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Abstract

New integrability properties of a family of sequences of ordinary differential equations,
which contains the Riccati and Abel chains as the most simple sequences, are studied.
The determination of n generalized symmetries of the nth-order equation in each chain
provides, without any kind of integration, n−1 functionally independent first integrals
of the equation. A remaining first integral arises by a quadrature by using a Jacobi last
multiplier that is expressed in terms of the preceding equation in the corresponding
sequence. The complete set of n first integrals is used to obtain the exact general
solution of the nth-order equation of each sequence. The results are applied to derive
directly the exact general solution of any equation in the Riccati and Abel chains.

1 Introduction

For a given smooth function g = g(u) defined on some open interval J ⊂ R, let us define
the differential operator

Dg = Dt + g(u), (1)

where Dt denotes the total derivative operator

Dt = ∂t + u1∂u + · · ·+ uk∂uk−1
+ · · · , (2)

and ui =
diu

dti
, for i ∈ N.

The differential operator Dg acts on the set of smooth functions u = u(t), defined in
some open interval I ⊂ R such that u(t) ∈ J for t ∈ I. We set D

0
gu = u and, for j ≥ 1,

D
j
g(u) = Dg(D

j−1
g (u)).

© The author(s). Distributed under a Creative Commons Attribution 4.0 International License

http://arxiv.org/abs/2104.04800v2


42 ]ocnmp[ C Muriel and M C Nucci

We consider the sequence of ordinary differential equations (ODEs)

D
n
gu = 0, (n ∈ N) (3)

obtained by applying successively the differential operators in the sequence {Dn
g}n∈N to an

unknown function u = u(t). In what follows the sequence of ODEs Eg := {Dn
g (u) = 0}n∈N

will be called the chain generated by the function g.
Recursion operators firstly appeared in the context of evolution equations in two in-

dependent variables [18] and are traditionally applied to partial differential equations. M
Euler et al. [6] adapted them to ordinary differential equations, by considering a 1+1
evolution equation and a known recursion operator free of t. One the most well known
sequences of the form (3) is the chain generated by the function g(u) = ku, where k ∈ R,
which is known in the literature as the Riccati chain of parameter k ∈ R and whose
elements are usually called the higher Riccati equations [2, 4, 6, 9]. Riccati sequence
arises from a known recursion operator of a second-order evolution equation (Class VIII
in [8]) linearizable by a x-generalized hodograph transformation [7]. The Riccati sequence
exhibits interesting properties from both physical and mathematical point of view, and
a large variety of methods (Darboux factors, Jacobi multipliers, extended Prelle-Singer
methods, nonlocal symmetries, etc.) have been applied to its study [1, 2, 4].

For different functions g = g(u) the differential operator (1) generates new sequences
Eg, some of whose properties have been obtained in [13]. In particular, it was proved the
existence of a common C∞−symmetry [10] for all the equations of the sequence Eg : the
pair (v, λ), where

v = ∂u and λ =
u1
u

− u g′(u) (4)

defines a C∞−symmetry of the nth-order equation D
n
gu = 0, for n ∈ N [13, Theorem

2.1]. This C∞−symmetry was used to connect any sequence Eg with the Riccati chain of
parameter k ∈ R.

In this paper we aim to investigate some integrability properties of the class of chains
generated by functions of the form g(u) = kum, where k ∈ R and m ∈ Z. The correspond-
ing elements of this type of sequences will be denoted by Pn = 0, where

P0 := u, Pn := (Dt + kum)n(u), n = 1, 2, . . . . (5)

It should be observed that the Riccati chain is contained in the study, as well as the
chain generated by the function g(u) = ku2, u ∈ R, which is known as the Abel chain
of parameter k ∈ R and that has also been extensively studied in the literature [3, 5].
Both chains contain as particular cases well-known families of equations in Mathematical
Physics, such as Emden equations, generalized Van-der Pol oscillators, Chazy equations,
etc.

