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A procedure which obviates the constraint imposed by the conflict between consistent quantization and the
invariance of the Hamiltonian description under nonlinear canonical transformation is proposed. This new
quantization scheme preserves the Noether point symmetries of the underlying Lagrangian in order to construct
the Schrödinger equation. Two examples are given, one known and one new: the quantization of a charged
particle in a uniform magnetic field in the plane, and that of the ‘goldfish’ many-body problem extensively
studied by Calogero et al.
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1. Introduction

It has been known for over fifty years that quantization and nonlinear canonical transformations have
no guarantee of consistency [32]. As recently stated by Brodlie in [4] there is a never-ending interest
about “the passage of canonical transformations from classical mechanics to quantum mechanics”.
In [1], and reiterated in [4], it was said that canonical transformations have three important roles in
both quantum and classical mechanics:

(i) time evolution
(ii) physical equivalence of two theories, and
(iii) solving a system.

For a more recent perspective on the canonical transformations in quantum mechanics see [3]
where an up to date account of the various approaches to tackle canonical transformation is also
provided.

In this paper we propose a procedure which obviates the constraint imposed by the conflict
between consistent quantization and the invariance of the Hamiltonian description under nonlinear
canonical transformation.

It should be noted that nonlinear canonical transformations do not commute with quantization;
thus e.g. they affect the indeterminacy relations, and Planck cells are affected by such a transforma-
tion. This issue belongs to the realm of the semiclassical approach to quantum mechanics, which
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is not considered here. Examples exist where its ambiguities related to different regularizations,
including a Planck cell regularization, have been solved thanks to a consistent quantum version
[30].

As far as we know nobody has ever proposeda a quantization scheme that preserves the Noether
point symmetries of the underlying Lagrangian in order to construct the Schrödinger equation.

In [13] (ex. 18, p. 433) an alternative Hamiltonian for the simple harmonic oscillator was pre-
sented. It is obtained by applying a nonlinear canonical transformation to the classical Hamilto-
nian of the harmonic oscillator. That alternative Hamiltonian was used in [24] to demonstrate what
nonsense the usual quantization schemesb produce. In [20] the quantization scheme that preserves
the Noether symmetries was proposed and applied to this example in order to derive the correct
Schrödinger equation for the alternative Hamiltonian. We have already inferred that Lie symmetries
should be preserved if a consistent quantization is desired [21].

Our method quantizes nonlinear Lagrangian equations – i.e., any system of equations that comes
from a variational principle with a Lagrangian of first order –

ẍ = f (x, ẋ) (1.1)

that can be linearized through nonlinear canonical transformations.
It yields the Schrödinger equation and can be summarized as follows

(1) Find the Lie symmetries of the Lagrange equations

ϒ =W (t,x)∂t +
N

∑
k=1

Wk(t,x)∂xk

(2) Among them find the Noether symmetries

Γ =V (t,x)∂t +
N

∑
k=1

Vk(t,x)∂xk

This may require searching for the Lagrangian yielding the maximum possible number of
Noether symmetries [22], [23], [25], [26]

(3) Construct the Schrödinger equation admitting these Noether symmetries as Lie symmetries

2iut +
N

∑
k, j=1

fk j(x)ux jxk +
N

∑
k=1

hk(x)uxk + f3(x)u = 0

Ω =V (t,x)∂t +
N

∑
k=1

Vk(t,x)∂xk +G(t,x,u)∂u

without adding any other symmetries apart from the two symmetries that are present in any
linear homogeneous partial differential equation, namely

u∂u, α(t,x)∂u,

where α = α(t,x) is any solution of the Schrödinger equation.

aActually we aim to show here and in future work that many successful quantization schemes leading to a Schrödinger
equation do indeed preserve the Noether point symmetries of the underlying Lagrangian.
bSuch as normal-ordering [2,17] and Weyl quantization [33].
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For example, let us consider the well-known problem of a charged particle in a uniform magnetic
field in the plane. The corresponding classical Lagrangian is

L =
1
2
(ẋ2 + ẏ2)+ω(yẋ− xẏ) (1.2)

and consequently the Lagrangian equations are

ẍ =−ω ẏ, ÿ = ω ẋ. (1.3)

The Schrödinger equation was determined by Darwin in [9] to be

2iψt +ψxx +ψyy− iω(yψx− xψy)−
ω2

4
(x2 + y2)ψ = 0. (1.4)

