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Italy

E-mail: nucci@unipg.it

‡ School of Mathematical Sciences, Howard College, University of KwaZulu-Natal

Durban 4041, Republic of South Africa

E-mail: leachp@ukzn.ac.za

Received February, 2005; Accepted March, 2005

Abstract

The Ermakov-Pinney equation possesses three Lie point symmetries with the algebra
sl(2, R). This algebra does not provide a representation of the complete symmetry
group of the Ermakov-Pinney equation. We show how the representation of the group
can be obtained with the use of the method described in Nucci, J. Nonlin. Math.

Phys. 12 (2005) (this issue), which is based on the properties of Jacobi’s last mul-
tiplier (Bianchi L, Lezioni sulla teoria dei gruppi continui finiti di trasformazioni,
Enrico Spoerri, Pisa, 1918), the method of reduction of order (Nucci,J. Math. Phys

37 (1996), 1772–1775) and an interactive code for calculating symmetries (Nucci, In-
teractive REDUCE programs for calcuating classical, non-classical and Lie-Bäcklund
symmetries for differential equations (preprint: Georgia Institute of Technology, Math
062090-051, 1990, and CRC Handbook of Lie Group Analysis of Differential Equa-
tions. Vol. 3: New Trends in Theoretical Developments and Computational Methods,
Editor: Ibragimov N H, CRC Press, Boca Raton, 1996, 415–481).

1 Introduction

Given a (system of) differential equations(s) the desired outcome of an investigation is
the demonstration of an explicit solution preferably in terms of functions analytic away
from movable polelike singularities1. Too frequently the desired object is not obviously
attainable and one must resort to indirect methods. A standard method, given a (system
of) ordinary differential equation(s) of unknown integrability, is to seek a transformation

Copyright c© 2005 by MC Nucci and PGL Leach

1A singularity is movable if its location is not determined by the ordinary differential equation itself
but by specific initial conditions. One may include singularities in terms of rational powers – covered by
the so-called ‘weak’ Painlevé Property – and any relevant remarks below may be regarded as applying to
this case mutatis mutandis.
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or series of transformations to bring one to a set of coordinates in which the system is
manifestly integrable.

This immediately raises the question of the meaning of integrability. Naturally, if after
a (series of) transformations(s) the system is obviously integrable, ie a specific solution
can be demonstrated, the ultimate ambition has been achieved. In the field of differential
equations the achievement of such an ambition has a set of measure zero. One can look
to singularity analysis to provide the promise of integrability through the satisfaction of
the requirement that a given system possess an analytic solution. In this paper we are not
concerned with this aspect of integrability as our whole thrust is symmetry. Nevertheless
we are well aware that symmetry and singularity are not necessarily disparate.

In this paper we are dealing with symmetry as evinced by the existence of differen-
tial operators, termed symmetries, which leave differential equations invariant under the
infinitesimal transformations they generate2. The original idea of the symmetries as intro-
duced by Lie concerned the infinitesimal version of a transformation relating coordinate
systems to coordinate systems, ie the generator of the infinitesimal transformations (in
the case of two variables) was

Γ = ξ(x, y)∂x + η(x, y)∂y . (1.1)

This was later extended by Lie to include contact transformations generated by symmetries
of the form

Γ = ξ(x, y, y′)∂x + η(x, y, y′)∂y + ζ(x, y, y′)∂y′ , (1.2)

where

ζ =
∂η

∂x
+ y′

(

∂η

∂y
−

∂ξ

∂x

)

− y′2
∂ξ

∂y′
(1.3)

and

∂η

∂y′
= y′

∂ξ

∂y′
. (1.4)

The attraction of the contact transformation was the ability to have transformations of
the extended phase space to itself.

Such a constraint was not deemed necessary by Noether [24] who could allow the y′

dependence in ξ and η to be general since derivatives higher than the second were not
involved3.

Towards the end of the twentieth century practical observation forced the introduction
of a ‘new’ class of symmetries called ‘hidden’ symmetries on account of their origin [1, 2, 3].
These hidden symmetries arose as point symmetries on reduction or increase of order.
Their origins could be contact or generalised symmetries, but often the source symmetries
were nonlocal, ie symmetries which contain integrals the integrands of which cannot be

2The existence of symmetries is not limited to differential equations. Functions also possess symmetries
and an area of interest comprises those functions which are integrals of differential equations.

3This is in the context of the invariance of the Action Integral of a Lagrangian of the form
L(x, y, y′). Naturally an higher-order Lagrangian would permit higher-order generalised symmetries with
ξ = ξ(x, y, y′, y′′, . . .) and η = η(x, y, y′, y′′, . . .).
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evaluated since they depend upon the dependent variable and its derivatives. As is often
the case with new ideas, nonlocal symmetries were originally associated with esoteric
origins. In fact they can be found in the simplest of situations. Consider the second-order
differential equation

y′′ = 0 (1.5)

which has a symmetry Γ = ξ∂x + η∂y if

Γ[2]y′′|y′′=0
= 0, (1.6)

where

Γ[2] = ξ∂x + ∂y +
(

η′ − y′ξ′
)

∂y′ +
(

η′′ − 2y′′ξ′ − y′ξ′′
)

∂y′′ . (1.7)

Obviously the action of (1.7) on (1.6) when (1.6) is taken into account gives

η′′ = y′ξ′′ (1.8)

so that

η′ = A + y′ξ

η = Ax + B + y′ξ (1.9)

and for any ξ of one’s choice there is an η. The natural consequence is that (1.5) possesses
an infinite number of Lie symmetries4.

