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Abstract. Superintegrable systems are characterised by the possession of many symmetries
and integrals. We use the simple harmonic oscillator as an example and examine the relationship
between the Noetherian integrals of a given Lagrangian as quantum operators and the Lie
symmetries of the corresponding Schrödinger Equation.

1. Introduction

We use the simple harmonic oscillator as the vehicle for our discussion and demonstration. It
has the standard Lagrangian2

1

2

(
ẋ2 − x2

)
. (1)

The Noether point symmetries and their associated integrals are calculated according to the
formulae [2]

ḟ(t, x) = τ(t, x)
∂L(t, x, ẋ)

∂t
+ η(t, x)

∂L(t, x, ẋ)

∂x

+(η̇ − ẋτ̇)
∂L(t, x, ẋ)

∂ẋ
+ τ̇L(t, x, ẋ) (2)

and

I = f(t, x)− [τ(t, x)L(t, x, ẋ)

+ (η(t, x)− ẋτ(t, x))
∂L(t, x, ẋ)

∂ẋ

]
, (3)

where the point symmetry has the form Γ = τ(t, x)∂t + η(t, x)∂x and the function, f(t, x), is
the contribution consequent upon the possibility of a change in the endpoints when the variation
of the Action Integral under the infinitesimal transformation generated by Γ is taken.

1 permanent address: School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal,
Private Bag X54001 Durban, Republic of South Africa 4000
2 It is well known that there are many Lagrangians for the simple harmonic oscillator. For a sampling see [1].
The question to be addressed here is the relationship between the Noetherian integrals of a given Lagrangian as
quantum operators and the corresponding Lie symmetries of the Schrödinger Equation.
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The Noether point symmetries and associated integrals for the Lagrangian (1) are

Γ1 = ∂t I1 =
1

2

(
ẋ2 + x2

)

Γ2 = e2it (∂t + ix∂x) I2 =
1

2
e2it

(
ẋ2 − 2iẋx− x2

)

Γ3 = e−2it (∂t − ix∂x) I3 =
1

2
e−2it

(
ẋ2 + 2iẋx− x2

)

Γ4 = eit∂x I4 = eit (ix− ẋ)

Γ5 = e−it∂x I5 = −e−it (ix+ ẋ)

Γ6 = 0 I6 = 1.

The Hamiltonian corresponding to the Lagrangian (1) is

H = 1

2

(
p2 + x2

)
, (4)

where the conjugate momentum is p = ∂L/∂ẋ = ẋ. The Schrödinger Equation for (4) is

2i
∂u(t, x)

∂t
= −

∂2u(t, x)

∂x2
+ x2u(t, x) (5)

and it has the Lie point symmetries

Σ1 = ∂t,

Σ2 = e2it
[
∂t + ix∂x − i

(
1

2
+ x2

)
u∂u

]
,

Σ3 = e−2it
[
∂t − ix∂x + i

(
1

2
− x2

)
u∂u

]
,

Σ4 = eit (∂x − xu∂u) ,

Σ5 = e−it (∂x + xu∂u) ,

Σ6 = u∂u and

Σ∞ = φ(t, x)∂u,

where φ(t, x) is any solution of (5).
The Schrödinger Equation for the physical problem comes with the condition that u(t, x)

vanish at spatial infinity. There is no such condition on φ(t, x) unless the problem is stated with
the boundary condition being part of the problem.

The Lie point symmetries, Σi, i = 1, 6, are listed in parallel to the Noether point symmetries
and integrals to make more readily a comparison of the properties reported below. In particular
Σ6 corresponds to the trivial integral I6. We note that the coefficient functions for ∂t and ∂x
are the same for the finite sets of symmetries.

