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COMPARISON BETWEEN SOLUTIONS OF A TWO-DIMENSIONAL
TIME-FRACTIONAL DIFFUSION–REACTION EQUATION

THROUGH LIE SYMMETRIES

ALESSANDRA JANNELLI a∗ AND MARIA PAOLA SPECIALE a

ABSTRACT. In this paper, exact and numerical solutions of two dimensional time-fractional
diffusion-reaction equation involving the Riemann-Liouville derivative are determined,
by applying a procedure that combines the Lie symmetry analysis with the numerical
methods. Two new reduced fractional differential equations are obtained by using the Lie
symmetry theory. Applying only one Lie transformation, we get a new time-fractional
partial differential equation and, applying a further Lie transformation, we get an ordinary
differential equation. Numerical solutions of the reduced differential equations are computed
separately by implicit numerical methods. A comparative study between numerical solutions
is performed.

1. Introduction

In the recent literature, the fractional calculus is greatly used in the description of
nonlinear phenomena such as diffusion processes, solid mechanics, wave propagation
problems, as well as the population dynamics and the combustion theory. The fractional
differential equations are considered as the general form of differential equations, as they are
involved with the derivatives of any real or complex order. They are valuable for describing
reaction of anomalous diffusion problems in dispersive transport media, for example in
viscoelasticity when the material damage occurs or when localised deformation develops,
typical phenomena of fractured and porous media.

Several methods are used to solve fractional differential equations; from the classical
Laplace transform for linear fractional equations (Miller and Ross 1993; Samko et al. 1993;
Podlubny 1999; Kilbas et al. 2006) to Adomian decomposition (Daftardar-Geji and Jafari
2005; Cheng and Chu 2011), from operational methods for determining analytic solutions
(Hilfer et al. 2009; Garra 2012; Garra and Polito 2012) to the homotopy perturbation meth-
ods (He 2000, 2006; Momani and Odibat 2007; Gómez-Aguilar et al. 2016a). Analytical
solutions of FPDE can be found in (Gómez-Aguilar and Hernández 2014; Gómez-Aguilar
et al. 2016b,c; Inc et al. 2020; Pandey et al. 2020). Also efficient numerical methods have
been developed, including finite element schemes (Liu et al. 2018; Yin et al. 2019), finite
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volume (Fu et al. 2019; Jiang and Xu 2019; Li et al. 2021), finite difference methods (Huang
et al. 2020; Jannelli 2020; Zhou et al. 2020; Rajeev et al. 2021) and spectral ones (Zhao
et al. 2019; Dwivedi et al. 2020; Zaky et al. 2020). Most known methods lead to get only
approximate solutions and not exact ones. As well known, Lie symmetries of a differential
equation are a powerful tool for the determination of exact solutions of partial and ordinary
differential equations (Ovsiannikov 1982; Olver 1986; Bluman and Kumei 1989; Ibragimov
1993, 1994, 1995). In particular, in the case of partial differential equations with n indepen-
dent variables the Lie symmetries allow to reduce a partial differential equation to a new
one involving n−1 independent variables and by iterating the procedure through the study
of Lie symmetries admitted by new reduced equation it is possible, in some cases, to get an
ordinary differential equation. The solutions of the reduced equation, by means of invertible
Lie transformations, lead to obtain solutions to the target equation. For this reason, an
extension of the Lie symmetry method to fractional differential equations (FPDEs) has been
proposed by Buckwar and Luchko (1998), Gazizov et al. (2007, 2009, 2011), and Leo et al.
(2014).

Recently, we proposed a procedure that combines the Lie symmetry analysis with the
numerical methods to get exact and numerical solutions of FPDEs (Jannelli et al. 2018,
2019a,b, 2020). We applied this procedure to the two-dimensional time-fractional diffusion–
reaction model (Jannelli and Speciale 2021), governed by the following FPDE:

∂
α
t u(t,x,y)− k1∂xxu(t,x,y)− k2∂yyu(t,x,y) = f (t,x,y,u) (1)

with 0 < α < 1, where ∂ α
t is the Riemann-Liouville fractional derivative operator

∂
α
t u(t,x,y) =

1
Γ(1−α)

∂

∂ t

∫︂ t

0

u(s,x,y)
(t − s)α

ds,

u(t,x,y) is the field variable with t, x and y independent variables; k1 > 0, k2 > 0 are the
diffusion coefficients and the reaction term f is assumed as f = f1(t,x,y)u+ f2(t,x,y), with
f1 and f2 arbitrary functions of their arguments. For instance, in chemistry context the
model describes the phenomena of so called anomalous sub-diffusion of material competes
with the production of that material by some form of chemical reaction, when f(t,x,y,u) is
the net rate, produced in a chemical reaction.

