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Abstract: Digital Image Correlation (DIC) provides measurements without disturbing the specimen,
which is a major advantage over contact methods. Additionally, DIC techniques provide full-field
maps of response quantities like strains and displacements, unlike traditional methods that are
limited to a local investigation. In this work, an experimental application of DIC is presented
to investigate a problem of relevant interest in the civil engineering field, namely the interface
behavior between externally bonded fabric reinforced cementitious mortar (FRCM) sheets and
concrete substrate. This represents a widespread strengthening technique of existing reinforced
concrete structures, but its effectiveness is strongly related to the bond behavior between composite
fabric and underlying concrete. To investigate this phenomenon, a set of notched concrete beams
are realized, reinforced with FRCM sheets on the bottom face, subsequently cured in different
environmental conditions (humidity and temperature) and finally tested up to failure under three-
point bending. Mechanical tests are carried out vis-a-vis DIC measurements using two distinct
cameras simultaneously, one focused on the concrete front face and another focused on the FRCM-
concrete interface. This experimental setup makes it possible to interpret the mechanical behavior
and failure mode of the specimens not only from a traditional macroscopic viewpoint but also under
a local perspective concerning the evolution of the strain distribution at the FRCM-concrete interface
obtained by DIC in the pre- and postcracking phase.

Keywords: Digital Image Correlation (DIC); fabric reinforced cementitious mortar (FRCM) system;
bond behavior; notched beams; failure mode; strain distribution

1. Introduction

Digital Image Correlation (DIC) is a noncontact measurement technique that is in-
creasingly used in several engineering fields. DIC techniques provide full-field maps of
response quantities like strains and displacements, which represent a more complete set
of information than local measurements obtainable by traditional approaches. On the
one hand, there are required (preliminary) operations of DIC such as the need to apply
a stochastic pattern (sprayed pattern) to the surface of the material, which might not
always be possible. On the other hand, there are many advantages of DIC, such as the
relatively simple experimental setup, the adjustable spatial and temporal resolutions, the
possibility of examining specimens with different dimensions and involved materials, and
the adaptability to different loading rates ranging from quasistatic to dynamic [1]. What
is particularly convenient in DIC is the way in which crack initiation and development
throughout the specimen dimensions can be analyzed, a goal that cannot be accomplished
via conventional (contact-based) measurement approaches, like displacement transducers
and strain gauges. This occurs not only because strain gauges are capable to measure local
values only but also because in most practical engineering problems the knowledge of the
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cracking pattern is unknown beforehand. Therefore, their installation location, generally
based on engineering judgement, may turn out to be not really appropriate.

Some of the most interesting applications of DIC include the investigation of the
mechanical behavior of concrete structures. Indeed, concrete is a heterogeneous material
characterized by a complex fracture behavior, which is difficult to be analyzed with con-
ventional contact measurement approaches like local strain gauges. Moreover, analyzing
the failure process of concrete structures is challenging because cracks exhibit micrometric
dimensions, are broadly diffused on the material, and rapidly evolve in the internal mi-
crostructure. In this regard, DIC proves to be a reliable full-field measurement approach, as
demonstrated by the good results reported in previous studies. Choi et al. [2] were among
the pioneers to use DIC to assess the nonuniform distribution of displacements and strains
of concrete surfaces. Kozicki et al. [3] examined notched concrete beams tested under
three-point bending and demonstrated the effectiveness of DIC to evaluate the strain field
of the specimens and the crack propagation for different beam dimensions. Shah et al. [4]
used DIC to study the mode I and II fracture toughness for a number of concrete-concrete
joint interfaces tested under three-point bending. Wu et al. [5] employed DIC to study
the fracture behavior of notched concrete beams, considering different beam dimensions
and notch depths. The camera resolution is an important aspect for the reliability of the
resulting DIC measurements. Alam et al. [6] applied DIC to monitor the crack initiation
and propagation in beams having different dimensions. In the quoted experimental work,
the crack growth was correctly identified but the elastic strains were not captured due to
the low camera resolution. Recent applications of DIC include the quantification of shear
cracks in reinforced concrete beams, as reported by Hu and Wu [7,8] and by Huang et al. [9].

