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Abstract. In recent years there has been a resurgence of interest in problems dating back for
over half a century. In particular we refer to the questions of the consistency of quantisation
and nonlinear canonical transformations and the quantisation of higher-order field theories. We
present resolutions to these questions based upon considerations of symmetry. This enables one
to examine these problems within the context of existing theory without the need to introduce
new and exotic theories.
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In the recent literature there has been a resurgence of interest in two questions relating to the
quantisation of classical systems. By coincidence the two questions arose at roughly the same
time almost sixty years ago. One question related to the interchange of the actions of making
a canonical transformation and performing quantisation on an Hamiltonian. In a lengthy and
detailed paper of 1951 van Hove [31] demonstrated that in general there could not be consistency
under the interchange. In 1950 Pais and Uhlenbeck [27] introduced a fourth-order field-theoretic
model which, when quantised, led to the presence of eigenstates of negative norm. In both cases
there was a conflict between the expectation of consistency of description, which is what Physics
demands, and the results which Mathematics produced.

It is a commonplace to describe Mathematics as the Queen and the Servant of Science, by
which one generally thinks of Physics since it is the most mathematically developed of the
sciences. The description is quite eloquent and yet one can wonder if its implication is generally
appreciated. Omne can relate to the concept of ‘Servant’ in which role Mathematics provides
the tools for the resolution of problems in Physics in that the Mathematics is subservient
to the realistic demands of Physics. Independently of Science Mathematics can evolve along
manifold paths into areas which are not obviously connected to the reality as observed in Nature.
Nevertheless one must expect, nay demand, a mathematical description of a physical problem
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to be consistent with the Physics as it is observed experimentally. No matter the method of
description of a physical system the bottom line should always be the same.

Hamilton [13] developed his theory of Mechanics. Dirac [9] found that Hamilton’s theory was
most acceptable for his operator theory of Quantum Mechanics. van Hove demonstrated that
the generality permitted in the canonical transformations of Hamilton’s theory caused problems
with quantisation?. In the last decade Calogero (with Graffi in one paper) [6, 7, 8] examined
a number of nonlinear oscillators classically related by nonlinear canonical transformations and
demonstrated some of the problems associated with a consistent quantisation. In an attempt
to bring consistency between Mathematics and Physics Nucci et al. [24] proposed that the
criterion for a valid quantisation procedure between two Hamiltonians related by a canonical
transformation be the preservation of the Lie point symmetries of the corresponding Schrédinger
equations and demonstrated this with several examples taken from the then current literature.

Hamilton’s theory is essentially a first-order theory in that the canonical equations of motion
derived from the Hamiltonian are of first order. A standard way to obtain the Hamiltonian is to
make use of a Legendre transformation of a first-order Lagrangian. However, the Euler-Lagrange
theory is not confined to first-order Lagrangians. Only a few years after Hamilton’s presentation
of his theory Ostrogradsky [26] proposed a procedure which would enable the construction of
an Hamiltonian function from an higher-order Lagrangian. The field-theoretic model of Pais-
Uhlenbeck is of the fourth order and has a second-order Lagrangian. They are, respectively,

(24 03) 24+ 0103 =0 (1)

and
L=4y{s2 - (0} +03) 2 + 0f03.}. (2)

In [17] and [18] the constraint method of Dirac was used to construct a Hamiltonian. The result
was the same as if the method of Ostrogradsky had been employed.

The problem with the Hamiltonian
2
H=1% 9 02 + 02) 32 — 1020227 3
=3 7+sz+’Y 1+ 8% )y — 88z (3)

obtained in this way was that it possessed ‘ghosts’ when considered from the point of view
of Quantum Mechanics in the usual formulation of Dirac. Not surprisingly the existence of
unwanted properties did not bring joy to physicists. The Mathematics may well have been
impeccable, but the Physics was definitely peccable. Bender and Mannheim [4] sought to
obviate the problem of ghosts by discarding the approach of Dirac of some eighty years ago
and to approach the problem of a correct quantisation of the model of Pais-Uhlenbeck using the
methods of the theory of P7 symmetry rather than the Hermitian approach which underpins
Dirac’s route to quantisation®. Their analysis was successful in that ghosts no longer bedevilled
the problem.