Jannelli and Speciale (2021), upon applying the extended Lie symmetry theory (Buckwar
and Luchko 1998; Gazizov et al. 2007, 2009, 2011; Leo et al. 2014), obtained transforma-
tions that map Eq. (1) into a new FPDE involving two new independent variables instead
of (t,x,y) and, therefore, reducing the dimension of the space. Furthermore, numerical
solutions of this reduced FPDE were computed by applying an implicit unconditionally
stable finite difference method (Jannelli 2020).

In this paper, we apply our procedure in order to find solutions of the model (1). In
particular, we analyze the Lie symmetries of the reduced FPDE obtained by Jannelli and
Speciale (2021) and get a Lie transformation that leads to a fractional ordinary equation
(FODE). Exact and numerical solutions of the FODE are found, the numerical ones are
obtained by using the implicit unconditionally stable trapezoidal method (Jannelli et al.
2019a, 2020). A comparison between the numerical solutions of the model (1), obtained by
solving separately the reduced FODE and the reduced FPDE found by Jannelli and Speciale
(2021), is reported pointing out the good performance of these two proposed approaches
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that reveal to be efficient and reliable for solutions of two-dimensional fractional-time
differential equations. In particular, the numerical solutions are found by implementing two
numerical methods, based on integral rules and finite difference formula, to the reduced
equations by introducing the Caputo derivative.

The paper plan is as follows. In Section 2, we briefly recall the main concepts of Lie
symmetry theory and its extension to FPDEs. In Section 3, we report the Lie transformation
admitted by the two dimensional model (1), that reduces it into a new one dimensional
FPDE. In Section 4, we compute the Lie symmetry analysis that allows to map the reduced
FPDE into a FODE and exact solutions are presented. In Section 5, we show the numerical
results and report the comparisons between numerical solutions obtained by applying two
different numerical schemes. The errors and the convergence order of the proposed methods
are presented. Concluding remarks on the obtained numerical results are presented.

2. Lie symmetry method

In this section, we briefly recall the main definitions and properties of Lie Symmetry
theory and its extension to FDEs according to the theory developed by (Gazizov et al. 2007,
2011).

Invertible transformations of the variables t,x,y,u

T = T (t,x,y,u,a), X = X(t,x,y,u,a), Y = Y (t,x,y,u,a), U =U(t,x,y,u,a), (2)

depending on a continuous parameter a, are said to be one-parameter Lie point symmetry
transformations of Eq. (1) if Eq. (1) has the same form in the new variables T,X ,Y,U .
The set G of all such transformations forms a continuous group, also known as the group
admitted by Eq. (1).

According to the Lie theory, by expanding (2) in Taylor’s series around a = 0, we get the
infinitesimal transformations

T = t +aξ1(t,x,y,u)+o(a), X = x+aξ2(t,x,y,u)+o(a),

Y = y+aξ3(t,x,y,u)+o(a), U = u+aη(t,x,y,u)+o(a)

where their infinitesimals ξ1, ξ2. ξ3 and η are given by

ξ1(t,x,y,u) =
∂T
∂a

⃓⃓⃓⃓
a=0

, ξ2(t,x,y,u) =
∂X
∂a

⃓⃓⃓⃓
a=0

,

ξ3(t,x,y,u) =
∂Y
∂a

⃓⃓⃓⃓
a=0

, η(t,x,y,u) =
∂U
∂a

⃓⃓⃓⃓
a=0

.

The corresponding operator

Ξ = ξ1(t,x,y,u)∂t +ξ2(t,x,y,u)∂x +ξ3(t,x,y,u)∂y +η(t,x,y,u)∂u (3)

is known in the literature as the infinitesimal operator or generator of the group G.
We get the point transformations that leave Eq. (1) invariant, applying the Lie’s algorithm,

that requires the k-order prolongation of the operator (3) acting on (1), identified by ∆, to be
zero along the solutions, i.e.

