in the Notices of A.M.S. 48 (2001) 416–417, one reads that Thomas
Hawkins ‘… has written extensively on the history of Lie groups.
In particular he has traced their origins to [Lie’s] work in the
1870s on differential equations … the idée fixe guiding Lie’s work
was the development of a Galois theory of differential equations
... (Hawkins1) highlights the fascinating interaction of geometry,
analysis, mathematical physics, algebra and topology…’.

In the Introduction of his book2 Olver writes that ‘it is impossi-
ble to overestimate the importance of Lie’s contribution to
modern science and mathematics. Nevertheless anyone who is
already familiar with [it] … is perhaps surprised to know that
its original inspirational source was the field of differential
equations’.

Lie’s monumental work on transformation groups,3–5 and in
particular contact transformations,6 has provided systematic
techniques for obtaining exact solutions of differential equa-
tions.7 Many books have been dedicated to this subject and its
generalisations.2,8–17

Lie group analysis is indeed the most powerful tool to find the
general solution of ordinary differential equations. Any known
integration technique can be shown to be a particular case of a
general integration method based on the derivation of the
continuous group of symmetries admitted by the differential
equation, i.e. the Lie symmetry algebra.

The method developed by Lie is based on the use of infinitesi-
mal transformations. Suppose that we have two variables, an
independent variable denoted by t and a dependent variable
denoted by x. An infinitesimal transformation in the variables,
namely

where ε << 1 is the infinitesimal parameter, is said to be gener-
ated by the differential operator

i.e.

We call � and ξ the coefficient functions.
An infinitesimal transformation in the variables t and x induces

an infinitesimal transformation in any function of the two
variables and their derivatives. The infinitesimal transformation
for the first derivative is found as follows:

to the first order in the infinitesimal parameter ε. In a similar
fashion the infinitesimal transformations for derivatives of
higher orders may be calculated.

Thus we have

etc.
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Naturally, these considerations may be extended to several
dependent and several independent variables. As we are
concerned with ordinary differential equations in this paper,
we mention that the variation in (2.4) and (2.5) for several
dependent variables is to include suitable subscripts on x and ξ.

To deal with the infinitesimal transformations induced in
derivatives by the infinitesimal transformations in the original
variables in terms of the generator Γ, we extend the generator to

to deal with the first derivative, �x, to

to deal with the second derivative, ��x, and in general to

to deal with the nth derivative, x(n)

The generator, Γ, is a symmetry of a function, ƒ(t,x, �x,...,x(n)), if

The generator is a symmetry of a differential equation,
f(t,x, �x,...,x(n)) = 0, if

i.e. the constraint of the differential equation is taken into
account in the computation. The equation resulting from the
application of the nth extension of Γ, (2.9) in the case of a func-
tion and (2.10) in the case of an equation, is called the determin-
ing equation.

We have not remarked on the functional dependence of the
coefficient functions, � and ξ. Lie was motivated by geometric
considerations when he introduced the idea of the application of
infinitesimal transformations to differential equations. Conse-
quently, the infinitesimal transformations were geometrically
correct. Initially, he used point transformations in which the
coefficient functions were simply functions of the independent
and dependent variables. Subsequently, Lie made use of contact
transformations in which the coefficient functions could depend
on the first derivative in such a way that the first extension was
independent of the second derivative. When Noether published
her seminal paper on the invariance of the Action Integral under
infinitesimal transformations,17 she employed generalised trans-
formations depending on derivatives of all orders without any
constraint such as that which is found with a contact transforma-
tion. In the last two decades a more general type of transforma-
tion, nonlocal, in which the coefficient functions can depend
on integrals as well as derivatives, have had of necessity to be
considered since without them the concept of the relationship
between the existence of symmetry and integrability presented
some difficulties. In terms of applications the point and contact
symmetries are the easiest to use, with the former being
computationally simpler than the latter. In the case that a func-
tion or differential equation admits more than one symmetry, the
algebraic properties of these types of symmetry are easy to handle.
Generalised symmetries are more commonly used in analyses of
partial differential equations than of ordinary differential equa-
tions, even including Noether’s Theorem, although it was origi-
nally stated in terms of generalised symmetries. There still
remain some questions to be resolved about nonlocal symme-

tries,18 but there can be no question about the necessity for their
existence and utilisation, although in certain circumstances19–21

they can be local in disguise.
The computation of symmetries requires the solution of the

determining equation or equations. We noted above that (2.9),
respectively (2.10), was the determining equation for the
symmetries of a function, respectively differential equation. In
the calculation of a nonlocal symmetry that is the only equation
to be solved. In the case of point, contact and generalised
symmetries, the Ansatz made about the functional dependence
of the coefficient functions leads to a partial separation of the
determining equation into a set of determining equations. For
example, in the calculation of the point symmetries of a scalar
second order ordinary differential equation one would separate
by coefficient of powers of the first derivative and typically there
would be four linear partial differential equations to be solved
for the coefficient functions and as such the underdetermined
single equation becomes an overdetermined system. The calcu-
lation of symmetries for anything apart from the simplest of
differential equations is a tedious business fraught with the like-
lihood of error. Fortunately, there is an algorithmic nature to the
calculations which lends itself to implementation using one of
the symbolic manipulation codes.22–25 A list of the codes then
available was presented by Hereman.26,27

