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ABSTRACT. The presentation will illustrate how to realize, in a transparent tank, a stable
refractive index gradient by using sucrose solutions and a gelling agent. The apparatus will
be used in a classroom for hand-on experiments on the refraction of light and on related
topics, with particular emphasis on atmospheric effects such as mirages and Fata Morgana.
Besides, in the preparation of this activity thermodynamical concepts, such as solubility,
phase transitions and thermal stability are also involved. The ingredients and tools used
in the preparation are easily available in household stores and do not present any risk of
serious injuries. The potential applications of a refractive index gradient for optical fibres
will be illustrated as well.

1. Introduction

Optical natural phenomena in the atmosphere have fascinated human beings since early
times, therefore they can be used to bring young students closer to a “physical” observation
of the natural world. Indeed, most of these phenomena can be observed almost every day
and everywhere. Common examples are the colours changing in the sky at sunset and dawn,
rainbows, halos, mirages, coronas, glories, green flashes and many more (Greenler 1980;
Mahoney 1993; Lynch and Livingston 2001; Cowley et al. 2004).

All these phenomena are due to the more or less complex interaction between light and
matter that occurs in the atmosphere, such as water droplets, ice crystals, dust or aerosols.
In many cases Rayleigh or Mie scattering theory, together with Snell laws provide a clear
physical explanation of the observed phenomenon.

Among this fascinating atmospheric optical phenomena, mirages are the simplest ones,
since they only take place in plain air when thermal gradients occur in the atmosphere
and the associated refractive index change makes light rays bend. As a consequence an
object can be seen floating higher than it actually is or reflected on the ground, thus creating
an optical illusion. Simple examples can be found in everyday life, such as the “wet
road” effect, that one can observe when driving on a hot summer day or the illusion of
floating islands and ships when looking at the sea horizon. A well known example is “Fata
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Morgana”1 which being a combination of superior and inferior mirages requires specific
atmospheric conditions and so it is more difficult to be seen.

Moreover, mirages provide an excellent opportunity to experimentally address several
aspects of optics, such as light propagation, the reversibility of light rays, the refractive
index and the physical realization of an optical image, including how it is processed by our
brain. Moreover Snell laws provide a connection with the principle of stationary action
through Fermat’s principle (1662)(Finch and Hand 2008).

2. Refraction of light and Snell law

The refraction of light consists in the bending of rays of light at the interface between
two media. Early documented investigation on refraction phenomena dates back to the first
century (A.D.) when Ptolemy of Alexandria, the Greek astronomer and geographer, tabu-
lated with remarkable accuracy the refraction angles at air-water and air-glass boundaries.
He found an empirical law working only at small angles but he was not able to propose a
reliable explanation at the time.
The correct sine law was first documented by Ibn Sahl a Persian mathematician and physicist
of the Islamic Golden Age. In his manuscript “On Burning Mirrors and Lenses”, written
around 984, Ibn Sahl uses the sine law to obtain the profiles of aspherical lenses, that focus
light with no geometric aberrations(Rashed 1990).

It was only several centuries later, as it is shown in a 1621 manuscript, that the Dutch
mathematician and astronomer Willebrørd Snellius (Snell) succeeded in developing a law
that defined a value related to the ratio of the sine of incidence and the refraction angles
(subsequently named as the relative refractive index), but what he discovered remained
unpublished during his lifetime. Some years later, in 1637, René Descartes published
the correct sine law of refraction(Descartes 1994) in his “Discours de la méthode”, using
heuristic momentum conservation arguments. Although nowadays Snell and Descartes
share credit for the discovery, Thomas Harriot(Lohne 1959), another physicist who carried
out many experiments on refraction and prism, had actually discovered the sine law as early
as 1602(Dudley and Kwan 1997). However he did not publish his notes which remained
confined to his correspondence with Kepler.