For the purposes of this paper, a notable property of the nth-order equation Pn = 0 is
the existence of a Jacobi last multiplier [16] that can be expressed in terms of the previous
element of the sequence as follows [13, Theorem 3.3]:

Mn := (Pn−1)
−(n+m). (6)

Both elements, the Jacobi last multiplier (6) and the common C∞−symmetry (4), will be
exploited in the study performed in this paper, which is organized as follows. In Section 2,
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we firstly use the corresponding common C∞−symmetry (4) to derive n generalized sym-
metries of the nth-order equation Pn = 0. In Section 3 it is proved that these generalized
symmetries have the property that any ratio of their characteristics is a first integral of
the equation Pn = 0; furthermore, n−1 of such first integrals are functionally independent
(Theorem 2). The Jacobi last multiplier (6) is used in Section 4 to compute a remaining
first integral, which constitutes, together with the n−1 previously determined, a complete
set of first integrals of Pn = 0. As a consequence, we obtain explicitly the general solution
of all the equations in any of the chains of the family. The results are applied to study
the Riccati and Abel chains in sections 5 and 6, respectively. Additionally, we prove that
for each equation in the Riccati chain it is possible to derive an additional generalized
symmetry. As a consequence, a complete set of first integral for the nth-order equation in
the Riccati chain is obtained without any kind of integration.

Remarkably, the unified procedure presented in this paper is valid for all the chains
generated by g(u) = kum,, providing a common expression, depending on m, for the
exact solutions of all the equations in any chain. This greatly improves the procedure
presented in [13], which required an additional integration to derive such solutions from
the solutions of the higher Riccati equations. Moreover, our results are valid for real values
of the parameter m (Section 7), enlarging significantly the classes of ODEs which can be
completely solved by this new procedure, without any kind of integration.

2 Derivation of n generalized symmetries by using a
C∞−symmetry

In this section we address the problem of determining n generalized symmetries of the
nth-order equation:

Pn := (Dt + kum)n(u) = 0, k ∈ R, m ∈ Z, (7)

by using the corresponding C∞−symmetry (4), which for g(u) = kum becomes

v = ∂u and λ =
u1
u

− kmum. (8)

We recall that the concept of C∞−symmetry arises naturally from the concept of Lie
point symmetry when λ−prolongations are considered instead of standard prolongations:
for any vector field v = ξ(t, u)∂t + η(t, u)∂u and a smooth function λ = λ(t, u, u1), the
jth–order λ−prolongation of v is denoted by v[λ,(j)] and defined as

v[λ,(j)] := v + η[λ,(1)]
(

t, u(1)
)

∂u1
+ · · ·+ η[λ,(j)]

(

t, u(j)
)

∂uj
, (9)

where

η[λ,(0)] = η, η[λ,(i)] = (Dt + λ)
(

η[λ,(i−1)]
)

− ui(Dt + λ)
(

ξ
)

, (10)

for i = 1, . . . , j. The pair (v, λ) defines a C∞−symmetry (or v is a λ−symmetry) of
equation (7) if and only if [10]

v[λ,(n)]
(

Pn

)

= 0 when Pn = 0. (11)
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Equivalently, (v, λ) is a C∞−symmetry of (7) if and only if [10]

[v[λ,(n−1)],An] = λv[λ,(n−1)] − (An + λ)(ξ)An, (12)

where now, and henceforth, An denotes the restriction of Dt to the manifold defined by
equation (7).

This primitive concept of C∞−symmetry was later extended to permit the function
λ or the infinitesimals ξ, η of v belong to the space of smooth functions on t, u and the
derivatives of u with respect to t up to some finite but unspecified order [11, Def. 2.1],
[12, Sect. 2.3]. In these cases the pair (v, λ) is called a generalized λ−symmetry (or
a generalized C∞−symmetry). Clearly, when λ = 0, (9) is the standard prolongation
of v and therefore the pair (v, 0) is a (generalized) C∞−symmetry if and only if v is a
(generalized) Lie symmetry.

A remarkable property of C∞−symmetries for the purpose of this section is the following
[11]: if (v, λ) is a C∞−symmetry of equation (7) and ρ = ρ(t, u(i−1)), i ≤ n, is any given
smooth function, then the pair (ρv, λ̄) is a generalized C∞−symmetry of equation (7) for
the function

λ̄ = λ− An(ρ)

ρ
.

