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Abstract: Background: Trimethylaminuria (TMAU) is a rare metabolic syndrome characterized by
the accumulation and the excretion of trimethylamine (TMA), a volatile diet compound produced
by gut microbiota. Gut microbiota alterations are mainly involved in the secondary TMAU, whose
patients show also different psychiatric conditions. We hypothesized that the biological activity of
several molecules acting as intermediate in TMA metabolic reaction might be at the basis of TMAU
psychiatric comorbidities. Methods: To corroborate this hypothesis, we performed the analysis
of microbiota of both psychiatric suffering secondary TMAU patients and TMAU “mentally ill”
controls, comparing the alteration of metabolites produced by their gut bacteria possibly involved
in neurotransmission and, in the same time, belonging to biochemical pathways leading to TMA
accumulation. Results: Microbiota analyses showed that Clostridiaceae, Lachnospiraceae and Cori-
obacteriaceae alterations represented the bacterial families with highest variations. This results in an
excessive release of serotonin and an hyperactivation of the vagus nerve that might determine the
widest spectrum of psychiatric disorders shown by affected patients. These metabolites, as short
chain fatty acids, lactate and neurotransmitter precursors, are also related to TMA accumulation.
Conclusions: Knowledge of microbiota-gut-brain axis may become a potential new strategy for
improving metabolic diseases and to treat linked psychiatric disorders.

Keywords: TMAU; psychiatric disorders; microbiota

1. Introduction

Trimethylaminuria (TMAU) is a metabolic syndrome characterized by the accumula-
tion and the body excretion of trimethylamine (TMA), a compound that can be introduced
with diet or synthesized by gut microbiota. TMA is excreted through sweat, breath, urine
and other body fluids, determining an unpleasant rotten fish odor. The metabolic and
clinical manifestations of TMAU are generally considered benign, as there is no associated
organ dysfunction. Such evaluation, as well as the evidence that the condition is frequently
unrecognized by clinicians, can have important consequences on the delayed or missed
diagnosis [1].

The incidence of heterozygous carriers for this pathology ranges from 0.5 to 11 percent
depending on the ethnicity examined [2]. Today, at least two different types of TMAU are
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differently recognized: The Type 1, caused by a deficit of the Flavin-containing monooxy-
genase 3 (FMO3) enzyme, and the secondary TMAU, determined by other-than-genetics
factors, such as gut microbiota alterations [3].

The FMO3 gene belongs to the family of FMO genes, and encodes for a transmembrane
protein localized to the endoplasmic reticulum of several tissues, particularly in the liver [4].
The FMO3 triggers the NADPH-dependent oxygenation of various sulfur-, nitrogen- and
phosphorous-containing xenobiotics such as therapeutic drugs, pesticides, and dietary
compounds like TMA and tyramine. In particular, the FMO3 catalyzes the N-oxygenation
of TMA, synthesized after the ingestion of choline, lecithin and L-carnitine rich foods, in
trimethylamine-N-oxide (TMAO), which is an in-odorous molecule [5]. Consequently,
when the pathological condition is suspected or known to occur in a family, the genetic test
of the FMO3 gene can be helpful in identifying members who present the disorder or carry
causative variant. Most of TMAU cases are indeed inherited with an autosomal recessive
pattern [6].

Although FMO3 mutations occur in most of TMAU patients, an increasing number of
cases are caused by other factors [7]. A fish-like body odor could result from an excessive
intake of certain proteins with diet or from increase of specific bacteria families in the
digestive system. Among secondary TMAU causes, indeed, the dysbiosis of the gut
microbiota is the most frequent. The normal flora present in certain body districts could
play a key role in determining the age of onset and, above all, the phenotype, particularly
variable from patient to patient. The intestinal microbiota is involved in the conversion
of choline, carnitine, lecithin - present in some foods - into derivatives of TMA, which are
then absorbed by the intestinal mucosa. Several species of commensal microorganisms
characterized by a more active metabolism, as well as an overexpressed microbiota, could
determine a greater accumulation of TMA, thus causing a more serious phenotype, and/or
an early clinical onset [8].

The TMAU pathological condition is uncommon in the society [8], and due to the fish
odor, affected people are often marginalized. This social impact is commonly considered
the first cause of the psychiatric conditions as depression, anxiety, behavior disorders that
affect people with TMAU. The patients feel shame and embarrassment, fail to maintain
relationships, avoid contact with people who comment on their condition and are obses-
sive about masking the odor with hygiene products and even smoking. Moreover, the
malodorous aspect can have serious and destructive effects also on schooling, personal life,
career and relationships, resulting in social isolation, low self-esteem and suicide. Several
evidences suggest that biological and physiopathological cellular alterations could link
TMAU with nervous disturbs [9].