Given a (system of) ordinary differential equation(s) the determination of the Lie sym-
metries has importance as they can lead to the reduction of the order of the system,
the determination of first integrals and the identification of more appropriate variables in
which the properties of the system become more apparent.

For some equations (systems) certain symmetries are obvious by inspection, for example
an ignorable coordinate has its accompanying symmetry. For others invariance under
rescaling, ie the possession of some form of homogeneity can also be obvious. The list
of obvious symmetries, invariably point, tends not to go past those mentioned. One
then looks to algorithmic methods. They exist and have a variety of implementations in
terms of symbolic manipulation packages5. Unfortunately they tend to be limited in the
extent of the nature of the symmetry able to be elucidated. This does depend upon the
order of the subject differential equation(s). In the case of first-order ordinary differential
equations no algorithm exists. In the case of second-order equations the restriction to point
symmetries is effective, often too so. For nth-order equations, n ≥ 3, contact symmetries
may be sought. Apart from these specific instances the only way to find a symmetry is to
abandon the algorithmic route. One can do this by making a priori assumptions on the
structure of the coefficient functions of the symmetry. Unfortunately such assumptions

4For the present we do not enter into the discussion of the utility of these symmetries. Indeed the very
question of the utility [9] of a symmetry becomes part of the central theme of this paper as developed
below.

5See the review by Hereman [10] for an assessment of the packages available at that time.
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generally reflect the prejudices of the assumer rather than the properties of the equation
under investigation.

One recognises in the foregoing that something of an impasse exists. Either one contents
oneself with the algorithmic determination of point (contact as appropriate6) symmetries
or makes assumptions about the possible wider variety of symmetries to be admitted. The
former contentment gives a sense of completeness within limits. The second accommoda-
tion is fraught with the uncertainty of correctness of choice. Neither route is satisfactory
and the existence of a further option can only be welcomed. This option is to be found in
the last multiplier of Jacobi. Naturally this is not the ideal answer. Nothing in Mathemat-
ics is perfect for the explanation of reality. Nevertheless Jacobi’s last multiplier combines
nicely with the symmetries of Lie to enable some advance in the resolution of the properties
of ordinary differential equations.

The exploitation of Jacobi’s last multiplier to the purpose of finding Lie symmetries
has been presented in [28] and need not be repeated here.

In this paper we wish to address the matter of the use of the last multiplier of Jacobi
in the identification of the complete symmetry group of an ordinary differential equation.
We recall that the complete symmetry group of an ordinary differential equation7 is the
minimal set of symmetries required to specify completely the differential equation. The
concept was introduced by Krause [11, 12] in the context of the Kepler Problem and
involved the introduction of nonlocal symmetries to provide a sufficient set of symmetries
to specify completely the system of equations of the Kepler Problem. The question of the
necessity of nonlocal symmetries to complete the specification has been a matter of debate
since the work of Krause. Nucci showed [27] that Krause’s nonlocal symmetries came from
the point symmetries of an equivalent nonautonomous system of first-order equations in
which one of the dependent variables has been taken as the new independent variable.
This result was extended to include a whole class of systems possessing the distinguishing
feature of the Kepler Problem, videlicet the Laplace-Runge-Lenz vector [30, 15].

In several papers of Andriopoulos et al [4, 5] the more exoteric origins of complete
symmetry groups and their properties were explored.

One may ask ‘How can it happen that the last multiplier of Jacobi can help in the
determination of a complete symmetry group?’ Firstly there exists an interchangeability
between integrals and symmetries in the method of the last multiplier of Jacobi. Secondly
the ability to identify integrals of equations is not in one-to-one correspondence with
the representation of its complete symmetry group as we see below. In addition there
is not necessarily a one-to-one correspondence between symmetries and integrals. This
is a familiar feature from the results of Noether’s Theorem applied to, say, the Kepler
Problem. In terms of Noether’s Theorem the integral associated with invariance under
time-translation is the energy and yet the angular momentum and the Laplace-Runge-Lenz
vectors are also autonomous. In terms of the Lie theory these vectors follow also from
invariance under time-translation [13]. In [31] we have applied the known relationship
between Jacobi’s last multiplier, Lie symmetries and first integrals to the Kepler Problem.

In this paper we investigate a variation of a well-known equation, videlicet the Ermakov-
Pinney equation [8, 32] in its most elementary form. The simplest Ermakov-Pinney equa-

6In this we are neglecting a possible foreprocessing such as one finds in the method of reduction of order
[27, 29].