The Lie symmetry algebra admitted by the linear system (1.3) has dimension fifteen [12], and the
classical Lagrangian (1.2) admits eight Noether symmetries generated by the following operatorsc:

X1 = cos(ωt)∂t −
1
2
(sin(ωt)ωx+ cos(ωt)ωy)∂x +

1
2
(cos(ωt)ωx− sin(ωt)ωy)∂y,

X2 = −sin(ωt)∂t −
1
2
(cos(ωt)ωx− sin(ωt)ωy)∂x−

1
2
(sin(ωt)ωx+ cos(ωt)ωy)∂y,

X3 = ∂t ,

X4 = −y∂x + x∂y,

X5 = −sin(ωt)∂x + cos(ωt)∂y,

X6 = −cos(ωt)∂x− sin(ωt)∂y,

X7 = ∂y,

X8 = ∂x. (1.5)

The Schrödinger equation (1.4) admits an infinite Lie symmetry algebrad generated by the oper-
ator α(t,x,y)∂ψ , where α is any solution of the equation itself, and also a finite dimensional Lie

cThe addition of a total derivative dg
dt to the Lagrangian (1.2) with g = g(t,x,y) is a fundamental element if one wants to

apply Noether theorem correctly.
dThis is true for any linear partial differential equations.
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symmetry algebra generated by the following operators:

Y1 = X1 +
1
4
(
2sin(ωt)ω− icos(ωt)ω2(x2 + y2)

)
∂ψ ,

Y2 = X2 +
1
4
(
2cos(ωt)ω + isin(ωt)ω2(x2 + y2)

)
∂ψ ,

Y3 = X3,

Y4 = X4,

Y5 = X5−
1
2

ω (xcos(ωt)+ ysin(ωt))∂ψ ,

Y6 = X6 +
1
2

ω (xsin(ωt)− ycos(ωt))∂ψ ,

Y7 = X7 +
i
2

ωx∂ψ ,

Y8 = X8−
i
2

ωy∂ψ ,

Y9 = ψ∂ψ . (1.6)

This known example supports the method introduced here, namely that the Schrödinger equation
admits a finite Lie symmetry algebra that corresponds to the Noether symmetries admitted by the
classical Lagrangian plus the symmetry Y9 admitted by any homogeneous linear partial differential
equation.

As a second example, the quantization of the ‘goldfish’ many-body problem extensively studied
by Calogero et al is presented in detail: in Section 2 we find the Lie and Noether symmetries of the
two-body problem; in Section 3 we derive the Schrödinger equation of the two-body problem and
the general formula yielding the Schrödinger equation of the ‘goldfish’ many-body problem. The
last Section contains a discussion and final remarks.

In [5] Calogero derived a solvable many-body problem, i.e.

ẍn = 2
N

∑
m=1, m6=n

ẋnẋm

xn− xm
, (n = 1, . . . ,N) (1.7)

by considering the following solvable nonlinear partial differential equation:

ϕt +ϕx +ϕ
2 = 0, ϕ ≡ ϕ(x, t)

and looking at the behavior of the poles of its solution. In [6] the same system (1.7) was presented,
its properties were further studied and its solution was given in terms of the roots of the following
algebraic equation in x:

N

∑
m=1

ẋm(0)
[x− xm(0)]

=
1
t

(1.8)

In that paper, Calogero called system (1.7) “a goldfish” following a statement by Zakharov [34] [p.
622], namely A mathematician, using the dressing method to find a new integrable system, could be
compared with a fisherman, plunging his net into the sea. He does not know what a fish he will pull
out. He hopes to catch a goldfish, of course. But too often his catch is something that could not be
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used for any known purpose to him. He invents more and more sophisticated nets and equipments,
and plunges all that deeper and deeper. As a result, he pulls on the shore after a hard work more
and more strange creatures. He should not despair, nevertheless. The strange creatures may be
interesting enough if you are not too pragmatic, and who knows how deep in the sea do goldfishes
live?
Calogero and others have extensively studied system (1.7), e.g. [7], [19], [14], [15].

