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In a recent paper by Ibragimov a method was presented in order to find Lagrangians of certain
second-order ordinary differential equations admitting a two-dimensional Lie symmetry algebra.
We present a method devised by Jacobi which enables one to derive (many) Lagrangians of any
second-order differential equation. The method is based on the search of the Jacobi Last Multipliers
for the equations. We exemplify the simplicity and elegance of Jacobi’s method by applying it to
the same two equations as Ibragimov did. We show that the Lagrangians obtained by Ibragimov
are particular cases of some of the many Lagrangians that can be obtained by Jacobi’s method.

Keywords: Lagrangian; Jacobi last multiplier; Lie symmetry; Noether symmetry.

1. Introduction

The method of the Jacobi last multiplier [8–12] provides a means to determine an integrating
factor of the partial differential equation

Af =
n∑

i=1

ai(x1, . . . , xn)
∂f

∂xi
= 0 (1.1)

or its equivalent associated Lagrange’s system

dx1

a1
=

dx2

a2
= · · · =

dxn

an
. (1.2)

The multiplier M is given by

∂(f, ω1, ω2, . . . , ωn−1)
∂(x1, x2, . . . , xn)

= MAf , (1.3)
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where

∂(f, ω1, ω2, . . . , ωn−1)
∂(x1, x2, . . . , xn)

= det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂f

∂x1
· · · ∂f

∂xn

∂ω1

∂x1

∂ω1

∂xn
...

...
∂ωn−1

∂x1
· · · ∂ωn−1

∂xn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0 (1.4)

and ω1, . . . , ωn−1 are n − 1 solutions of (1.1) or, equivalently, first integrals of (1.2). Jacobi
also proved that M is a solution of the following linear partial differential equation

n∑
i=1

∂(Mai)
∂xi

= 0 (1.5)

or of its equivalent,

n∑
i=1

ai
∂(log M)

∂xi
+

n∑
i=1

∂ai

∂xi
= 0. (1.6)

In general a different selection of integrals produces another multiplier, M̃ . An important
property of the last multiplier is that the ratio, M/M̃ , is a solution of (1.1), equally a first
integral of (1.2). Indeed, if each component of the vector field of the equation of motion is
free of the variable associated with that component, i.e. ∂ai/∂xi = 0, the last multiplier is
a constant.

In its original formulation the method of Jacobi last multiplier required almost com-
plete knowledge of the system, (1.1) or (1.2), under consideration.a Since the existence of a
solution/first integral is consequent upon the existence of symmetry, an alternative formu-
lation in terms of symmetries was provided by Lie [14,15][Kap 15, §5 in the latter]. A clear
treatment of the formulation in terms of solutions/first integrals and symmetries is given
by Bianchi [1]. If we know n − 1 symmetries of (2.1)/(2.2), say

Γi =
n∑

j=1

ξij(x1, . . . , xn)∂xj , i = 1, n − 1, (1.7)

Jacobi Last Multiplier is given by M = Δ−1, provided that Δ �= 0, where

Δ = det

⎡
⎢⎢⎢⎣

a1 · · · an

ξ1,1 ξ1,n
...

...
ξn−1,1 · · · ξn−1,n

⎤
⎥⎥⎥⎦ . (1.8)

There is an obvious corollary to the results of Jacobi mentioned above. In the case that there
exists a constant multiplier, the determinant Δ is a first integral. This result is potentially

aAlthough we should underline that Jacobi himself found last multipliers for several equations without any
knowledge of its solutions [8–12].
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very useful in the search for first integrals of systems of ordinary differential equations. In
particular this feature was put to good use with the Euler–Poinsot system [19] and the
Kepler problem [20].