From a careful analysis of the structure of TMA, it is possible to observe a strong
structural analogy with homocysteine and, therefore, it is likely to hypothesize that, just
as in homocystinemia, at the basis of most of the pathological conditions associated with
trimethylaminuria there is an excess of TMA derivatives in the blood responsible for excito-
toxicity, oxidative stress, inflammatory phenomena and endothelial dysfunction. Oxidative
stress and inflammation are both responsible for endothelial dysfunction implying, at the
brain level, the alteration of the endothelial junctions and, therefore, an increase of the
blood brain barrier (BBB) permeability. Such impairment could determine, in the long run,
a relevant excitotoxicity, responsible for neuronal degeneration [10].

The molecular basis of the physiopathological excitotoxic mechanism is a strong
structural analogy between homocysteine and glutamate, one of the most important ex-
citatory neurotransmitters in the brain. Thus, the excess of homocysteine is responsible
for a prolonged and excessive activation of N-Methyl-d-aspartate (NMDA), post-synaptic
glutaminergic receptors. Its activation is accompanied by the influx of Ca2+ resulting in
molecular damage, loss of mitochondrial membrane potential and increased oxidative
stress [11,12], release of metabolites in to the extracellular space. Based on structural
homology between homocysteine and TMA, a similar excitotoxic mechanism might be
hypothesized to explain psychiatric behavior in TMAU patients. However, given the
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poor understanding of the mechanism underlying this rare metabolic disorder, it is still
unknown if the psychiatric involvement is a cause, or conversely, a consequence of TMA
altered metabolism. Several elements, indeed, let us hypothesize that the biological activity
of several molecules acting as intermediate in TMA metabolic reactions might be at the
basis of TMAU psychiatric comorbidities. In order to corroborate this hypothesis, we per-
formed the analysis of microbiota of both psychiatric suffering secondary TMAU patients
and TMAU “mentally ill” controls, comparing the alteration of their bacterial produced
metabolites possibly involved in neurotransmission and, in the same time, belonging to
biochemical pathways leading to TMA accumulation.

2. Materials and Methods
2.1. Subjects

Microbiota comparative analysis of 7 secondary TMAU affected patients with behavior
disorders (from now formerly indicated as “case”) and 5 demographically TMAU matched
control subjects without cerebral functional impairments (called “controls”), all between
the ages of 20 and 72 years, participated in this work. The secondary TMAU pathological
condition was assessed by negativity of genetic test on FMO3 gene and with urinary TMA
dosage. The behavioral alterations were clinical diagnosed, basing on patients’ anamneses.
Control participants were recruited after clinical assessment of healthy mental state using
the Mini-International Neuropsychiatric Interview, excluding from the analysis subjects
with past or present diagnosis of a major neuropsychiatric illnesses [13]. We established
the nearest matching neighbors evaluating sex, age, race, BMI category (obese vs. not
obese), and history of antibiotic use (in the past year) to control for clinical factors and
known major drivers of microbiome changes [14] that could act as confounding factors.
More details about subjects are available in Table 1. All participants provided written
informed consent.

2.2. DNA Extraction and Sequencing

Total genomic DNA was extracted from fecal specimens using the QIAamp Pow-
erFecal DNA kit (Qiagen, Hilden, Germany), following the protocol provided by the
manufacturer. Then the DNA was quantified by spectrophotometric reading of the ab-
sorbance at 260 nm by the QIAExpert (Qiagen, Hilden, Germany) and the quality was
verified by electrophoretic run on the QIAdvanced (Qiagen, Hilden, Germany). The V3
and V4 regions of the 16S rRNA coding gene were amplified with primer SD-Bact-0341-bS-
17/SD-Bact-0785-aA-21 [15] in 25 µL of final volume of PCR mix consisting of 2x PCRBIO
Taq Mix (PCR biosystem, London, UK) and 2.5 µL of DNA (5 ng/µL). The thermal cycle
was set with an initial denaturation at 95 ◦C for 3 min, 25 denaturation cycles at 95 ◦C for
30 s, annealing at 55 ◦C for 30 s, extension to 72 ◦C for 30 s and a final step extension at 72 ◦C
for 5 min. The 460 bp amplicons were purified using a magnetic bead system (Agencourt
AMPure XP; Beckman Coulter, Brea, CA, United States) and the libraries prepared using
the Nextera V2 indexes (Illumina, San Diego, CA, United States). The samples were, then,
normalized to 4 nM, denatured and diluted to 5 pM before being loaded onto the MiSeq
sequencer (Illumina, San Diego, CA, USA).

Raw sequences were processed using a pipeline that combines PANDAseq [16] and
QIIME [17]. The high-quality reads were grouped into Operational Taxonomic Units
(OTUs) using UCLUST [18] with a 97% similarity threshold. Taxonomy was assigned using
the Greengenes database (May 2019).
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Table 1. Subject metabolic and behavioral features. TMAU patients with psychiatric symptomatology (1–7) and TMAU control patients without mental disturbs (1c–5c) were selected for
our retrospective comparison, mainly in relationship with relevant differences of behavioral phenotypes.

