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Abstract: Cadmium (Cd) represents a public health risk due to its non-biodegradability and long
biological half-life. The main target of Cd is considered the kidney, where it accumulates. No effective
treatment for Cd poisoning is available so that several therapeutic approaches were proposed to
prevent damages after Cd exposure. We evaluated the effects of a flavonoid-rich extract of bergamot
juice (BJe), alone or in association with curcumin (Cur) and resveratrol (Re), in the kidney of mice
exposed to cadmium chloride (CdCl,). Male mice were administered with CdCl, and treated with
Cur, Re, or BJe alone or in combination for 14 days. The kidneys were processed for biochemical,
structural and morphometric evaluation. Cd treatment significantly increased urea nitrogen and
creatinine levels, along with tp53, Bax, Nos2 and Il1b mRNA, while reduced that of Bcl2, as well as
glutathione (GSH) content and glutathione peroxidase (GPx) activity. Moreover, Cd caused damages
to glomeruli and tubules, and increased Nrf2, Ngol and Hmox1 gene expression. Cur, Re and BJe at
40 mg/kg significantly improved all parameters, while BJe at 20 mg/kg showed a lower protective
effect. After treatment with the associations of the three nutraceuticals, all parameters were close
to normal, thus suggesting a new potential strategy in the protection of renal functions in subjects

exposed to environmental toxicants.

Keywords: kidney; cadmium; flavonoids; nutraceuticals; bergamot juice; resveratrol; curcumin;
oxidative stress; inflammation; apoptosis

1. Introduction

Cadmium (Cd) is a non-essential metal present at position 7 on the substance priority
list of the Agency for Toxic Substances and Disease Registry (ATSDR 2019). Mainly, it is an
environmental and industrial toxicant, derived from incineration, refining, mining, and
fossil fuel combustion. Environmental exposure to Cd is progressively increasing, owing to
the wide use of Cd-containing goods in industrialized countries, and it represents a major
public health risk due to its non-biodegradability as well as to its long biological half-life
(10-30 years) [1].

Environmental Cd may accumulate in many organs, such as liver, lung, testes, and
bones. However, the main target of Cd is considered the kidney, particularly the proximal
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tubules and renal glomeruli [2,3], where it accumulates, owing to the absence of a specific
mechanism for elimination. Indeed, after chronic exposure to Cd, approximately 50% of
the total body stores accumulate in the kidneys [4], making them particularly susceptible
to Cd-mediated nephrotoxicity.

After having been absorbed by the organism, Cd binds to metallothionein, a cysteine-
rich, low-molecular weight metal-binding protein [5]. The complex Cd-metallothionein
is filtered into the Bowman's space by the glomerular capillaries and internalized by the
proximal tubule cells. The complex is then degraded by lysosomes to release Cd [6]. In
the cytoplasm, the release of Cd is known to produce reactive oxygen species (ROS), cause
glutathione (GH) exhaustion, lipids peroxidation, protein crosslinking, and inflammation.
As a result, an accumulation of pro-inflammatory cytokines and kidney cell death occur,
leading to kidney toxicity [6,7].

Further mechanisms of Cd renal toxicity have been also described: among them,
mitochondrial damage [8], cellular death, in particular apoptosis induction [9], disruption
of cadherin-mediated cell-cell adhesion in the proximal tubule cells [10], and stimulation
of the inflammation pathways [11] were observed.

Currently, there is no effective treatment for Cd poisoning. The principal therapeutic
protocol involves employment of metal chelator, although they cause several undesirable
effects, such as redistribution/translocation of metals and other serious toxic manifesta-
tions [12]. This caught the interest of scientists who have sought for an effective remedy
from natural sources, that are less prone to toxic effects. In recent years, several natural
products have been proposed to prevent structural and functional damages following
environmental or experimental Cd exposure, with particular attention to the protective
functions of plant-derived antioxidants such as carnosic acid [13], chocolate [14], grape
seed procyanidin [15], alphalipoic acid [16], flavocoxid [17] and myo-inositol [18].

In the last decades, bergamot juice (BJ), obtained from Citrus bergamia Risso et Poiteau
(bergamot) fruits, has attracted the attention of scientist on antioxidant natural
products [19,20]. Indeed, it has been shown that B] and its flavonoid-rich fraction (BJe)
exert several biological activities, among which anti-cancer [21], anti-infective [22,23],
hypolipemic and hypoglycemic [24], neuroprotective [25,26], antioxidant [27,28] and anti-
inflammatory effects [29-32]. Moreover, very recently, we showed that BJe reduces the
testicular damage induced by Cd through a mechanism involving its anti-inflammatory
and anti-apoptotic activities [33].

Curcumin (Cur) or diferuloylmethane (1,7-bis(4-hydroxy-3-methoxyphenyl)-16-hepta
diene-3,5-dione) is a hydrophobic polyphenol extracted from the rhizome of Curcuma longa
L., commonly known as turmeric. Its protective effect on kidney damage, associated with
its antioxidant, anti-inflammatory and anti-tumorigenesis properties, has been broadly
described in several experimental models [34,35].

Resveratrol (Re; 3,5,4'-trihydroxy-trans-stillbene), is a naturally occurring polyphenol
found mainly in in the skin of grapes, in berries, and peanuts. Re has been studied for its
pharmacological effects, including antioxidant, anti-inflammatory, immunomodulatory,
hepatoprotective, anti-cancer, anti-atherosclerotic, and anti-diabetic properties [36-39].

On these bases, the present study was designed to investigate the effects of the
nutraceuticals BJe, Cur, and Re, alone or in association, in a murine model of Cd-induced
kidney damage.