Of particular relevance to this research work, DIC can be usefully employed to inves-
tigate the interface behavior between externally bonded composite systems and concrete
substrate, which represents a widespread strengthening technique for retrofitting existing
concrete structures. The oldest and most popular strategy consists of externally bonding
fiber-reinforced polymer (FRP) [10] sheets or strips to concrete elements in order to increase
the flexural and/or shear strength [11-15]. In this context, DIC techniques were found to
be useful for the characterization of the bond behavior. Coor et al. [16] investigated the
interfacial properties in a single-lap shear test in which a carbon FRP sheet was externally
bonded to a concrete block; Mahal et al. [17] analyzed the fatigue behavior of reinforced
concrete beams with externally bonded carbon FRP sheets and near-surface mounted bars.

As a more recent alternative, fabric reinforced cementitious mortar (FRCM) sheets
represent the natural evolution of FRP systems in which an inorganic (cement-based)
matrix is used in place of an epoxy matrix [18,19]. The use of FRCM in place of FRP is
motivated by a better compatibility with the concrete substrate, which reduces debonding
phenomena especially under harsh environmental conditions [20,21], such as high tem-
peratures (close to the glass transition temperature of the epoxy matrix in FRP) or high
humidity conditions [22-25]. Experimental investigations demonstrated the effectiveness
of externally bonded FRCM systems for different applications, such as flexural [26-29]
and shear strengthening [30-36] as well as increase of the confinement action of reinforced
concrete members [37-41]. A critical issue of FRCM systems concerns the interfacial bond
behavior between FRCM and concrete, which may trigger different failure modes such as
cohesive debonding of concrete substrate, fiber rupture, fiber sliding within the matrix,
and detachment at matrix-to-substrate interface. The bond behavior at the FRCM-concrete
interface was extensively studied in the literature, by means of analytical, numerical,
and experimental approaches [42-55]. The strain transfer mechanism in polybenzoxole
(PBO) FRCM-concrete interface was analyzed via embedded fiber Bragg grating sensors
by Montanini et al. [56]. Similar to what was said above for FRP, DIC represents a useful
monitoring technique to investigate the evolution of the strain distribution and to analyze
the bond behavior at the FRCM-concrete interface. Sabau et al. [57] used DIC to investigate
FRCM-concrete joints in single-lap shear tests and compared the DIC results to those ob-
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tained by traditional strain gauges. In a similar research context, D’Anna et al. [58] recently
did the same for the tensile characterization of basalt FRCM composites.

Along such research line, in this paper an experimental application of DIC for the
investigation of PBO FRCM-concrete interface bond behavior is documented. The novel
contributions of this experimental work in comparison to other studies are summarized
as follows:

e In the literature, FRCM-concrete bond behavior was generally investigated by single-
lap shear tests wherein the load is directly applied to the strengthening system. Instead,
in this paper the bond behavior is analyzed by an alternative notched beam test
setup in accordance with ASTM D7958/D7958M standards [59]. In the proposed test
setup, the load is indirectly transferred to the strengthening system due to bending
deformation and, consequently, this loading scenario is more consistent with real
configurations of flexural strengthening systems of concrete beams as observed in
practical retrofitting cases.

e  Experimental three-point bending tests on concrete notched beams with externally
bonded PBO-FRCM sheets are conducted for specimens subject to different envi-
ronmental conditions (humidity and temperature), in order to assess whether these
factors influence the bond behavior [60].

e  Mechanical tests are performed vis-a-vis DIC measurements using two distinct cam-
eras simultaneously, one focused on the concrete front face and another focused on the
FRCM-concrete interface. This experimental setup makes it possible to interpret the
mechanical behavior and failure mode of the specimens not only from a traditional
macroscopic viewpoint but also under a local perspective concerning the evolution of
the strain distribution at the FRCM-concrete interface obtained by DIC.

2. Materials and Methods
2.1. Materials and Specimen Preparation

Prismatic concrete beams are prepared using an ordinary Portland cement. The charac-
terization of the concrete properties is made in terms of compressive strength and flexural
strength, evaluated on standard specimens at 28 days in accordance with UNI EN 12390-
3:2009 and UNI EN 12390-5: 2002 standards, respectively. The mean compressive strength
of six standard cubes of 150 mm side is 47 MPa, with a coefficient of variation (CoV) of 9%;
the mean flexural strength of six prismatic specimens is 6 MPa, with a CoV of 1.92%.