ID AGE SEX TMAU AGE
of ONSET DIET ANTIBIOTIC

MASSIVE USE
PROBIOTIC/FOOD

SUPPLEMENTS
BEHAVIOR
DISORDER

KIND OF BEHAVIOR
DISORDER OTHER

1 30 M 17 Chocolate, Eggs, Peas NO NO YES Anxiety, Fear, Suicidal
instincts, Mood alteration /

2 40 F 14 Fish, Vegetables NO NO YES Excessive emotionality,
Anxiety /

3 54 F 6 Dairy products, Meat,
Fish NO L-carnitine, bromelain YES

Migraine, Sleep disorders,
Mood alteration, Sense of

marginalization, Difficulties
in social relations

/

4 45 F 7 Chocolate, Legumes,
Eggs, Fish YES NO YES

Chronic and rapid mental
fatigue, Frequent headaches,

Dizziness, Anxiety,
Depression

Low levels of Folate,
Plasmatic Vitamin B2

and D, Cu2+, Zn2+;
High levels of PTH,
homocysteine, Ca2+

5 44 M 34 Coffee, Tea, White
Meat, Vegetables, Fish YES

L. acidophilus, Bifidobacterium
lactis, L. rhamnosus,

Streptococcus thermophilus
and L. Paracasei

YES
Obsessive-compulsive

disorder, Sense of
marginalization

/

6 36 F 9 Vegetables, Coffee,
Eggs YES

Zinc, selenium, folic acid, iron,
inulin, magnesium, L.
Helveticus, B. longum

spp.longum, Vitamin B6,
Vitamin B1 and Vitamin D

YES
Mood alteration, Sense of
marginalization, Suicidal

instincts
/

7 25 F 4 Fish, Eggs, Chocolate,
Legumes NO NO YES

Depression,
Obsessive-compulsive

disorder, Sense of
persecution

/
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Table 1. Cont.

ID AGE SEX TMAU AGE
of ONSET DIET ANTIBIOTIC

MASSIVE USE
PROBIOTIC/FOOD

SUPPLEMENTS
BEHAVIOR
DISORDER

KIND OF BEHAVIOR
DISORDER OTHER

1c 47 F 8 Gluten-free foods,
Vegetables, Coffee NO NO NO NO /

2c 26 M 10
Fish, Chocolate, Red

meat, Coffee,
Alcohol

NO

Bifidobacterium lactis, L.
acidophilus, L. plantarum, L.

paracasei; Streptococcus
salivarius subsp. thermophilus,

Bifidobacterium brevis,
Lactobacillus delbrueckii

subsp. bulgaricus,
Enterococcus faecium.

NO NO /

3c 20 M 16 Gluten-free foods,
Vegetables, Meat NO

L. acidophilus, Bifidobacterium
lactis, L. rhamnosus,

Streptococcus thermophilus
and L. Paracasei

NO NO /

4c 72 F 2
Gluten-free and

Lactose-free foods,
Fish

NO NO NO NO High ROS and
Arachidonic Acid

5c 35 M 35 Red meat, Legumes,
vegetables, Salmon NO NO NO NO Use of alcohol
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2.3. Statistical Analysis

The whole statistical analyses were executed using IBM SPSS 26.0 software (https://
www.ibm.com/analytics/us/en/technology/spss/). Bonferroni corrected p-values < 0.05
were considered as statistically significant. Significant differences in alpha diversity were
elaborated with QIIME by pairwise non-parametric t-test with 999 permutations. Sig-
nificant differences in beta diversity were computed with QIIME by PERMANOVA, and
permDISP permitted us to check for significant differences in dispersion [19,20]. Taxonomic
comparisons were performed by Analysis of Composition of Microbiomes (ANCOM),
which exploits compositional log-ratios to identify statistically significant taxa [21]. Canon-
ical Correspondence Analysis (CCA) [22] was implemented with the R package “vegan”,
and its significance (consisting of the variables sex, age and TMAU affected or not) was
tested with ANOVA and step-wise analysis, and corrected by Bonferroni post-hoc method.

2.4. Neurotransmission Pathway Analysis of Gut-Brain Axis

Starting by obtaining OUT relative abundance, we hypothesized the possible role
of each altered microbial species in relation to neural alterations. Therefore, we deeply
explored literature and MetAboliC pAthways DAtabase for Microbial taxonomic groups
(MACADAM), a user-friendly database rich of statistics about metabolic pathways at a
given microbial taxonomic position [23]. For each prokaryotic complete genome retrieved
from RefSeq, MACADAM creates a pathway genome database (PGDB) exploiting Pathway
Tools software built on MetaCyc data which includes metabolic pathways, associated
metabolites, enzymes and reactions. Too guarantee the highest quality of the genome
functional annotation data, MACADAM also includes Functional Annotation of Prokary-
otic Taxa (FAPROTAX), a manually curated functional annotation database, MicroCyc,
a manually curated collection of PGDBs, and the IJSEM phenotypic database.