2. Materials and Methods
2.1. Ethical Approval

All the experiments were conducted in conformity with the Italian Guidelines for
Care and Use of Laboratory Animals (D.L.116/92) and with the European Directive
(2010/63/EU), as well as in compliance with the ARRIVE (Animal Research Reporting In
Vivo Experiments) guidelines. The study was approved by the National Ethics Committee
for Research Animal Welfare of the Italian Ministry of Health (authorization no. 112/2017-
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PR, 2 February 2017) and by the Institutional Animal Care and Use Ethic Committee of the
University of Messina (OPBA, #820/2016, 2 September 2016).

2.2. Drugs and Chemicals

The BJe used in this research was already used in our previous research [21,33,40]. Its
quali-quantitative analysis showed that neohesperidin (94.00 mg/g), naringin (92.4 mg/g),
melitidin (56.2 mg/g), hesperetin (51.9 mg/g), neoeriocitrin (48.6 mg/g) and naringenin
(27.3 mg/g) were the most abundant flavonoids. Cadmium chloride (CdCl,), Cur and Re
were purchased from Sigma-Aldrich Srl (Milan, Italy). All other chemicals not listed were
commercially available reagent grade.

2.3. Experimental Protocol

A total of 119 adult male C57 BL/6] mice, weighing 25-30 g, were acquired from
Charles River Laboratories Italia Srl (Calco, LC, Italy) and housed at the animal facility
of the School of Medicine of the University of Messina, Messina, Italy. The animals were
fed with a standard diet ad libitum with free access to tap water under a 12-h light/dark
cycle. The animals were randomly included in 17 groups of 7 mice each. Nine groups
were used as control (i) 0.9% NaCl (vehicle); (ii) corn oil (vehicle); (iii) Cur (50 mg/kg); (iv)
Cur (100 mg/kg); (v) Re (20 mg/kg); (vi) BJe (20 mg/kg); (vii) BJe (40 mg/kg); (viii) Cur
(50 mg/kg) + Re (20 mg/kg) + BJe (20 mg/kg); (ix) Cur (100 mg/kg) + Re (20 mg/kg) +
BJe (40 mg/kg), while 8 groups were treated as follows: (i) CdCl, (2 mg/kg) + vehicle;
(ii) CdCl, + Cur (50 mg/kg); (iii) CdCl, + Cur (100 mg/kg); (iv) CdCl, + Re (20 mg/kg);
(v) CdCl, + BJe (20 mg/kg); (vi) CdCl, + BJe (40 mg/kg); (vii) CdCl, + Cur (50 mg/kg)
+ Re (20 mg/kg) + BJe (20 mg/kg); (viii) CdCl, + Cur (100 mg/kg) + Re (20 mg/kg) +
BJe (40 mg/kg). CdCl,, Re, and BJe were dissolved in 0.9% NaCl; Cur was dispersed in
corn oil. The oral administration of Cur, Re, and BJe and intraperitoneal (i.p.) challenge
with CdCl, was performed for 14 days. The doses of all substances employed were
selected in accordance with previous studies [17,18,21,33,40-46]. Twenty-four hours after
the last treatment, all mice were sacrificed with an overdose of ketamine and xylazine
(75/10 mg/kg i.p. each) and bilateral nephrectomies were performed. The kidneys were
processed for molecular, histological, and immunohistochemical evaluation. A graphical
scheme of the study design is reported in Figure 1.
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Figure 1. Graphical scheme of the study design. The dose of CdCl, was 2 mg/kg, while those of Cur, Re and BJe are

expressed as mg/mL.
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2.4. Urea Nitrogen and Creatinine Levels Quantification

After clotting, blood samples were centrifuged and urea nitrogen was quantified by
a colorimetric kit (Roche Diagnostics GmbH, Mannheim, Germany), following manufac-
turer’s guidelines [17]. Creatinine levels were evaluated by an enzymatic method with an
automatic analyzer (Roche Diagnostics GmbH).

2.5. Determination of Glutathione (GSH) and Glutathione Peroxidase (GPx) Content

GSH content was measured in the kidneys of all groups according to Ellman’s (1959)
method, as recommended by Gong and co-workers [47]; while, glutathione peroxidase
(GPx) was evaluated according to Flohé and Gtinzler [48], as detailed by Manna and
collaborators [49].

2.6. Real-Time PCR Analyses

Total RNAs from kidney samples from animals of all challenged groups were extracted
with the TRIzol LS reagent (Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s
guidelines. Then, 2 ug of RNA from each sample were reverse transcribed into cDNA
using the High-Capacity cDNA Archive Kit (Applied Biosystems, Life Technologies, Foster
City, CA, USA). The mRNA expression was evaluated by Real-time PCR, as previously
described [21]. The sequences of primer employed for the real-time PCR analyses are listed
in Table 1. The Real-time PCRs were carried out in 20 pL reactions containing 1xSYBR®
Select Master Mix (Applied Biosystems), 0.2 uM of primers, and 25 ng RNA converted into
cDNA. The analyses were performed in triplicate in a 96-well plate using a 7900HT Fast
Real-Time PCR System (Applied Biosystems). Data were collected and analyzed using the
2~ AACT pelative quantification method with 3-actin (Actb) used as endogenous control. The
values are presented as fold changes relative to the control tissues.

Table 1. Oligonucleotide primers used for the quantitative Real-time PCR analyses.