In particular, when λ̄ = 0, i.e., if the function ρ verifies
An(ρ)

ρ
= λ, then ρv is a generalized

symmetry.

Applying this result to the C∞−symmetry (8) of equation (7), we have that if a function
ρ = ρ(t, u(n−1)) verifies

An(ρ)

ρ
= λ =

u1
u

− kmum, (13)

then the generalized vector field ρ(x, u(n−1)) ∂u becomes a generalized symmetry of the
equation (7).

In the next theorem we provide n functions satisfying (13) which are used to construct
n generalized symmetries of equation (7):

Theorem 1. Let P0 := u and Pn := (Dt + kum)(Pn−1) for n ≥ 1. For 1 ≤ i ≤ n, the
vector fields

wn,i := u(Pn−1)
m−1





i
∑

j=1

(−1)j+1

(i− j)!
ti−jPn−j



 ∂u, i = 1, . . . , n (14)

define n generalized symmetries of the nth-order equation Pn = 0.

Proof. For i = 1, 2, · · · , n, let ρn,i be the functions defined by

ρn,i := u(Pn−1)
m−1Hi, where Hi =

i
∑

j=1

(−1)j+1

(i− j)!
ti−jPn−j . (15)
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By using the identities

An(Pi−1) = Pi − kumPi−1 for i = 1, 2, . . . , n− 1,
An(Pn−1) = −kumPn−1,

(16)

which follow immediately from (5), a straightforward calculation leads to

An(ρn,i)

ρn,i
=

An(u)

u
+

An

(

(Pn−1)
m−1

)

(Pn−1)m−1
+

An(Hi)

Hi

=
u1
u

− k(m− 1)um − kum = λ.

(17)

This shows that the functions given in (15) satisfy (13). The theorem follows immediately
from the discussion included at the beginning of this section. �

Remark 1. It can be easily checked that the functions given in (15) satisfy ∂t(ρn,i) =
ρn,i−1, for 1 < i ≤ n. Therefore, the n − 1 generalized symmetries wn,i = ρn,i∂u, for
1 ≤ i ≤ n − 1, can be directly determined from wn,n = ρn,n∂u by using successive
derivations with respect to t, because ∂i

t(ρn,n) = ρn,n−i.

3 First integrals derived from the generalized symmetries
(14)

Let ρ1 and ρ2 be any functions satisfying (13). Then

An (ρ1/ρ2)

ρ1/ρ2
=

An(ρ1)

ρ1
− An(ρ2)

ρ2
= 0. (18)

This implies that ρ1/ρ2 is a first integral for the nth-order equation (7). As a consequence
of Theorem 1, it follows that the functions

I(n;i,j) :=
ρn,i
ρn,j

=
Hi

Hj
, i, j ∈ {1, 2, . . . , n} (19)

are first integrals of equation (7). In order to construct a complete set of first integrals,
we can consider, for instance, the n− 1 first integrals:

I(n;i) :=
ρn,i
ρn,1

=

i
∑

r=1

(−1)r+1

(i− r)!
ti−rQn−r (2 ≤ i ≤ n), (20)

where Qj := Pj/Pn−1, for 0 ≤ j ≤ n− 1.
We observe that the functions (20) satisfy the relation ∂t(I(n;i)) = I(n;i−1), for 2 < i ≤ n;

therefore the first integrals I(n,2), . . . , I(n,n−1) can be generated by successive derivations
with respect to t of I(n;n) as follows:

I(n;j) = ∂n−j
t (I(n;n)) (2 ≤ j ≤ n− 1). (21)

In the next theorem we prove that the n − 1 first integrals (20) are functionally inde-
pendent:
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Theorem 2. For n ≥ 2, the functions defined by (20) are n− 1 functionally independent
first integrals of the nth-order equation (7).

Proof. Let

M =
∂(I(n;2), . . . , I(n;n))

∂(t, u, u1, . . . , un−1)
. (22)

denote the Jacobian matrix associated to the functions (20). Let M̄ be the square sub-
matrix of M formed by its last n − 1 columns. Our goal is to check that det(M̄) 6= 0, in
order to prove that the rank of the Jacobian matrix M is n− 1.