Ξ
k
∆ = 0|∆=0. (4)
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The invariance condition (4) leads to get an overdetermined set of linear differential equa-
tions (determining equations) for the infinitesimals that (by integration) allows to find the
generators of Lie point symmetries admitted by Eq. (1).

In the extension of Lie symmetry method to a given FPDE (Buckwar and Luchko 1998;
Gazizov et al. 2009, 2011; Leo et al. 2014), for the presence of Riemann-Liouville fractional
derivative, a new infinitesimal has been introduced and, in order to conserve the structure of
the fractional derivative operator, the following invariance condition is also required

ξ1(t,x,u)|t=0 = 0.

The new infinitesimal ζ 1
α is given by prolongation formula (Gazizov et al. 2007)

ζ
1
α = Dα

t (η)+ξ2 Dα
t (ux)−Dα

t (ξ2 ux)+ξ3 Dα
t (uy)−Dα

t (ξ3 uy)

+Dα
t (Dt(ξ1)u)−Dα+1

t (ξ1 u)+ξ1 Dα+1
t (u),

where Dt denotes the total derivative. Its presence leads to get that, when we require that
the invariance condition (4) must be satisfied, the coefficients of the determining equations
depend on all derivatives of variable u and Dα

t u.
The fractional symmetries of Eq. (1) are obtained by using an algorithm implemented in

the MAPLE package (FracSym (Jefferson and Carminati 2013)). This algorithm uses some
routines of the MAPLE symmetry packages DESOLVII (Vu et al. 2012) and ASP (Jefferson
and Carminati 2013); these routines automate the method of finding symmetries for FDEs
as proposed by Buckwar and Luchko (1998), Gazizov et al. (2011), and Leo et al. (2014).

3. The reduction into a FPDE

In this Section, we report the Lie transformation and the reduced FPDE, in terms of two
independent variables (T,Z) instead of the three (t,x,y), found by Jannelli and Speciale
(2021).

The Lie transformation, obtained by the Lie rotation symmetry admitted by Eq. (1), is

T = t, Z = r2 = k2x2 + k1y2,

U = e
−a5θ

a4
√

k1k2 u(t,x,y)+
∫︂ e

−a5θ

a4
√

k1k2

a4k2x
χdy (5)

being θ = arctan
√︂

k1
k2

y
x and χ = χ(t,x) an arbitrary function.

The functions f1 and f2, according to the previous transformation, assume the form

f1 = φ1,

f2 = e
−a5θ

a4
√

k1k2

⎛⎜⎝φ2 −
∫︂ e

a5θ

a4
√

k1k2

a4k2x
(∂ α

t χ − k1∂xxχ − k2∂yyχ +φ1χ)dy

⎞⎟⎠ (6)

where φ1 = φ1(T,Z) and φ2 = φ2(T,Z) are arbitrary functions of their arguments. By means
of the transformation (5) and inserting previous forms of f1 and f2 in Eq. (1), we get the
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following FPDE involving two independent variables T and Z,

Dα
T U −4k1k2(ZDZZU +DZU)+φ1U −

a2
5

a2
4Z

U +φ2 = 0. (7)

Numerical and exact solutions of the above FPDE were obtained by Jannelli and Speciale
(2021), where the efficiency of the proposed procedure, implemented by using the classical
L1 implicit finite difference scheme to numerically solve the reduced FPDE, was shown.

4. The reduction into a FODE and exact solutions

In this Section, we study the Lie symmetries admitted by the reduced FPDE (7). We are
able to get a Lie transformation that reduces the FPDE (7) into a FODE. So that, applying
the inverse transformation, and, then, applying the transformation (5), we obtain solutions
of the original Eq. (1).

We get that Eq. (7) is left invariant by the operator

Ξ = ξ 1(T,Z,U)∂T +ξ 2(T,Z,U)∂Z +η(T,Z,U)∂U (8)

with

ξ 1 = 2b1T, ξ 2 = 2(b1αZ +2b2
√

Z), η = χ +(b1(α −1)− b2√
Z
+b3)U

where χ = χ(T,Z) and the following constraints must be satisfied

2b1(T ∂T φ1 +αZ∂Zφ1 +αφ1)+
b2

Z
√

Z
(4Z2

∂Zφ1 + k1k2 +4
a2

5

a2
4
) = 0,

2b1(αZ∂Zφ2 +T ∂T φ2 +(α +1)φ2)+
b2√

Z
(4Z∂Zφ2 +φ2)−b3φ2

+∂
α
T χ −4k1k2(Z∂ZZ χ +∂Z χ)−

a2
5

4a2
4Z

χ = 0.