The typical mathematical models found in epidemiology are
systems of first-order ordinary differential equations and this
presents a problem in terms of the calculation of Lie symmetries,
no matter what the subvariety. Any system of first-order ordi-
nary differential equations possesses an infinite number of Lie
symmetries. For a practical resolution of the problem there are
two approaches possible. In one of them an Ansatz is made of the
structure of the coefficient functions. Although this approach is
open to the fundamental objection that the Ansatz is more likely
to be based on the imagination of the person making the
analysis than of the inherent features of the system under
consideration, there have been occasions when this is a very
fruitful approach. In the second approach the method of reduc-
tion of order20,28,29 effectively replaces a first-order system by one
containing at least one second-order equation which reduces
the number of symmetries from infinity to a finite number,
which one hopes is not zero. Then the system, not the imagina-
tion of the investigator, determines the symmetries. Nucci20

has remarked that a system of n first-order equations could be
transformed into an equivalent system where at least one of the
equations is of second order. Then, the admitted Lie symmetry
algebra is no longer infinitely dimensional, and nontrivial sym-
metries of the original system can be retrieved.20 This idea has
been successfully applied in several instances.20,21,30,31 Also,
Marcelli and Nucci32 have shown that first integrals can be
obtained by Lie group analysis even if the system under study
does not come from a variational problem, i.e. we can find first
integrals without making use of Noether’s Theorem.17 If we
consider a system of first-order equations and, by eliminating
one of the dependent variables, derive an equivalent system
which has one equation of second order, then Lie group analysis
applied to that equivalent system yields the first integral(s) of
the original system which do(es) not contain the eliminated
dependent variable in the case that such first integrals exist.
The procedure should be repeated as many times as there are
dependent variables in order to find all such first integrals. The
first integrals correspond to the characteristic curves of deter-
mining equations of parabolic type which are constructed by the
method of Lie group analysis. We would like to remark that
interactive (not automatic) programs for calculating Lie point



symmetries, such as that of Nucci,22,23 are more appropriate for
performing this task.

We illustrate some aspects of the Lie method and the devices
mentioned above with the simple two-dimensional system

where we have included a parameter a to be able to add some
additional detail to the illustration.

As we remarked above, the problem, as far as symmetries are
concerned, with systems of first-order equations is that they
have an infinite number of point symmetries and there does
not exist a closed-form algorithm for their determination. It is
obvious that the system possesses the two symmetries

where Γ1 reflects the autonomy of the system and Γ2 the
invariance of the system under a self-similar transformation.

We obviate the necessity to deal with the infinite by converting
the two-dimensional system of first-order equations to a single
second-order equation.

From (2.11) we have

We use (2.14) to eliminate the variable y from (2.12) and obtain
the second-order equation

Equation (2.15) can be analysed for its Lie point symmetries by
means of a hand calculation. Even though (2.15) is a fairly simple
equation, the calculation is by no means trivial. When we use the
interactive code of Nucci,22,23 we find that for general values of a
there are just the two Lie point symmetries given above in (2.13)
without the presence of the variable y. However, for the particu-
lar value of a = 3 which is prompted by the code, i.e. for the equa-
tion

we obtain the eight symmetries

with the Lie algebra sl(3, R).33,34 This means that Equation (2.16) is
linearisable by means of a point transformation.7 In order to find
the linearising transformation we have to look for a two-dimen-
sional abelian intransitive subalgebra and, following Lie’s classi-
fication of two-dimensional algebras in the real plane,7 we have
to transform it into the canonical form

with~x and~t the new dependent and independent variables, re-
spectively. We find that one such subalgebra is that generated by
Γ1 and Γ4 – 2Γ6, which yields the following point transformation

and Equation (2.16) becomes

the solution of which, hence that of (2.16), is trivial. For general
values of the parameter, a, (2.15) is integrable in the sense of Lie.
A detailed study was performed by Lemmer and Leach.35