The FRCM is made of PBO mesh embedded in a cement-based mortar. The PBO
bidirectional woven has an unbalanced configuration in the two directions, with fiber
density higher in the main direction compared to the lateral direction, as shown in Figure 1.
The properties of the PBO grid system determined in accordance with ASTM D3039 and
ISO 527-5 standards are listed in Table 1. The mechanical properties of the cement-based
mortar determined in accordance with UNI EN 196-1 standards are listed in Table 2.

Figure 1. Structure of polybenzoxole (PBO) mesh used in the present research.
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Table 1. Mechanical and geometrical properties of PBO-fabric reinforced cementitious mortar (FRCM)
composite system (fibers + matrix).

Parameter (Unit) Value
Equivalent thickness (mm?/m) 0.046
Fabric width (mm) 70
Young modulus (GPa) 241
Tensile strength (MPa) 3421
Ultimate strain (%) 1.42
PBO fiber density (g/cm?) 1.56
PBO fiber tensile strength (MPa) 5800
PBO fiber ultimate strain (%) 2.5
PBO fiber Young modulus (GPa) 270

Table 2. Mechanical properties of mortar used in the PBO-FRCM composite system.

Parameter (Unit) Value
Compressive strength at 28 days (MPa) 40
Flexural strength at 28 days (MPa) 4
Young modulus (GPa) 7

Prismatic concrete beams with nominal dimensions 150 x 150 x 500 mm are casted
in preformed formworks, demolded after 24 h, and wrapped with a wet cloth to prevent
water evaporation during the next 28 days, as shown in Figure 2. After 28 days, a band
saw is employed to realize a notch starting from the mid-span of the specimen, with width
equal to 2 mm and depth equal to 75 mm, in accordance with ASTM D7958/D7958M
standards [59]. Then, the bottom surface is sandblasted and the strengthening area where
to apply the FRCM sheet is identified. The application of the externally bonded PBO-FRCM
sheet implies the following steps: (i) wetting of the strengthening area; (ii) application of
the first layer of mortar (thickness 4 mm); (iii) application of the PBO mesh; (iv) application
of the second layer of mortar (thickness 4 mm). The preparation phases of the notch
realization and subsequent application of the externally bonded PBO-FRCM sheet on the
bottom surface of the concrete beams are illustrated in Figure 3. The final concrete beam
configuration with the externally bonded PBO-FRCM sheet for the three-point bending
tests in accordance with ASTM D7958/D7958M standards [59] is reported in Figure 4.

|

casting 4

Figure 2. Preparation phases of concrete beams.
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Figure 3. Notch realization and application of externally bonded PBO-FRCM sheet on the concrete beams.
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Figure 4. Final configuration of concrete beams with externally bonded PBO-FRCM sheet: front view
(top) and bottom view (bottom). All sizes are reported in mm.
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2.2. DIC Fundamentals

DIC is a nondestructive and noncontact optical measurement technique widely used
to investigate the distribution of strains and displacements of different structures [61]. This
measurement approach is implemented in two stages: first, the target digital images are
gathered, and then these images are processed through numerical correlation algorithms.
Before the acquisition of the images, it is necessary to preliminarily prepare the specimen
surface to be analyzed through a conditioning technique, by realizing an artificial stochas-
tic pattern and/or point markers. This pattern is essential to track the evolution of the
point position during loading, and to compute the corresponding mechanical quantities
through techniques of DIC. The finer is the pattern mesh, the higher is the DIC quality.
For these reasons, DIC requires the use of high-performance cameras to obtain accurate
measurements [62].