3. Results
3.1. Microbiota of Neuro-Disordered TMAU Patients Revealed Huge Differences in Composition
and Relative Abundances If Compared with “Brain-Healthy” TMAU Affected Individuals

Microbiota comparative analysis of TMAU cases versus controls highlighted very
interesting differences, regarding both bacterial family heterogeneity and concentration
(Figure S1). Microbiotas of cases showed a prevalent over-abundance of bacteria (10 fami-
lies), with Clostridiaceae reaching the highest values in 4 cases, and Enterococcaceae in 2. The
lowest abundance, instead, was highlighted by Lachnospiraceae (3 cases) and Coriobacteri-
aceae, reduced in two cases. The most altered family both in cases and controls was the
just cited Lachnospiraceae which, however, showed an opposite trend, reaching the highest
relative abundance in controls (about 72.24%), and the lowest in cases (from 1.86% to 3.78%).
The absolute lowest abundances were achieved by Streptococcaceae and Coriobacteriaceae in
cases (0.01%), and by Enterobacteriaceae and Sutterellaceae in controls (0.01%). Among cases,
the n◦ 6 highlighted the highest number of bacterial family with expression alterations
(Enterococcaceae = 0.68%; Erysipelotrichaceae = 3.9%; Rikenellaceae = 6.95%; Streptococcaceae
= 2.62%; Lachnospiraceae = 3.78%; Coriobacteriaceae = 6.5%), while the control showing the
most differentially expressed bacterial family was the 4c (Enterobacteriaceae = 2.8%; Ox-
alobacteraceae = 0.08%; Erysipelotrichaceae = 3.8%; Rikenellaceae = 6.78%; Veilloneaceae = 0.48%;
Roseburia = 1%). Detailed list of differentially represented bacterial families and genera in
case and controls is available in Table 2.

https://www.ibm.com/analytics/us/en/technology/spss/
https://www.ibm.com/analytics/us/en/technology/spss/
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Table 2. Differentially represented bacterial families/genera in TMAU psychiatric cases and controls. Microbiota analysis of
TMAU psychiatric cases and controls showed alterations (% relative abundance) for 16 families and 2 genera (Roseburia
and Faecalibacterium). Over-representation are highlighted in red, down-representation in light blue. The normal range of
% relative abundance is indicated between squared brackets.

ID 1 2 3 4 5 6 7 1c 2c 3c 4c 5c

Enterobacteriaceae [0.1–1.1] 0.85 1.08 0.45 0.1 0.74 0.15 0.15 0.02 0.01 0.1 2.8 0.05

Oxalobacteraceae [0.0–0.0] 0 0.05 0 0 0 0 0 0 0 0 0.08 0

Enterococcaceae [0.0–0.0] 0.02 0 0.02 0 0 0.68 0 0 0 0 0 0

Erysipelotrichaceae [0.1–2.9] 2.8 0.4 0.78 0.1 0.38 3.9 3.3 0.15 0.21 0.1 3.8 2.62

Rikenellaceae [0.2–5.3] 0.48 5.22 1.25 0.2 2.2 6.95 0.2 0.2 0.2 0.2 6.78 0.48

Veilloneaceae [0.8–7.7] 6.35 3.15 1.58 0.8 2.8 5.35 3.35 0.8 0.8 0.8 0.48 1.85

Roseburia [0.0–0.9] 0 0.15 0.25 0.85 0 0.04 1.03 3.09 4.4 0 1 1.53

Streptococcaceae [0.1–1.8] 0.28 0.22 3.48 0.01 0.15 2.62 0.15 0.1 0.1 0.03 0.32 0.08

Clostridiaceae [0.1–1.4] 0.28 1.45 1.25 287.8 134.1 0.28 1.6 0.1 0.1 0..23 0.32 0.18

Lachnospiraceae [12.8–37.26] 20.52 9.98 24.78 1.86 15.8 3.78 23.22 72.24 44.65 0.04 18.58 23.25

Prevotellaceae [0.1–13.66] 0.12 2.3 16.68 0.1 0.7 3.85 40.0 0.02 0.1 0.1 0.13 26.65

Coriobacteriaceae [0.3–5.9] 0.15 1.08 2.12 0.01 0.7 6.5 0.82 0.3 0.3 0.04 0.52 1.7

Bacteroidaceae [3.2–35.36] 55.62 17.5 9.98 3.2 9.2 25.38 1.4 3.2 3.2 3.2 14.58 9.45

Ruminococcaceae [13.7–34.7] 2.42 24.4 23.38 13.7 18.7 24.35 16.23 0.27 1.43 0.13 24.25 19.8

Faecalibacterium [2.5–15.56] 0 3.05 9.35 5.2 5.5 0.58 8.43 6.4 23.97 10.33 8.25 7.2

Porphiromonodaceae [0.2–3.2] 1.25 0.2 0.98 0.22 0.52 1.5 0.55 0.12 0.2 0.2 1.22 0.28

Sutterellaceae [0.1–3.5] 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.01 0.61 0.1 0.1 0.1