3. Singularity analysis
Singularity analysis was initiated by Kowalevski36 in her deter-

mination of the third integrable case of the Euler equations for
the top and was in large measure developed by the French
School developed by Paul Painlevé about the period of La Belle
Époque.37–40 There have been significant contributions since then.
For a recent and an erudite contribution to the state of the art see
the book edited by Conte.41 For less technical works devoted to
the methodology the interested reader is referred to the text of
Tabor42 and the report of Ramani et al.43 The essence of the singu-
larity analysis of a differential equation (æq system of ordinary
differential equations) is the determination of the existence of
isolated movable polelike singularities about which one can
develop a Laurent expansion containing arbitrary constants
equal in number to the order of the system. The location of the
singularity is determined by the initial conditions of the system.
An equation of moderately, or more, complicated structure can
possess more than one polelike singularity—a fortiori in the case of
systems of differential equations which can have many patterns
of singularities—and it is conventional wisdom that a Laurent
expansion with the requisite number of arbitrary constants must
exist for all possibilities. However, there exists a counter-
example44 for which one pattern of singular behaviour possesses
a Laurent expansion with the correct number of arbitrary con-
stants and the second does not, but has a ‘peculiar ’ solution45 of
the type already discussed by Ince46, p. 355 many years ago. Never-
theless, the closed form general solution of the system is mani-
festly analytic.

The application of the analysis is usually quite algorithmic.
Indeed, it is standard practice to apply the ARS algorithm,47–49

although there are instances, of particular relevance to the
analysis of systems of first-order ordinary linear differential
equations typically encountered in the mathematical modelling
of epidemics, in which the subtler approach advocated by Hua
et al.50 is to be preferred. First, we outline the standard algorithm
and secondly the alternative approach. Consider an autono-
mous system of first-order ordinary differential equations

where x represents the n dependent variables, the overdot
differentiation with respect to the independent variable t and σ
the set of parameters which invariably seems to accompany a
system arising in the course of the mathematical modelling of
natural phenomena. We assume that the n functions Φi are
polynomials in the dependent variables x and linear in the first
derivatives. The assumptions which we make are not completely
necessary, but they do reflect the reality found in models and
simplify our theoretical discussion.

By writing the system as we have in (3.21) we include models
in which, say the variable population N appears in the denomi-
nator of a fraction. The analysis may be extended to time-
dependent parameters provided that they are analytic functions
of the time.

The first step is to determine the leading-order behaviour of
the dependent variables of the system. We substitute xi = αi�

p
i,

i = 1, n, where � = t – t0 and t0 is the putative location of the
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movable singularity, into the system (3.21) and compare the
resulting powers. For example, if we take the elementary system

the powers to be compared are

for the two equations, respectively. All terms balance if p = q =
–1. This is stated as all terms are dominant. It is reflected in the
existence of a self-similar symmetry, Γ = ∂t + x�x + y�y , for the
system. It is a general feature of the singularity analysis that the
dominant terms share the same self-similar symmetry. If we had
included some linear terms, these would not share the same self-
similar symmetry and would not be dominant. Consequently,
they would not enter into the determination of the coefficients
of the leading-order terms. In this elementary example the
analysis of the leading-order behaviour indicates that there is
a singularity and that it is a simple pole. The coefficients of the
leading-order terms, α and β, are determined by the solution of
the linear system

when the values of p and q are taken into account.
There are two possibilities for the system (3.24). The first is that

the coefficient matrix be singular. In this case for the system to be
consistent the augmented matrix must also be of rank one. The
former requires that ab = 1. The latter increases the requirement
to a = b = 1. If this be the case, the system (3.22) satisfies the
requirements of the analysis since the second arbitrary constant
enters the Laurent expansion at the leading-order term. Hence
the system is integrable and is said to possess the Painlevé
Property.

The second possibility is that the coefficient matrix is regular.
We solve (3.24) to obtain the leading-order coefficients as

In the case that the leading-order behaviour does not provide
the correct number of arbitrary constants—the generic situation
illustrated by the results given in (3.25)—it is necessary to deter-
mine whether there exists a term, or terms, at which the requisite
number of arbitrary constants can enter. The powers at which
these arbitrary constants enter are almost always called reso-
nances—on occasion they are also known as Kowalevski expo-
nents (after the pioneering woman in this area). To determine
the resonances one makes the substitution

into those terms of the system (3.21) which have been identified
as dominant for the set of values pi , i = 1, n, and the associated
coefficients αi already determined. The terms linear in the con-
stants µi are required to be zero. This leads to an eigenvalue
equation for the exponent r and the solution of this equation
provides the resonances.

We return to our example to illustrate how the determination
of the resonances proceeds. We substitute

into the system (3.22)—recall that all terms are dominant in this
example—and collect the terms linear in µ and ν to obtain the
system of equations

The requirement that the system be consistent leads to the
equation

after the explicit expressions for α and β have been substituted
from (3.25).

