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Abstract: Soft Sensors (SSs) are mathematical models that allow real-time estimation of hard-
to-measure variables as a function of easy-to-measure ones in an industrial process, emulating
the behavior of existing sensors when they are, for instance, taken off for maintenance. The
Sulfur Recovery Unit (SRU) from a refinery is taken in exam. Recurrent Neural Networks
(RNN) can capture the nonlinearity of such process but present a high complexity training and
a very time-consuming structure optimization. For this reason, strategies to use pre-existing
models are here examined by testing the transferability of the SSs between two parallel lines of

the process.
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1. INTRODUCTION

Soft Sensors (SSs), also known as Virtual Sensors or In-
ferential Models (Graziani and Xibilia, 2020), represent
a software model by which several measurement signals
of a system are processed together to estimate the value
of another variable of the same system. In an industrial
environment, variables are monitored through online sen-
sors. In some cases, some variables might be inaccessible
or difficult to reach, or their hardware sensors work in
a hostile environment with major disadvantages in terms
of costs and maintenance. Sometimes they can even only
be measured with high delays because of slow sensors or
laboratory analysis. Such variables are then hard to mon-
itor. SSs allow for real-time estimation of these hard-to-
measure variables as a function of available data obtained
from online sensors of the other easy-to-measure variables.

The use of these models leads to savings in terms of both
immediate and prolonged spending. SSs, once designed,
can continue to provide data and measurements for a very
long time at no cost. They allow the development of tight
control policies and they are used to approach several other
different problems as well, such as measuring system back-
up, what-if analysis, sensor validation and fault diagnosis
(Kadlec et al., 2009).

As dynamic I/O models, they can be built with different
approaches. Simpler and linear models employ the first
principle modeling, based on physical knowledge of the sys-
tem, in a white-box manner. But because of the complexity
of industrial processes and the amount of available data,
nonlinear models and data-driven black-box approaches
are needed. Ad-hoc experiments should be performed to
collect suitable datasets for the scope. But in practice,
it is not always possible and data have to be retrieved

from industries historical databases, generally provided by
a supervisory control and data acquisition control system.

The design steps of an SS can be then summarized as
follows (Souza et al., 2016):

(1) Data collection and filtering;
(2) Input variables selection;

(3) Model structure choice;

(4) Model identification;

(5) Model validation.

Once data have been collected and pre-processed to min-
imize oversampling, outliers and missing values, the best
inputs representing the output(s) of the process in exam
are chosen. Different techniques exist in the state of the
art (Curreri et al., 2020a).

In the successive step, the model is chosen and the relative
hyperparameters are selected. Different machine learning
techniques have been used for data-driven designed SSs.
The most employed are Artificial Neural Networks (ANN)
and their variants, Deep Neural Networks, Support Vector
Regression, Partial Least Square, Gaussian Processes Re-
gression or Extreme Learning Machines, just to mention
a few, as shown in works such as Fortuna et al. (2009),
Curreri et al. (2020b), Sun and Ge (2019), Kaneko and
Funatsu (2014), Shao and Tian (2015), Grbié et al. (2013),
Shao et al. (2019).

Hyperparameters directly control the behaviour of the
training algorithm and greatly impact the performance of
the final model. Their optimization then plays a crucial
role in the success of the SS. In the case of ANNSs, they are
represented by the number of hidden units and of hidden
layers, the type of activation function of the neurons,
the number of epochs needed for the training, or other
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types of parameters specific to the chosen model. Once the
structure is chosen and its hyperparameters optimized, the
identification and validation steps are performed. Being
data-driven models, SSs perform well if the distribution
of training data and test data are the same. In the
identification step, the first is used to empirically estimate
the unknown parameters of the chosen model; the latter
is employed, in the validation step, to verify whether the
model can adequately represent the system and perform
generalization to new never-seen-before samples. For this
reason, models trained with data of one plant can not
be employed to perform prediction for another plant.
As shown in the work of Yang et al. (2019), even data
collected from a plant can be slightly different from the
ones collected from others of a similar type.