Bifidobacteriaceae [0.1–7.96] 4.38 1.82 0.38 0.39 3.55 3.88 0.1 0.1 0.003 0.11 0.1 1.05

3.2. Altered Bacterial Families of Neuro-Disordered TMAU Patients’ Microbiomes Produce
Neurotransmitters and/or a Wide Range of Metabolites Involved in Their Biochemical Pathways

All identified microbial families share a very interesting feature, consisting in the
common production of a very heterogeneous and rich group of metabolites involved in
neurotransmitter biosynthesis and degradation, as well as in their biochemical pathways
required to the correct physiology of chemical synapses. Enterobacteriaceae are able to
directly synthetize dopamine, norepinephrine and serotonin, while Roseburia, Clostridi-
aceae and Veilloneaceae could produce the highest number of different metabolites (acetate,
lactate, butyrate, propionate, succinate and valeriate). A complete list of all metabolites
produced by considered bacteria, involved in nervous physiology, is available in Table 3.

Linking the alterations of microbiota families to each metabolite produced, a possible
complex scenario emerged from analysis of biochemical patterns. The short-chain fatty
acids (SCFAs) resulted the most altered molecules in both case and controls, even if with
different trends, with the propionate more differentially produced in cases. Tryptophan
and GABA, instead, showed different levels only in controls, in which resulted down-
represented (Table 4).
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Table 3. Metabolites produced by altered microbiotas related to neural metabolism. Differentially expressed families and genera of analyzed microbiotas showed a production of metabolites acting as
intermediates of neural metabolism.

BACTERIA/
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Enterobacteriaceae X X X X X X X

Oxalobacteraceae X X X X X X

Enterococcaceae X X X

Erysipelotrichaceae X X

Bifidobacteriaceae X X X

Rikenellaceae X X X

Sutterellaceae X X

Veilloneaceae X X X X

Roseburia X X X X

Ruminococcaceae X X X

Streptococcaceae X X X

Clostridiaceae X X X X

Lachnospiraceae X X X X

Prevotellaceae X X X

Coriobacteriaceae X X

Bacteroidaceae X X X X X

Faecalibacteriaceae X

Porphiromonodaceae X X X
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Table 4. Correspondence between altered microbiota families/genera and nervous-related metabolite
levels. Differential abundances of bacterial families/genera leads to corresponding alterations of
related metabolites acting as intermediate in neurophysiology. Considered metabolites only refer
to microbiota biosynthesis, and they are retrieved from MACADAM database and literature. “↑” =
over-production. “↓“ = down-production. “[empty space]” = no expression differences.

ID 1 2 3 4 5 6 7 1c 2c 3c 4c 5c

Acetate ↑ ↓ ↑ ↑ ↓ ↓ ↓ ↓ ↓
Lactate ↓ ↓ ↑ ↓ ↑ ↓ ↓ ↑

Succinate ↑ ↑ ↑ ↓ ↓ ↓
Dopamine ↓ ↑ ↑

Norepinephrine ↓ ↓ ↑ ↑
Serotonin ↑ ↓ ↑ ↓ ↓ ↑

α-ketoglutarate ↑ ↑
Malate ↑ ↑

Pyruvate ↑ ↑
LPS ↑ ↑ ↓ ↑

Propionate ↑ ↑ ↓ ↑ ↑ ↓ ↓
Butyrate ↓ ↓ ↓ ↑ ↓ ↑ ↑ ↑ ↑ ↑

Tryptophan ↓ ↓
GABA ↓

3.3. Pathway Analysis of Differential Abundances of Bacterial Families Suggested a Possible
Biochemical Link between Microbiota Produced Metabolites, TMA Biosynthesis and
Mood/Behavioral Disorders

Both MACADAM and literature analyses showed a very interesting network involving
main metabolites produced by microbiota, TMA precursors and neurophysiological path-
way [24]. Differential production levels of SCFAs (acetate, propionate and butyrate, also
resulted from mixed acid fermentation, Figure 1), together with lactate and α-ketoglutarate
play a fundamental role into biogenesis of glutamate and GABA, whose concentration
could interfere with betaine transport, determining a possible accumulation of TMA [25]
(Figure 2).

The same biological process could be activated by serotonin, produced from amino
acid tryptophan, and whose release is induced by high levels of lactate [26]. Furthermore,
the biosynthesis of serotonin is strictly connected to melatonin one, whose involvement
in circadian rhythms such as sleep-wake cycle is well known. Interestingly, in condition
of elevated oxidative stress and inflammation, the tryptophan could shift from serotonin
biosynthesis to quinolinic acid one, a neurotoxic byproduct able to induce depression
(Figure 3).