The solution of (3.29) is just

The first value, –1, is always present (its absence indicates that
a computational error has occurred). In systems of equations
it may even occur as a multiple root and thus put paid to any
possibility that the system can possess the Painlevé Property,51

although Andriopoulos and Leach52 have convincingly demon-
strated that the loss is not automatic. The serious root is the
second. For a system to possess the Painlevé Property this root
must be an integer. If it be a positive integer, the Laurent expan-
sion is known as a Right Painlevé Series since the exponents
commence at –1 and increase to a presumed infinity. If it be a
negative integer, the Laurent expansion is known as a Left
Painlevé Series since the exponents commence at a presumed
minus infinity and increase to –1. The Left Painlevé Series was
recognised considerably later than the Right Series.35,53 In the
case that the nongeneric resonance is a rational number the
expansion can be made in terms of fractional powers—the same
be true if the exponent of the leading-order behaviour be rational.
In this case the solution cannot be analytic. Rather, it has a branch
point singularity. Provided the denominator of the fractional
power is not great, the expansion is acceptable. If the dominator
is large, the complex plane is divided by so many branch cuts as
to be effectively useless for the almost inevitable numerical
computations used in the solution. When fractional powers are
included in the expansion, the system is said to possess the weak
Painlevé Property.

After the leading-order behaviour and resonances have been
determined to be satisfactory, there is usually the necessity to
check for consistency. If not all of the terms in the system of equa-
tions are dominant and there are nonzero resonances, a substitu-
tion of a polynomial to the greatest resonance into the full system
is required to ensure that the presence of the nondominant
terms does not lead to inconsistency. A system which is a candi-
date for an expansion in terms of a Left Painlevé Series cannot
have nondominant terms. The reason for this is that the Left
Painlevé Series represents a Laurent expansion on the exterior of
a disc centred on the singularity. The leading-order term then
represents the asymptotic behaviour of the solution. A non-
dominant term would be less singular and so there is an inherent
contradiction. In the case of multiple nonzero resonances it is
always necessary to check that an arbitrary constant introduced
at one resonance is not constrained to take a particular value at
the next resonance. There is always the possibility that some of
the nongeneric resonances will be positive and others negative.
This has led to some confused thinking until Andrioupoulos and
Leach54 showed that the Laurent expansion occurred over an
annulus in which the leading-order terms could dominate both
the ascending powers and the descending powers. Hence, even
if everything be otherwise consistent, an expansion in just
one direction cannot be a representation of the general solu-
tion. It could, however, represent a ‘peculiar ’ solution45 of the
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type already recognised by Ince45, p. 46. For such a solution there
is no question of adding a logarithmic term as is the case
when there is an inconsistency at a resonance. Naturally, the
addition of a logarithmic term means that the solution cannot
be analytic.

We return to our example and the expression for the non-
generic resonance given in (3.30). We require this to be an integer
for the system to possess the Painlevé Property. Equally we could
consider the possibility of the possession of the weak Painlevé
Property, but for purposes of the discussion of the application of
the Painlevé Test we confine our attention to integral values.
Since all terms are dominant, the admissible values of the
nongeneric resonance are not confined to positive integers.
They can also be negative integers. This is a rather unusual situa-
tion. All that is required is that the parameters a and b be related
according to

where n Z. Thus for our example system to be integrable in the
sense of Painlevé it is necessary for there to be a constraint on the
parameters of the system. This is a very typical result. Integrability
is not guaranteed for all possible values of the parameters, but
only for a restricted set. In the case of our example integrability of
the system (3.22) occurs only on the curves in the two-dimensional
space of parameters specified by Equation (3.31).

The second approach to the determination of the resonances
and question of consistency mentioned above50 does not sepa-
rate the two processes. This approach is particularly suited to a
system containing a selection of parameters. Typically such
systems are only integrable subject to some constraint(s) on the
parameters. After the nature of the polelike singularity is identi-
fied, the series

is substituted into (3.21) if a Right Painlevé Series is indicated and

if a Left Painlevé Series is indicated. The coefficients at each
power are collected to give a set of equations linear in the coeffi-
cients introduced at that power (for j > 0; for j = 0 the equations
need not be linear in the coefficients of the leading-order terms).
These equations are solved successively for increasing values of j
with the possibility of branching—existence of a resonance or
not—being determined. In the branch for which a resonance
could be, the constraints upon the parameters are determined
simultaneously.

We revert to our example, the simple system (3.22). The exami-
nation for leading-order behaviour has given a simple polelike
singularity. We then substitute

to obtain

We illustrate the workings of the algorithm with the first few
powers.

�
−2:

�
−1:

�
0:

One could imagine a rather strange-looking solution if the
resonance did not occur for a fairly low power. For in a system
such as this in which all terms are dominant the effective power
of the expansion is determined by the value of the resonance. For
example, in the simple equation of Emden-Fowler type, ��x = x2,
the leading-order behaviour is 6�

–2 and the nongeneric reso-
nance is 6. This means that the Laurent expansion is of the form

� �
−

=

∞∑2 6
0

α i
i

i

A similar series of calculations occurs in the case of possible
existence of a Left Painlevé Series.