The fundamentals of the DIC measurement process [63] are illustrated in Figure 5.
The reference image represents the initial condition of the specimen, which generally
coincides with the unloaded configuration. This image is divided into subsets, termed
facets, identified by an area of (2M + 1) x (2M + 1) pixels, where M is a positive integer
number and other than 0. The subset size is critical to DIC accuracy, so it should be properly
selected according to the actual random intensity distributions of the speckle patterns [64].
As the specimen is loaded, the facets are subjected to displacement and strain. Hence, the
generic point P(xg; o), centered in a reference facet, moves to the new position P’g(x"y;
¥'0) within the deformed facet. This displacement and the consequent strain are estimated
using a cross-correlation (CC) or sum-squared difference (SSD) correlation algorithm,
which identifies the similarity between the reference and the deformed facet. From a
mathematical point of view, this involves searching for the peak of the distribution of the
correlation coefficients. Specifically, the location of the target subset is identified, once the
maximum or the minimum correlation coefficient has been found, depending on the used
correlation criterion. Instead, the strain field can be obtained by numerical differentiation.

Reference image Load Deformed image
application
— — —
2M+1 vh
P fp, ;
Yo |------- %s yol oo P T . Deformed
Reference i | facet
: facet -.‘ ....... ; |
XO Xo x(,)

Figure 5. Schematic representation of the Digital Image Correlation (DIC) measuring process.

The registration and computation algorithms aim to ensure the best correlation be-
tween the interrogated facets. However, to achieve this goal, it is necessary to pursue a
balanced compromise between spatial resolution, pattern speckle quality and computation
time [65]. In fact, by reducing the size of the speckle pattern, it is possible to improve the
accuracy of the DIC; however, the computation time increases considerably. Additionally,
if the quality of the pattern speckle is poor, correlation procedures can introduce several
errors and reduce the measurement accuracy.

2.3. Mechanical Test Setup

Three-point bending tests are performed according to ASTM D7958 /D7958M stan-
dards [59], using a Zwick universal testing equipment with load capacity equal to 600 kIN.
The tests are conducted in displacement-controlled mode, with a constant displacement
rate set as 0.05 mm/min. The displacement is monitored at a control point located at
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the top of the beam under the roller used for the load application, using a linear variable
displacement transducer (LVDT) as illustrated in Figure 6. The load is monitored using
a load cell integrated in the testing equipment. The tests are carried out until complete
failure of the specimen, which is identified by a reduction of the load measured by the cell
equal to 80%.

Figure 6. Notched concrete beams tested in three-point bending under displacement-controlled mode.

The tests comprise different environmental conditioning of the specimens. After
the application of the externally bonded PBO-FRCM sheet, three curing conditions are
considered (see Figure 7):

e four specimens are cured in air at laboratory environmental conditions for 31 days
(temperature 23 °C =+ 2 °C and relative humidity 65-75%);

e  four specimens are placed in a curing tank for 31 days, with their bottom face (depth
equal to 30 mm) immersed in water (relative humidity 100%) at a controlled tempera-
ture of 30 °C;

e four specimens are placed in a curing tank for 31 days, with their bottom face (depth
equal to 30 mm) immersed in water (relative humidity 100%) at a controlled tempera-
ture of 50 °C.

Laboratory environmental conditions Curing tank, controlled temperature (T=30°C; T=50°C)

Figure 7. Curing conditions of the specimens considered in this experimental campaign.

The goal of this investigation is to ascertain the influence of the environmental factors
in the FRCM-concrete interface bond behavior. Apart from the laboratory conditions, two
serviceability conditions are considered. The first conditioning temperature (30 °C) can be
meant as a service temperature that is frequently experienced in summer seasons, while
the second conditioning temperature (50 °C) can represent an ultimate limit state condition
that is hardly exceeded in ordinary conditions.

2.4. DIC Test Setup

The use of correct lens and of high-resolution images plays a crucial role in the correct
evaluation of the response and is essential for obtaining reliable results. For this reason, an
appropriate DIC test setup has been conceived in this experimental campaign to ensure the
highest resolution and a correct measurement [66,67].

Two reflex cameras, models Nikon D3100 and Nikon D300s, are used in this work,
called camera 1 and camera 2 in Figure 8 and in the sequel of the paper. These cameras
are equipped with a macro lens (Nikon, AF Micro-Nikkor 200 mm f/4D IF-ED) and with a
zoom lens (Tamron, SP AF 70-300 F/4-5.6 Di VC USD). The two distinct cameras are used
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simultaneously to investigate two regions of interest of the specimen: camera 1 is focused
on the FRCM-concrete interface, while camera 2 is employed to examine the concrete
front face, i.e., the area above the notch. In particular, camera 2 is useful to monitor the
attainment of the tensile strength of concrete prior to the full engagement of the interface
bond behavior (initial beam behavior). The position of the two cameras is determined after
a series of trials, in order to ensure optimum field of view, focus and optical resolution.
The final location of camera 1 and camera 2 are at a distance of 72 cm and 98 cm from
the specimen surface, respectively. Two led lamps are used to guarantee a brightness of
1000 lux, constant throughout the test duration, in the overall region of the interest.
1
Camera 1
==\

& Test machine

Figure 8. Experimental DIC test setup.