Catecholamine metabolism resulted also involved in TMA accumulation. The con-
centration of norepinephrine, synthetized by dopamine, could regulate the activity of
Phosphatidylethanolamine N-methyltransferase (PEMT) enzyme, which is also able to
metabolize the phosphatidylethanolamine into phosphatidylcholine [27], which then could
be converted to choline, with final increase of TMA levels (Figure 4).
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The choline quantity could be also raised by acetylcholine, which could also play
an important role in carnitine biosynthesis, that could be converted to TMA by bacterial
carnitine oxidoreductase (Figure 5).
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Figure 5. Acetylcholine and carnitine metabolism could influence TMA accumulation and behavioral phenotype. Both
carnitine and acetylcholine could alter choline and acetyl-carnitine biosynthesis, determining an accumulation of TMA.
In the same time, the acetyl-carnitine could influence the release of main neurotransmitters, determining important
behavioral alterations.

Fluctuation of described neurotransmitters could lead to vagus activation/deactivation
and limbic deregulation, with behavioral and mood disturbs, like one evidenced by cases in
exam. A detailed scheme of all evaluated biochemical pathways linking neurotransmitter
and TMA metabolisms is represented in Figure 6.
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Figure 6. Detailed diagram of biochemical pathways linking neurotransmitter and TMA metabolisms. The figure represents how neurotransmitter and TMA pathways might be correlated.
Dashed lines represent indirect and candidate relationships. Empty arrows indicate over- or -down-expression of adjacent metabolite [28].
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4. Discussion

Alterations of microbiome is at the basis of an increasing number of metabolic dis-
orders [29]. Recently, it has been highlighted that the gut microbiome is also linked to
brain physiopathology [30]. Regarding this, the gut microbiome-brain axis is directly or
indirectly associated to neurotransmitters metabolism [31,32]. One of the most challenging
scenarios is represented by the possible relationship between metabolic and brain disorders,
considered generally unlinked but probably strictly connected [33]. An interesting example
is given by TMAU, a metabolic disease characterized by fish odor emission due to the
release of high TMA levels, previously accumulated in various body secretions like sweat,
urine, blood and vaginal one [34]. While in the primary form of TMAU phenotype is
mainly determined by genetic mutations in FMO3 gene [35], in the secondary one the
causes can be different: gut microbiome dysbiosis is one [1]. Patients affected by both
primary and secondary forms of TMAU frequently show behavioral disturbs like social
exclusion, depression, anxiety, sleep-wake cycle and humoral alterations, until to suicide
attempt in extreme cases [36]. These psychological comorbidities, strictly linked to lim-
bic system, represent the most controversial aspects of this pathology, because it is still
unknown whether these disturbs are the consequences of social reactions to malodour
or could depend on TMA-induced biochemical alterations of nervous system. To deepen
this challenging point, we studied 12 patients affected by secondary TMAU, 7 of whom
presenting a complex psychological or psychiatric clinical picture (namely called “cases”).
All patients were subjected to microbiota analysis, highlighting differences in bacterial
abundance and heterogeneity between cases and controls. The bacterial families that
showed the most relevant differences in terms of relative abundances were, then, inves-
tigated for metabolic pathways. Very interestingly, the highest number of intermediates
produced by gut microbiota is transported to central nervous system (CNS), especially to
amygdala and hippocampus, through blood stream, even altering the blood brain barrier
(BBB) permeability. Furthermore, the same metabolites can directly act on the autonomous
nervous system, regulating synapses of vagus nerve in enteric nervous system (ENS) [37].
The most innovative aim of our retrospective comparison was the evaluation of the possi-
ble link between TMA and its precursors with metabolism of neurotransmitters involved
in limbic system activity. Thus, we proposed a new potential scenario consisting in the
explanation of the biochemical patterns involving behavioral disturbs in secondary TMAU
affected patients.

Making a brief description of the cases, the patient 5 (Figure 7) potentially produced the
lowest number of altered metabolites and showed an over-abundance of Clostridiaceae [38],
related to high levels of main SCFAs (acetate, propionate and butyrate) and lactate. He
manifested serotoninergic syndrome-like phenotype, especially obsessive-compulsive
disturbs. This pathological condition is worsened by high lactate levels, which increase
butyrate, by the assumption of antibiotics and by supplementation of probiotics consisting
of L. acidophilus, Bifidobacterium, L. rhamnosus, Streptococcus and L. paracasei. Such bacterial
families are known to increase the production of lactate, acetate, serotonin, GABA, also
determining an accumulation of TMA.