4. Illustrative examples
We consider some examples of models which arise in mathe-

matical epidemiology in terms of singularity and symmetry
analyses. In these examples we wish not only to illustrate the
application of the methods introduced above in terms of success
stories but also to highlight some of the difficulties and problems
which occur in these analyses.

A SIR model
In 1927 Kermack and McKendrick55 introduced their famous

SIR model of the Great Plague of London in 1665–1666. They
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used a system of three first-order ordinary differential equa-
tions, namely

in which S represents that portion of the population which is
susceptible to the disease, I that portion of the population which
is infected by the disease, and R that portion of population
which is removed from the population due to the disease. The
susceptibles succumb at a rate proportional to the degree of
interaction between susceptibles and infectives. The characteristic
timescale of the disease is such that standard methods of entering
and leaving the population may be ignored. Since the variable R
is consequent upon the other two variables, we may ignore (4.39)
and perform our analyses on (4.37) and (4.38).

To determine the leading-order behaviour we set

and substitute these into (4.37) and (4.38) to obtain

The balancing of powers is between the terms arising from
the derivative and the nonlinear term in each equation. Quite
obviously

We find the resonances from the substitution

They are r = ±1 and ν = –µ. When we substitute (4.43) into the
full system, we find that there is an incompatibility unless α = 0.
This indicates that no one is removed from the class of infectives
and suggests that the disease is more in the nature of a lingering
illness and so the neglect of natural additions and removals is
invalid. Consequently, the connection with the Great Plague
becomes vanishingly tenuous.

For the sake of completeness we consider the symmetry aspects.
This is, as we noted in our general discussion above, better done
at an order other than the first. We eliminate I to obtain the
second-order ordinary differential equation

for S. We note that the Painlevé Test fails with (4.44) for the same
reason as it did for the system of two first-order equations. There
is not necessarily a one-to-one correspondence between passing
the Painlevé Test by a system of first-order equations and an
‘equivalent’ higher-order equation.44

With α = 0, (4.44) passes the Painlevé Test. A standard method
for treating a nonlinear equation such as (4.44) is to raise it to a
higher order by means of a Riccati transformation.19 With α = 0
we obtain a generalised Kummer-Schwarz equation, namely

and we note the appearance of the same factor, namely 1/β, as
appeared in the Painlevé analysis. The original second-order
equation, namely (4.44) with α = 0, is integrable in the sense of
Lie since it possesses the two obvious Lie point symmetries,
namely �t and t�t + S�S. In increasing its order to the third we
find four Lie point symmetries in (4.45), namely �t , t�t , �w and
w�w. The third of these is unexpected57 and arises since the sym-
metry associated with the Riccati transformation is not the nor-
mal subgroup of the two symmetries �w and w�w. When one

reduces (4.45) to (4.44) using w�w, �w ceases to be a point symme-
try. Rather it becomes the exponential nonlocal symmetry56

S exp[βSdt]�S and so �w is a Type I hidden symmetry.58,59 We use
�w to reduce (4.45) to the linear second-order equation

Equation (4.46) has eight Lie point symmetries with the Lie
algebra sl(3, IR). The important point to note is that the inte-
grable case of (4.37)–(4.39) according to the singularity analysis
could be reduced to a linear equation. This is not an uncommon
observation.

Brauer60 offers a more elaborate model than (4.37)–(4.39)
which allows for a constant rate of population growth, death by
natural other—not related to the disease under consider-
ation—causes and the possibility of recovering from the disease
with immunity. The model equations are

where the dependent variables S, I and R and the parameters
α and β have the same meanings as in (4.37)–(4.39) . The constant
rate of population growth is µK, the rate of recovery from the
illness with immunity conferred is governed by γ, and µ repre-
sents the death rate from other causes. This last is assumed to be
the same for the three components of the population. As in the
case of (4.37)–(4.39) the third member of this system may be
omitted from the analysis. The analysis is virtually identical to
that of the system (4.37)–(4.39). We find that the system (4.47)
and (4.48) is integrable in the sense of Painlevé provided α + γ =
0. The effect of α + γ = 0 is more easily seen if we take

Then the system (4.47)–(4.49) can be replaced with the system

When α + γ = 0, the system decouples to

Equation (4.52) is trivially integrable in terms of an exponential
function, which is analytic. With this solution (4.53) becomes a
Riccati equation. With the Riccati transformation, w v v2 = � / ( )β ,
the Riccati equation becomes a linear first-order equation in �v
and is integrable in terms of analytic functions. Since both α and
γ are essentially nonnegative, it appears that the needs of the
singularity analysis are satisfied if none of the infectives dies
from the disease and none of the infectives recovers with immu-
nity against reinfection.