Gene Protein NCBI Reference Sequence Primer Sequence
Actb Beta-actin NM_007393.5 15 : fggﬁ?ggﬁgzgggéi
Bax Apoptosis regulator BAX NM_007527.3 i %i%??éii%[}f?éggﬁ? (SZ
Bcl2 Apoptosis regulator Bcl-2 NM_009741.5 li?G"l"Ec;AGCZAAgfg?é é: CTH? g,}:,% SAG(?
Hmox1 Heme oxygenase 1 NM_002133.3 If AC(C:; ggig%%&%gggﬁ%?g
111b Interleukin-1 beta NM_008361.4 E AT{CE%’&/}I%%E%TF%%E%T;%EAI%TGA
Nos2 Nitric oxide synthase, inducible NM_010927.4 11; %ﬁi%%‘é?g??éggﬁgggg
Ngol NAD(P)H dehydrogenase [quinone] 1 NM_009706.5 i g%ii%giég%%?’?g gccﬁzg
wp  Newbmimdihel o RASCACCTCITCTGHCT
Tp53 Tumor suppressor p53 NM_001127233.1 F: TCGAAGACAGGCAGACTT

R: ACTTGTAGTGGATGGTGGTA

2.7. Histological Evaluation

The kidneys were fixed in freshly prepared Bouin solution, dehydrated in graded
ethanol, cleared in xylene, and embedded in paraffin (Paraplast, SPI Supplies, West Chester,
PA, USA). Five-micrometer sections were stained with hematoxylin and eosin (HE) and
periodic acid-Schiff (PAS). The slides were photographed with a Nikon Ci-L (Nikon Instru-
ments, Tokyo, Japan) light microscope by a digital camera Nikon Ds-Ri2, and saved as Joint
Photographic Experts Group (JPEG) with the software Adobe Photoshop 2021 (Adobe, San
Jose, CA, USA).
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2.8. Immunohistochemical Analysis for IL-15 and Nrf2

Paraffin-embedded 5-um sections, derived from the same specimens used for histo-
logical evaluation, were assembled on Polysine slides (Thermo Fisher Scientific, Waltham,
MA, USA), cleared in xylene and rehydrated in ethanol. Antigen retrieval was achieved
with citrate buffer (pH 6.0) and endogenous peroxidase was stopped with 0.3% HyO; in
phosphate buffer saline (PBS). Primary antibodies IL-1f3 (1:250, Santa Cruz Biotechnology,
Dallas, TX, USA) and Nrf2 (1:150, St. John’s Laboratory, London, UK) were incubated
overnight at 4 °C in a moisturized chamber. The day after, the secondary antibodies
(Vectastain, Vector, Burlingame, CA, USA) were added and 3,3’-Diaminobenzidine (DAB)
(Sigma-Aldrich) was used to visualize the reaction. The sections were counterstained with
Mayer’s hematoxylin. Appropriate positive and negative controls were used in each test.
Slides were photographed with a Nikon Ci-L light microscope using a digital camera Nikon
Ds-Ri2.

2.9. Morphometric Evaluation

Two trained investigators (DP and AM) blindly performed all quantitative evaluations.
The mean glomerular area (TGA), expressed in square micrometers (um?2), was calculated
from ten HE-stained sections of each group, measuring twenty glomeruli of the cortical
region with the Image J software (National Institute of Health, Bethesda, MD, USA) [50].

Tubular damage was assessed according to a previously described method [18,51].
Briefly, twenty micrographs from PAS-stained sections of each group were studied and
evaluated according to the following score: 0 = undamaged; 0.5 = reduction of the brush
border with or without interstitial edema; 1 = lower tubular epithelial cells with or without
interstitial edema; 2 = incomplete presence of the tubular epithelium with or without
interstitial edema; 3 = tubular necrosis with interstitial edema.

A morphometric study to quantitatively assess IL-13 and Nrf2 expression was also
performed with Image]J software. The RGB color images were converted in 32-bit grayscale
images, using the function Image > type > 32-bit. A unit area (UA) of 200 x 200 pm,
including only tubules, was selected and the grayscale values of twenty UAs of each group
were calculated in optical units (OU) from 0 = black to 255 = white. With this method, a
higher expression of IL-13 and Nrf2 corresponded to darker images and was reported as
lower values in the 0-255 grayscale; a lower expression of IL-1{3 and Nrf2 was indicated by
lighter images, corresponding to higher values on the same scale.

2.10. Statistical Analysis

Values are expressed as mean =+ standard error (SE). The statistical significance of
differences between groups was established using the Student’s t-test. The statistical
evaluation of differences among groups was performed with ANOVA comparison test.
The statistical analysis of histological scores was performed using Mann-Whitney U test
with Bonferroni correction. A p-value of < 0.05 was considered statistically significant.

3. Results
3.1. Effects of Nutraceuticals on Urea Nitrogen and Creatinine Levels

Levels of urea nitrogen and creatinine are often employed as biomarkers for the
evaluation of kidney function. In our study, no significant differences in urea nitrogen
and creatinine levels were observed in the serum of all control groups; therefore, only
one value is indicated for controls (Table 2). Urea nitrogen and creatinine levels were
significantly increased in CdCl,-challenged mice, compared to control groups (p < 0.05).
In CdCl,-challenged animals co-treated with all tested nutraceuticals, urea nitrogen and
creatinine levels were lower than CdCl, + vehicle group (p < 0.05), being similar to con-
trol mice in those treated with BJe at the dose of 40 mg/kg and with both associations
(CdCl; + Cur 50 mg/kg + Re 20 mg/kg + BJe 20 mg/kg and CdCl, + Cur 100 mg/kg + Re
20 mg/kg + BJe 40 mg/kg).
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Table 2. Effects on urea nitrogen and creatinine levels in control mice, in cadmium chloride
(CdCly; 2mg/kg i.p.) plus vehicle exposed ones and in those exposed to CdCl, (2 mg/kg i.p.)
co-administered with curcumin (Cur), resveratrol (Re), bergamot juice extract (BJe), or their combina-
tions. All values are expressed as mean + SE; n = 7 animals for each group.