The solution of the Schrödinger Equation is well known and is given by

un(t, x) = Nn exp
[
−

(
n+ 1

2

)
it− 1

2
x2

]
Hn(x), (6)

where Nn is the normalisation constant for the nth-eigenstate and Hn(x) is the nth Hermite
polynomial which is the acceptable solution of the Hermite equation [3]

v′′(x)− 2xv′(x) + 2nv(x) = 0. (7)
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2. Solution of the Schrödinger Equation using the Lie point symmetries of the

equation

It is well known that the solution of (5) consistent with the boundary conditions can be obtained
by means of separation of variables into time and space components and the use of the ladder
operators introduced by Dirac [4], namely

a = D + x and a† = D − x, (8)

where a† is known as the creation operator and a is known as the annihilation operator since the
former ‘creates’ states and the latter ‘annihilates’ states. What is obviously less well-known is
that the Dirac operators are autonomous versions of two of the Lie point symmetries of (5) [5].

The Lie (point) symmetries of a differential equation constitute a Lie algebra under the
operation of taking the Lie Bracket. In particular the Lie Brackets of the symmetries Σi, i = 1, 6
with Σ∞ of the Schrödinger Equation, (5), produce another solution symmetry, ie,

[Σi, Σ∞]
LB

= Σ̃∞, (9)

where Σ̃∞ may be a constant multiple of Σ∞ or a different solution symmetry3. Note that a
solution symmetry (in this context) is a symmetry of the form φ(t, x)∂u, where φ(t, x) is a
solution of the Schrödinger Equation under consideration.

The Lie point symmetries of (5) all have the form

Σ = T (t)∂t + Ξ(t, x)∂x + ε(t, x)u∂u

apart from Σ∞. The Lie Bracket of these two operators is [6]

[Σ, Σ∞]
LB

= (Tφt + Ξφx − εφ) ∂u. (10)

The right side of (10) is a solution symmetry. One possibility is that it is trivial, ie zero. Then
the expression on the right side of (10) is a linear first-order partial differential equation for
φ(t, x). Consider Σ5. The invariants of the first-order partial differential equation (10) can be
calculated from the associated Lagrange’s system,

t.
0
=

x.
1
=

u.
−xu

,

from which the common exponential term has been cancelled. The invariants are t and

u exp
[
1

2
x2

]
.

We set
u(t, x) = exp

[
−

1

2
x2

]
f(t)

and substitute it into (5) to obtain the first-order equation

2iḟ(t)− f(t) = 0

for f(t) with solution

f(t) = k exp
[
−

1

2
it
]

so that
u(t, x) = exp

[
−

1

2
it− 1

2
x2

]
(11)

3 A constant multiple, apart from zero, is of no consequence.
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up to a constant of normalisation. The solution, (11), has no node and represents the ground-
state solution. We denote it by u0.

It is not necessary for the right side of (10) to be zero. Suppose it is some other solution, Φ.
Then

Tφt + Ξφx − εφ = Φ.

The action of Σ5 on (11) is found by using the symmetry, Σ∞, and the property that solutions
are mapped into solutions. The Lie Bracket of the two symmetries, Σ5 and Σ∞, is[

e−it (∂x + xu∂u) , φ(t, x)∂u
]
LB

= e−it (∂x − x)φ(t, x)∂u (12)

so that, if we take the groundstate solution, u0, in (11), the next eigenfunction is obtained from
(12) when (11) is substituted, ie, the solution is mapped to the trivial solution. Consequently
Σ5 is the time-dependent creation operator and Σ4 is the time-dependent annihilation operator.
These Lie point symmetries of (5) are the origins of Dirac’s famous operators.

Since the solution in (11) has no nodes and is annihilated by the action of Σ4, it is the
groundstate solution and we denote it by u0(t, x). Higher states may be obtained by the
successive action of Σ5. Thus

u1(t, x) = [Σ5, u0(t, x)∂u]LB

=
[
e−it (∂x + xu∂u) , exp

[
−

1

2
it− 1

2
x2

]
∂u

]
LB

= −2x exp
[
−

3

2
it− 1

2
x2

]
∂u,

u2(t, x) = [Σ5, u1(t, x)∂u]LB

=
[
e−it (∂x + xu∂u) ,

(
−2x exp

[
−

3

2
it− 1

2
x2

])
∂u

]
LB

=
(
4x2 − 2

)
exp

[
−

5

2
it− 1

2
x2

]
∂u

etc.
In a similar manner we find that Σ1 is an eigenvalue operator and, if multiplied by i, is the

energy operator; Σ2 is a double annihilation operator and Σ3 is a double creation operator.