(9)

We omit the analysis of stretching symmetry because it leads to get a transformation that
reduces Eq. (1) in a new FODE involving the Erdelyi-Kober fractional differential operator
whose resolution, as it is well known, is not immediate. So that, in the following, we focus
on the symmetries identified by the parameters b2 and b3. We get

T = T, W = e−
b3

√
Z

2b2 Z
1
4

⎛⎝U −
∫︂ e−

b3
√

Z
2b2 χ

4b2Z
1
4

dZ

⎞⎠ . (10)

In this case, by the constraints (9), we get

φ1 =

(︃
k1k2

4
+

a2
5

a2
4

)︃
1
Z
+ψ1,

φ2 = e
b3

√
z

2b2 Z− 1
4

⎛⎜⎝ψ2 −
∫︂ e−

b3
√

Z
2b2 (∂ α

t χ −4k1k2(Z∂ZZ χ +∂Z χ)+( k1k2
4Z +ψ1)χ)

4b2Z
1
4

dZ

⎞⎟⎠ ,

(11)
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with ψ1 = ψ1(T ) and ψ2 = ψ2(T ) arbitrary functions of their argument. We get the reduced
FODE

Dα
T W (T )+

(︃
ψ1(T )−

b2
3

4b2
2

k1k2

)︃
W (T )+ψ2(T ) = 0. (12)

An exact solution. Here, an example of exact solution is obtained by assuming

ψ1 = c1, ψ2 = c2ec3T , (13)

with c1, c2 and c3 arbitrary constants. Equation (12) reads

Dα
T W (T )+λW (T )+ c2ec3T = 0

being λ = c1 −
b2

3
4b2

2
k1k2. As well known, under non-vanishing initial condition

[Dα−1
T W (T )]T=0 = a0,

using the Laplace transform (Podlubny 1999), the following exact solution is obtained

W (T ) = a0T α−1Eα,α(λT α)− c2

∫︂ T

0
ec3T (T −S)α−1Eα,α(−λ (T −S)α)dS (14)

where Eα,α(t) is the Mittag-Leffler function (Podlubny 1999). In particular, when λ = 0

(i.e. c1 =
b2

3
4b2

2
k1k2), the previous solution (14) reads

W (T ) =
a0

Γ(α)
T α−1 − c2ec3t

cα
3

(︃
1− Γ(α,c3t)

Γ(α)

)︃
. (15)

Now, through the inverse transformation (10) we get

U(T,Z) =W (T )e
b3

√
Z

2b2 Z− 1
4 +

∫︂ e−
b3

√
Z

2b2 χ

4b2Z
1
4

dZ (16)

and then through inverse transformation (5), we get the exact solution of Eq. (1)

u(t,x,y) =W (t)
e

−a5θ

a4
√

k1k2
+

b3
2b2

√
k2x2+k1y2

4
√︁

k2x2 + k1y2

−e
−a5θ

a4
√

k1k2

⎛⎜⎝∫︂ e
−a5θ

a4
√

k1k2

a4k2x
χdy−

∫︂ e−
b3

√
Z

2b2 χ

4b2Z
1
4

dZ

⎞⎟⎠ . (17)

In the cylindrical coordinates r and θ , setting χ = χ = 0, the previous solution reads

u(t,r,θ) =
(︃

a0

Γ(α)
T α−1 − c2ec3t

cα
3

(︃
1− Γ(α,c3t)

Γ(α)

)︃)︃
e

−a5θ

a4
√

k1k2
+

b3
2b2

r

√
r

(18)