The synchronization of the acquisition is carried out by connecting a trigger port of
the mechanical test equipment with a remote control for the two cameras. The rate of
acquisition is set as one photo every 6 s, until the specimen failure. Depending on the lens
models used in the two cameras, it is necessary to adopt different focal values, as listed in
Table 3.

Table 3. Cameras optical parameters.

F-Stop Exposure ISO Sensitivity
Macro lens f/8 1/15s I1SO—400
Zoom lens f/8 1/10s 1SO—250

The set of digital images was elaborated using the DIC software GOM Correlate 2020
(GOM GmbH, Braunschweig, Germany).

3. Results and Discussion
3.1. Load-Deflection Curves

The results of the three-point bending tests on the notched concrete beams with exter-
nally bonded PBO-FRCM sheets are illustrated here in terms of load-deflection curves. The
graphs in Figure 9 report the outcomes of the twelve specimens, namely four specimens
for each curing condition separately. Although the observed behavior is comparable in all
four specimens of each class, the slight variation of the obtained load-deflection curves is
likely ascribed to the inherent uncertainty in the mechanical properties of the employed
materials, especially concrete (CoV of the compressive strength equal to 9%). Interestingly,
the discrepancies are more evident in the first case of laboratory environmental conditions,
wherein the mechanical characteristics of concrete might have a more pronounced influence
than in other curing conditions in which, instead, the overall behavior might be mainly
governed by the interfacial bond properties at the FRCM-concrete interface. In general, the
performance of the FRCM system is not negatively affected by temperature increase in the
range considered in this experimental campaign. On the contrary, previous literature stud-
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ies demonstrated the degradation of the bond behavior at the FRP-concrete interface under
environmental conditions like high relative humidity and/or high temperature [22-25].
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E \ 2
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0 05 1 1.5 2 25 3 3.5 4 45 5
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Figure 9. Results of the tests in terms of load-deflection curves for different curing conditions.
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All the recorded curves show an initial elastic branch, in which the behavior of both
concrete and FRCM composite system is linear. A clear peak is observed at a deflection
equal to approximately 0.5 mm for all the specimens. Thereafter, a decrease of load occurs
according to a typical trend of a concrete beam structure. The second part of all curves
exhibits a local maximum and a slow nonlinear reduction of the measured load. This
curve can be interpreted from a mechanical point of view, by also critically considering
alternative single-lap shear tests available in the literature for the same material [68]. The
peak at approximately 0.5 mm represents the attainment of the first cracking load of the
beam, the subsequent decrease of load is due to the transfer of the system resistance to
the FRCM composite and, finally, the shape of the curve is quite similar to the typical
stress-global slip curve obtained by single-lap shear tests of FRCM-concrete interfaces [68].

For all the beams, the complete failure is related to the PBO mesh debonding from the
mortar matrix. As shown in Figure 10, the mortar matrix remains attached to the concrete
substrate due to the good compatibility between the two cementitious materials. Upon
progressive cracking of concrete region above the notch, an increase in the opening of the
notch width is observed, until the beam is eventually split into two halves. The vertical
deflection of the beam produces a rotation of the two halves of the beam with respect to
the loading point under the roller support. In this condition, the load is entirely transferred
to the FRCM fibers that, to accommodate the further increase of vertical deflection of the
beam during the test, must detach progressively from the mortar matrix. Hence, a rigid
body motion occurs up to complete PBO fiber sliding from the mortar matrix, cf. again
Figure 10.
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Figure 10. Results of the tests in terms of failure modes.
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3.2. DIC Results

Considering the reasonably good agreement between the four repetitions of beams
for each curing class, only some representative results among the tested specimens are
selected and discussed concerning DIC test results. As said above, the two cameras allow
the examination of two distinct regions of interest of the beams, namely concrete front face
above the notch (camera 2) and FRCM-concrete interface (camera 1). In Figures 11 and 12
the longitudinal strain results of a representative beam at controlled temperature of 50 °C

are illustrated.