3. Noetherian Integrals as differential operators

The Noetherian Integrals may be written as differential operators in the quantum scenario. They
become

I1 =
1

2

(
−∂2

x + x2
)
,

I2 =
1

2
e2it

(
−∂2

x − (2x∂x + 1)− x2
)
,

I3 =
1

2
e−2it

(
−∂2

x + (2x∂x + 1)− x2
)

I4 = ieit (x+ ∂x) and

I5 = ie−it (−x+ ∂x) .

(I6 is an identity operator and we do not consider it further.)
The actions of each of these operators on the nth-eigenstate, given in (6), are given by

I1un(t, x) =
(
n+ 1

2

)
Nn exp

[
−i

(
n+ 1

2

)
t− 1

2
x2

]
Hn(x),

I2un(t, x) = −2n(n− 1)Nn exp
[
−i

(
n−

3

2

)
t− 1

2
x2

]
Hn−2(x),

I3un(t, x) = −Nn exp
[
−i

(
n+ 5

2

)
t− 1

2
x2

]
Hn+2(x),

I4un(t, x) = 2inNn exp
[
−i

(
n−

1

2

)
t− 1

2
x2

]
Hn−1(x),

I5un(t, x) = −iNn exp
[
−i

(
n+ 3

2

)
t− 1

2
x2

]
Hn+1(x).

Symmetries in Science XVI IOP Publishing
Journal of Physics: Conference Series 538 (2014) 012017 doi:10.1088/1742-6596/538/1/012017

4



In a less informative but conceptually clearer form these actions can be written as

I1un(t, x) =
(
n+ 1

2

)
un(t, x),

I2un(t, x) = −2n(n− 1)Nnun−2(t, x),

I3un(t, x) = −
1

2
Nnun+2(t, x),

I4un(t, x) = 2inNnun−1(t, x),

I5un(t, x) = −iNnun+1(t, x).

4. Variations on the Schrödinger Equation

We started from the standard Lagrangian, (1), and did all of the usual tricks to obtain the
Schrödinger Equation, (5), its solutions and associated symmetries. We also have looked in
the previous section at the action of the classical integrals when treated as operators on the
solution. Now we examine what happens if we use these operators in a type of Schrödinger
Equation. We should emphasise that one is looking at this from the point of view of symmetry
and mathematics, not physics. Obviously there is no need to consider I1 as that gives the
standard quantal treatment.

The Schrödinger Equation corresponding to I2 is

i
∂u

∂t
= 1

2
e2it

(
−∂2

x − 2 (x∂x + 1)− x2
)
u (13)

which has the Lie point symmetries

Γ1 = ∂t + ix∂x +
1

2
i
(
e2it − 2x2

)
u∂u

Γ2 = e2it∂t + 2ixe2it∂x

+i
(
−ie2it + 1

2
e4it − 2x2 − 2e2itx2

)
u∂u

Γ3 = e−2it∂t

Γ4 = ∂x − xu∂u

Γ5 = e2it∂x −
(
2 + e2it

)
xu∂u and

Γ6 = u∂u

in addition to the usual infinite-dimensional abelian subalgebra of solution symmetries. The
algebra of the finite subset is sl(2, R) ⊕ W3, ie the same algebra as in the case of the usual
Schrödinger Equation, (5).