In this paper, a Sulfur Recovery Unit (SRU) of a re-
finery located in Sicily (Ttaly) is taken in exam. It is a
dynamic process consisting of different lines that work
independently, in parallel and with the same workflow. As
discussed in the literature, it is a highly nonlinear process
with clear dynamic dependencies between variables (Bolf
et al., 2009). For this reason, among the available solutions
adopted to build SSs, a Recurrent Neural Network (RNN)
model was chosen in this work. Thanks to their ability to
employ internal states (memory) to process the output(s),
such networks are indeed more suitable to model dynamic
time-dependent systems.

RNNs present anyway a high complexity training, as well
as a high number of hyperparameters to be optimized.
Being their training a very time-consuming task as well,
strategies to re-use pre-existing models are here examined.

A transferable SS would play a key role in reducing
the efforts needed to design an SS by adapting another
one trained on a very close process. Transfer Learning
(TL) algorithms focus on storing knowledge gained while
learning a task and utilizing it for a different but related
problem. TL methods adopted in Machine Learning are
shown in the work of Weiss et al. (2016). Only recently, TL
methods have been taken into account to design improved
SSs. In the work of Farahani et al. (2020), a TL-based
regression method is developed to design transferable SSs:
in particular one able to adapt to a different plant of the
same type, and another one able to work between different
working conditions of the same process.

Similarly, this paper aims to test the transferability of
an SS between two lines of the SRU. More specifically,
two different SSs are firstly built, one for each line, with
two different ad-hoc optimized structures. The models are
then both tested on the other line, before being retrained.
Finally, the structure of each model is used to create a
new one for the other line, to test the transferability of
the hyperparameters optimization.

The novelty of the proposed work consists in analyzing,
through a series of steps, the trade-off between the accu-
racy and computational time in transferring an SS opti-
mized for a specific process, to another closely related one.
The role of hyperparameters and the effect on the model
accuracy has been also investigated.

The paper is organized as follows: the process in exam is
described in Section 2; RNNs are discussed in Section 3,
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along with their hyperparameters to be optimized. Results
are shown in Section 4 and conclusions are finally drawn.

2. SULFUR RECOVERY UNIT

The role of SRU in refineries is fundamental both for
the economic and environmental implications that this
process involves. It exploits a gas desulfurizing process (or
Clauss process) to recover elemental sulfur from gaseous
hydrogen sulfide (H2S), usually contained in by-product
gases derived from refining crude oil and other industrial
processes. This allows to both remove pollution from acid
gas streams before they are released to the environment
and recover sulfur as a valuable by-product as well. In
particular, HsS is a broad-spectrum poison for the human
body: its effect prevents cellular respiration and it can
affect several systems, mostly the nervous one.

The SRU studied in this work consists of four identical
sub-units, called sulfur lines. They work in parallel, in the
same way, transforming acid gases into sulfur. They have
two types of acid gases as inputs: the MEA gas, a HyS
rich gas coming from gas washing plants; and another one
coming from the Sour Water Stripping plant, indeed called
SWS gas and rich in H»S and ammonia (NHs). A line
is made of a furnace that has two separate combustion
chambers. One is fed with MEA gas, whose combustion
is regulated by an air flow supply (AIR-MEA). The other
one is fed with SWS gas and its air flow (AIR_.SWS), plus
more MEA gas (MEA_SPILLING) and consequently more
air flow (MEA_SPILLING_AIR) to keep the gas input flow
constant. In the end, each line produces the same final
gas stream, or tail gas, that contains a residual of HyS
and sulfur dioxide (SOz). Moreover, a further air flow
(AIR-MEA _2) is controlled by a closed-loop algorithm to
improve the final stoichiometric ratio. The stoichiometric
ratio [H2S] — 2[SO3] is used indeed as feedback control for
the air-feed ratio. Its desired value is zero, which implies
that the pollutants are absent from the final product. The
block scheme of the SRU process and the working scheme
of an SRU line is shown in Fig. 1.
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Online analyzers are used to measure the concentrations
of both HyS and SO5 to compute the stoichiometric ratio.
The sensor used for this measurement is often affected by
reliability problems though since such components often
cause damage in the online analyzer. When the latter
suffers a break or a malfunction, due to the non-linearity
of the system, nonlinear techniques are fundamental to
generate a model that allows a reliable prediction of such
ratio.