2. Lie and Noether symmetries of the “goldfish” two-body problem

In the case N = 2 system (1.7) reduces to

ẍ1 = 2
ẋ1ẋ2

x1− x2

ẍ2 = −2
ẋ1ẋ2

x1− x2
. (2.1)

Using the interactive REDUCE programs [18], we obtain a fifteen-dimensional Lie point symmetry
algebra – that is isomorphic to sl(4, IR) [11], [12] – generated by the following fifteen operators:

Γ1 =
x1x2

x1− x2

(
t(x1− x2)∂t + x2

1∂x1− x2
2∂x2

)
Γ2 = x1x2∂t

Γ3 = t(x1 + x2)∂t + x2
1∂x1 + x2

2∂x2

Γ4 = (x1 + x2)∂t

Γ5 = − x1x2

x1− x2
(x1∂x1− x2∂x2)

Γ6 =
1

2(x1− x2)

(
2t(x1− x2)∂t + x2

1∂x1− x2
2∂x2

)
Γ7 = ∂t

Γ8 = − t
x1− x2

(x1∂x1− x2∂x2)

Γ9 = − 1
x1− x2

(x1∂x1− x2∂x2)

Γ10 = − t
x1− x2

(∂x1−∂x2)

Γ11 = − 1
x1− x2

(∂x1−∂x2)

Γ12 =
t

x1− x2

(
t(x1− x2)∂t + x2

1∂x1− x2
2∂x2

)
Γ13 = −1

3
(x1∂x1 + x2∂x2)

Γ14 = − 1
3(x1− x2)

(
(2x1 + x2)∂x1− (x1 +2x2)∂x2

)
Γ15 = − 1

3(x1− x2)

(
(x2

1 +2x1x2)∂x1− (x2
2 +2x1x2)∂x2

)
(2.2)

which means that system (2.1) is linearizable [10], [31]. In order to find the linearising transforma-
tion we look for a four-dimensional abelian subalgebra L4,2 of rank 1 and have to transform it into
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the canonical form [31]

∂y, y1∂y, y2∂y, y∂y,

with y, y1 and y2 the new independent and dependent variables, respectively. We find that one such
subalgebra is that generated by

Γ7 = ∂t , Γ4 = (x1 + x2)∂t , Γ2 = x1x2∂t , Γ6 +Γ13 +
1
2 Γ15 = t∂t . (2.3)

Then, it is easy to derive that the linearizing transformation is

y = t, y1 = x1 + x2, y2 = x1x2 (2.4)

and system (2.1) becomes

ÿ1 = 0, ÿ2 = 0 (2.5)

which may be interpreted as the equations of motion of a free particle on a plane.
The hidden linearity of system (2.1) is already known [6].

Since the kinetic energy of a free particle on a plane is

T = 1
2(ẏ

2
1 + ẏ2

2), (2.6)

then transformation (2.4) yields the following Lagrangian for system (2.1):

L = 1
2

(
(ẋ1 + ẋ2)

2 +(x2ẋ1 + x1ẋ2)
2)+ dg

dt
, (2.7)

where g = g(t,x1,x2) is the gauge function, a fundamental element if one wants to apply Noether
theorem correctly.

This Lagrangian admits eight Noether point symmetries [12] out of the fifteen Lie point sym-
metries in (2.2), i.e.:

Γ5 +3Γ14 = − 1
x1− x2

(
(x2

1x2 +2x1 + x2)∂x1− (x1x2
2 + x1 +2x2)∂x2

)
Γ6 =

1
2(x1− x2)

(
2t(x1− x2)∂t + x2

1∂x1− x2
2∂x2

)
Γ7 = ∂t

Γ8 = − t
x1− x2

(x1∂x1− x2∂x2)

Γ9 = − 1
x1− x2

(x1∂x1− x2∂x2)

Γ10 = − t
x1− x2

(∂x1−∂x2)

Γ11 = − 1
x1− x2

(∂x1−∂x2)

Γ12 =
t

x1− x2

(
t(x1− x2)∂t + x2

1∂x1− x2
2∂x2

)
(2.8)

To each Noether symmetry corresponds a first integral of system (2.1). For example Γ7 yields the
Lagrangian (2.7) itself as a conserved quantity.
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It was proven in [12] that the n2 + 4n+ 3-dimensional (i.e., of maximal dimension) Lie sym-
metry algebra of a system of n equations of second order is isomorphic to sl(n+ 2, IR), and the
corresponding Noether symmetries generate a (n2 + 3n+ 6)/2-dimensional Lie algebra gV whose
structure (Levi-Malćev decomposition and realization by means of a matrix algebra) was deter-
mined. Recently the Lie and Noether symmetries of a non autonomous linear Lagrangian system of
two second-order equations, i.e.

q̈1 =−
k
m

q1 +
t
m
, q̈2 =−

k
m

q2. (2.9)

were determined [27].