12,000
cracked concrete . -
—_— E initial beam behavior
10000 | €@ ~ O~ ; : ;
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Figure 11. Representative beam: characteristic points in the load-deflection curve, and DIC-processed

longitudinal strain maps from camera 2 examining the concrete front face.
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Figure 12. Representative beam: characteristic points in the load-deflection curve, and DIC-processed
longitudinal strain maps from camera 1 examining the FRCM-concrete interface.

The DIC-processed images of the longitudinal strains refer to different stages of
the loading application, which are identified by a set of characteristic points A-F in the
relevant load-deflection curve (the point S represents a “starting point” close to the origin).
The branch S-A denotes a linear elastic behavior of both concrete and FRCM. This is
corroborated by the corresponding DIC strain distributions shown for the two regions of
interest. Specifically, point A highlights the incipient cracking of concrete, while point B
denotes the incipient cracking of mortar, with the concrete above the notch already partially
cracked. By further increasing the load from point A to point B leads to the attainment
of the tensile strength above the notch and, consequently, the neutral axis depth moves
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from the area close to the notch tip up to the loading point. This leads to the formation of a
main crack above the notch, with a resulting tortuous pattern up to the top compressed
fiber of the concrete beam (point B) and complete reduction of concrete contribution to
the element strength, with the crack width gradually increasing (point C). The whole
process is visible in terms of strain distribution between point A and point C obtained
by camera 2 (Figure 11). Concurrently, the mortar matrix at the FRCM-concrete interface
also exhibits some visible cracks that grow up further from point A to point C, which is
confirmed by the strain distribution obtained by camera 1 (Figure 12). Precisely, at point B
a strain intensification is observed, which corresponds to the incipient crack of a specific
section of the FRCM mortar. At this stage, the resistance of the beam entirely relies on
the FRCM contribution; hence, the load-deflection curve in Figure 11 can be separated in
two branches, namely the initial beam behavior (from the origin up to point B) and the
interfacial bond behavior (from point B up to failure).

In the initial beam behavior, the beam contribution and the FRCM contribution are
mutually interacting. Once the concrete cracking and mortar cracking occur, the FRCM
contribution prevails. In the interfacial bond behavior, the concrete is completely cracked,
as shown in the DIC images. The load level C corresponds to the attainment of the
mortar cracking. Once the critical deflection of point C (around 0.5 mm) is exceeded, a clear
softening branch is observed from point C to point D, which is related to the residual tensile
stress of concrete observed in the range of narrow crack widths [69,70]. This softening
branch is similar to the behavior observed in fracture mechanics by testing a plain concrete
prismatic beam specimen. In contrast to the case of a plain concrete specimen, in this
case the beam is strengthened by the externally bonded FRCM sheet. Consequently, from
point D the FRCM interacting contribution is involved since the PBO mesh stretches and,
consequently, starts sliding from the mortar matrix, and a gradual increase of the load-
carrying capacity is observed in the load-deflection curve. From point D the DIC images
reveal that the sliding of the PBO grid from the mortar matrix becomes more manifest.
The load first increases up to point E and then decreases from E to F. At point F, the load-
deflection curve terminates with a typical horizontal friction branch, related to the residual
strength at the FRCM-concrete interface [68].