with

f (t,r,θ ,u) =
(︃(︃

k1k2

4
+

a2
5

a2
4

)︃
1
r2 + c1

)︃
u+

c2e
c3t− a5θ

a4
√

k1k2
+

b3r
2b2

√
r

. (19)
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5. Numerical results

In this Section, we perform a comparative study of the numerical solutions of the model
(1) obtained by solving the reduced FPDE (7) and FODE (12), by means of only one Lie
transformation (5) applied to the FPDE (1) and by means of two successive Lie ones (5) and
(10), respectively. The numerical solutions are computed following two different approaches:
in the first case, we solve the reduced FPDE (7) by the implicit L1 finite difference method
and compute the solution of the FPDE (1) by means of the inverse transformation (5); in
the second case, we solve the reduced FODE (12) by the implicit trapezoidal method and
compute the solution of the FPDE (1) by means of the inverse transformations (10) and (5).
The results confirm the efficiency and the reliability of the procedure that can be also used
for the solutions of two dimensional fractional-time differential equations, as reported by
Jannelli and Speciale (2021). We start from solving the FODE because the assumptions on
the involved functions allow us to find exact solutions of the model (1). In fact, by the exact
solution of FODEs obtained in Section 4, we can assign the exact boundary conditions in
order to solve the reduced FPDEs, so that a numerical comparison is available.

All numerical simulations are performed on Intel Core i7 by using Matlab 2020 software.
Furthermore, for sake of simplicity, in the following numerical example, for the assumption
of the involved functions, we set χ = 0 and χ = 0.

From FODE in (T ) to FPDE in (T,Z) to FPDE in (t,x,y). Starting from the FODE (12)
we find the numerical solution of the FPDE (1).
We consider the FODE (12) and recall the definition of the Caputo fractional derivative of
the function W (T )

∗Dα
T W (T ) =

1
Γ(1−α)

∫︂ T

0

1
(T −S)α

d
dS

W (S)dS

and its link with the Riemann-Liouville fractional derivative

∗Dα
T W (T ) = Dα

T (W (T )−W (0))

where W (0) is the initial condition imposed on the solution. Assuming vanishing initial
condition we obtain the following FIVP in terms of Caputo derivative

∗Dα
T W (T )+

(︃
ψ1(T )−

b2
3

4b2
2

k1k2

)︃
W (T )+ψ2(T ) = 0 T > 0 (20)

W (0) = 0.

The Caputo formulation has the advantage that the initial conditions take the same form as
the one for integer-order differential equations, i.e., they contain the limit values of integer
order derivatives of unknown functions at the lower point. So that the initial conditions
assume a physical meaning in agreement with many natural phenomena.

The functions ψ1 and ψ2 are chosen in such a way that the exact solution of the IVP (20)
is known so that a comparison is available with the aim of showing the applicability and
efficiency of the proposed procedure. Then, by assuming ψ1 and ψ2 according to (13), with

c1 =
b2

3
4b2

2
k1k2 and c2 and c3 arbitrary constants, we obtain the following exact solution of
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the IVP (20) that is the solution (15) with a0 = 0

W (T ) =−c2
ec3T

cα
3

(︃
1− Γ(α,c3T )

Γ(α)

)︃
. (21)

In order to solve numerically the FIVP (20), we construct a uniform computational grid
choosing the time step size of the mesh ∆T . We define the mesh points T n with T n = n∆T ,
for n = 0, · · · ,N, with N positive integer. We denote by W n the numerical approximation
of the exact solution W (T n) at the mesh points T n, for n = 0, · · · ,N. We propose the
classical fractional trapezoidal method, that is a generalization to the FODEs of the classical
trapezoidal method, a widely used numerical scheme for solving the linear and nonlinear
ordinary differential equations. It is an unconditionally stable method with convergence
order O((∆T )min(1+α,2)), for ∆T → 0. Generally, the convergence order of the fractional
trapezoidal method is 1+α when 0 < α < 1, and only when the solution is sufficiently
smooth or when α > 1, the expected order two is reached (see Diethelm 2004; Garrappa
2015, for details). The fractional trapezoidal method assures a high accuracy and has good
stability property but it is implicit: at each step of the integration of the fractional ordinary
differential equation by the numerical method, a nonlinear equation must be solved and
therefore an algorithm for the solution of nonlinear equations is required. In this paper, the
considered model is linear, then no root-finding solver is needed.

In Fig. 1, the comparison among the exact solutions (21) of the FIVP (20) and the
numerical ones, obtained by using the trapezoidal method, is depicted for different values of
α , α = 0.5,0.7,0.9. The results are performed on the interval [0,1] with N = 100 grid points
by setting k1 = k2 = 0.5 and b2 = b3 = 1, c2 =−2, c3 = 2. By means of the transformation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

10

W(Tn)

Wn

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

W(Tn)

 = 0.5

 = 0.7

 = 0.9

FIGURE 1. Numerical solution W n and exact one W (T n) of the IVP (20) for
different values of α . Right frame: detail of the solution.