Patients 1 (Figure 8A) and 6 (Figure 8B) showed an analogue serotoninergic syndrome-
like symptomatology. The first patient presented an increase of gut Enterococcaceae and
Bacteroidaceae, and a decrease of Coriobacteriaceae and Ruminococcaceae. The second one,
instead, highlighted the highest number of differentially family’s composition, consisting
of the increase of Enterococcaceae, Erysipelotrichaceae, Rikenellaceae, Streptococcaceae and
Coriobacteriaceae, and the decrease of the only Lachnospiraceae. Dysbiosis of such bacteria
families in both patients was related to augmented levels of acetate, propionate and
LPS, while butyrate and lactate resulted decreased. The over-production of bacterial
acetate can be involved into carnitine biosynthesis. The increasing of acetyl-Co, induced
by acetate, can activate the carnitine biosynthesis by carnitine acetyl-transferase, thus
triggering the accumulation of TMA. The known excitatory effects of lactate on neural
metabolism can determinate an increase of both serotonin and glutamate, while provokes
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neurotoxicity in neural physiological environment [39]. Thus, low levels of lactate could
reduce serotonin and glutamate, whose reduction might decrease GABA biosynthesis in
central nervous system, mainly in hippocampus (https://www.proteinatlas.org/ENSG0
0000145692-BHMT/brain). This portion of limbic system expresses the betaine/GABA
transporter BTG-1 [40] which, due to plasma low GABA concentration, might trigger
the neuronal internalization of betaine. Betaine can be converted to TMA by betaine-
homocysteine-S-methyltransferase (BHMT1) and a following decarboxylation. About
serotonin, even if reduced lactate and butyrate levels could reduce it, the increase of
acetate and propionate concentration can enhance its biosynthesis. Interestingly, the over-
expression of the last two metabolites, together with LPS, could stimulate the afferent
component of vagus nerve, inducing what is generally called “gut instincts” or visceral
sensations. Such scenario can induce the brain to trigger emotional responses such as fear
and anxiety, peculiar of patient 1. In patient 6, the augmented release of serotonin from
enterochromaffin cells (ECCs) and the hyperactivation of vagus nerve can be linked to the
probiotic supplementation of L. helveticus and B. longum, well known to increase serotonin
and norepinephrine levels production in the hippocampus [41].J. Pers. Med. 2021, 11, x FOR PEER REVIEW 13 of 27 
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A slightly different situation was evidenced by the patient 3 (Figure 9), who showed
increased of Enterococcaceae, Streptococcaceae and Prevotellaceae relative abundance, linked
to higher levels of succinate and serotonin and to low levels of propionate. We postulate
that over-synthesis of succinate increases the levels of succinyl-CoA, which follows the
biochemical pathway starting from succinic semialdehyde and determinates the final
production of butyrate. The high levels of succinate and low levels of propionate probably
produced by lactic acid mix fermentation, can determine an increase of acetate biosynthesis
pathway that, as for patient 1, can imply an accumulation of TMA. Moreover, TMA levels
could be increased by the supplement of L-carnitine, converted in TMA by bacterial
carnitine oxidoreductase. The probable over-production of butyrate induced by succinate
increases the serotonin biosynthesis by ECCs that, together with serotonin secreted by
altered gut bacteria, can determine the phenotype typical of the serotoninergic syndrome.
This condition reflects the major nervous-related symptoms shown by the patient (migraine,
mood alteration, sense of marginalization and social phobia) [42]. Furthermore, the serotonin
excess can increase levels of melatonin, explaining alteration of sleep-wake cycle of patient 3.J. Pers. Med. 2021, 11, x FOR PEER REVIEW 15 of 27 
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A unique condition was evidenced in patient 4 (Figure 10). He presented a low
of acetate, butyrate and Vitamin D levels, and increased concentration of propionate,
suggesting a global reduction of vagus nerve activation and serotonin release, already
determined by microbiota reduced abundances of Streptococcaceae. The low levels of
folate characterizing the patient could impair the norepinephrine biosynthesis [43]. This
event could shift the catalytic activity of PEMT from epinephrine biosynthesis towards
phosphatidylcholine production, which could increase TMA levels via choline pathway.
Furthermore, the high concentration of TMA could be also determined by elevated levels of
homocysteine shown by the patient, through the reaction that transfer a methyl group from
betaine to convert homocysteine to methionine, producing dimethylglycine (DMG) and, in
subsequent step, TMA by decarboxylation. The most interesting metabolic pathway related
to mood disorders was represented by low levels of plasmatic vitamin B2, which could be
accumulated in nervous tissue following increased blood brain barrier (BBB) permeability.
This permeability, indeed, is known to be caused by microbiota dysbiosis [44]. Moreover,
this inflammatory scenario determined by altered microbiota could trigger the shifting of
the tryptophan from serotonin pathway to degradation, producing kynurenine, which cross
the BBB and, inside the nervous tissue, is converted into quinolinic acid [45]. This molecule
is an antagonist of NMDA receptors and a non-competitive inhibitor of acetylcholine
receptors, able to produce oxidative stress and neurotoxic effects, also inducing anxiety
and depression, two behavioral alterations of patient 4.J. Pers. Med. 2021, 11, x FOR PEER REVIEW 16 of 27 
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The mixed acid fermentation is the biochemical pathway which produced the highest
alteration in neural physiology-related metabolites in patient 2 (Figure 11). The increase
of malate, mainly produced by Oxalobacteraceae [46], could stimulate the biosynthesis of
pyruvate and, soon after, of acetyl-CoA. This metabolite is converted to acetyl phosphate,
releasing CoA, with the synthesis of acetate in the final step. The CoA previously produced
could enter in carnitine biosynthesis, leading to accumulation of TMA. Additionally, the
high levels of alpha-ketoglutarate, together with low levels of lactate, could increase the
succinic semi-aldehyde via GABA, determining the production of butyrate as fermentation
product. Thus, the overall increase of main SCFAs, together with the elevated levels of
propionate produced by altered microbiota, could favorite the ECC endogenous release
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of serotonin and the activation of the vagus nerve, along with LPS. Such scenario could
explain the excess of anxiety and the uncontrolled emotional status.J. Pers. Med. 2021, 11, x FOR PEER REVIEW 17 of 27 
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production/accumulation of TMA.