Although at the time it was possible to predict the change of direction of ray light at
interface, the physical reason behind that phenomenon was still unknown. A first explanation
was given in 1662 by Pierre de Fermat (Born and Wolf 1970), who rejected Descartes’
solution, and expressed his “Fermat’s principle” stating that the path taken by a ray between
two given points is the path that can be traversed in the least time. Taking account for the
different speeds of light in the two media the Snell law is easily demonstrated. Initially this
idea was not well received because it seemed to attribute knowledge and intent to nature.
It was only in 1678 that the Dutch scientist Christiaan Huygens, using his own concept
of wavefront, derived a mathematical relationship that explained Snell’s observations. He

1Fata Morgana is the Italian version of Morgan le Fay: a sorceress in medieval beliefs, sister of the legendary
King Arthur. According to the legend these mirages, often seen in the Straits of Messina, as of cliffs and buildings,
that are distorted and magnified to resemble elaborate fairy castles in the air or false land, were created by her
witchcraft to lure sailors to their deaths.
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FIGURE 1. Least time principle (lifeguard’s dilemma)

proposed that the refractive index of a material is related to the speed of light inside the
substance.

2.1. Derivation from Fermat principle. In Optics Fermat’s principle, or the principle of
least time, states that “the path taken by a ray of light between two points is the path that
can be traversed in the least time”. Fermat made this statement in 1657, but did not submit
his dissertation “Synthèse pour les réfractions” until 1662(Minnaert 1993).
In a sense Fermat’s principle is the precursor of the principle of least action later developed,
in the first half of 1700, by G. Leibniz, P.L. Maupertuis, L. Euler and J.L. Lagrange.
Principle that has a central role in classical and modern physics.

Feynman provided a good analogy (Feynman et al. 2006) of the path taken by a light
ray passing across media where it has different velocities, by considering the “lifeguard
dilemma”. As shown in fig.1, a lifeguard on a beach spots a swimmer in trouble some
distance away, in a diagonal direction. He can run three times faster than he can swim.
What is the quickest path to the swimmer? It is easy to realize that the fastest path is when
one travels a greater distance on land in order to decrease the distance in water, since we
swim much slower than we can run.

We then present the Feynman derivation of Snell law from Fermat principle, also because
it implies an elementary application of the variational principle in physics, therefore it can
be presented to undergraduate classes. With reference to Fig. 2b Feynman showed that the
final solution to the problem is the path ACB, and that this path takes the shortest time of all
possible ones.
If it is the shortest path, that means that if we take any other, it will be longer. So, if we were
to plot the time it takes against the position of point X, we would get a curve something like
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FIGURE 2. Left side: The minimum time corresponds to point C, but nearby
points correspond to nearly the same time. Right side: Illustration of Fermat’s
principle for refraction.

similar to that shown in Fig.2a, where point C corresponds to the shortest of all possible
times.

This means that if we move the point X to points near C, in the first approximation
there is essentially no change in time because the slope at the bottom of the curve is zero.
Therefore, our way of finding the law will be to consider that we move the place X by a
very small amount, and to demand that there be is essentially no change in time. (Of course
there is an infinitesimal change of a second order; we ought to have a positive increase for
displacements in either direction from C.)

So we consider a nearby point X and we calculate how long it would take to go from A
to B by along the two paths, and compare the new path with the old path. It is very easy to
do. Of course, we want the difference to be nearly zero if the distance XC is short. First,
look at the path on land. If we draw a perpendicular XE, we see that this path is shortened
by the amount EC.

On the other hand, in the water, by drawing a corresponding perpendicular,CF, we find
that we have to go the extra distance XF, and that is what we lose. Or, in time, we gain
the time it would have taken to travel the distance EC, but we lose the time it would have
taken to go the distance XF. Those times must be equal, since in the first approximation
there is to be no change in time. Assuming that the speed in the upper medium is v1 and it
changes to v2 in the lower medium, then we must have EC/v1 =XF/v2. Therefore we see
that when we have the right point, XC sin(ˆ︁EXC)/v1 =XC sin(ˆ︁XCF)/v2 or, cancelling the
common hypotenuse length EXC and noting that ˆ︁EXC = ˆ︁ECN = θi and ˆ︁XCF ∼ ˆ︁BCN′ = θr
(when X is near C), we have sin(θi)/v1 = sin(θr)v2, or

sin(θi)

sin(θr)
=

v1

v2
(1)

So we see that to get from one point to another in the least time when the speeds in the two
media are v1 and v2 respectively, the light should enter at such an angle that the ratio of the
sines of the angles θi and θr is the ratio of the speeds in the two media.