(10), the exact solution W (T ) (21) is used in order to compute an exact solution U(T,Z)
(16), with χ = 0, of the problem (7)

U(T,Z) =W (T )e
b3

√
Z

2b2 Z− 1
4 . (22)

By means of the same transformation and using the computed numerical solution W n, we
compute the approximation of the exact one U(T,Z), reported in the left frame of Fig. 2 on
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a computational domain [0,1]× [1,2] with J = N = 100 grid points. Now, by applying the
transformation (5) to the exact solution (22), we are able to compute the exact solution (18),
with a0 = 0, of the original FPDE model in two dimensional space in cylindrical coordinates

r =
√

Z and θ = arctan
√︂

k1
k2

y
x

u(t,r,θ) =U(T,Z) e
a5θ

a4
√

k1k2

with a linear reaction term given by (19). By means of the same transformation, by using
the computed numerical solution Un

j , we obtain the approximate solution un
j,m of the two

dimensional model (1) with a4 = a5 = 1. In the right frame of Fig. 2, the numerical
solution in reported on a computational domain [0,1]× [1,

√
2]× [−π/2,π/2] of grid points

(tn,r j,θm) with N = J = M = 100. In Fig. 3, we report (left frame) the exact solution (17)

0

2

5

1

10

0.8

15

1.5
0.6

20

0.4

0.2
1 0

0

50

1

100

1.4

150

1.30

200

1.2

-1 1.1

1

FIGURE 2. Numerical results. Left frame: solution Un
j of the FPDE model. Right

frame: solution un
j,m of the two dimensional model (1) at the final time tN = 1.

with χ = 0 and a0 = 0

u(t,x,y) =−c2ec3t

cα
3

(︃
1− Γ(α,c3t)

Γ(α)

)︃
e

−a5θ

a4
√

k1k2
+

b3
2b2

√
k2x2+k1y2

4
√︁

k2x2 + k1y2
(23)

and numerical solution (right frame) of the two dimensional model (1) in (t,x,y) variables
at the final time tN = 1. In the solution (23), the term 1

cα
3

(︂
1− Γ(α,c3t)

Γ(α)

)︂
is a damping factor

and, due to the presence of the fractional parameter α , affects the solution. As the value
of α increases toward to one, this term decreases, is always less than one for t ∈ [0,1] and,
then, the solution is damped when compared with solution obtained with α = 1.

From FPDE in (T,Z) to FPDE in (t,x,y). Starting from the FPDE (7), we find the numerical
solution of (1). We recall the results found by Jannelli and Speciale (2021) with the aim to
perform a comparison with the numerical results found above.

We consider the FPDE (7) written in terms of the Caputo derivative (see Jannelli and
Speciale 2021, for more details):

∗Dα
T U(T,Z)−4k1 k2 Z DZZU(T,Z)−4k1 k2 DZU(T,Z) = F(U(T,Z)) (24)

U(0,Z) = 0
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FIGURE 3. Exact (left frame) and numerical (right frame) solutions of the model
(1) in (x,y) variables.

where

F(U(T,Z)) =−U(T,Z)
(︃

k1k2

4Z
+ c1

)︃
− c2e

b3
√

Z
2b2

+c3T Z− 1
4 .

obtained according to the (11) with (13) and subject to the boundary conditions obtained by
the exact solution (22).

We denote by Un
j the numerical approximation of the exact solution U(Z j,T n) at the

mesh points (Z j,T n), where Z j = Z0 + j∆Z and T n = T 0 + n∆T , for j = 0, · · · ,J and
n = 0, · · · ,N, with J and N positive integers. We propose the classical implicit L1 finite
difference method

(−K1 −K2 Z j) Un
j−1 +(1+2 K2 Z j) Un

j +(K1 −K2 Z j) Un
j+1 (25)

=Un−1
j −∆T α

n−1

∑
k=1

T̄ n,k(Uk
j −Uk−1

j )+ F̄n
j , 1 ≤ n ≤ N, 1 ≤ j ≤ J−1 ,

where

K1 =−4k1 k2Γ(2−α)
∆T α

2∆Z
, K2 = 4k1 k2Γ(2−α)