The following relationship between the Jacobi Last Multiplier and the Lagrangian [12,27]

∂2L

∂y′2
= M (1.9)

for a one-degree-of-freedom system

y′′ = f(x, y, y′), (1.10)

where the prime denotes differentiation with respect to the independent variable x, is per-
haps not widely known although it is certainly not unknown as can be seen from the
bibliography in [17]. Given a knowledge of a multiplier, namely a solution of Eq. (1.6), i.e.

d
dx

(log M) +
∂f

∂y′
= 0, (1.11)

then (1.9) gives a simple recipe for the generation of a Lagrangian. The only possible
difficulty is the performance of the double quadrature. Considering the dual nature of the
Jacobi Last Multiplier as providing a means to determine both Lagrangians and integrals
one is surprised that it has not attracted more attention over the more than one and a
half centuries since its introduction. The bibliography of [17] gives a fair indication of its
significant applications in the past. In more recent years we have presented the application
of Jacobi Last Multiplier to many different problems [17–25].

In a recent paper Ibragimov [7] proposed a practical approach to the resolution of
the classical problem of finding the Lagrangian given a second-order ordinary differential
equation. In his method Ibragimov introduced the idea of an invariant Lagrangian, and
derived Lagrangians of two second-order differential equations after lengthy calculations
involving integration of auxiliary differential equations. For the details of the method the
interested reader should consult the paper [7].

In this paper we exemplify the simplicity and elegance of the forgotten method devised by
Jacobi for finding Lagrangians by applying it to the same two equations as Ibragimov did.b

Specifically we obtain Jacobi Last Multipliers, and therefore Lagrangians, of the equations

y′′ =
y′

y2
− 1

xy
(1.12)

y′′ = ey − y′

x
(1.13)

which possess the Lie point symmetries

Γ1 = 2x∂x + y∂y, Γ2 = x2∂x + xy∂y (1.14)

and

Σ1 = x∂x − 2∂y, Σ2 = x log(x)∂x − 2(1 + log(x))∂y , (1.15)

bBoth equations are found in the textbook [6]. The first is example (12.27) on p. 291 and the second is
Exercise 12.3 on p. 300.
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respectively. We note that both symmetries in (1.14) and in (1.15) generate a Lie’s Type III
algebra [15], namely a nonabelian and transitive Lie algebra [1].

2. Jacobi Last Multipliers and Lagrangians for (1.12)

The calculation of the Jacobi Last Multiplier requires that the differential equation under
consideration be written as a system of first-order equations. Thus (1.12) becomes

u′
1 = u2

u′
2 =

u2

u2
1

− 1
xu1

,
(2.1)

with u1 ≡ y, and u2 ≡ y′. The formula (1.11) for the last multiplier gives a nonlocal
exp[− ∫

u−2
1 dx] which is not very useful. However, we do have the route, (1.8), through the

determinant of the vector field and the two symmetries. Thus we have

Δ12 = det

⎡
⎢⎢⎢⎣

1 u2
u2

u1
2
− 1

xu1

x2 xu1 u1 − xu2

2x u1 −u2

⎤
⎥⎥⎥⎦ = −(xu1u2 + x − u1

2)(xu2 − u1)
u1

(2.2)

so that the multiplier is

M12 = − u1

(xu1u2 + x − u1
2)(xu2 − u1)

. (2.3)

If we integrate M12 twice with respect to u2, then from formula (1.9) we obtain the
Lagrangian

L12 = −u1

x3
(xu2 − u1) log(xu2 − u1) +

xu1u2 + x − u2
1

x3
log(xu1u2 + x − u2

1)

− 1
x2

+ f1(x, u1)u2 + f2(x, u1), (2.4)

where f1(x, u1) and f2(x, u1) are arbitrary functions of integration. If we substitute (2.4)
into the Euler–Lagrangian equation, we obtain the constraint

∂f1

∂x
− ∂f2

∂u1
=

x − u2
1

x3u1
(2.5)

on the hitherto arbitrary functions f1 and f2. This Lagrangian was not found by Ibragimov.
As it was shown in [23,25], f1, f2 are related to the gauge function g = g(x, u1). In fact,

we may assume

f1 =
∂g

∂u1
, f2 =

∂g

∂x
+

2x log(u1) − u2
1

2x3
, (2.6)

namely the arbitrariness in the Lagrangian (2.4) can be expressed as a total time derivative.
Such a Lagrangian has been termed “gauge variant” [13] and is notable in that the presence
of the arbitrary function g has no effect upon the number of Noether point symmetries [23].
In this respect it could be regarded as part of the boundary term in the way Noether put



An Old Method of Jacobi to Find Lagrangians 435

it in her formulation of her theorem [16]. The class of Lagrangians described by (2.4) is an
equivalence class.