It is interesting to observe that also ants do follow the principle of least time when forced
to travel across two surfaces that differentially affect the ants’ walking speed, as is was
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observed by Oettler et al. (2013). The trail followed by the ant row deviated from the most
direct path, and on average it is not different from the path predicted by Fermat’s principle.

2.2. Derivation from Huygens principle. Huygens in 1678 proposed the idea that waves
propagate in the form of wave fronts, i.e., the locus of all points where the wave has
the same phase2, which are perpendicular to the direction of propagation. Wavefronts
propagate through space since any point where the light disturbance arrives acts as a source
of spherical waves; the sum of these secondary waves determines the shape of the wavefront
at a successive time.

By using his principle, Huygens was able to demonstrate that the ratio relating the angles
of light rays across two materials, with differing refractive indexes, should be equal to
the ratio of the light velocities in each material, thus providing a physical explanation to
Snell-Descartes law.
In figure 3, the wavefront AB carries the incident rays and wavefront A′B′ carries the
refracted rays. In order to maintain the correct phase relation between the two wavefronts it
is necessary that time intervals ∆t spent by light travelling on AB and A′B′ are equal, then:

BB′

v1
=

AA′

v2
(2)

where v1 and v2 are the light velocity in the upper an in the lower medium. Considering

A

B
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Q
2

Q
1

S

n

Q
1

Q
2

FIGURE 3. Wavefront crossing the surface separating two medium

that AA′ =AB′ sin(θ2) and BB′ =AB′ sin(θ1) one obtain

sin(θ1)

v1
=

sin(θ2)

v2
(3)

where θ1 and θ2 are the angles of incident end refracted beams with respect to surface
normal. The ratio of v1/v2 has been then named “relative refractive index” of medium 2 ith
respect to medium 1.

2This generally applies only to monochromatic fields, otherwise the phase is not well defined.
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As a rule of thumb the direction of a light beam at the intersection of an interface
approaches the normal if it goes more slowly after the interface; while it departs from
normal if it goes faster after the interface.

The bending of wavefronts when passing across two media where it has different veloci-
ties, presents an interesting analogy in mechanics. Consider a platoon, like that shown on
the left side of Fig.4, marching across terrains at different speeds, like firm ground and mud
where soldiers move slowly. When they approach the separation line, the soldiers on the left
side of the platoon start to slow down earlier then those on the right side, causing a change
in the marching direction. The same reasoning applies to the wheels of a car, connected by
an axle, as shown on the right side of Fig.4. The direction of motion changes when passing
from a low friction to a higher friction road.

FIGURE 4. Left side: A platoon of soldiers marching across two media at different
speeds. Right side: Wheels with axle crossing a line where the friction of the road
changes.

2.3. Total internal reflection and gradient of refractive index. An interesting conse-
quence of Snell Law is the total internal reflection of a ray of light when it passes from an
optically denser medium (higher n, lower velocity) to an optically rarer medium (lower n,
higher velocity), as it happens with light travelling from water to air. In fact, in such a case
the direction of the outcoming ray will depart more and more from the normal and will
eventually emerge with an angle of 90◦ (parallel to the interface) while the incident angle
will be still less then 90◦, as illustrated in right side of Fig.5 for direction B4. The limiting
angle where this condition takes place is called “critical angle” θc, then for angles > θc the
ray is internally reflected.

The value of the critical angle can be easily found from eq.3 by putting θ1 = 90◦ and
obtaining θc = arcsin(n1/n2).

Another interesting consequence of the Snell law is realized by the presence of an index
of refraction gradually changing its value across the medium, along a given direction,thus
realizing a gradient of refractive index. In such a case a ray of light undergoes a progressive
deviation in its direction tracing a curved path, as illustrated on the left side of Fig.5,
This effect is widely used in the manufacture of optical fibres so that for a certain cone
of incidence of the light in an optical fibre, rays can be confined inside it, and can thus
travel all along the fibre. The same effect is also responsible for mirages and other various
atmospheric phenomena like mock sun, green flash and atmospheric duct.