The elements of the last row Rn−1 of M̄ can be written in the form ∂uj
(I(n;n)) =

aj;n−2t
n−2 + · · · + aj;0, for 1 ≤ j ≤ n− 1, where

aj;n−l =
(−1)l−1

(n − l)!
∂uj

(Qn−l), for 2 ≤ l ≤ n.

According to (21), the elements of the row Rn−2 are obtained by deriving the elements
of Rn−1 with respect to t and so on. Consequently, for 1 ≤ i ≤ n− 1, the elements of the
row Ri of M̄ are polynomials on t of degree i − 1, and their respective constant terms,
which will be used later, become

aj;n−i−1 = (−1)i∂uj
(Qn−i−1), for 1 ≤ j ≤ n− 1. (23)

In order to cancel out the leading terms of the polynomials of the row Ri of M̄ for
2 ≤ i ≤ n− 1, we replace Ri by

R
(1)
i = Ri −

t

i− 1
Ri−1, (24)

and denote the resulting matrix by M̄(1). Clearly det(M̄(1)) = det(M̄), and it is easy to

check that all the elements of the new row R
(1)
i , for i ≥ 2, are polynomials on t of degree

i− 2 and whose respective constant terms remain as in (23).
This process can be successively repeated until getting a matrix M̄(n−2) whose elements

do not depend on t, and are given by (23):

M̄(n−2) =
(

(−1)i∂uj
(Qn−i−1)

)

, for 1 ≤ i, j ≤ n− 1. (25)

Let Cj denote the columns of the matrix
(

∂uj
(Qn−i−1)

)

, for 1 ≤ i, j ≤ n − 1. By

replacing the column Cj by C ′

j where

C ′

j = Pn−1

(

Cj − ∂uj
(Pn−1)Cn−1

)

, (1 ≤ j < n− 1, n > 2),

C ′

n−1 = −P 2
n−1Cn−1

(26)

it can be checked that matrix
(

∂uj
(Qn−i−1)

)

is transformed into











∂u1
(Pn−2) · · · 1 Pn−2
...

. . .
...

...
1 · · · 0 P1

0 · · · 0 P0











. (27)
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The determinant of matrix (27) is P0 for n = 2, 3, and (−1)k+1P0 where k > 1 is such
that n = 2k or n = 2k + 1. By taking (25) and (26) into account we finally deduce that

δn := det(M̄) =
P0

(Pn−1)n
6= 0. (28)

Therefore the rank of matrix M is n− 1, which proves the theorem. �

4 Complete integrability by using Jacobi last multipliers

In Theorem 2, n − 1 functionally independent first integrals of the nth-order equation
Pn = 0 have been obtained. It is clear that any other first integral of the form (19) is
functionally dependent of the mentioned n−1 first integrals, because I(n;k,l) = I(n;k)/I(n;l),
for 1 ≤ l, k ≤ n. In order to integrate completely equation (7), in this section we discuss
how the Jacobi last multiplier (6) can be used to find a remaining first integral. With this
objective we follow the next steps:

1. As a consequence of Theorem 2 the set

∆ = {(t, u(n−1)) ∈ M (n−1) : I(n;j)(t, u
(n−1)) = c(n;j), 2 ≤ j ≤ n}, (29)

where the c(n;j) are constants, is a submanifold of M (n−1) of dimension 2. It follows
from (28) and the Implicit Function Theorem that ∆ can be locally parametrized
by (t, u) as follows:

{(t, u(n−1)) ∈ M (n−1) : uj = G(n;j)(t, u, c(n;2), . . . , c(n;n)), 2 ≤ j ≤ n− 2},
for some smooth functions G(n;j). The first order ODE

u1 = G(n;1)(t, u, c(n;2), . . . , c(n;n)) (30)

will be called the auxiliary equation. Next we deduce the explicit expression of this
auxiliary equation.

The equations I(n;i)(t, u
(n−1)) = c(n;i), for 2 ≤ i ≤ n − 1, can be written in matrix

form as follows

Nn−1















Pn−1

Pn−2
...
P2

P1















=















0
0
...
0

(−1)nP0















(31)

where

Nn−1 =

























t− c(n;2) −1 · · · 0
t2

2!
− c(n;3) −t · · · 0

t3

3!
− c(n;4) − t2

2!
· · · 0

...
...