Urea Nitrogen (mg/dL) Creatinine (mg/dL)
Controls 145+ 17 0.68 + 0.1
CdCl, + vehicle 4124362 1.51+£0.332
CdCl, + Cur 50 mg/kg 3224292b 124 +£ 042
CdCl, + Cur 100 mg/kg 30.3 £2.52b 1.21 £0.332b
CdCl, + Re 20 mg/kg 26.6 +3.12P 1.02 £ 0.37 2P
CdCl, + BJe 20 mg/kg 3434+212b 1.29 +0.28 2P
CdCl, + BJe 40 mg/kg 183+19P 0.77 £0.29b
CdCl, + Cur 50 mg/kg + Re b b
20 mg/kg + Ble 20 mg/kg 159+ 1.6 0.73 4+ 0.18
CdCl, + Cur 100 mg/kg + Re b b
20 mg/kg + Ble 40 mg/kg 147 +19 0.71 4+ 0.15

2 p <0.05 vs. controls; b p <0.05 vs. CdCl, + vehicle.

3.2. Effects of Nutraceuticals on GSH and GPx Levels

It is known that in biological system, Cd induces oxidative stress by intracellular GSH
depletion or by inhibiting antioxidant enzymes, such as GPx. The results of our study,
suggested that as for urea nitrogen and creatinine content, no significant differences in
GSH and GPx levels were present between all control groups; therefore, a single value
is indicated for controls (Table 3). A significant decrease in GSH and GPx levels was
observed in CdCl,-challenged mice (p < 0.05). In animals treated with Cur, Re and BJe and
challenged with CdCl,, GSH and GPx levels were higher compared to controls mice, being
almost superimposable to control mice in those treated with BJe (40 mg/kg) and with both
associations (CdCl, + Cur 50 mg/kg + Re 20 mg/kg + BJe 20 mg/kg and CdCl, + Cur
100 mg/kg + Re 20 mg/kg + BJe 40 mg/kg) (Table 3).

Table 3. Effects on glutathione (GSH) content and glutathione peroxidase (GPx) activity in control
mice, in cadmium chloride (CdCly; 2 mg/kg i.p.) plus vehicle exposed mice and in mice exposed to
CdCl, (2 mg/kgi.p.) co-administered with curcumin (Cur), resveratrol (Re), bergamot juice extract
(BJe), or their combinations. All values are expressed as mean =+ SE; n = 7 animals for each group.

GSH (umol/g of Tissue) ~ GPx (nmol/min per mg of Protein)

Controls 65+ 4 346 +19

CdCl, + vehicle 47 £ 5@ 163+162

CdCl, + Cur 50 mg/kg 53+3% 214+08?

CdCl, + Cur 100 mg/kg 54 + 62 227 £0.7 2P

CdCl, + Re 20 mg/kg 57 4 42 26.6 +£1.12P

CdCl, + BJe 20 mg/kg 51+£32b 19.5+1.22b

CdCl, + BJe 40 mg/kg 59 4+ 5P 3034+ 04°

CdCl, + Cur 50 mg/kg + Re 20 mg/kg 62+ 6b 322411
+ BJe 20 mg/kg

CdCl; + Cur 100 mg/kg + Re 20 mg/kg 64+ 5P 341411°
+ BJe 40 mg/kg

2 p <0.05 vs. controls; b p <0.05 vs. CdCl, + vehicle.

3.3. Effects of Nutraceuticals on Apoptotis-Related Genes

It is well-recognized that both oxidative and inflammatory pathways started by Cd
may induce apoptosis, which plays a key role in Cd-caused nephrotoxicity. Therefore,
in our study we evaluated the involvement of apoptosis-related genes in kidney of mice
exposed to CdCl, with or without nutraceuticals. No significant difference was observed
in mRNA levels of tp53, Bax, and Bcl2 among the control groups, therefore only one value
is indicated for controls. Important changes in tp53, Bax and Bcl2 genes were observed in
the kidneys of CdCl,-treated mice compared to control groups. Moreover, the upregulation
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of tp53 and Bax found in CdCl,-challenged mice were hampered by Cur, Re, and BJe, as
well as by their associations (Figure 2). In addition, the downregulation of Bcl2 observed in
CdCl,-subjected animals were significantly counteracted by Cur, Re, and BJe, along with
their associations (Figure 2).

tp53 Bax
2L
1.8 ok »
3 51 RN Y
e =
£ £12 §§ 88
k=3 1
2 L 0.8
% é 0.6
E 0.4
D2
0
C
Bcl2
1.6
1.4 w5 58
© 12 T [ Controls
g == CdCl2 + vehicle
5 1 1 CdCl + Cur 50 mg/kg
208 . /3 CdCl2 + Cur 100 mg/kg
206 EEm CdCl2 + Re 20 mg/kg
é ’ = CdCl2 + BJe 20 mg/kg
£04 s CdCl + BJe 40 mg/kg
0.2 [ CdCl2 + Cur 50 mg/kg + Re 20 mg/kg + BJe 20 mg/kg
‘0 mmm CdCl2 + Cur 100 mg/kg + Re 20 mg/kg + BJe 40 mg/kg

Figure 2. Real-time PCR analysis for tp53 (A), Bax (B) and Bcl2 (C). * p < 0.05, ** p < 0.01 and
1 < 0.001 vs. control mice; $ p < 0.05, 55 p < 0.01 and 588 p< 0.001 vs. CdCl,-treated mice.