We observe that there are two singularities given by

xu1u2 + x − u1
2 = 0 and xu2 − u1 = 0. (2.7)

When we solve these two equations, i.e.:

y′ = −1
y

+
y

x
, and y′ =

y

x
, (2.8)

we recover the singular solutions of (1.12) associated with the singularities of the Lagrangian
(2.4), which are a consequence of the singularities of the last multiplier M12, (2.3).

If we take the Lagrangian (2.4) subject to (2.5) and calculate its Noether point sym-
metries, we find that there is a single Noether point symmetry which is Γ2 in (1.14). The
corresponding integral is

I =
u1

xu1u2 + x − u2
1

. (2.9)

With an integral and a multiplier we can generate a second multiplier by a reversal of the
property that the quotient of two multipliers is an integral. The multiplier is just

M1 =
M12

I
= − 1

xu2 − u1
. (2.10)

Now we can calculate a second Lagrangian from the multiplier (2.10), and find

L1 =
u1 − xu2

x2
log(u1 − xu2) +

u2

x
+ f1(x, u1)u2 + f2(x, u1), (2.11)

with the constraint:

∂f1

∂x
− ∂f2

∂u1
=

u2
1 + x

x2u2
1

(2.12)

or equally in terms of the gauge function g = g(x, u1)

f1 =
∂g

∂u1
, f2 =

∂g

∂x
+

x − u2
1

u1x2
. (2.13)

If we take the Lagrangian L1 in (2.11) and calculate its Noether point symmetries, we find
that there is a single Noether point symmetry which is Γ2 in (1.14). The corresponding
integral is I in (2.9).

We can generate many (infinite) different Jacobi Last Multipliers of Eq. (1.12) and
consequently many (infinite) different Lagrangians. In fact we may take any function of the
first integral I in (2.9) and then its product with either M12 or M1 will generate a new
Jacobi Last Multiplier. For example, we obtain the following multiplier:

M2 = M12
−2
I2

= 2
xu1u2 + x − u2

1

u1(xu2 − u1)
(2.14)
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and consequently Lagrangian:

L2 = −2
u1 − xu2

xu1
log(u1 − xu2) +

u2(u1u2 − 2)
u1

+ f1(x, u1)u2 + f2(x, u1), (2.15)

with the constraint:

∂f1

∂x
− ∂f2

∂u1
= − 2

u3
1

(2.16)

or equally in terms of the gauge function g = g(x, u1)

f1 =
∂g

∂u1
, f2 =

∂g

∂x
− 1

u2
1

. (2.17)

If we calculate the Noether point symmetries of the Lagrangian L2 in (2.15), we find
that both Γ1 and Γ2 in (1.14) are Noether point symmetries. The corresponding integrals
are

I1 = log
(

u2
1

x
− u1u2

)
− 1

u2
1

(u3
1u2 − xu2

1u
2
2 − 2xu1u2 − x), (2.18)

and

I2 =
1
I2

=
(

xu1u2 + x − u2
1

u1

)2

, (2.19)

respectively. It is worth noting that both singular solutions obtained in (2.8) correspond to
these integrals taking the particular value of zero, namely, when each integral is a configu-
rational invariant [3, 26], we obtain a singular solution.