. . .
...

tn−1

(n− 1)!
− c(n;n) − tn−2

(n− 2)!
· · · (−1)nt

























, (n ≥ 2).
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It can be checked that det(Nn−1) is a polynomial of t of degree n− 1 :

Sn−1(t) := det(Nn−1) = σn

( tn−1

(n− 1)!
+

n
∑

r=2

(−1)r+1

(n− r)!
tn−rc(n;r)

)

, (32)

where

σn =

{

(−1)k+1 for n = 2k,
(−1)k for n = 2k + 1.

(33)

The following relation between the determinants of Nn−1 and Nn−2 can be easily
proved:

S′

n−1(t) = (−1)nSn−2(t). (34)

It follows from (31) and (34) that

P1

∣

∣

∣

∆
= (−1)nP0

det(Nn−2)

det(Nn−1)
= P0

S′

n−1(t)

Sn−1(t)
.

Therefore the auxiliary equation (30) becomes

u1 = −kum+1 + u
S′

n−1(t)

Sn−1(t)
. (35)

This is a Bernoulli equation and it can be solved by a well-known procedure. Nev-
ertheless, in what follows, we provide explicitly its general solution by determining
an integrating factor and an associated first integral.

2. According to [14, Corollary 6], an integrating factor of the auxiliary equation (30)
is the function µ = µ(t, u, c(n;2), · · · , c(n;n)) defined by

µ :=
(Pn−1)

−(n+m)

δn

∣

∣

∣

∆
=

(Pn−1)
−m

P0

∣

∣

∣

∆
, (36)

where δn has been defined in (28). The restriction of Pn−1 to ∆ can be calculated
from (31) as

Pn−1

∣

∣

∣

∆
=

P0

det(Nn−1)
=

P0

Sn−1(t)
.

Therefore, the integrating factor (36) of equation (35) becomes

µ = u−(m+1)
(

Sn−1(t)
)m

.

3. A corresponding first integral H = H(t, u, c(n;2), · · · , c(n;n)) of the exact first order
equation µ(u1 −G(n;1)) = 0 can be calculated by a single quadrature and becomes:

H := u−m (Sn−1(t))
m − km

∫

(Sn−1(t))
m dt. (37)

Consequently, the function I(n;1) = I(n;1)(t, u
(n−1)) defined by

I(n;1) = H(t, u, I(n;2), . . . , I(n;n)) (38)

is a first integral of the equation Pn = 0. Furthermore, the functions in {I(n;j)}nj=1

are n functionally independent first integrals of the equation Pn = 0.
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4. By setting H = c(n;1) in (37), where c(n;1) ∈ R, the general solution of the equation
Pn = 0 can be expressed as

u(t)m =
(Sn−1(t))

m

km

∫

(Sn−1(t))
m dt+ c(n;1)

.
(39)

Equation (39) provides a formula to solve directly the nth-order equation Pn = 0 by
using the polynomials (32). These polynomials are the same for all the chains, because
they are independent of the constants k and m. In order to simplify the expression of the
polynomials (32) we set

C1 := σn(n− 1)!c(n;1),

Cr := (−1)r+1σn
(n− 1)!

(n− r)!
c(n;r), for 2 ≤ r ≤ n,

which permits to express the general solution of (7) in terms of arbitrary polynomials of
order n− 1, as it is stated in the next theorem for further reference:

Theorem 3. Let P0 := u and Pn := (Dt + kum)(Pn−1) for n ≥ 1. The general solution of
the equation Pn = 0 is

u(t)m =
(Tn−1(t))

m

km

∫

(Tn−1(t))
m dt+ C1

, (40)

where

Tn−1(t) = tn−1 + C2t
n−1 + · · ·+ Cn−1t+ Cn, (41)

and Ci ∈ R for 1 ≤ r ≤ n.

In the following two sections we apply these results to the Riccati and Abel chains.