A model for the transmission of HIV
A model61 which has been quite successful30 in replicating

results reported in studies of HIV transmission in the San
Francisco area is62–64

where u1(t) represents that part of the population which is HIV
negative, u2(t) that part of the population which is HIV positive,
and u3(t) that part of the population which has AIDS. The param-
eter µ is the death rate from other causes, α the death rate from



AIDS and ν the rate at which HIV positives develop AIDS. The
parameters β and c represents the rates of infection and of
change of partner, respectively.

It is obvious from direct inspection of the system (4.54) that it
cannot possess the Painlevé Property since there can be no
balancing of leading-order terms. It is also obvious that there are
two Lie point symmetries, namely

Indeed, it is the very possession of Γ2 , representing the homo-
geneity of the system (4.54) in the dependent variables, which
precludes the possibility of the system possessing the Painlevé
Property. This is in contrast to a system which, in addition to
possessing the symmetries Γ1 and Γ2, also possesses the symme-
try t�t which represents the homogeneity in the independent
variable. Then such a system may possibly possess the Painlevé
Property.65 These two point symmetries are insufficient for inte-
grability. We know that a system of first-order ordinary differen-
tial equations possesses an infinite number of Lie symmetries.

We need but one of these to constitute a three-dimensional
solvable Lie algebra for then we can reduce the integration of the
system (4.54) to quadratures. Apart from obvious symmetries,
such as the two given in (4.55), the only way to analyse the system
(4.54) for symmetries is to make some Ansatz for the structure of
the coefficient functions of the symmetry. This is not a completely
satisfactory procedure since the Ansatz is more likely to be deter-
mined by the imagination of the searcher than the internal struc-
ture of the system being investigated. An alternative procedure20

is to transform the given system, (4.54), to an equivalent system
containing an higher-order equations. In the case of a system of
three first-order equations there are two options. The first is a
system of one second-order and one first-order equation. The
second is a scalar third-order equation. We choose the first
option. The Lie algebra of point symmetries admitted by this
system is now finite-dimensional and the determination of the
symmetries can be performed using Lie’s method. The system,
obtained by the elimination of u3 from (4.54a), contains many
terms and the Lie analysis is best performed using a package for
the determination of symmetries.22,23 Torrisi and Nucci30 found
that in the case α = µ+ βc that the system was linearisable and
separable. Of the additional symmetries, the symmetry

expressed in terms of the original variables, provided the required
solvable algebra. In view of our comments above about the lack
of possession of the Painlevé Property it comes as no surprise
that the solution is manifestly nonanalytic. Torrisi and Nucci30

found that the explicit solution to the system (4.54) is

If βc = 2ν, the general solution assumes the simpler form:

Tuberculosis with fast and slow dynamics
In a paper modelling the transmission dynamics of tuberculosis,

Song66 uses two modes for routes of infection, namely close
contacts in quasipermanent ‘households’ and casual contacts in
the general population. This leads naturally to a consideration of
differential timescales. A consequence of this is that the original
system of five first-order equations can be split into two classes,
those on the fast manifold and those on the slow manifold. By
making an Ansatz that the fast variables reach a quasisteady state
while the slow variables are still evolving in their own time, the
system of equations modelling the slow variables may be written
as

where x1 and x2 are rescaled variables representing susceptible
and latently-infected individuals not belonging to a ‘household’,
Q is the expected number of infections produced by one infec-
tious individual and B = µ/k, with µ being the natural mortality
rate and k the per capita progression rate.

When we rewrite the system (4.63) as

it is quite obvious that the system cannot possess the Painlevé
Property. We can rewrite the system as a single second-order
ordinary differential equation in the variable u = x1 + x2 , which
is strongly suggested by the structure of (4.64), namely

This equation does not possess any singular leading-order
behaviour and so cannot possess the Painlevé Property except in
the trivial sense. We use the standard stratagem

for introducing the possibility of singular behaviour and obtain
the equation

We find the leading-order behaviour –(B� )–1, where � = t – t0.
In the calculation of the resonances the parameters B and Q
disappear. Unfortunately, one finds that r = 1, 0, i.e. the second
arbitrary constant must enter at the power �

–1. This means that a
logarithmic term must be introduced and so any hope of an
analytic solution is lost.

When we analyse (4.65) for Lie point symmetries apart from
the obvious �t, we find that there exists a second symmetry
under a variety of relationships between B and Q. All of them are

142 South African Journal of Science 105, March/April 2009 Research Articles



Research Articles South African Journal of Science 105, March/April 2009 143

special cases of Q = B + 1. When this constraint applies, we have
the two Lie point symmetries

The second symmetry has a remarkable resemblance to the
additional symmetry found by Torrisi and Nucci30 reported in
(4.56) when an additional constraint was imposed on the parame-
ters of the model for the equation

Since the Lie Bracket, [Γ2, Γ2] = –BΓ2, and Γ1 /∝ ρ(t, u)Γ2, this
equation is of Lie’s Type 3.7, Kap 18 The equation (4.69) is trans-
formed to the standard form

by the point transformation

Equation (4.70) is easily integrated once to

but, perhaps not surprisingly, further progress to the solution is
not obvious.