The SSs adopted in this process are used to simulate
the concentrations of HyS and SO, in the tail gas if a
malfunction occurs. In this paper, two SSs were developed
for line 2 and line 4. Even if sulfur lines work independently
and in the same way, gas concentrations may vary both in
input and in output between them.

To create the models, data have been collected from the
historical database of the plant and the chosen inputs are
the following:

(1) MEA_GAS: gas fed to the first chamber
) AIR_MEA: air fed to the first chamber
(3) AIR_.MEA 2: further final air flow controlled by an
algorithm

) SWS_GAS + MEA_SPILLING: total gas fed to the

second chamber

) AIR_.SWS 4+ MEA _SPILLING_AIR: total air fed to

the second chamber

3. RECURRENT NEURAL NETWORKS

The industrial process here analyzed, as shown in the liter-
ature (Fortuna et al., 2003), is highly nonlinear with clear
dynamical dependencies between variables. In this work,
among the available solutions adopted to develop an SS, an
RNN was therefore selected to predict the concentrations
of HoS and SO,. It is a dynamic model with a high-
dimensional internal state that preserves some information
about the input and output history. Therefore, it is not
needed to explicitly feed delayed inputs into the network.
RNNs (Rumelhart et al., 1986) from Feedforward Neural
Networks, with which they share the structure: they are
composed of a series of layers with a variable number of
neurons and each neuron has directed connections to the
ones of the subsequent layer through weighted arcs. Each
neuron has its inputs summed up together to its bias. The
difference lies in how the connection is formed since in an
RNN connections between neurons are included between
the previous levels and/or towards the same level, and
not only in the direction of the next level. This makes
this kind of networks able to show temporal dynamics
behavior. In such a way, the output is influenced by both
the current time instant and the inputs from previous time
instants. Their ability to use their internal states makes
them more capable to accomplish more complex types of
tasks, such as handwriting recognition and speech recog-
nition (Graves and Schmidhuber, 2009).

From a practical point of view, the connections between
the output of a layer m and the input of the previous
layer [ are performed by applying a real-valued time-
delay between them. This is done by Tapped Delay Lines
(TDL), which contain delay operators z~%, which delay
time-discrete signals by a real-valued delay d. In Fig. 2
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Fig. 2. RNN with two hidden layers with delays and
recurrent connections.

an RNN with two hidden layers presenting delays and
recurrent connections is shown, where the matrix JWh!
contains the connection weights of the first layer, while
the matrices LW5™ contain the weights that connect the
outputs of layer m with layer I. The value b’ represents the
bias of the i-th neuron.

Three different types of TDL can be described:

e Input TDL (blue): Delays the inputs of the network
by any real-valued time-step d > 0. This allows
to model systems in which the output depends on
current and previous inputs as well.

e Output TDL (green): Adds a recurrent connection of
the outputs of the RNN to its first layer, for systems
in which the outputs depend not only on the inputs
but on previous states as well.

e Internal TDL (red): Adds a recurrent connection from
all layers to all previous layers and to itself, except
from the output layer to the first layer, for systems in
which the output depends on previous internal states.

All other forward connections only have un-delayed direct
connections.

Given the above definitions, every RNN presents the
following hyperparameters to be optimized:

(1) Number of input delays

(2) Number of internal delays

(3) Number of output delays

(4) Number of hidden layers

(5) Number of neurons for each hidden layer
(6) Number of training epochs

The activation functions generally used are the hyperbolic
tangent for all neurons in the hidden layers; the linear
function for all neurons in the output layer. Moreover,
two training algorithms have been taken into account: the
Levenberg-Marquardt algorithm (Marquardt, 1963), and
the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm
(Werbos, 1990).

Given the complexity of such networks, various difficulties
have often been encountered mainly due to problems dur-
ing training, known as gradient vanishing and exploding
gradient. The first one occurs when the gradient becomes
vanishingly small, at the point of preventing the weights
from changing value; on the contrary, the second one
occurs when the gradient increases exponentially making
the derivatives eventually explode. Moreover, the gradual
change of system hyperparameters often leads to bifurca-
tions that are impossible to be read.
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From a computational point of view, the presence of cycles
involves a high cost, allowing one to work only with
networks with a limited number of neurons.