∆T α

∆Z2 , F̄n
j = ∆T α

Γ(2−α)Fn
j ,

obtained by using the following approximate formula for the Caputo fractional derivative

∗Dα
T U(T n,Z j) =

1
Γ(1−α)

∫︂ T n

0
(T n −S)−α ∂U

∂S
(S,Z j)dS (26)

=
1

Γ(2−α)

n

∑
k=1

U(T k,Z j)−U(T k−1,Z j)

∆T

[︂
(T n −T k−1)1−α − (T n −T k)1−α

]︂
+ O(∆T 2−α) ,

with

1
Γ(1−α)

∫︂ T k

T k−1
(T n −S)−α dS =

1
Γ(2−α)

[(T n −T k−1)1−α − (T n −T k)1−α ] .

Moreover, by assuming that the solution is sufficiently smooth, we approximate its first
DZU and second order DZZU spatial derivatives by the second order three-points central
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finite difference formula

DZU(T n,Z j) =
U(T n,Z j+1)−U(T n,Z j−1)

2∆Z
+O(∆Z2)

DZZU(T n,Z j) =
U(T n,Z j+1)−2U(T n,Z j)+U(T n,Z j−1)

∆Z2 +O(∆Z2) .

It is an unconditionally stable method with convergence order O(∆T 2−α +∆Z2). For more
details about the consistency, stability and convergence properties of the proposed numerical
method, we refer to the papers by Jannelli (2020) and Jannelli and Speciale (2021).

In the left frame of Fig. 4, we report the numerical solution of the model (24) obtained
by the L1 implicit finite difference method with α = 0.5. The results are performed on the
interval [0,1]× [1,2] with N = J = 100 grid points. In the right frame, the approximate
solution un

j,m of the two dimensional model (1), obtained by means of the transformation
(5), is shown. The results are reported at the final time tN = 1 on a computational domain
[0,1]× [1,

√
2]× [−π/2,π/2] defined by (tn,r j,θm) grid points, with N = J = M = 100.

For the computations, we set the parameters values as the previous FODE. The results
reported in Fig. 4 agree with ones reported in Fig. 2.
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FIGURE 4. Numerical results. Left frame: solution Un
j of the FPDE model (24).

Right frame: solution un
j,m of the two dimensional model (1) at the final time

tN = 1 for α = 0.5.

Convergence analysis and comparison. Now, in order to validate the accuracy and
efficiency of both approaches, we report a comparison of the numerical results. At this end,
we investigate the errors and the convergence order of the numerical results obtained by
used numerical methods, namely the trapezoidal method and L1 one.

We define the maximum error between the exact solution W (T n) and the numerical
solution W n, obtained by using the trapezoidal method, and the convergence order follows

E∞(N) = max0≤n≤N |W (T n)−W n|
and

Order = log2

(︃
E∞(N)

E∞(2N)

)︃
.
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TABLE 1. E∞ and convergence order for different values of fractional order α .

α N E∞ Observed Order
0.5 10 1.513739e−02

20 3.989737e−03 1.923751
40 1.019351e−03 1.968643
80 2.573607e−04 1.985787

160 6.464255e−05 1.993236
320 1.619764e−05 1.996701
640 4.053985e−06 1.998371

0.7 10 1.753866e−02
20 4.663763e−03 1.910972
40 1.196676e−03 1.962462
80 3.028049e−04 1.982572

160 7.614678e−05 1.991534
320 1.909219e−05 1.995800
640 4.780008e−06 1.997898

0.9 10 1.830513e−02
20 4.926758e−03 1.893537
40 1.272776e−03 1.952660
80 3.233407e−04 1.976852

160 8.149916e−05 1.988198
320 2.046143e−05 1.993878
640 5.126690e−06 1.996807

Table 1 reports the maximum norm error and the observed convergence order for in-
creasing values of α . The observed convergence order approaches 2. The numerical results
confirm the theoretical convergence order of the trapezoidal method for a sufficiently smooth
solution. Obviously, for the solution of the FPDE (7) by the transformation (10), we obtain
the same order of convergence reported in Table 1. Similar results are found for the solution
of the two dimensional FPDE (1) by the transformation (5). The rounding errors do not
affect the order of convergence. Then, we can conclude that the numerical solution of the
original model (1) by means of trapezoidal method has an accuracy of order 2.