One of the two Lagrangians derived by Ibragimov [6, Eq. (42), p. 223] for Eq. (1.12) is
the following

LN1 =
1

xu1
+

(
u1

x2
− u2

x

)
log

(
u2

1

x
− u1u2

)
, (2.20)

which is a particular case of the Lagrangian L1 in (2.11) with

f1 =
1
x

(− log(u1) + log(x) − 1), f2 =
u1

x2
(log(u1) − log(x)) +

1
xu1

. (2.21)

The other Lagrangian of Ibragimov [6, Eq. (54), p. 225] is the following

LN2 = − 1
u2

1

+
u2

1

x2
− 2

u1u2

x
+ u2

2 − 2
(

1
x
− u2

u1

)
log

(
u2

1

x
− u1u2

)
, (2.22)

which is a particular case of the Lagrangian L2 in (2.15) with

f1 = − 2
xu1

(u2
1 − x log(u1) + x log(x) − x),

f2 = − 1
x2u2

1

(x2 − u4
1 + 2xu2

1 log(u1) − 2xu2
1 log(x)).

(2.23)
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3. Jacobi Last Multipliers and Lagrangians for (1.13)

The system of first-order differential equations corresponding to (1.13) is

u′
1 = u2

u′
2 = −u2

x
+ eu1 .

(3.1)

In this case the application of formula (1.5) or equivalently (1.11) does produce a multiplier.
It is

M0 = x (3.2)

from which we obtain the Lagrangian

L0 =
xu2

2

2
+ f1(x, u1)u2 + f2(x, u1) (3.3)

with the constraint on the two functions of integration being

∂f1

∂x
− ∂f2

∂u1
= −xeu1 , (3.4)

or equally in terms of the gauge function g = g(x, u1)

f1 =
∂g

∂u1
, f2 =

∂g

∂x
+ xeu1 . (3.5)

This Lagrangian admits one Noether’s symmetry namely Σ1 in (1.15) and yields the
following first integral:

I0 = 4xu2 + u2
2x2 − 2eu1x2. (3.6)

We use the two symmetries Σ1,Σ2 in (1.15) and the vector field of the system (3.1) to
obtain a second multiplier. The matrix is

Mat12 =

⎡
⎢⎢⎢⎢⎣

1 u2 −u2

x
+ eu1

x log(x) −2(1 + log(x)) −2
x
− u2(1 + log(x))

x −2 −u2

⎤
⎥⎥⎥⎥⎦ (3.7)

and the corresponding multiplier is

M12 = − x

4 + 4xu2 + u2
2x2 − 2eu1x2

. (3.8)

Thus formula (1.9) yields the following Lagrangian

L12 =
1
x

log
(
−xu2 − 2 −

√
2xeu1/2

)
− 1

2x
log

(
xu2 + 2 +

√
2xeu1/2

xu2 + 2 −√
2xeu1/2

)

+
√

2(xu2 + 2)
4x2eu1/2

log

(
xu2 + 2 +

√
2xeu1/2

xu2 + 2 −√
2xeu1/2

)
+ f1u2 + f2 (3.9)
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with the constraint

∂f1

∂x
− ∂f2

∂u
= 0 (3.10)

or equally in terms of the gauge function g = g(x, u1)

f1 =
∂g

∂u1
, f2 =

∂g

∂x
. (3.11)

In a curious repetition of the situation with (1.12) we find that the two Lagrangians L0 in
(3.3) and L12 in (3.9) have the same Noether point symmetry Σ1 in (1.15) and lead to what
is functionally the same integral I0 in (3.6). Both Lagrangians were not found by Ibragimov.
Indeed Ibragimov did not look for Lagrangians of Eq. (1.13) admitting one Noether point
symmetry.