2 This leaves aside the question of the correct quantisation of a function of the classical momentum and position
[2]. Naturally the two questions are related, but for the nonce we concentrate upon the difficulties with any
particular quantisation scheme.

3 One should bear in mind that an essential feature of the Hermitian approach is that the eigenvalues of the
operators are necessarily real. However, this does not mean that nonhermitian operators cannot have real
eigenvalues and so be physically acceptable. A potentially interesting application has been recently proposed
to deal with the almost eternally vexed question of the quantum mechanics of a system with dissipation such as
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A critical point, which seems to have been generally overlooked in previous treatments of this
problem, is the process whereby the fourth-order equation of Pais-Uhlenbeck and its second-
order Lagrangian are reduced to an Hamiltonian. The method, as we mentioned above, is due
to Ostrogradsky. However, it is not the only method available. Indeed one could opine that
the method of Ostrogradsky is a quite complicated way to implement the methods of reduction
of order. In [25] we used the method proposed by Nucci [21], which has seen some quite
successful applications such as in [19], [22], [23], [10], [12], to reduce the fourth-order model of
Pais-Uhlenbeck to obtain a first-order Lagrangian. The quantum mechanical treatment of the
Hamiltonian derived from this Lagrangian saw no ghosts. We wrote the fourth-order equation,
(1), as a system of four first-order equations and then recombined the variables to produce the
Lagrangian

L=3% (%473 - frd - 03r3), (4)

where
z=ry—ry and %= —Q¥r; + Qaro. (5)

It is obvious that the Hamiltonian is
H =1 (p}+p3 + Qr} + 03r) (6)

and that it is quite free of ghosts in the quantum-mechanical context. We emphasise that there
was no need to depart from the context of Dirac’s formulation of quantum mechanics.

We have the situation in which two analyses of the same fourth-order equation with
its associated second-order Lagrangian have led to two quite distinct quantum-mechanical
treatments. Were the results of the treatments the same, one would not be perturbed since one
would expect consistency from two different descriptions of the same physical system. However,
there were some quite notable differences in results and it is incumbent upon anyone either to
resolve the differences or to explain why they exist.

The method of Ostrogradsky as applied to the Lagrangian, (2), proceeds as follows according
to the report in Whittaker [32]. Commencing with the Lagrangian, (2), we obtain the two
momenta

p1 z—v(QerQ%)é—'V'é'
p2 =7z

the damped linear oscillator [1] by making use of the fractional calculus introduced a quarter of a millennium
ago by Euler subsequent to a proposal by I’Hopital towards the end of the seventeenth century and building
upon the treatment of Lagrangians and Hamiltonian functions for systems with cetain forms of dissipation by
Riewe [29]. The operators are obviously nonhermitian, but the eigenvalues are certainly real. One recalls that
Bateman [3] proposed a method — maybe better known to physicists through the works of Caldriola [5] and Kanai
[14] — to obtain a Lagrangian and hence Hamiltonian for this problem. Subsequent quantisation led to results
which were regarded as impossibly nonphysical. The approach in [1] still remains to be subjected to thorough
examination by the scientific community, but it does provide a route which at least does not tread the doubtful
path initiated by Bateman. Indeed Bateman’s approach could be cited as an instance of Mathematics behaving
as a Queen. Schuch [30] provided an alternate approach based on the Caldirola-Kanai formalism which was more
acceptable physically. A key feature to his treatment was introduction of a nonunitary transformation which
obviated the need to confront the nonphysical aspects of earlier treatments. Somehow it would seem that the
avoidance of physically unacceptable conclusions necessitates a departure from Dirac’s formulism when dealing
with dissipation.
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and the corresponding canonical coordinates are g1 = z and ¢2 = 2. Using the prescription
of Ostrogradsky as given by Whittaker for the number of variables in the present situation we
obtain the Hamiltonian

2
p
=g {2 - (0 08)  + it |+ .