It is worth noting that the characterization of the bond behavior at the FRCM-concrete
interface is assisted by the DIC images, which allow a clearer interpretation of the me-
chanical behavior of the notched concrete beam, especially in the precracking phase. More
specifically, the DIC-processed images explain the interaction of the two parallel resisting
contributions in the specimens and the stress transfer mechanism with the increase of
the vertical deflection of the beam. By inspection of the images related to the camera 1,
it can be seen that the DIC strain maps are very useful to anticipate the incipient crack
initiation of both concrete and mortar matrix under service conditions and the subsequent
initiation and development of PBO mesh sliding from mortar matrix. To clarify this aspect
and to investigate the effect of the different curing conditions of the samples, some DIC
images aimed at capturing the occurrence of incipient crack and crack development are
reported in Figure 13. Two representative specimens are compared, one cured at laboratory
environmental conditions and one cured in tank at controlled temperature of 50 °C. Some
loading stages (two for the concrete area above the notch and three for the FRCM-concrete
interface, at equal loading level for the two curing conditions) are analyzed and compared.
The images related to the camera 1 and 2 are reported at two different scales because the
deformations corresponding to crack initiation are different in concrete and FRCM mortar.
However, the same scale is adopted for the two curing conditions for comparison purposes.
It is clearly seen that the curing condition slightly affects the mechanical behavior of the
specimen in the cracking phase, something that is impossible to capture by the observation
of the mere load-deflection curves. More specifically, for the specimens cured in tank at
controlled temperature the concrete above the notch exhibits an incipient cracking at lower
load levels compared to the specimens cured in laboratory environmental conditions. This
seems to indicate that the temperature condition applied to the bottom part of the specimen
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has slightly altered the stress transfer mechanism at the FRCM-concrete interface, and, in
turn, has generated a premature cracking of the concrete above the notch. On the contrary,
after cracking of mortar takes place, the elongation of the PBO mesh increases until sub-
sequent debonding from the mortar matrix, and this phenomenon is almost comparable
in the two curing conditions, which is also confirmed by the qualitative agreement of
the load-deflection curves observed for the two classes of specimens (see again Figure 9).
Therefore, the macroscopic bond behavior is not significantly affected by the environmental
conditioning.

laboratory environmental conditions curing tank, temperature T =50°C

IO.SO

0.25

Loading stage 1

o

% g -
elastic behavior of concrete and FRCM

camera 2

—0.25

—0.50
%

Loading stage 2

Loading stage 1

IZ.OO

1.00

cameral

—1.00

Loading stage 2

—2.00
%

Loading stage 3

PBO stretching PBO stretching

Figure 13. Comparison of DIC-processed images of longitudinal strains in the notched concrete
beams under two different curing conditions.

Finally, Figure 14 focuses on the crack starting in concrete and in FRCM mortar. The
load-deflection curves of the two analyzed specimens are shown in the top part of the
figure, and the load levels corresponding to the crack starting of the two resisting elements
(concrete and mortar) are also identified in the plot for the two curing conditions. Not
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only the concrete cracking but also the mortar cracking occurs at a lower load level in
the specimen cured in tank at controlled temperature of 50 °C compared to the specimen
cured in air at laboratory environmental conditions (i.e., without environmental condi-
tioning). The crack load in concrete is almost halved in the specimen with environmental
conditioning compared to the specimen without environmental conditioning, whereas the
reduction of the crack load in mortar is less pronounced. The load-deflection curves exhibit
an almost identical (qualitative and quantitative) behavior in the branches following the
mortar cracking and representing the actual bond behavior at the FRCM-concrete interface
(with the PBO mesh sliding from the underlying mortar matrix). This confirms that the
curing conditions, in particular the effect of temperature and relatively humidity applied to
the specimen, have a marginal influence on the interfacial properties of FRCM composite
systems applied to concrete substrates, at least for the relatively short duration of the
thermal treatment and temperature range involved in this experimental campaign.

14,000
without environmental conditioning
12,000 - = = with environmental conditioning
| — g e e e
crack starting -2_10'000 \ Pz S comparable bond-slip behavior
. ° e l 7 £ N
In mortar he] i 5 N
S 8000 \
o~ \
E \
3 6000 e \
S k starting i t N
Crack s ng in concrete
= 4000 = N
2 000
0

0 0.5 1 15 2 2.5 3 35 4 4.5 5
Deflection [mm]

without environmental conditioning with environmental conditioning

Crack starting in concrete

load ~ 3200N

load ~9800N

Crack starting in mortar

Figure 14. Crack starting in concrete and in FRCM mortar for specimens subject to different cur-
ing conditions.
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Horizontal displacement [mm]

In conclusion, as demonstrated by these outcomes, the DIC technique can be used
to assess the bond behavior at the FRCM-concrete interface or to determine the status of
the interfacial properties after an exceptional event (e.g., seismic load), which could be
useful to plan local repair interventions and, in general, for structural health monitoring
purposes.