We note that trivially in the case that Q = 0 Equation (4.65) is
linear and has eight Lie point symmetries, but this is not a realistic
paradigm.

Another approach is to reduce the original system to a
first-order equation by eliminating the independent variable.
We divide (4.64a) by (4.64b) to obtain

and observe that, under the constraint Q = B + 1 encountered
above for the existence of an additional Lie point symmetry of
the equivalent second-order system, this equation reduces to the
Riccati equation

Equation (4.74) is converted to the linear second-order equation

where the prime denotes differentiation with respect to the new
independent variable x2, by means of the Riccati transformation

and to the confluent hypergeometric equation

by means of the transformation67

A connection with linearity has been established for Q = B + 1.
Note that we have x1 as an analytic function of x2 except for
isolated singularities. One can obtain the general solution x1(x2)
using the package MAPLE 7. The expression is somewhat

complex and we do not write it here. For general values of the
parameter B the solution is expressed in terms of Whittaker
functions. Simpler solutions are found for specific values of B, for
example, when B = 2

3 , the solution is given in terms of a combina-
tion of Gamma and circular functions. For specific values of the
initial conditions and a given value of the parameter B the
solution produced by MAPLE 7 can be used to plot the phase
portrait.

Since (4.74) is a Riccati equation, it possesses the Painlevé Prop-
erty, i.e. x1 is an analytic function of x2 away from the movable
simple pole. Thus we have the rather curious situation that the
dependent variables are related analytically to each other, but do
not have an analytic dependence upon the independent variable.

The impact of a disease on demographic growth
Song et al. 68 discuss the global dynamics of tuberculosis models

in which the demography is taken to be density-dependent.
Their model reduces to the two-dimensional system

in rescaled variables. It is important to know how the parameters
A1, A2 and A3 relate to the physical parameters lest one make a
claim of integrability for physically unacceptable values. We
have

where mr = b0 + ρ + d, nr = b0 + α + k and b0 is the parameter of
the recruitment rate, b0N, d is the tuberculosis-induced mortality
rate, k is the per capita rate of progression from active tuberculosis
to latent tuberculosis, α and ρ denote the treatment rates for the
latent and infectious cases respectively and σ = βc, the product of
the average infected proportion of susceptibles, β, and the per
capita contact rate, c. A1 may be positive or negative, A2 is
bounded above by 1 whereas A3 is always positive.

The exponents for the usual leading-order behaviour substitu-
tion, x = α�p and y = β�q are

from which it is evident that there are two possible patterns of
singularity behaviour, namely p = q = –1, which contains the
left-hand side and the third term of the right-hand side of (4.79)
and the left-hand side and the second and third terms of the
right-hand side of (4.80) as dominant terms, and p = –1, q = –2,
which contains the left-hand side and the second and third
terms of the right-hand side of (4.79) and the left-hand side and
the third term of the right-hand side of (4.80) as dominant terms.

We analyse each in turn.

p = q = –1:
The coefficients of the leading-order terms are

and we recall that A2 < 1. The eigenvalue problem for the reso-
nances is



with the solution r = –1, 1 – A2. We note that at the nongeneric
resonance the eigenvector is (0,1)Tν, where ν is arbitrary. From
(4.81) the nongeneric resonance is just σ/d, i.e. one requires that
the parameters β, c and d be related according to

This is not impossible.

p = –1, q = –2:
In this case the coefficients of the leading-order terms are

The eigenvalue problem for the resonances is

with the solution r = –1, –2(2 – A2)/A2. The eigenvector for the
latter, non-generic, resonance is (1, 1)Tµ, where µ is arbitrary. In
this case the constraint on the parameters β, c and d is

Given that d is usually small the satisfaction of (4.88) is not as
likely as that of (4.85) in most populations.68, p. 278

For each item of singularity behaviour there exist families of
values of the parameters—interestingly, only b, c and d are
involved in the behaviour of the dominant terms—for which the
first two requirements of the singularity analysis are satisfied.
However, unless one can explicitly prove to the contrary (cf. the
explicit demonstration by Leach and Nucci44), both patterns of
singularity behaviour are required to satisfy the conditions of
the Test. This means that both (4.85) and (4.88) must hold,
i.e. n =(m – 2)/(m + 2), which is not going to be satisfied by
integral m and n. Of course we can always relax the analysis
to that of the testing for the possession of the weak Painlevé
Property.

We allow m and n to be rational and consider the system
(4.79)–(4.80) as a candidate for the position of the weak Painlevé
Property.