In the case of the Schrödinger Equation corresponding to I3, namely

i
∂u

∂t
= 1

2
e−2it

(
−∂2

x + 2 (x∂x + 1)− x2
)
u, (14)

a similar set of symmetries is obtained. Precisely the finite subalgebra comprises

Δ1 = ∂t − ix∂x −
1

2
i
(
2x2 − e−2itx

)
u∂u

Δ2 = e2it∂t

Δ3 = ∂te
−2it

− 2ie−2itx∂x

+i
(
e−2it

−
1

2
ie−4it

− 2ix2 − 2ie−2itx2
)
u∂u

Δ4 = ∂x + xu∂u

Δ5 = e−2it∂x +
(
2 + e−2it

)
xu∂u and

Δ6 = u∂u.
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There is not much point in discussing the equations corresponding to I4 and I5 as they are
linear first-order partial differential equations and have an infinite number of symmetries. The
equations can be solved by means of the method of characteristics and one obtains

u = exp
[
1

2
x2

]
f(x− it) and

u = exp
[
2it+ 1

2
x2

]
g(exp[2it]− 2x),

and

u = exp
[
−

1

2
x2

]
f(x− it) and

u = exp [−2it− x] g (2x+ exp[−2it)) ,

respectively, for the equations

i∂u
∂t

= ∂u

∂x
− xu and

i∂u
∂t

= e2it ∂u
∂x

−
(
2 + e2it

)
xu,

and

i∂u
∂t

= ∂u

∂x
+ xu and

i∂u
∂t

= e−2it ∂u

∂x
+

(
2 + e−2it

)
xu,

which are the equations corresponding to I4 and I5.
It is not at all obvious how to interpret these solutions in terms of the desired behaviour of the

solution, u(t, x), at Infinity. Personally, even for the solutions which have a suitable exponential
terms, we cannot see how one could possibly select a solution for the so far arbitrary functions
which would give anything like proper behaviour.

5. Discussion

Conventional QuantumMechanics uses (5) derived from the Lagrangian, (1), via the quantisation
of the corresponding Hamiltonian. Behind all of this there is a considerable body of theory
applying to Classical Mechanics. On one hand, a matter not treated here, the Lagrangian is far
from unique. All one needs to do is to glance at [1] to find a modest sampling. The critical point
is that from the Lagrangian, whatever it is, one must be able to obtain the Newtonian Equation
of Motion. The Theories of Lagrange and Hamilton are really mathematical constructs whereas
the Equation of Newton is based upon a Law of Physics. Consequently one must be cautious in
how one deals with the process of quantisation.

There is a question about the relevance of the solutions of the Schrödinger Equations obtained
from the use of I2 and I3 since they do not seem to have any connection with the physically
accepted solution obtained using I1. Nevertheless their Schrödinger Equations have the same
algebraic structure as that of the equation corresponding to I1. Consequently one should expect
a point transformation to relate the three equations pairwise. This is a task still to be performed!

The question of the application of these transformations to higher-dimensional systems is
raised in [7]. (See also [8] in which the expression “quantum Arnold transformation” is introduced
to describe this class of transformation.) It was in such an application in 1976 that it was
realised for the classical case that it was simply a point transformation of one Hamiltonian to
another. Admittedly the problem under consideration was the three-dimensional time-dependent
linear oscillator, which could be considered to be rather special. One recalls the Jauch-Hill-
Fradkin Tensor of the corresponding two- and three-dimensional simple harmonic oscillator and
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its interpretation in terms of the derivation of the orbital properties of the system [9,10]. Similar
properties were found for the corresponding time-dependent tensor [11] . While it would seem
that the solutions of the Schrödinger Equations obtained from the use of I2 and I3 appear to
serve no purpose, it may be that there is some way of relating the quantal operators to the
properties of the quantal oscillator in higher dimensions.

In considering multidimensional systems it is equally important that the algebraic properties
of the system being investigated and the target system be reconcilable. If one is considering
point transformations, then the number of point symmetries of both systems needs to be the
same and not just the numbers for there needs to be algebraic consistency. This is the only type
of symmetry considered in this paper, but there are applications in which the transformations
may be more generalised and so one would not expect the conservation of point symmetry. A
case in point is the reduction of the Kepler Problem to a simple harmonic oscillator plus a
conservation law [12].

A final word of caution appears to be necessary. When one is using a transformation from
one space to another, it is advised to make the transformation one-to-one. This then preserves
the quantisation properties such as a discrete spectrum.
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