Since we have two multipliers, we can obtain a first integral given by their ratio, namely

M0

M12
= −(xu2 + 2)2 + 2eu1x2 = −I0 − 4. (3.12)

We can generate many (infinite) different Jacobi Last Multipliers of Eq. (1.13) and
consequently many (infinite) different Lagrangians. In fact we may take any function of the
first integral I0 in (3.6) and then its product with either M12 or M0 will generate a new
Jacobi Last Multiplier. For example, we obtain the following multiplier:

M2 = − M0√
I0 + 4

= − x√
(xu2 + 2)2 − 2eu1x2

(3.13)

and consequently the following Lagrangian:

L2 = −
(

u2 +
2
x

)
log

(√
(xu2 + 2)2 − 2eu1x2 + xu2 + 2√

2xeu1/2

)

+
√

(xu2 + 2)2 − 2eu1x2 + f1(x, u1)u2 + f2(x, u1), (3.14)

with either the constraint (3.10) or (3.11). This Lagrangian admits both Σ1 and Σ2 in (1.15)
as Noether point symmetries, and the corresponding integrals are

I1 =
√

I0 + 4 =
√

(xu2 + 2)2 − 2eu1x2, (3.15)

and

I2 =
√

(xu2 + 2)2 − 2eu1x2 log(x) + 2 log

(√
(xu2 + 2)2 − 2eu1x2 + xu2 + 2√

2xeu1/2

)
, (3.16)

respectively.
The Lagrangian of Ibragimov [6, Eq. (90), p. 234] is a particular case of the Lagrangian

L2 in (3.14) with the gauge function equal to zero.c

cIn [6] there are some missprints.
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The last multiplier M12 in (3.8) becomes singular if

y′ = −2
x
±
√

2ey/2. (3.17)

Equation (1.13) is satisfied by each of the first-order equations in (3.17) and so we obtain
the two singular solutions

y = x
(
C ∓

√
2x

)
(3.18)

thereby supplementing the results given in [7].

4. Final Remarks

When one seeks a Lagrangian of an elementary equation, it is usually possible to guess the
form of at least one Lagrangian. In the case of not so elementary equations an approach using
guesswork is likely to lead to frustration. Consequently any development which can replace
guesswork or intuition by a well-defined procedure is to be welcomed. Usually there is a price
to pay for the elimination of guesswork.d In this paper we have considered two test equations
proposed by Ibragimov to illustrate his concept of the use of invariant Lagrangians to
provide a new method for the integration of nonlinear equations. We have demonstrated that
some quite old knowledge is available for a successful resolution of the same problems. The
combination of the concept introduced by Jacobi in his last multiplier, the application by Lie
of his ideas of invariance under the transformations generated by continuous groups and the
specialization to the Action Integral by Noether provides us with a very powerful and simple
tool for the resolution of ordinary differential equations which possess a reasonable amount
of symmetry. We have seen in the two examples considered here that they provide richer
results when considered from a more classical viewpoint. The Jacobi last multiplier yields
more general Lagrangians than those found by Ibragimov, and many more can be generated.
One could consider that the combination of Jacobi and Lie gives sufficient material to deal
with these equations. In that sense it could be argued that the theorem of Noether is
already implicit in the work of Jacobi and Lie. However, we did see that further results
were available to us by an application of Noether’s Theorem to the information already
obtained.

It is important to remark that finding a Jacobi last multiplier of an equation/system
does not mean integrability. In fact one can find a Jacobi last multiplier for systems of
chaotic regime as well as for integrable equations, say the famous Painlevé equations. In
fact, in [2] the method of the Jacobi last multiplier for finding a Lagrangian has been applied
to the second-order equations of Painlevé type as given in Ince [4]. For an example of a
chaotic system we may consider the Lorenz system:

ẋ = σ(y − x)

ẏ = −xz + rx − y (4.1)

ż = xy − bz

dNaturally it can be argued that guesswork is a process of looking for some type of symmetry in an intuitive
matter.
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which possesses a very simple Jacobi last multiplier that can be promptly obtained from
Eq. (1.6), i.e.

M = exp[(σ + 1 + b)t], (4.2)

although the Lorenz system does not admit any point Lie symmetries apart from translation
in the independent variable t.

Finally, it may be possible to use the Jacobi last multiplier in order to find Lagrangians
for partial differential equations. An hint is given in [5], in which “the knowledge of a
symmetry and its corresponding conservation law of a given partial differential equation
can be utilized to construct a Lagrangian for the equation”.
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