Figure 15 shows the opening of the notch in comparison with the load-deflection curve.
The measurement of the notch opening has been obtained by monitoring the horizontal
displacement of two points located on opposite faces of the notch, 1 cm below its upper
boundary (notch tip).

12,000 T 1.2
! I curing tank, controlled temperature, T=50° C |
) i ' ' . T
10,000 ; 18
! N
f— ! g
£ 5000 ‘. 08
B l Ny
Ks} __i/__initial crack formation g
T 6000 ! 06 2
“ Il [a]
3 : o
8 : 3
g 4000 : 04 @
2 000 E 0.2 ?
E Load-deflection 3
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0 0.5 1 1.5 2

Deflection [mm]

Figure 15. Opening of the notch of the concrete beam (in red) and load-deflection curve (in blue).

After a first initial stage in which an almost zero displacement is observed, once the
concrete beam has started its cracking then the notch opening grows linearly with the
deflection. It is interesting to observe that the opening of the notch proceeds with an almost
linear trend. Consequently, it is not significantly affected by the cracking of the mortar
matrix and by the progressive debonding of PBO.

Any slippage of the concrete beam with respect to the FRCM would highlight a limited
adhesion capacity of the mortar matrix to the concrete substrate. Figure 16 (left) reports
the average horizontal displacements measured on 10 corresponding points belonging to
the concrete beam and to the FRCM, respectively, while Figure 16 (right) displays their
difference (which can be meant as a “relative slipping”) together with upper and lower
bounds (i.e., £ standard deviation). The maximum shift is below £0.05 mm, thus proving
that no practical relative slipping occurs between the beam and the reinforcement.
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Figure 16. Comparison of average horizontal displacements measured on the concrete beam (black line) and on the FRCM
(dotted red line) (left) and relative slipping between the concrete beam and the FRCM (UB = upper bound; LB = lower

bound) (right).
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4. Conclusions

This paper has presented an experimental campaign focused on the characterization of
the interfacial bond behavior between externally bonded PBO-FRCM sheets and concrete
substrate, assisted by DIC. The FRCM-concrete interface bond behavior is investigated via
DIC technique by using two cameras simultaneously, one focused on the concrete area
above the notch and another focused on the FRCM-concrete interface. Three-point bending
test on notched concrete beams in accordance with ASTM D7958 /D7958M standards are
carried out. Prior to testing, the specimens were subjected to different environmental
conditions (humidity and temperature), in order to assess whether, and to what extent,
these factors influence the bond behavior.

The main results of this research work are summarized as follows:

e  Twelve specimens have been analyzed, and the qualitative trends of the load-deflection
curves are quite similar and are marginally affected by the curing conditions. This
demonstrates that the performance of the FRCM system is not negatively affected by
temperature increase, at least for the relatively short duration of the thermal treatment
and temperature range involved in this experimental campaign (partial immersion in
water at 50 °C protracted for 31 days).

e  After the attainment of cracking in concrete (above the notch) and in FRCM mortar (at
the interface), the subsequent branches of the load-deflection curve are related to the
stress transfer mechanism at the FRCM-concrete interface and resemble the typical
stress-global slip curve observed in alternative single-lap shear tests available in the
literature for the same material. For all the beams, the failure mode is ascribed to the
PBO mesh debonding from the mortar matrix.

e DIC images of the longitudinal strains have facilitated the interpretation of the me-
chanical behavior of the specimens and have better explained the interaction of the
two parallel resisting systems (concrete and FRCM composite), something that is
impossible to capture by the observation of the mere load-deflection curves. These
images have revealed that the temperature condition applied to the bottom part of the
specimen has slightly altered the stress transfer mechanism with the increase of the
vertical deflection of the beam in the precracking phase and has generated a premature
cracking of concrete above the notch.

e By inspection of the DIC images it is clearly seen that the curing conditions affect
the mechanical behavior of the specimen in the precracking phase only. On the
contrary, after cracking of mortar takes place, the elongation of the PBO mesh increases
until subsequent debonding from the mortar matrix, and this phenomenon is almost
comparable in the two curing conditions, which is also confirmed by the qualitative
agreement of the load-deflection curves observed for the two classes of specimens.
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