3.4. Effects of Nutraceuticals on Nos2 and 111b Gene Expression

The high production of iNOS exerts nephrotoxic injury, which in turn can be responsi-
ble for the initiation and progression of kidney tubulo-interstitial illness. Therefore, we
evaluated the genes level of Nos2, along with 1/1b, a key marker of inflammation, that
represent a pathogenic event associated with Cd exposure. As shown in Figure 3, a sig-
nificant upregulation of Nos2 and 1/1b were observed in CdCl,-challenged mice when
compared to control animals. Notably, a reduction of their mRNA levels was found in the
kidneys of all groups treated with Cur, Re and BJe compared to those from Cd-challenged
mice. This reduction was significant in the kidney of mice treated with Re 20 mg/kg
and BJe 40 mg/kg, reaching the maximum extent when animals were treated with both
Cur 50 mg/kg + Re 20 mg/kg + BJe 20 mg/kg and Cur 100 mg/kg + Re 20 mg/kg + BJe
40 mg/kg (Figure 3).

3.5. Effects of Nutraceuticals on Nrf2, Nqol and Hmox1 Gene Expression

Nrf2 is a crucial transcription factor that induces the expression of cellular defense
enzymes to counteract oxidative stress, such as Ngol and Hmox1. Data of Real-time PCR
analyses showed a significant up-regulation of Nrf2, Ngol and Hmox1 gene expression
in CdCl,-challenged mice when compared to control animals (Figure 4). In particular,
the exposure to CdCl, enhanced the mRNA levels of Nrf2, Ngol and Hmox1 genes in the
kidney mice up to 2.1-, 12.8- and 2.8-fold, respectively (p < 0.001; Figure 3). Contrariwise, a
significant decrease of N#f2, Ngol and Hmox1 mRNA levels was found in the kidneys of
all experimental groups of animals treated with all doses of Cur, Re and BJe compared to
those from Cd-challenged mice. This fall was particularly evident in the kidneys of mice
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treated with the highest dose of BJe 40 mg/kg (p < 0.001) and both Cur 50 mg/kg + Re
20 mg/kg + BJe 20 mg/kg (p < 0.001) and Cur 100 mg/kg + Re 20 mg/kg + BJe 40 mg/kg
associations (p < 0.001) (Figure 4).

A B
B Nos2 2.5] I1b
1.8 *k
4 Jkk
%1.6 P 5 2
c 1.4 § § ﬁ
£ 121 £ 1.5] § -
3 11 _%_- S
g 0.8 E 11
£ o) £
0.4 0.51
0.2
0 0
1 Controls

mm CdCl2 + vehicle

1 CdCl2 + Cur 50 mg/kg

— CdCl2 + Cur 100 mg/kg

EEm CdCl2 + Re 20 mg/kg

mmm CdCl2 + BJe 20 mg/kg

mmm CdCl2 + BJe 40 mg/kg

1 CdCl2 + Cur 50 mg/kg + Re 20 mg/kg + BJe 20 mg/kg
mmm CdCl2 + Cur 100 mg/kg + Re 20 mg/kg + BJe 40 mg/kg

Figure 3. Real-time PCR analysis of Nos2 (A) and Il1b (B). ** p < 0.01 and *** p < 0.001 vs. control mice; § p <0.05, 8§ p<0.01
and 558 p < 0.001 vs. CdCly-treated mice.
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CdCl,-treated mice.
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3.6. Histological and Morphometric Evaluation

For histological evaluation, kidney sections stained with HE and PAS were examined
(Figures 5 and 6). In kidney sections of all control groups stained with HE, glomeruli and
tubules showed normal histological organization (a single micrograph is provided for all
controls; Figure 4A). In CdCl,-challenged mice, glomeruli with enlarged Bowman’s spaces,
tubules with epithelial damages and interstitial edema were observed (Figure 5B). In mice
challenged with CdCl, with Cur at both doses, cellular lesions and interstitial edema
were reduced (Figure 5C,D). In re-treated CdCl,-challenged mice, a good preservation of
glomeruli was observed, even if some damaged tubules were present (Figure 5E). In CdCl,-
treated mice, BJe alone at both doses of 20 mg/kg or 40 mg/kg, showed protection of both
glomeruli and tubules, even if to a different extent (Figure 5F,G). Similarly, both associations
(Cur 50 mg/kg + Re 20 mg/kg + BJe 20 mg/kg and Cur 100 mg/kg + Re 20 mg/kg + BJe
40 mg/kg), demonstrated a well-evident protective action against CdCl,, being glomerular
and tubular morphology close to normal (Figure 5H,I). The morphometric evaluation of
the glomerular area demonstrated a significant higher surface in CdCl,-challenged mice,
when compared to control groups and a progressive reduction in all the examined groups,
with the exception of BJe at lower dose (Figure 5J). When kidney sections were stained
with PAS, the proximal tubules of all control groups showed a regular and well stained
brush border (a single micrograph is provided for controls; Figure 6A). On the contrary,
in CdCly-challenged mice, the brush border was thin or absent (Figure 6B). In CdCl,-
challenged mice administered with Cur at both doses, tubules showed a more PAS-positive
brush border if compared to CdCl, alone (Figure 6C,D). A similar pattern was observed
in Re-treated animals (Figure 6E). In mice treated with BJe, the lower dose (20 mg/kg)
showed a reduced PAS-positivity, while the brush border was better preserved with the
higher dose (40 mg/kg) (Figure 6F,G). The morphological pattern in mice treated with both
the associations (Cur 50 mg/kg + Re 20 mg/kg + BJe 20 mg/kg and Cur 100 mg/kg + Re
20 mg/kg + BJe 40 mg/kg) was close to normal (Figure 6H,I). The morphometric evaluation
of the tubular damage demonstrated significantly higher scores in CdCl,-challenged mice,
when compared to control groups, and a progressive reduction of the scores in all the
examined groups, with the exception of BJe at lower dose (Figure 6]).