5 The Riccati chain

The chain (3) generated by the function g given by g(u) = ku, u ∈ R, is known as the
Riccati chain of parameter k ∈ R. We set

R0 := u and Ri := (Dt + ku)(Ri−1), i ≥ 1. (42)

The equations in the Riccati chain are usually known as the higher-order Riccati equations.
The first four terms of this sequence define the ODEs displayed in Table 1:
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Table 1. Four first equations in the Riccati chain

n Rn = 0

1 u1 + ku2 = 0
2 u2 + k2u3 + 3kuu1 = 0
3 u3 + k

(

k2u4 + 6ku2u1 + 4uu2 + 3u21
)

= 0
4 u4 + k

(

k3u5 + 10k2u3u1 + 10ku2u2 + 5u
(

3ku21 + u3
)

+ 10u1u2
)

= 0

5.1 Generalized symmetries and first integrals for the Riccati chain

Theorem 1 can be used to determine n generalized symmetries of the nth-order equation
in the considered chain. In this section we derive an additional generalized symmetry for
the nth-order equation of the Riccati chain. The term

R−1 :=
1

k
(43)

satisfies

(Dt + ku)(R−1) = R0, (44)

which corresponds to (16) for i = 0. This suggests that the term (43) can be used to derive
a new generalized symmetry for the Riccati chain:

Theorem 4. For i ≥ −1, let Ri be the functions given in (42) and (43). The vector field

wRn,n+1 := u





n+1
∑

j=1

(−1)j+1

(n+ 1− j)!
tn+1−jRn−j



 ∂u (45)

is a generalized symmetry of the nth-order equation Rn = 0 of the Riccati chain, for n ≥ 1.

Proof. By taking into account that Pn = Rn for m = 1, the vector field (45) can be
written in the form for ρn,n+1∂u where ρn,n+1 is the function defined in (15) but extended
to i = n+ 1 :

ρn,n+1 := u(Pn−1)
m−1

n+1
∑

j=1

(−1)j+1

(n+ 1− j)!
tn+1−jPn−j (m = 1). (46)

By using (44) and the corresponding identities (16):

An(Ri−1) = Ri − kuRi−1 for i = 0, 1, 2, . . . , n− 1,
An(Rn−1) = −kuRn−1,

(47)

it can be proved, as in the proof of Theorem 1, that function (46) satisfies the corresponding
condition (17) for m = 1 :

An(ρn,n+1)

ρn,n+1
=

u1
u

− ku = λ. (48)

The result follows immediately from the discussion at the beginning of Section 2. �
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The additional generalized symmetry (45) for the nth-order equation of the Riccati chain
permits to find, without any kind of additional integration, a new first integral, that
together with the functionally independent first integrals derived in Theorem 2, constitutes
a complete set of first integrals for Rn = 0.

Corollary 1. The function

I(n;n+1) :=
ρn,n+1

ρn,1
=

tn

n!
− tn−1

(n− 1)!

Rn−2

Rn−1
+ · · ·+ (−1)n+2 R−1

Rn−1
(49)

is a first integral of the nth-order equation Rn = 0 of the Riccati chain. Moreover, (49)
and the functions given by (20) (for m = 1) constitutes a complete set of first integrals of
Rn = 0.

Proof. According to (18), the function (49) is a first integral of Rn = 0 because ρn,n+1

and ρn,1 satisfy (13) (see Equations (17) and (48)).

In order to prove the functional independence of the first integrals I(n;j), for 1 ≤ j ≤
n+ 1, let

MR =
∂(I(n;2), · · · , I(n;n+1))

∂(t, u, u1, · · · , un−1)
(50)

denote associated Jacobian matrix. Let M̄R be the square submatrix of MR formed by
its last n columns. As in the proof of Theorem 2, it can be checked that det(M̄R) =

R−1

(Rn−1)n+1
6= 0, which proves that the rank of the Jacobian matrix MR is n. Therefore

{I(n;2), . . . , I(n;n+1)} are n functionally independent first integrals of Rn = 0.