A depressive phenotype was evidenced by patient 7 (Figure 12), who showed an
increase of Erysipelotrichaceae, Roseburia, Clostridiaceae and Prevotellaceae, with a reduction of
Bacteroidaceae. The alteration of these families could lead to a down-production of acetate
and propionate, determining a global down-regulation of serotonin release and vagus
nerve activation, characteristic of depression phenotype. In the meantime, the low levels
of acetate could reduce the acetyl-CoA production, arresting the reaction which converts
choline to acetylcholine. So, the accumulation of choline could augment TMA levels,
leading to TMAU phenotype.
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Based on both microbiota alteration evidences and host biochemical pathways, all
analyzed cases showed relevant changes in production of behavioral disorder-related
metabolites. In contrast controls here we considered highlighted different alterations in the
same pathways. However, the intake of probiotic supplements balanced the pathological
phenotype. This latter scenario characterizes controls 2c and 3c, who showed a different
spectrum of metabolites. In addition, compensation of probiotics normalized the global
concentration of the serotonin, as well as dopamine levels was balanced by Enterococcus
faecium supplemented in subject 2c [47].

The metabolic picture of control 1c was characterized by a probable down-production
of microbiota serotonin, due to decreased levels of several SCFAs and tryptophan. A possi-
ble compensation was provided by the human endogenous biosynthesis of serotonin, also
enhanced by microbiota butyrate high levels.

An analogue condition was evidenced in control 4c, whose serotonin production
induced by SCFAs could be balanced by reduction of vitamin D, which could decrease
the neurotransmitter concentration. Moreover, the microbiota synthesis of dopamine
might not exert positive effects on neurotransmission, due to the possible conversion of
norepinephrine precursor to 6-hydroxydopamine (6-OHDA). Moreover, this could enhance
the oxidative stress condition given by the high ROS levels detected in plasma.

Interestingly, the biochemical picture of control 5c highlighted how the increase of only
Prevotellaceae and Roseburia might not be sufficient to determine a psychiatric phenotype.
Probably the metabolites produced by both these bacteria are qualitative and quantitative
not enough to exert a cytotoxic effect on nervous system. Thus, the integrity of psychic
activities might be maintained or very little impaired.

All controls, considering the already discussed biochemical pathways analyzed in
relation to cases, showed an accumulation of TMA.

Limitations

Our results suggest that our hypothesis might be truly founded and they highly
encourage to confirm them by further experiments. Therefore, we aimed to increase the
statistical number of cases and controls, even if this pathology is enough rare to consider
reliable our sample size. In order to improve the sample size in a useful way, we are also
going to plan a more rigid clinical study, evaluating a stronger methodology. Regarding
this, we are also going to improve the psychiatric anamnesis with more details, evaluate
the biochemistry and molecular genetics of investigated metabolites, and realize several
physiological essays in order to ensure the role of each metabolite in each considered
pathway. Such approach could improve the group sampling, trying to avoid several biases
caused by the lack of these data.

5. Conclusions

The relationship between gut microbiota and psychiatric disturbs is one of the most
challenging topics involving researchers. The vagal nerve is the anatomical structure
which permits the communication between the central nervous system (CNS) and enteric
nervous system (ENS). Vagal afferent neurons express receptors for gut microbiota metabo-
lites, such as serotonin, that can modulate nutrient metabolism. Furthermore, SCFAs,
catecholamines, acetylcholine, the intermediates of mixed acid fermentation and TMAO
are able to regulate metabolism through a microbiota-gut-liver axis. However, very little
is known about the direct connection between metabolic diseases and mental disorders,
involving common pathway in which the considered metabolites play an orchestral role. In
our retrospective comparison, we laid the bases for further investigation about biochemical
and biological link between secondary trimethylaminuria and psychiatric behaviors. We
suppose that the mental disturbs affecting TMAU patients are probably not only related
to social consequence of their metabolic disease but also to a physiopathological effect
determined by TMA accumulation. The knowledge of this aspects might allow us to
personally modulate each gut microbiota. Thus, the related microbiota-gut-brain axis may
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become a potential new strategy for improving prognosis of metabolic diseases and treat
linked psychiatric disorders.

Supplementary Materials: The following are available online at https://www.mdpi.com/2075-4
426/11/2/87/s1, Figure S1: Cladogram of most altered bacterial families in TMAU behavioral
disordered cases.
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