4. RESULTS

Available data consist of 14401 samples from line 2 and
10081 from line 4, sampled every minute. Outliers presence
was visually analyzed and they were manually removed
by interpolation. Data were then normalized using z-score
normalization. Being the system time-dependent, model
training and testing were performed on time-continuous
blocks of data. In particular, the first 80% of data was used
to train the models and the remaining 20% to test them.
All the models created have five inputs, enumerated in
Section 2, and two outputs, respectively the concentrations
of H3S (output 1) and SO, (output 2). Therefore, a unique
SS has been designed to predict both output variables in
the selected lines. The following simulations have been
performed in the Matlab environment using dedicated
toolboxes and the computer configuration is as follows:
0OS: Windows 10 (64bit); RAM: 8GB; CPU: Core i5-9300H
(2.4 GHz); Matlab version: 2020a.

4.1 Best models

The best performing models for both lines are here pre-
sented. Their hyperparameters optimization was carried
with a double grid search. The first was employed to
find the best combination of input, internal and output
delays, leaving the architecture fixed, evaluating the final
performance of the models in terms of Pearson Correlation
Coefficient (CC) and Mean Squared Error (MSE) between
the network outputs and the targets on test data. Once
the best performing delays were found, a grid search was
carried for the internal architecture of the network in the
same fashion. Fig. 3 shows the relation between the net-
work performance on test data and the network structure
in terms of number of hidden layers and neurons, only
for output 2 of SRU line 2. The final chosen architecture
was eventually evaluated based on the performances of
both outputs. Such best performing structure was then
investigated with both LM and BFGS training algorithms.
Such analysis was carried for both lines, leading to two
very different final structures.

Optimized hyperparameters are listed in table 1: adopted
delays, hidden layers structure, used training algorithm
and the number of training epochs is shown. The com-
putational time requested to optimize the network hyper-
parameters is considerable high. In the first grid search,
delays of the inputs, internal states and outputs were
considered from 1 to 5 steps, leading to 125 possible combi-
nations. For each structure, five networks were considered
and initialized with random weights, to carry a statistical
analysis. This required about 100 hours of training in
computational time. The internal architecture search was
carried from 1 to 3 hidden layers of the same number of
neurons. The latter was varied between 2 and 5. Further
increasing the number of hidden layers and neurons led to
extremely poor-performing models and to a higher prob-
ability of exploding gradient during training. For each of
the possible architectures mentioned above, five networks,
each one with a different weight initialization, were created
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Fig. 3. Statistical distribution of the CC (a) and MSE (b)
on test data for different network architectures (i.e.,
from 1 to 3 hidden layers with different numbers of
neurons), in relation to the output 2 of line 2 model.
The circles indicate the mean value whereas the bars
represent the standard deviation.

and trained. This led to a total training time of more than
10 hours.

Time could be reduced by applying more sophisti-
cated searching strategies based on genetics algorithms,
Bayesian Optimization, Tree-structured Parzen estimators
(Bergstra et al., 2011; Falkner et al., 2018; Franceschi
et al., 2017) but, in any case, it will represent the most
time-consuming part of the learning process.

The time needed to train the optimal model, after the
hyperparameters selection, for line 2 was about 29 minutes
whereas for line 4 it was about 18 minutes. The time
differences are attributable to the dataset size and to
the different complexity of the two models as reported in
table 1.

Table 1. Best models hyperparameters.

Delays
Input: 1
Internal: 2 [4,4]
Output: 2

Input: 4
Internal: 5 (3,3]
Output: 1

Hidden layers  Train. alg.  Epochs

Line 2 BFGS 300

Line 4 BFGS 300

Table 2 shows the final performances in term of CC and
MSE on test data. In Fig. 4 the networks outputs and the
actual targets are shown for output 2 of both line 2 and
line 4.
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Fig. 4. Networks outputs and targets comparison of the
output 2 of line 2 (a) and line 4 (b) best models on
test data.

4.2 Transferred models

The two optimized models were tested each one on the
other line to evaluate their performance on a different but
similar process. As expected, the performances dropped,
but the general trend of the target is still followed. These
performances are listed in table 3. Fig. 5(a) shows the
network output 2 of line 4 of the transferred model. It can
be noticed that the possibility to use the SS optimized
for one line directly into the other is still able to provide
indications on the behaviour of the outputs, even though
the performances are considerably lower when compared
to the optimal performance obtained (reported in table
2). The significant advantage of this solution consists in
the reduction of the time needed to develop one of the SS
reducing the computational time by half.