�

Remark 2. It can be easily checked that the functions given in (15) and (46) satisfy
∂t(ρn,i) = ρn,i−1 for 1 ≤ i ≤ n + 1. Therefore the n generalized symmetries of Rn = 0
derived in Theorem 1 (for m = 1) can be directly determined from (46) by using successive
derivations with respect to t. For instance, the corresponding generalized symmetries (14)
and (45) for the fourth-order equation in the Riccati chain become

wR(4,5) = u

(

R3
t4

4!
−R2

t3

3!
+R1

t2

2
−R0t+R−1

)

∂u,

wR(4,4) = u

(

R3
t3

3!
−R2

t2

2
+R1t−R0

)

∂u,

wR(4,3) = u

(

R3
t2

2
−R2t+R1

)

∂u,

wR(4,2) = u (R3t−R2) ∂u,

wR(4,1) = uR3∂u.

(51)

Similarly, it follows from (21) that a complete set of first integrals of Rn = 0 can be
easily computed from the first integral (49) by successive derivations with respect to t.
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For instance, the corresponding first integrals (20) and (49) for the fourth-order equation
in the Riccati chain become

I(4,5) =
t4

4!
− R2

R3

t3

3!
+

R1

R3

t2

2
− R0

R3
t+

R−1

R3
,

I(4,4) =
t3

3!
− R2

R3

t2

2
+

R1

R3
t− R0

R3
,

I(4,3) =
t2

2
− R2

R3
t+

R1

R3
,

I(4,2) = t− R2

R3
.

(52)

5.2 General solutions to the equations of the Riccati chain

For the Riccati chain (i.e., for m = 1), the corresponding formula (40) becomes

u(t) =
Tn−1(t)

k

∫

Tn−1(t)dt+C1

, (53)

which provides directly the general solutions of Rn = 0, by using the polynomials given
in (41). In the next table we give the general solutions for the four first equations in the
Riccati chain (see Table 1), and where the Ci are arbitrary real constants:

Table 2. General solutions for the four first equations in the Riccati chain

n General Solution of Rn = 0

1 u (t) =
1

kt+ C1

2 u (t) =
2 (t+ C2)

k (t2 + 2C2 t) + 2C1

3 u (t) =
3! (t2 + C2t+ C3)

k (t3 + 3C2t2 + 6C3t) + 6C1

4 u (t) =
4! (t3 + C2t

2 + C3t+ C4)

k (t4 + 4C2t3 + 6C3t2 + 12C4t) + 12C1

6 The Abel chain

The chain (3) generated by the function g given by g(u) = ku2, u ∈ R, is known as the
Abel chain of parameter k ∈ R. We set

A0 := u and Ai := (Dt + ku2)(Ai−1), i ≥ 1. (54)

The first three terms of the Abel chain are the following ODEs:
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Table 3. Three first equations in the Abel chain

n An = 0

1 u1 + ku2 = 0
2 u2 + k2u5 + 4ku1u

2 = 0
3 u3 + k(k2u4 + 6ku2u1 + 4uu2 + 3u21) = 0

For the Abel chain, the parameter m is m = 2 and the corresponding formula (40)
becomes

u(t)2 =
(Tn−1(t))

2

k

∫

(Tn−1(t))
2dt+ C1

. (55)

In Table 4 we give the general solutions for the three first equations in the Abel chain
shown in Table 3:

Table 4. General solutions for the Abel chain

n General Solution of An = 0

1 u(t)2 =
1

2kt+ C1

2 u(t)2 =
3(t+ C2)

2

2k(t+ C2)3 + 3C1

3 u(t)2 =
15(t2 + C2t+ C3)

2

k
(

6t5 + 15C2t4 + 10(C2
2 + 2C3)t3 + (30C3C2)t3 + 30C2

3 t
)

+ 15C1

These solutions should be compared with those obtained in [13, Theorem 3.2], which
were obtained from the solutions of the higher Riccati equations by solving an additional
first-order ODE (see Eq. (41) in [13]). The procedure introduced in this paper provides
directly the general solutions by means of (55), which does not require either the solutions
of the Riccati higher equations or any type of additional integration.

7 Example for m 6∈ Z

The results obtained in Sections 1-4 have been established for sequences of equations of
the form (3) generated by g(u) = kum, for arbitrary values k ∈ R and m ∈ Z. In this
section we present an example in order to show these results are also valid for real values
of parameter m, with adequate restrictions on the involved domains.