3.7. Immunohistochemistry for IL-18 and Nrf2

IL-13 immunoreactivity was undetectable in all control groups; therefore, a single
micrograph is provided as representative of all controls (Figure 7A). In CdCl, plus vehicle
treated mice, almost all tubules displayed a strong IL-13 immunoreactivity (Figure 7B).
In mice treated with CdCl, plus both doses of Cur or CdCl, plus Re, a moderate IL-1f3
immunoreactivity was present in some tubules (Figure 7C-E). In CdCl, plus BJe at the lower
dose challenged mice, IL-13 immunoreactivity was milder if compared to CdCl, alone
treated mice, but higher in respect to Cur and Re (Figure 7F). In mice treated with CdCl,
plus BJe at 40 mg/kg and with CdCl, plus both associations, IL-13 immunoreactivity was
similar to controls (Figure 7G-I). The quantitative assessment of IL-13 expression revealed
significant lower values (high immunoreactivity) in the 0-255 grayscale in CdCl, treated
mice vs. controls and a progressive reduction of the optical density (low immunoreactivity),
milder only for BJe at the lower dose (Figure 7]).

Nrf2 immunoreactivity was high in all control groups; therefore, a single micro-
graph is provided to show the morphological pattern of all controls (Figure 8A). In CdCl,
plus vehicle treated mice, Nrf2 immunoreactivity was absent nearly in all the tubules
(Figure 8B). When mice were treated with CdCl, plus both doses of Cur or CdCl, plus
Re, Nrf2 immunoreactivity showed a moderate pattern in some tubules (Figure 8C-E).
In mice challenged with CdCl, plus BJe at the lower dose, Nrf2 immunoreactivity was
lower if compared to Cur and Re (Figure 8F). Instead, mice treated with CdCl, plus BJe
at 40 mg/kg and plus both associations demonstrated Nrf2 immunoreactivity similar to
controls (Figure 8G-I). The quantitative assessment of Nrf2 tubular expression demon-
strated significant higher values (low immunoreactivity) in the 0-255 grayscale in CdCl,



Biomedicines 2021, 9, 1797 10 of 19

challenged mice versus controls and lower values (high immunoreactivity) in all groups,
with the exception of CdCl, plus BJe at the lower dose of 20 mg/kg (Figure 8]).

Square micrometers (um?)

Controls

CdCl, + vehicle

CdCl, + Cur 50 mglkg
CdCl, + Cur 100 mg/kg
CdCl, + Re 20 mg/kg

CdCl, + BJe 20mg/kg

Cdcl, + BJe 40 mgkg

CdCl, + Cur 50 mg/kg + Re 20 mg/kg + BJe 20 mg/kg
CdCl, + Cur 100 mg/kg + Re 20 mglkg + BJe 40 mgikg

BO0AC
il [F

Figure 5. Histological organization of the kidneys examined with hematoxylin-eosin stain. (A) Con-
trol mice. The normal structure of both tubules and glomeruli is evident. (B) Mice challenged with
CdCl,. An irregular organization of glomeruli, evident changes of the tubular epithelium (arrow)
and interstitial edema (asterisk) are present. (C,D) Mice challenged with CdCl, and treated with Cur
at 50 or 100 mg/kg. Tubules show epithelial cells with cytoplasmic changes (arrow) and interstitial
edema (asterisk). (E) Kidney of CdCl, plus Re treated mice. Some tubules are lined by epithelial
cells with altered morphology (arrow). Extra-tubular edema is reduced (asterisk). (F) Kidney of
CdCl, plus BJe at 20 mg/kg treated mice. The number of damaged tubules (arrow) is increased if
compared to Re-treated mice. (G-I) kidneys from mice treated with CdCl, plus BJe alone at 40 mg/kg
and with both the associations Cur 50 mg/kg + Re 20 mg/kg + BJe 20 mg/kg and Cur 100 mg/kg
+ Re 20 mg/kg + BJe 40 mg/kg. In all groups, the tubules have a normal structure and no edema is
present in the interstitial compartment (J) quantitative evaluation of the mean glomerular area in the
different groups of mice. * p < 0.05 vs. control; $ p < 0.05 vs. CdCl,-treated mice. Scale bar: 50 um.
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Figure 6. Tubular brush border of the kidneys treated with PAS stain. (A) In control mice the proximal
tubules show a regular and evident brush border. (B) In CdCl,-challenged mice, the brush border
is particularly thin or absent (arrow) and structural changes are present in the tubular epithelium.
(C,D) Mice challenged with CdCl, and treated with Cur at 50 or 100 mg/kg. Some tubules show lack
of staining with PAS (arrow) and damaged epithelial cells, other show a normal structure (asterisk).
(E) Kidney of CdCl, plus Re treated mice. The number of tubules lined by epithelial cells with altered
morphology is reduced (arrow). (F) Kidney of CdCl, plus BJe at 20 mg/kg treated mice. Tubules
negative to PAS stain and with damaged cells (arrow) is increased if compared to Re treated mice.
(G-I) Kidneys from mice treated with CdCl, plus BJe alone at 40 mg/kg and with both the extract
associations Cur 50 mg/kg + Re 20 mg/kg + BJe 20 mg/kg and Cur 100 mg/kg + Re 20 mg/kg + BJe
40 mg/kg. In all groups, the brush border and the tubules have normal organization. (J) Tubular
damage score based on the brush border behavior. * p < 0.05 vs. control; § p < 0.05 vs. CdCl, plus
vehicle. Scale bar: 50 um.
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[
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BOCRO
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Figure 7. Inmunohistochemical localization of IL-1f in the kidneys. (A) In all control groups, no
IL-1B immunoreactivity can be demonstrated. (B) In CdCl, plus vehicle-treated mice, nearly all
tubules showed a strong IL-13 immunoreactivity (arrow). (C-E) In mice treated with CdCl, plus
both doses of Cur and with CdCl, plus Re, a moderate IL-13 immunoreactivity was present in some
tubules (arrow). (F) In CdCl, plus BJe at the lower dose challenged mice, IL-1 immunoreactivity
(arrow) was milder if compared to CdCl, alone treated mice, but higher respect to Cur and Re.
(G-I) In mice treated with CdCl, plus BJe at 40 mg/kg and with CdCl, plus both associations, IL-1(3
immunoreactivity was absent, similar to controls. (J) Morphometric results for IL-1f3 expression.
Data are expressed in Optical Units/Unit Area (OU/UA) (from 0 = black to 255 = white). * p < 0.05
vs. control; § p <0.05 vs. CdCl, plus vehicle. Scale bar: 50 um.
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Figure 8. Inmunohistochemical localization of Nrf2 in the kidneys. (A) In all control groups, Nrf2
immunoreactivity is particularly strong in the tubular wall (arrow). (B) In CdCl, plus vehicle-treated
mice, no Nrf2 immunoreactivity is present. (C-E) In mice treated with CdCl, plus both doses of
Cur and with CdCl, plus Re, Nrf2 shows a moderate positivity in some tubules (arrow). (F) In mice
challenged with CdCl, plus BJe at the lower dose, Nrf2 immunoreactivity was lower (arrow) when
compared to Cur and Re. (G-I) Mice treated with CdCl, plus BJe at 40 mg/kg and with CdCl, plus
both associations: Nrf2 immunoreactivity is high (arrow), similar to controls. (J) Morphometric
results for Nrf2 expression. Data are expressed in optical units/unit area (OU/UA) (from 0 = black to
255 = white). * p < 0.05 vs. control; § p <0.05 vs. CdCl; plus vehicle. Scale bar: 50 pm.