3. Quantization of the “goldfish”

The Hamiltonian corresponding to the Lagrangian (2.7) is:

H =
1

2(x1− x2)2

(
(p1x1− p2x2)

2 +(p1− p2)
2) . (3.1)

One may try to quantize this Hamiltonian by using the various classical methods. Neither the
normal ordering method nor the Weyl quantisation procedure lead to a result which is physical. This
is due to the nonlinearity of the canonical transformation (2.4) between system (2.1) and system
(2.5).

Instead we assume that the Schrödinger equation corresponding to system (2.1) be of the fol-
lowing type:

2iut +
2

∑
k, j=1

fk j(x1,x2)ux jxk +
2

∑
k=1

hk(x1,x2)uxk +h0(x1,x2)u = 0 (3.2)

with fk j,hk,h0 functions of x1,x2 to be determined in such a way that equation (3.2) admits the
following eight Lie symmetries:

Γ5 +3Γ14 ⇒ Ω1 =−
1

x1− x2

(
(x2

1x2 +2x1 + x2)∂x1− (x1x2
2 + x1 +2x2)∂x2

)
+ω1∂u

Γ6 ⇒ Ω2 =
1

2(x1− x2)

(
2t(x1− x2)∂t + x2

1∂x1− x2
2∂x2

)
+ω2∂u

Γ7 ⇒ Ω3 = ∂t +ω3∂u

Γ8 ⇒ Ω4 =−
t

x1− x2
(x1∂x1− x2∂x2)+ω4∂u

Γ9 ⇒ Ω5 =−
1

x1− x2
(x1∂x1− x2∂x2)+ω5∂u

Γ10 ⇒ Ω6 =−
t

x1− x2
(∂x1−∂x2)+ω6∂u

Γ11 ⇒ Ω7 =−
1

x1− x2
(∂x1−∂x2)+ω7∂u

Γ12 ⇒ Ω8 =
t

x1− x2

(
t(x1− x2)∂t + x2

1∂x1− x2
2∂x2

)
+ω8∂u (3.3)
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where ωi = ωi(t,x1,x2,u),(i = 1,8) are functions of t,x1,x2,u that have to be determined. Equation
(3.2) also admits the following two symmetries

Ω9 = u∂u, Ωα = α(t,x1,x2)∂u (3.4)

with α any solution of equation (3.2) itself, since any linear homogeneous partial differential equa-
tion possesses these two symmetries.

Using the interactive REDUCE programs [18], we obtaine that

f11 =
x2

1 +1
(x1− x2)2 , f12 = f21 =−

x1x2 +1
(x1− x2)2 , f22 =

x2
2 +1

(x1− x2)2 ,

h1 =
∂ f11

∂x1
, h2 =

∂ f22

∂x2
, h0 =−E2

0 (3.5)

and

ω1 = 0, ω2 =−1
2 iE2

0 tu, ω3 = 0, ω4 =−i(x1 + x2)u, ω5 = 0,

ω6 = ix1x2u, ω7 = 0, ω8 = (ix1x2− t)u+
iu
2
(
x2

1x2
2 + x2

1 + x2
2− t2E2

0
)
, (3.6)

with E0 an arbitrary constant. Therefore the Schrödinger equation of system (2.1) is

2iut +
x2

1 +1
(x1− x2)2 ux1x1−2

x1x2 +1
(x1− x2)2 ux1x2 +

x2
2 +1

(x1− x2)2 ux2x2

+
∂

∂x1

(
x2

1 +1
(x1− x2)2

)
ux1 +

∂

∂x2

(
x2

2 +1
(x1− x2)2

)
ux2−E2

0 u = 0. (3.7)

In fact if we assume u = ψ(t,y1,y2) with y1 = x1+x2,y2 = x1x2 as given in (2.4) then equation (3.7)
becomes the well-known Schrödinger equation for the two-dimensional free particle, i.e.:

2iψt +ψy1y1 +ψy2y2−E2
0 ψ = 0. (3.8)

It is now obvious that if the Schrödinger equation for the N-dimensional free particle is considered,
i.e.