Atti Accad. Pelorit. Pericol. Cl. Sci. Fis. Mat. Nat., Vol. 99, No. S1, A21 (2021) [12 pages]



MIRAGE IN A BOX: A CLASSROOM ACTIVITY ON. . . A21-7

FIGURE 5. Left side: Optical paths for rays, at increasing incident angle, passing
from an higher to a lower refractive index medium. The critical angle is reached
when the angle of the refracted ray is 90◦

Right side: Optical path for ray passing trough several staked layers of media
with increasing (from bottom to top) refractive index. At a given depth the critical
angle will be eventually achieved.

3. Mirage in a box

Mirages are a popular phenomena but their meaning is often misunderstood. Nevertheless
they are based on simple physical laws and could be effectively used in teaching optics in
undergraduate classrooms, thanks to their unexpected properties. The natural conditions for
the formation of a mirage are quite peculiar and require both specific atmospheric conditions
and terrain conformation. Of course this prevents a direct experimental demonstration. The
presence of a gradient of refractive index in the atmosphere is related to the formation of a
temperature gradient in air, which generates an air density gradient which in turn results in
a varying index of refraction in the vertical direction.

On the other hand it is possible to recreate similar conditions on a small scale in laboratory
so as to allow classroom demonstrations and hand-on activities, exploiting the fascinating
nature of mirages.

Below we report the common classification of mirages and then illustrate a novel method
aimed at realizing a stable gradient of refractive index for indoor experiments on mirages.

3.1. Classification of mirages. Mirages are generally observed over flat and relatively
large areas, such as deserts, sea surface or arctic expanses but also in the common case
of long straight roads, where for some reason the air above the surface has a temperature
different from the surrounding atmosphere. The index of refraction for air doesn’t change
very much with temperature, it is around 1.000295 at 0◦C and 1.000265 at 30◦C. Given
such a small change ( ∆n ∼ 3 ·10−5), very large distances are needed for effective deflection
of light rays.

In general one can observe three types of mirages depending on the direction of the
gradient of refractive index, as shown in Fig.6 one can distinguish among:

Inferior mirages. Whenever the ground is much warmer than the air above it, the index
of refraction is lower close to the ground. Therefore light rays will follow curved paths, as
shown in the upper sketch of Fig.6, and when they reach the observer they are interpreted
by the brain as a mirror-inverted image of the real object.
This is very common in desert areas or in tarmacked roads during sunny days. This kind
of mirages are very often distorted and flickering due to the convective motion occurring
above the hot surface.
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FIGURE 6. How Mirages Are Produced, from Davis (1982)

Superior mirages. Sometimes the air above the surface is cooler than in the surroundings
and the index of refraction is higher close to the ground. This situation is frequently reported
as the formation of an “inversion layer”3. In this situation the light rays will follow a
different curved path, as shown in the middle sketch of Fig.6, and when they reach the
observer they are interpreted by the brain as if the object were in a raised position.
This kind of mirage can be observed on offshore sea when water is much colder than air
and in cold Arctic territories. Superior mirages, although blurred by atmospheric dust and
distance, are much neater and stable then the former, since convective motions are not
present in this case.

Fata Morgana. When both conditions are present simultaneously, giving rise to an
alternating thermal gradient, a complex mix of both effects is observed, with a significant
distortion of the observed objects. Alternating layers of hot and cold air create several
different bands where superior and inferior mirages meet.
This mirage comprises several inverted and erect, often stretched, images, stacked on top of
one another, as seen in Fig.8 taken on the Straits of Messina during the 2017 cold winter .
Fata Morgana mirage moreover is subject to rapid changes, following the instability and
fluctuations of the alternating thermal gradient, generating the illusory scenery that gave
birth to the many legends connected to this natural phenomenon.

3A thermal inversion is an atmospheric condition where warmer air exists in a well-defined layer above a layer
of significantly cooler air. This vertical temperature distribution is the opposite of what is normally the case; air is
usually warmer close to the surface, and cooler higher up.
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FIGURE 7. Left: Inferior mirage from a camel caravan in the desert. Right:
Superior mirage of a ship on the horizon at Dubrovnik, Croatia (June 2006).