One observes that the four coordinates introduced by Ostrogradsky involve the dependent
variable and its derivatives according to a prescription. This is not greatly different from the
method of reduction of order and yet one finds a rather dramatic difference in the outcome.
For the benefit of the reader without access to either the original paper by Ostrogradsky or
a succinct account such as presented by Whittaker we summarise Ostrogradsky’s method for
recasting a problem from the calculus of variations in one independent variable with an higher-
order Lagrangian into Hamiltonian form.

Let L (t,x,:’c,j}, e ,m(")), where x can be a multivariable and n a multi-index in a general
treatment, but we confine our attention to a single dependent variable which may occur up to
the nth derivative with respect to the independent variable, ¢, be a Lagrangian for which the
Euler-Lagrange equation of the Calculus of Variations is

,_9L _d <aL
 9r  dt

83_;) P (-1)”2; (aifm)' (8)

To obtain an Hamiltonian representation a first-order Lagrangian is required. Ostrogradsky
defines the momenta as thus.

_8L_d<8L>+ +(_1)n_1dn—1 (8L )
Pr=2%: "a\az) a1 \ 9z
_ ai _ i 8711 + + (_1)n72 dn_Q ( 8L )
P2= %5 T @ a5 a2 \ 9z
9)
oL

which ensures that all derivatives present in the Lagrangian are covered. The canonical
coordinates are defined according to

Q@ =2z, q =1, “‘7qn:x(n—1). (10)
The Hamiltonian function is then defined according to
H=—L+piga+pags+...+pn1gn+pnz™, (11)

which reduces to the standard prescription when the Lagrangian is of the first order. When
Hamilton’s Principle is applied, we obtain the standard equations for an Hamiltonian describing
a system of n degrees of freedom, namely

doy _OH  q i _ _OH

=22 == 12
at —ap, MO At T ag (12)
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The formalism is fitting and yet we have found that the transition to quantum mechanics has
led to a flawed description of the physical properties of the original system.

The first question to be resolved is at what point in this transition has there been a departure
from a faithful description of the mechanics. Is it in the variation of the classical description
implied by the application of the method of Ostrogradsky or does the problem arise afterwards
when one attempts to do quantum mechanics? We apply Hamilton’s equations of motion, (12),
to the Hamiltonian, (7). We obtain

¢ = Q2p p1 =7
. 2 .
== P2 = —7 (2 + Q3) g2 — p1.
Recalling that q; = z we keep differentiating the first equation and substituting from the others

until we indeed return to (1).

This particular problem does not provide a counterexample to the validity of the method of
Ostrogradsky in the context of classical mechanics. Consequently we infer that there is a problem
in the transition to quantum mechanics. In a formal sense the quantisation of the Hamiltonian,
(7), is not a difficult procedure. There is not even a case to be made for this method or that
method of quantisation since there are no products of noncommuting operators. We can only
conclude that the problem arises in the manner in which the method of Ostrogradsky affects
the subsequent quantisation procedure. We can compare this method in a manner of speaking
with the problems encountered with the quantisation of simple mechanical systems after they
have been subjected to nonlinear canonical transformation. There has been more than a little
literature on the subject over the last half century for which a relevant sampling is [31, 6, 7, 8, 24].
Of particular relevance to the present discussion is the proposal made in [24] in which the point
was made, with supporting examples, that an essential feature of the quantisation procedure
appeared to be the preservation of symmetry. This immediately begs the question of what kind
of symmetry should be preserved. In this respect we are guided by a particular experience which
is the relationship between the Noether point symmetries of the classical Lagrangian and the
Lie point symmetries of the corresponding Schrédinger equation [16, 2, 15, 20]. Apart from the
generic Lie point symmetries, i.e. those corresponding to the solutions of the linear Schrodinger
equation and its very linearity, a one-to-one correspondence is observed between the two classes
of symmetry. When that nexus has been broken, the results of the quantisation have been
embarrassing [8].