In order to investigate the temporal error and the convergence order of the L1 numerical
finite difference method, we define the maximum error between the exact solution U(Z j,T N),
obtained by (22) with W (T n) given by (21), and the numerical solution UN

j at the final time
T N

E∞(N,J) = max
1≤ j≤J

|U(Z j,T N)−UN
j | (27)
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and the convergence order as follows

Order = log2

(︃
E∞(N,J)

E∞(2N,J)

)︃
. (28)

In this test, we fix J = 400, a value large enough such that the spatial error is negligible as
compared with the temporal error. Table 2 shows the values of E∞(N,J) and the correspond-
ing numerical convergence orders for α = 0.5,0.7 and 0.9. It can be seen that the method
is stable and convergent for solving the fractional problem (24). The numerical results
agree well with the theoretical results. Obviously, for the solution of the two dimensional
FPDE (1) by the transformation (5), we obtain the same order of convergence reported in
Table 2. Rounding errors do not affect the order of convergence. Thus, we can conclude
that the numerical solution of the original model (1) by means of L1 numerical method has
an accuracy of order 2−α .

TABLE 2. E∞(N,J) and convergence order for different values of fractional order
α .

α N E∞(N,J) Observed Order
0.5 10 3.174254e−02

20 1.198749e−02 1.404888
40 4.410641e−03 1.442469
80 1.595545e−03 1.466939

160 5.702411e−04 1.484406
320 2.018238e−04 1.498475
640 7.079317e−05 1.511414

0.7 10 6.718469e−02
20 2.861184e−02 1.231520
40 1.193735e−02 1.261130
80 4.922049e−03 1.278152

160 2.015429e−03 1.288172
320 8.217867e−04 1.294251
640 3.341944e−04 1.298077

0.9 10 1.289254e−01
20 6.215841e−02 1.052515
40 2.950356e−02 1.075060
80 1.388923e−02 1.086922

160 6.510333e−03 1.093164
320 3.044666e−03 1.096447
640 1.422192e−03 1.098168
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By the comparison of the numerical results presented in Tables 1 and 2, we can conclude
that both approaches lead to compute highly accurate numerical solutions. We observe
that the trapezoidal scheme is more accurate than the L1 one. As expected, we obtain an
accuracy of order 2 with the trapezoidal method and an accuracy of order 2−α with the L1
one, in line with their theoretical properties. In the first case, two successive reductions are
required in order to reduce the original FPDE into a FODE that, after, it is solved by the
classical trapezoidal method. In the second case, only one reduction is required to map the
original FPDE into a new FPDE that is solved by the L1 numerical method, It is important
to note that, by numerical point of view, the L1 method has a higher computational cost than
the numerical method used for FODE. For example, for computing the numerical solutions
with α = 0.5 and N = J = 100, 2.316152 is the consumed CPU time by L1 scheme, versus
0.020939 consumed CPU time by trapezoidal method plus the transformation. By an
analytical point of view, the L1 method has a minor effort because only one transformation
is needed.

6. Concluding remarks

In this paper, we report a comparative study among numerical solutions of two dimen-
sional FPDEs obtained by a procedure that combines the Lie symmetry analysis with the
numerical methods. We obtain solutions that, as usual in the context of the fractional calcu-
lus, are affected by the presence of the fractional parameter α . We proceed by following
two different approaches: in the first case, by a Lie transformation, we reduce the original
FPDE into a new FPDE that is solved analytically and numerically by the L1 numerical
method (Jannelli and Speciale 2021); in the second case, we apply another successive Lie
transformation in order to map the reduced FPDE into a FODE that, after, it is solved
analytically and numerically by the classical trapezoidal method (Jannelli et al. 2019a). The
error estimates are provided and the orders of convergence of the schemes are demonstrated
computationally in order to investigate the performance and to show the reliability and
robustness of the proposed procedure for solving the two dimensional FPDEs. By the
comparison of the presented results, we conclude that the computed numerical solutions
are highly accurate. In particular, we observe that the numerical solution computed by
the trapezoidal scheme is more accurate than the numerical one obtained by L1 scheme.
Moreover, it is important to note that, the L1 method, by the numerical point of view, has
an higher computational cost than the numerical method used for the FODE, but by the
analytical point of view, a minor effort because only one transformation is needed. In the
light of the obtained results, the future reserach is to extend this procedure for solving
systems of FDEs and to perform a comparison with existing literature.
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