2iψt(t,y)+4ψ(t,y)−E2
0 ψ(t,y) = 0, y = (y1, . . . ,yN), (3.9)

then the transformation

u = ψ(t,y), y =

(
N

∑
i=1

xi,
N

∑
i, j=1, i< j

xix j,
N

∑
i, j,k=1, i< j<k

xix jxk, . . . ,
N

∏
i=1

xi

)
(3.10)

yields the Schrödinger equation of system (1.7).

eWe recall that finding the Lie symmetries admitted by a linear homogeneous partial differential equation consists of
solving its determining equations that are linear and overdetermined, e.g. [28].
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4. Discussion and final remarks

There exist many Hamiltonians for system (1.7). For example the following one was considered in
[6]:

HC =
N

∑
n=1

exp(pn)
N

∏
m=1,m6=n

(xn− xm)
−1. (4.1)

For N = 2, this Hamiltonian yields the following Lagrangian

LC2 = ẋ1 log(ẋ1(x1− x2))+ ẋ2 log(ẋ2(x2− x1))− ẋ1− ẋ2, (4.2)

that admits three Noether point symmetries only. Therefore this Lagrangian (Hamiltonian) is not the
right one to quantize with Noether symmetries. Of course, one can always devise some trick to be
able to quantize system (1.7) using the Hamiltonian (4.1). Here we have proposed a straightforward
method that does not require any trick, just the preservation of Noether symmetries.
Since the difference among gauge-independentf Lagrangians of the same system is not only the
number but also which Noether symmetries they admit, we would like to conclude this paper with
the following two observations.
The first observation is about the N-dimensional free-particle Schrödinger equationg, i.e.:

N = 1 2iψt +ψqq = 0, (4.3)

N = 2 2iψt +ψq1q1 +ψq2q2 = 0, (4.4)

N = 3 2iψt +ψq1q1 +ψq2q2 +ψq3q3 = 0, (4.5)
...

...

any N 2iψt +∆Nψ = 0 (4.6)

The finite dimensional Lie symmetry algebra admitted by the one-dimensional free-particle
Schrödinger equation (4.3) is generated by ψ∂ψ and the five Noether symmetries admitted by the
physical Lagrangian (i.e., the kinetic energy) L = 1

2 q̇2 of the one-dimensional free-particle classical
equation

q̈ = 0, (4.7)

namely

X1 = ∂t , X2 = ∂q, X3 = t∂q + iqψ∂ψ , X4 = 2t∂t +q∂q,

X5 = t2
∂t + tq∂q +

1
2(iq

2− t)ψ∂ψ . (4.8)

The same happenstance was observed in the case of the Schrödinger equation for the linear harmonic
oscillator [16]. This is also true for any N-dimensional free-particle Schrödinger equation. In par-
ticular the finite dimensional Lie symmetry algebra admitted by the two-dimensional Schrödinger
equation (4.4) is generated by ψ∂ψ and the eight Noether symmetries admitted by the physical

fNamely Lagrangians that do not differ by a total derivative.
gFor the sake of simplicity we omit the linear term in ψ .
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Lagrangian L = 1
2(q̇

2
1 + q̇2

2) of the two-dimensional free-particle classical equations

q̈1 = 0, q̈2 = 0, (4.9)

namely

X1 = ∂t , X2 = ∂q1 , X3 = ∂q2 , X4 = q1∂q2−q2∂q1 ,

X5 = t∂q1 + iq1ψ∂ψ , X6 = t∂q2 + iq2ψ∂ψ , X7 = 2t∂t +q1∂q1 +q2∂q2 ,

X8 = t2
∂t + tq1∂q1 + tq2∂q2 +

1
2(iq

2
1 + iq2

2−2t)ψ∂ψ . (4.10)

Also the finite dimensional Lie symmetry algebra admitted by the three-dimensional free-particle
Schrödinger equation (4.5) is generated by ψ∂ψ and the twelve Noether symmetries admitted by the
physical Lagrangian L = 1

2(q̇
2
1 + q̇2

2 + q̇2
3) of the three-dimensional free-particle classical equations

q̈1 = 0, q̈2 = 0, q̈3 = 0, (4.11)

namely

X1 = ∂t , X2 = ∂q1 , X3 = ∂q2 , X4 = ∂q3 ,

X5 = q1∂q2−q2∂q1 , X6 = q1∂q3−q3∂q1 , X7 = q3∂q2−q3∂q2 ,

X8 = t∂q1 + iq1ψ∂ψ , X9 = t∂q2 + iq2ψ∂ψ , X10 = t∂q3 + iq3ψ∂ψ ,

X11 = 2t∂t +q1∂q1 +q2∂q2 +q3∂q3 ,

X12 = t2
∂t + tq1∂q1 + tq2∂q2 + tq3∂q3 +

1
2(iq

2
1 + iq2

2 + iq2
3−3t)ψ∂ψ . (4.12)