It seems that the method of Ostrogradsky has something in common with the application of
nonlinear canonical transformations to Hamiltonian systems and their subsequent quantisation.
That has been demonstrated to cause a difficulty. This is not a good thing. It is ever the
desire of a describer of physical processes to provide a consistent description, no matter the
viewpoint. Following our success [24] with the correct quantisation of a variety of nonlinear
oscillators rendered nonlinear by means of nonlinear canonical transformations from the standard
representation of a linear oscillator we propose in this paper a procedure to rectify the problems
of the appearance of ghosts in the reduction and subsequent quantisation of higher-order field
theories. The philosophy of the procedure is quite simple. Preserve the symmetries!

We consider the Lagrangian of equation (1) namely

d
1.2 2 2\ -2 202 .2 :
L=1{(23+03)#+ 03032} + 3 Ft22) (13)
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where F' is the gauge function. Equation (1) admits a six-dimensional Lie point symmetry
algebra generated by

I'y =0 Iy = 20,
I's = cos(1t)0, 'y = —sin(24¢)0,
I's = cos(Q2t)0, I'g = —sin(at)0s,

while the Lagrangian (13) admits five Noether point symmetries and consequently five first
integrals, namely

Iy = I =3(-07032% — Of2* — Q3% — 255 + 57)

3 = I3= (032 + 2)sin(Qt)Q + (Q32 4+ ) cos(Qt)
ry, = = (D32 + %) cos(Qut)Q — (32 + ) sin(Qut)
s = = (Q%2 + %) sin(Qut) Qo + (22 + %) cos(Qat)
I'e = = (22 + ) cos(Qat)Qg — (32 + ) sin(Qat).

En passent we remark that these first integrals, except I;, could not be obtained if the gauge
function F' was taken to be a constant and yet for some strange reason there are writers who
would have that so.

If we suitably combine the first integrals I3, I, I5 and Ig as (I3 + I + IZ + I3), then the
autonomous first integral,

Lot = 3| (32 + 2)%QF + (932 + 2)? + (2 + £)° + (2 + 2)?| (14)

is obtained. If we make the obvious transformations
n=:i+Ms  @=:i+0 (15)
pL=7+ Q5% p2 =% + Q2 (16)
from (14) we obtain the Hamiltonian
H = Iyt = 507 + 93 + Qa7 + 0363 (17)
and the corresponding canonical equations are
G1=p1, G=p2 p=-Vq, p2=—-ag. (18)

This is the appropriate Hamiltonian? for the quantization of the fourth-order field-theoretic
model of Pais-Uhlenbeck, (1).

This shows that Noether’s Theorem does provide a guide for the transition from classical
to quantum mechanics and that it has a definite advantage over Ostrogradsky’s method when
it comes to to the nonexistence of ghosts and the necessity to exorcise them by means of the
development of new theories. Indeed Ostrogradsky in his original paper® was not so much
interested in Mechanics since in his setting the kinetic energy came to be negative, something

4 We have put the parameter v = 1.
5 We wonder how many of the authors who have cited this work have actually “wasted their time” and read it.
We did [28].
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that Whittaker corrected in his book. We recall our remarks above regarding Mathematics and
Physics!

The application of the Legendre transformation to the Hamiltonian (17) gives the Lagrangian
L =3¢ +d5 — (Q1qF + 2543)] (19)

and the corresponding Euler-Lagrange equations
i = —Qq, G2 = — Q30 (20)

which admit a seven-dimensional algebra of Lie point symmetries® generated by the following
operators

I' = at7 'y = QIaqla I's = COS(Qlt)a!h? Iy = _Sin(Qlt)alh: (21)
F5 = q26q2, FG = COS(QQt)aq2, F7 = — sin(Qgt)&n.

We note that the Lagrangian, (19), possesses five Noether point symmetries which is in curious

agreement with the number of Noether point symmetries admitted by (13).

We started with the observation that Mathematics and Physics are not the same. One can
do things mathematically which make no sense physically. In the application of Mathematics
to the resolution of problems in Physics one should always bear in mind that in this situation
Mathematics is the humble and obedient servant of Science.
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