4.8 Fine-tuned transferred models

To improve the performances of the transferred models,
the two networks were fine-tuned on the new lines. The
line 4 model was fine-tuned on the line 2 data with the
LM algorithm with 6 epochs, starting from the previously
learned weights. Such retraining took only 45 seconds. The
line 2 model was fine-tuned on the line 4 data with the
LM algorithm and 20 epochs: this took 2.5 minutes. These
were the maximum number of epochs possible to avoid
overlearning. The new performances are listed in table 4.
Fig. 5 (b) shows how the network output 2 of line 4,
compared to the target, improves after the fine-tuning.

4.4 Hyperparameters transferability

Finally, two new models were learned for both lines 2 and
4, adopting the structure of the other one, to test the

Table 2. Performances obtained optimizing the
RNN for each line.

Output 1 Output 2

Line 2 CC=0.84 CC=0.84
MSE= 0.42 MSE= 0.38

Line 4 CC=0.90 CC=0.91
MSE= 0.23 MSE= 0.20

Table 3. Transferred models performances

Output 1 Output 2

Line 2 CC=0.65 CC=0.70
MSE= 2.24 MSE= 1.37

Line 4 CC=0.47 CC=0.55
MSE= 1.03 MSE= 0.82
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transferability of the hyperparameters, but starting from
a random initialization of the network weights. The model
for line 2 was trained with the BFGS algorithm in 200
epochs: the training took almost 16 minutes. The model for
line 4 was trained with the BFGS algorithm in 327 epochs,
taking almost 33 minutes. Final performances, the adopted
training algorithm and the number of training epochs are
listed in table 5. Fig. 6 shows the network outputs 1 and
2 compared to the targets of the new model for line 2.

5. CONCLUSIONS

The high nonlinearity characterizing processes like the
ones that occur in an SRU, require a model able to
capture the dynamic time-dependencies between variables.
Even if RNNs are able to fulfil this requirement, the
creation of such networks is a very demanding task. RNNs
show various hyperparameters in their structure to be
optimized. Moreover, their training time requires a high

Table 4. Fine-tuned transferred models perfor-

mances
Output 1 Output 2 Train. alg. Epochs
. CC=0.75 CC=0.78
Line 2 \iSp=0.66 MSE= 0.58 LM 6
. CC=0.80 CC=0.86
Lined  yiop— 043 MSE= 0.27 LM 20

Table 5. New models with transferred hyper-
parameters performances

Output 1 Output 2 Train. alg.  Epochs
. CC=0.74 CC=0.73
Line 2 MSE= 0.58 MSE= 0.93 BFGS 200
. CC=0.85 CC=0.90
Line 4 MSE= 0.31 MSE= 0.2 BFGS 327
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computational effort. For this reason, methods to use pre-
existing models are needed. The transferability of SSs
between lines 2 and 4 of the same SRU of a refinery plant
located in Sicily was then examined.

The best performing models, along with their optimal
structure, were first developed. Both the structure opti-
mization and the training were very time-consuming task.
Results showed good performances for both outputs and
lines, although line 2 proved to be more difficult to model.
The two SSs were then tested on the other line, showing a
significant drop in performances. A fine-tuning on the new
lines dataset showed a great improvement in performances
with a limited effort in computational time since the re-
training was performed for a reduced number of epochs
without the need to optimize the other hyperparameters
involved.

Finally, the optimal set of hyperparameters associated to
each line was used to create a new model for the other one,
with random initialization of the network weights. Such
an approach would allow to skip the very time-consuming
step of the structure optimization and led to acceptable
performances, even though still not at the level of the
best performance obtained optimizing the whole network
structure.

Results showed that fine-tuning pre-existing networks of a
similar process or adopting the same structure to create a
new one are potential working solutions for fast analysis.
The transferability of SSs is anyway a challenge that needs
to be tested in the effort of finding new methodologies,
even by investigating TL approaches in the SSs field.
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