Finally the finite dimensional Lie symmetry algebra of the N-dimensional free-particle Schrödinger
equation has dimension (N2+3N+8)/2 [8] while the Noether symmetries admitted by the physical
Lagrangian L = 1

2 ∑
N
k=1 q̇2

k of the N-dimensional free-particle classical equations

q̈k = 0, (k = 1, . . . ,N) (4.13)

have indeed dimension (N2 +3N +6)/2 [12]. The Lie symmetry algebra of (4.6) is therefore gen-
erated by the following operatorsh:

∂t , ∂qk , q j∂qk −qk∂q j , t∂qk + iqkψ∂ψ ,

2t∂t +
N

∑
k=1

qk∂qk , t2
∂t +

N

∑
k=1

tqk∂qk +
1
2

(
N

∑
k=1

iq2
k−Nt

)
ψ∂ψ , (k, j = 1, . . . ,N). (4.14)

The fact that there is a correspondence between the Noether symmetries admitted by the Lagrangian
of the N-dimensional free-particle classical equations and the finite Lie symmetry algebra of the N-
dimensional free-particle Schrödinger equation gives support to the method presented here.

hWe omit ψ∂ψ .
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The second observation that we would like to make concerns the equations of motions of two uncou-
pled harmonic oscillators, i.e.:

q̈1 =−ω
2q1, q̈2 =−ω

2q2, (4.15)

It is known [29] that this system possesses two Lagrangiansi (at least): one is the usual well-known
physical Lagrangian, i.e.:

L1 =
1
2

(
q̇2

1 + q̇2
2
)
− ω2

2
(
q2

1 +q2
2
)

(4.16)

that admits the following eight Noether symmetries:

Y1 =−q2∂q1 +q1∂q2 , Y2 = cos(2ωt)∂t − sin(2ωt)ωq1∂q1− sin(2ωt)ωq2∂q2 ,

Y3 =−sin(2ωt)∂t − cos(2ωt)ωq1∂q1− cos(2ωt)ωq2∂q2 , Y4 = ∂t , Y5 = cos(ωt)∂q2 ,

Y6 =−sin(ωt)∂q2 , Y7 = cos(ωt)∂q1 , Y8 =−sin(ωt)∂q1 , (4.17)

and another nonphysical Lagrangian that can be found in [29] p.122:

L2 = q̇1q̇2−ω
2q1q2 (4.18)

that admits the following eight Noether symmetries:

Ỹ1 =−q1∂q1 +q2∂q2 , Y2, Y3, Y4, Y5, Y6, Y7, Y8. (4.19)

Both Lagrangians admit the maximal number of Noether symmetries, albeit they differ just by one,
namely Y1 instead of Ỹ1. Indeed the rotational symmetry Y1 is an essential physical property of two
uncoupled harmonic oscillators since it yields the conservation of angular momentum. From this
example we can infer the obvious conjecture that the physical Lagrangian admits the maximum
number of Noether symmetries that also lead to the essential physical conservation lawsj.
Indeed if we apply the method described in this paper, i.e using the Noether symmetries (4.17)
admitted by the physical Lagrangian L1, then the known Schrödinger equation for the two-
dimensional oscillator is obtainedk, i.e.:

2iψt +ψq1q1 +ψq2q2−ω
2(q2

1 +q2
2)ψ = 0. (4.20)

Instead no linear partial differential equation in the dependent variable ψ(t,q1,q2) of the three
independent variables t,q1,q2, i.e.:

f11ψtt + f12ψtq1 + f13ψtq2 + f22ψq1q1 + f23ψq1q2 + f33ψq2q2 + f1ψt + f2ψq1 + f3ψq2 + f0ψ = 0
(4.21)

where fi j(i, j = 1,2,3), fk(k = 0,1,2,3) are arbitrary functions of t,q1,q2, admits as Lie finite sym-
metries the eight Noether symmetries (4.19) of the nonphysical Lagrangian L2.
Thus the physical Lagrangian is indeed the one that directly yields to quantization without any
further trick.

iBoth Lagrangians could be obtained by means of the Jacobi Last Multiplier [23].
jWe remark that these conservation laws are obviously too many – and therefore some are functional depending on
the others – for the integration of the classical system but they are just right in number and physical quality for the
corresponding Schrödinger equation.
kObviously, this equation admits also the symmetry ψ∂ψ .
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