The third-order ODE

√
uu3 + 14u2u+ 5u21 + 72u1u

√
u+ 64u3 = 0, u > 0 (56)

is the element P3 = 0, of the sequence (3) generated by the function g(u) = 4
√
u, which

correspond to k = 4,m = 1/2. Therefore, Theorem 3 can be applied to provide directly
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its general solution through (40):

u(t) =
T2(t)

(

(C3 − C2
2 ) ln

∣

∣

∣
C2 + t+

√

|T2(t)|
∣

∣

∣
+ (t+ C2)

√

|T2(t)|+ C1

)2 , (57)

where

T2(t) = t2 + 2C2t+ C3, Ci ∈ R for i = 1, 2, 3.

Although the Lie symmetry group of equation (56) is two-dimensional (and therefore insuf-
ficient to complete its integration by quadratures), Theorem 1 provides three generalized
symmetries of the equation,

w(3,3) = u (P2)
−1/2

(

P2
t2

2
− P1t+ P0

)

∂u,

w(3,2) = u (P2)
−1/2 (P2t− P1) ∂u,

w(3,1) = u (P2)
1/2∂u,

(58)

by using the preceding elements in the sequence:

P0 = u, P1 = u1 + 4u
√
u, P2 = u2 + 10u1

√
u+ 16u2.

By Theorem 2, these terms can also be used to obtain, without any integration, the first
integrals

I(3,3) =
t2

2
− P1

P2
t− P0

P2
, I(3,2) = t− P1

P2
. (59)

By using (32)

S2(t) = det(N2) =

∣

∣

∣

∣

∣

∣

t− c(3;2) −1
t2

2!
− c(3;3) −t

∣

∣

∣

∣

∣

∣

= − t2

2
+ tc(3,2) − c(3,3)

a remaining first integral can be calculated from (38), which can be expressed as follows

I(3,1) = (
√
u− t+ I(3,2)))J +

√
2

(

I(3,3) −
(I(3,2))

2

2

)

arctan

(

t− I(3,2)

J

)

,

where J = J(t, u(2)) is the function given by

J =

√

∣

∣

∣

∣

− t2

2
+ tI(3,2) − I(3,3)

∣

∣

∣

∣

.

8 Concluding remarks and extensions

In this paper, we have determined a unified method to study a family of differential se-
quences, in order to obtain their first integrals, generalized symmetries and exact solutions.
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For any nth-order equation in each chain, we have obtained a set of n generalized sym-
metries in evolutionary form, and verified the essential property that the ratio of any two
characteristics become a first integral of the equation (Theorem 1). Furthermore, we have
demonstrated taht n− 1 of these first integrals are functionally independent (Theorem 2).
It is noteworthy that the generalized symmetries can be easily derived from one another
by means of simple derivations with respect to t (see Remark 1 and equation (21)).

In order to obtain a complete set of first integrals, we have exploited the knowledge of a
Jacobi last multiplier for each equation of the considered sequences. Thus, a remaining first
integral is determined by quadrature only. Finally, we have shown that the complete set
of first integrals yields the general solution of each nth-order equation of any sequence and
can be expressed through (40) in terms of arbitrary polynomials of order n− 1 (Theorem
3).

We have applied our general results to the Riccati and Abel chains. In particular,
we have derived an additional generalized symmetry in the case of the Riccati chain.
Consequently, the n + 1 determined generalized symmetries yield a complete set of first
integrals, without any kind of integration and the use of the Jacobi last multiplier.

The existence of an additional generalized symmetry with similar properties for the
other sequences of the family, e.g. the Abel chain, remains as an a open problem. Another
issue which needs to be investigated further is how the generalized symmetries obtained in
this work can be used to determine the complete symmetry groups of each equation, not
only in the Riccati chain (which have been derived in [2] in terms of nonlocal symmetries,
and in [17] as Lie point symmetries of the equivalent first-order equations), but for any
sequence in the family and, in particular, in the Abel chain.

Acknowledgements

C. Muriel acknowledges the financial support of the Junta de Andalućıa research group
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