4. Discussion

Cadmium pollution is rising worldwide because of intensified industrial activities,
that have increased its availability, and its significant environmental persistency. The role of
cadmium in physiological processes is not yet fully understood; however, it competes with
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other essential metal ions, thereby disrupting cell functions. It causes damage to various
organs in mammals by causing teratogenicity, genotoxicity, osteoporosis, neurotoxicity and
nephrotoxicity [52].

In this study, we observed high values of serum creatinine and blood urea nitrogen
of mice exposed to Cd, demonstrating the kidney injury induced by this metal. Levels
of these parameters, as well as urine analysis, are often employed as biomarkers for the
evaluation of kidney function, despite their limitations for the detection of early stages
of kidney diseases [53]. Urea is the major nitrogenous end product of protein and amino
acid catabolism. Increased blood urea nitrogen is acknowledged to be associated with
kidney disease or failure, blockage of the urinary tract by kidney stones, congestive heart
failure, dehydration, fever, shock and bleeding in the digestive tract [54]. Creatinine
is a nitrogenous compound formed by creatine and phosphocreatine during muscular
metabolism and primarily eliminated through glomerular filtration. It is commonly used
as measure of kidney function. We demonstrated that Cur, Re and BJe administration,
alone or in combination, reversed Cd-induced nephrotoxicity by reducing the elevated
levels of creatinine and blood urea nitrogen in the serum of Cd-treated mice reaching the
maxim effect with BJe 40 mg/kg and with both association Cur 50 mg/kg + Re 20 mg/kg +
BJe 20 mg/kg and Cur 100 mg/kg + Re 20 mg/kg + BJe 40 mg/kg. This finding was in
accordance with previous research showing the improvement of nephrotoxicity by Cur
and Re in other experimental models [55,56].

As known, cadmium induces oxidative stress by altering the pro-oxidant/antioxidant
balance in animal tissues. In biological systems, Cd does not undergo redox reactions,
but it can induce oxidative stress by intracellular GSH depletion [57] or by inhibiting
antioxidant enzymes, such as GPx, interacting with their thiol groups [58]. Previous studies
demonstrated that GSH depletion enhances Cd-induced hepatotoxicity and that GSH
precursor N-acetylcysteine prevents Cd-induced oxidative stress and toxicity in the liver
and brain of Cd-exposed rats [59]. These data have been recently confirmed by Zhang and
co-workers that demonstrated the protective effects of Re in Cd-induced nephrotoxicity,
mitigating GSH depletion and restoring the activity of antioxidant enzymes [60].

In this study, administration of Cd led to oxidative stress which is evidenced by
reduced levels of the antioxidant enzymes GPx and GSH that was significantly restored by
Cur, Re and BJe, alone or in association.

Furthermore, Cd induces the inducible form of nitric oxide synthase (iNOS), responsi-
ble for nitrosative stress. The level of iNOS is very low in healthy kidney [61] and, when
produced in large amount, it exerts nephrotoxic injury, with proximal tubules and glomeruli
dysfunction in different experimental models, such as renal ischemia/reperfusion [62].
CdCl,-treated mice showed an enhanced expression of iNOS in renal tissue compared
to controls, which could be related to the generation of ROS, secondary to the structural
lesions of tubular epithelial cells. In our study, we observed that both the combination of
Cur 50 mg/kg + Re 20 mg/kg + BJe 20 mg/kg and Cur 100 mg/kg + Re 20 mg/kg + BJe
40 mg/kg showed a significant positive action against iNOS expression.