We must now consider the consistency of the expansion,
which is satisfactory for the dominant terms, with the complete
system. We first consider the second pattern of singularity
behaviour. The nongeneric resonance must be negative for a
physically feasible set of parameters. This negativity, suggestive
of a Left Painlevé Series, is inconsistent with the presence of
nondominant terms no matter the rationality or wholeness of
the nongeneric resonance. The (weak) Painlevé Property cannot
be possessed for this pattern of singularity behaviour.

There is then no point in examining the other item of singularity
behaviour even though as a candidate for a Right Painlevé Series
the presence of nondominant terms does not present a priori any
difficulty. However, in case this is one of those systems44 which
fails the Painlevé Test for one of the singular patterns but yet
which is integrable in terms of analytic functions we should
examine the system from a different viewpoint.

One approach is to replace the two-dimensional system of
first-order equations with a single second-order equation. From
(4.79)

and, when this is substituted into (4.80), we obtain the nonlinear
second-order equation

It is evident that the first three terms are dominant and that the
exponent of the leading-order terms is –1. The coeffcient is a
solution of

The eigenvalue equation for the resonances is

whence

Since σ > d, both values for the nongeneric resonance can be
positive integers, although the number of possible values is
limited.

By way of example we take A2 = –2, i.e. σ = 3d. Then α = ±1
and the nongeneric resonance is 4 in both cases. We substitute

into (4.90) to check for consistency at the resonance. The
relationship to be satisfied that each power of � is

We equate the coefficients of successive powers of � to obtain
the coefficients

At �
1 a4 is arbitrary by construction and the consistency condi-

tion is the constraint

We back-substitute from (4.97) into (4.98). When the expression
in simplified, there is a part independent of a0 and a part linearly
dependent on a0. Since a0 takes the values ±1, both parts must
separately be zero. From these we obtain

where A3 is constrained by the equation

There is only one real root of (4.100). Equation (4.90) possesses
the Painlevé Property for the set of parameter values

This set of values is not unrealistic in that the value of A2 gives
σ = 3d, which is certainly in the right direction, and A1 < 0 is a
regime in which the proportion of infectives in the total popula-
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tion approaches zero as time increases68 and could be regarded
as somewhat cheering.

The other suitable choices of A2 can be similarly treated.
Thus under constraints on the parameters the second-order

equation (4.90) is integrable in the sense of Painlevé and we can
conclude that so also is the two-dimensional system of first-
order equations, (4.79) and (4.80), since the transformation (4.89)
is of the type which preserves the Painlevé Property.44

If we analyse (4.90) for the existence of Lie point symmetries
with the value A2 = –2 chosen above for the purposes of illustra-
tion using the interactive code of Nucci,22,23 we find that for
general values of A1 and A3 there is just the obvious single
symmetry �t . However, in the process of the interactive analysis
branching occurs which separates the values A1 = –2/9 and A3 =
2. For the values of the parameters (4.90) has the two Lie point
symmetries

The symmetry Γ2 has something of the nature of a rescaling
symmetry. Similar symmetries have been observed in other
integrable systems.30,69 The method for the integration of the
equation under consideration, namely

without a knowledge of the Lie point symmetries is not obvious.
Using the classification of two-dimensional Lie algebras in the
real plane,7 we introduce the canonical variables ψ = exp(–t/3)
(9 + 1/x), φ = exp(–t/3)/x) which transform Equation (4.103) into
the canonical form

This equation can be easily solved in terms of elliptic functions
by Maple to give:

where c1 and c2 are arbitrary constants. Finally the general
solution of (4.103) is

where JacobiSN denotes the Jacobi elliptic function, sn.

Comments and conclusion
In this paper we have outlined the methods of symmetry and

singularity analyses with specific reference to the types of systems
of first-order equations found in compartmental models arising
in epidemiology and illustrated the working of the methods on
some specific examples found in the recent literature.

The results obtained are fairly typical of what one would
expect in that the demands of integrability generally impose
constraints upon the parameters of the model.

Everyone knows that integrable systems are a rarity. It may be
that so many of the nonlinear systems which arise in epidemiol-
ogy and related areas are nonintegrable that practitioners in this
field have been dissuaded from using the methods of integrable
systems in favour of the qualitative methods of dynamical systems.
This is quite understandable. However, there seems to have
developed a reluctance to use exact methods as a consequence.
We have sought to promote the use of Lie and Painlevé analyses
for mathematical models in epidemiology and more generally in

the biosciences as a standard routine. What we hope to have
shown in this paper is that, even in the case of nonintegrable
systems, exact methods can yield a great deal of information.
These analyses complement the results obtained through the
methods of dynamical systems and consequently offer the
prospect of providing better insight about the evolution in time
of the system under consideration.
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