FIGURE 8. Fata Morgana taken from the Calabrian side, Messina coast appears
to have moved forward, on the waters of the strait (December 2017).

In Fig.7 two photos of classical inferior and superior mirages are shown, along with a
sketch of the path taken by some rays of light.

3.2. Build a stable refractive index gradient. In order to reproduce a mirage at laboratory
scale it is necessary to use substances that allow to realize a high gradient of refractive index,
recurring not to thermal gradients(Fabri et al. 1982) (like Nature does) but rather to density
gradients. Usually water solutions of sucrose at different concentrations are used(Blanco-
García and Vazquez-Dorrío 2014), but also sodium chloride(Greenler 1987; Vollmer 2009)
or alcohol (López-Arias et al. 2009) can be used as solutes. Sucrose, thanks to its high
solubility in water, is the most commonly used. In this case the variation of refractive index
between saturate solutions and pure solvent is around 13%, enough to produce a strong
deviation of ray paths over half a meter distance, see Table 1. The desired gradient of
refractive index is attained by carefully pouring layers of solutions with decreasing solute
concentration into an appropriate transparent container. The different density of the layers
makes the whole structure of the exhibit relatively stable with respect to small mechanical
perturbations. One obvious drawback of such a procedure is that the tank is not easy to
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%C by wt. n ρ g/cm3

0 1.3330 0.9982
15 1.3557 1.0592
30 1.3812 1.1270
45 1.4098 1.202
60 1.4419 1.2864
75 1.4779 1.3786
85 1.5040 1.4450

TABLE 1. Index of refraction and density of sucrose water solution at
different concentrations.

be moved around since it is very likely that the layered solution mixes up. Furthermore,
only gradients with maximum density at the bottom can be achieved. Finally, the procedure
requires a long preparation time, so as to let the freshly poured layers to stabilize.

In order to overcome this problems we have added to the water solutions a gelling
agent: the common gelatin sheet (collagen) used in cooking recipes and therefore harmless
and easily found in grocery shops. Gelatin was dissolved in warm water according to the
preparation instructions and part of it was used to prepare a stock solution at the highest
sucrose concentration. Successive solutions, at lower sugar concentrations, were then
prepared by dilution with the proper amount of the remaining water-gelatin warm solution.

At temperatures higher than 35◦C the solution remains liquid and when poured on a
surface at room temperature it solidifies into a gelly state, the process being fully reversible.
In our experience, from six to eight layers stacked in) a transparent parallelepiped box
were enough to get a smooth gradient since a new warm layer partially melts with the
surface of the previous one. Some care must be taken to avoid an excessive inclusion of air
bubbles when mixing the ingredients, since those will remain trapped during gelification,
thus compromising the final transparency of the gel.

The obtained exhibit can be easily moved around and stored at fridge temperature for
several days. Furthermore such a type of procedure allows for the preparation of positive or
negative gradients of index of refraction and also of mixed structures aiming at reproducing
the natural mechanism of mirage formation.

In Fig.9 two examples are shown illustrating the light path that gives rise to inferior and
superior mirages, by using an ordinary laser pointer.

FIGURE 9. Two example of the exhibit with opposite gradient directions
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Through these experimental steps, students have been introduced to laboratory procedures
such as managing concentrations, making precision weightings, observing the effect of
phase transitions. Moreover it is possible to use the prepared solutions to realize different
flat shapes such as triangle, circle, semicircle, long bar and lens. This can be done by
using proper moulds or by cutting them from a large slab of firm gelatin. It will be then
possible to observe the light path through various shapes under different incident angles, by
means of a laser pointer. It is also very feasible measuring the index of refraction of the
various prepared solutions and verifying it against the expected value. The observation of
total internal reflection as well as of double internal reflection, like that occurring in water
droplets in a rainbow, is also possible, which makes the whole experience complete and
entertaining.

The unedited experiment, which in 2016 was awarded the second Prize of “Student
Chapter Competition - Frontiers in Optics and Laser Science ” on the occasion of the
100th OSA Annual Meeting at Rochester (New York), turned out to be highly effective and
stimulating in teaching concepts of Optics.
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