Inflammation is a key pathogenic event associated with Cd exposure [63,64], which
is responsible of the initiation and progression of kidney tubulo-interstitial illness [18]. It
amplifies the expression of pro-inflammatory and transcriptional factors including tumor
necrosis factor alfa (TNF-«), IL-13 and iNOS. In our study, both the expression and the
immunohistochemical analysis of IL-1 after Cd challenge were increased, thus explaining
its detrimental role in the proximal tubules. Recently, we and other demonstrated the
efficacy of several natural extracts and compounds in modulating inflammatory process
induced by Cd challenge through the reduction of inflammatory markers expression in
the kidney [17,18,61,65,66]. In this study, all the examined nutraceuticals and both the
associations reduced the expression and the immunohistochemical analysis of IL-1f3 de-
creasing the inflammatory damages induced by Cd. These biochemical and molecular data
were confirmed by the histopathological examinations, which demonstrated an increased
glomerular area, a reduced PAS stain of the proximal tubules brush border, the presence of
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tubular cells lesions and of interstitial edema, as already demonstrated in previous obser-
vations [17,18]. We demonstrated that Cur and Re reduced cellular lesions and interstitial
edema, as well as we observed a more PAS-positive brush border of tubules if compared
to CdCl,. Moreover, B]e alone at both doses, showed protection of both glomeruli and
tubules, despite to a different extent. However, BJe at lower dose did not reduce the surface
of glomerular area. In addition, BJe at the lower dose showed a reduced PAS-positivity,
while the brush border was better preserved with the higher dose. Interestingly, both the
associations (Cur 50 mg/kg + Re 20 mg/kg + BJe 20 mg/kg and Cur 100 mg/kg + Re
20 mg/kg + BJe 40 mg/kg), demonstrated a well evident protective action against CdCl,,
being glomerular and tubular morphology close to normal. Moreover, the morphological
pattern in mice treated with both the associations was similar to that of the controls. The
morphometric evaluation of the tubular damage demonstrated significantly higher scores
in CdCl,-challenged mice, when compared to control groups, and a progressive reduction
of the scores in all the examined groups, with the exception of BJe at lower dose.

It is well-acknowledged that both oxidative and inflammatory pathways triggered
by Cd may activate apoptosis which plays a pivotal role in Cd-caused nephrotoxicity [67].
Previous studies reported that the occurrence of apoptosis involves p53 and its downstream
targets, and that the anti- and pro-apoptotic members of the Bcl-2 family are crucial effectors
for p53-regualted apoptosis [68]. In this study, we found that Cd exposure augmented
apoptosis in the kidneys. In mice, it was demonstrated that Bcl-2 expression is down-
regulated and Bax up-regulated after exposure to Cd [69]. Similar results, together with
the upregulation of p53, were observed in our research, thus confirming an important
role of Cd in triggering apoptosis. In this context, many natural substances have shown a
promising role in positively modulating the apoptotic pathways after Cd treatment, such as
selenium [70], Potentilla anserina polysaccharide [71], betulinic acid [72], myo-inositol [18],
vitamin E [73], quercetin [66]. In our study, we observed that Cur, Re and BJe protected
against Cd-induced apoptosis, even if both the association Cur 50 mg/kg + Re 20 mg/kg +
BJe 20 mg/kg and Cur 100 mg/kg + Re 20 mg/kg + BJe 40 mg/kg) provided better defense
against apoptotic process.

In the last decade, several studies suggested that disruption of the Nrf2 signaling
pathway was involved in several kidney diseases [74-76]. Nrf2 is a crucial transcription
factor that plays a pivotal role in inducing the expression of cellular defense enzymes
to counteract oxidative stress. Physiologically, Nrf2 assembles cytosolic Kelch-like ECH
associated protein-1 (Keap1l). In response to the oxidative stress injury, Nrf2 translocates
into the nucleus, binding to a highly conserved enhancer antioxidant responsive element
(ARE) and regulating transcription of a different of phase II metabolism and detoxification
genes, such as heme oxygenase 1 (HO-1) and NQO1. Briefly, the Nrf2-regulated antioxidant
response serves to contrast oxidative injury and to preserve intracellular redox homeostasis.
In this study, we observed a significant up-regulation of Nrf2 gene in kidney of Cd-treated
mice. As consequence, the expression levels of downstream Nrf2 signaling genes Hmox1
and Ngol were up-regulated. Our results are clearly consistent with previous research,
wherein the administration of Cd significantly increased the expression of Nrf2 and further
upregulated the expression of downstream phase II detoxification enzymes [77,78]. This
result further confirms that Nrf2-ARE signaling is a crucial regulator for cells to maintain
the oxidant/antioxidant balance. Finally, as expected, the results showed that pre-treatment
with BJe, Cur or Re alone, or in combination (Cur 50 mg/kg + Re 20 mg/kg + BJe 20 mg/kg
and Cur 100 mg/kg + Re 20 mg/kg + BJe 40 mg/kg) inhibited the Cd-activated Nrf2
signaling pathway.

5. Conclusions

In conclusion, for the first time, the results of our study suggest that BJe reduces CdCl,-
induced oxidative damage in the kidneys of challenged mice. It significantly improved
the impaired renal functionality, along with reducing morphological changes of glomeruli
and proximal tubules, which are known as key targets for Cd nephrotoxicity. Moreover,
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BJe restored GSH content and GPx activity, counteracted Nos2 and II1b over-expression
and hampered kidney damage through a mechanism involving its anti-apoptotic activity.
Finally, BJe was able to modulate the Nrf2 pathway and its downstream signaling genes
Hmox1 and Ngol, increased by CdCl,.

Generally, each nutraceutical is employed alone to achieve the desired outcome; how-
ever, in the recent past, we as others [79-81] have highlighted the relevance of a multitarget
pharmacological strategy to deal with a disease. Indeed, pathologies are multifactorial
events which hence require the necessity to aim at different targets simultaneously.

On this line, we indicated the effectiveness of BJe, likely due to being a phytocom-plex,
and that also the association with Cur and Re, well-known bioactive principles, amplify the
protective effect of BJe, thus being the first to focus on the combination of nutraceuticals
to test their effects to protect renal functions after exposition to environmental toxicants.
Our results need to be also proven in clinical studies to definitively assure our statements,
although they offer a solid foundation for a new strategy to fight heavy metal toxicity.
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