7Equally this applies to a system of ordinary differential equations.
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tion is

z̈ =
1

z3
, (1.10)

but we make some transformation of it via z2 −→ 1/x to give

2xẍ − 3ẋ2 + 4x4 = 0 (1.11)

which, like many equations, is more complicated in its mathematically correct form than
in its naturally ordained form. However, (1.11) has the advantage over (1.10) of possessing
the Painlevé Property and having an analytic solution. The equation (1.10), equally (1.11)
since they are related by means of a point transformation, possess the algebra sl(2, R) of
Lie point symmetries. This particular algebra is insufficient to specify completely the
equations (1.10/1.11). Our interest in this paper is to find a suitable representation of the
complete symmetry group of (1.11) and in the process demonstrate the utility of the last
multiplier of Jacobi for the purpose.

2 The inadequacy of sl(2, R)

The Lie point symmetries of the the Ermakov-Pinney equation, (1.11), are

Γ1 = ∂t

Γ2 = t∂t − x∂x (2.1)

Γ3 = t2∂t − 2tx∂x.

Although the complete symmetry group of a scalar second-order ordinary differential equa-
tion is three-dimensional [4], this particular algebra is not suitable for the purpose. If we
take a general scalar second-order equation, videlicet

ẍ = f (t, x, ẋ) , (2.2)

the action of Γ
[2]
1 , the second extension of Γ1, is to remove the variable t from f . The

second extension of Γ2,

Γ
[2]
2 = t∂t − x∂x − 2ẋ∂ẋ − 3ẍ∂ẍ,

on the now autonomous (2.2) leads to the associated Lagrange’s system for the character-
istics,

dx

x
=

dẋ

2ẋ
=

df

3f
,

and they are easily found to be ẋ/x2 and f/x3. Now (2.2) has the form

ẍ = x3f1

(

ẋ

x2

)

. (2.3)

The second extension of Γ3 is

Γ
[2]
3 = t2∂t − 2tx∂x − (2x + 4tẋ) ∂ẋ − (6ẋ + 6tẍ) ∂ẍ
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which we may write as

Γ
[2]

3eff
= 2x∂ẋ + 6ẋ∂ẍ

after taking Γ1 and Γ2 into account. The action of Γ
[2]

3eff
on (2.3) gives

6ẋ = 2x2f ′
1, ie f1 = 3

2

ẋ2

x4
+ 1

2K, (2.4)

where K is a constant of integration. Equation (2.3) is now

2xẍ − 3ẋ2 + Kx4 = 0. (2.5)

Equation (2.5) is not precisely (1.11) since the arbitrary constant is present. A further
symmetry is required to fix the value of K. That makes four symmetries and a scalar
second-order ordinary differential equation needs only three symmetries for its complete
specification.

Since we have used our supply of Lie point symmetries, we must of necessity look
towards nonlocal symmetries to provide the necessary symmetries. The calculation of
nonlocal symmetries is not easy since there does not exist a general algorithm such as
does exist for calculating the Lie point symmetries of, say, second-order equations. We
see below that the Jacobi’s last multiplier provides us with a systematic route to find
symmetries.

3 The last multipliers for the Ermakov-Pinney equation

We write the Ermakov-Pinney equation, (1.11), as a system of first-order differential equa-
tions, videlicet

ẇ1 = w2 (3.1)

ẇ2 = 3
2

w2
2

w1
− 2w3

1 , (3.2)

where we we define w1 = x and w2 = ẋ as the new variables, in the first step of the method
of reduction of order [27, 29]. The symmetries (2.1) are now symmetries of (3.1,3.2), ie

Λ1 = ∂t

Λ2 = t∂t − w1∂w1
− 2w2∂w2

(3.3)

Λ3 = t2∂t − 2tw1∂w1
− (2w1 + 4tw2)∂w2

.

We use the vector field of the two-dimensional system and two of the symmetries at a
time to calculate the corresponding Jacobi’s last multiplier ([17], [7]) M12, M13 and M23.
The subscripts refer to the symmetries used.

C12 =









1 w2
3
2

w2
2

w1
− 2w3

1

1 0 0
t −w1 −2w2
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1

M12
= detC12

= 1
2

(

w2
2 + 4w4

1

)

, (3.4)

C13 =









1 w2
3
2

w2
2

w1
− 2w3

1

1 0 0
t2 −2tw1 −(2w1 + 4tw2)









1

M13
= detC13

= t
(

w2
2 + 4w4

1

)

+ 2w1w2 and (3.5)

C23 =









1 w2
3
2

w2
2

w1
− 2w3

1

t −w1 −2w2

t2 −2tw1 −(2w1 + 4tw2)









1

M23
= detC23

= 1
2 t2
(

w2
2 + 4w4

1

)

+ 2tw1w2 + 2w2
1 . (3.6)

The first integrals are obtained by taking the quotients of the Jacobi’s last multipliers
([17],[7]). Thus we have

I13 =
M12

M23

= t2 + 4
tw1w2 + w2

1

w2
2 + 4w4

1

, (3.7)

I23 =
M12

M13

= 2t + 4
w1w2

w2
2 + 4w4

1

and (3.8)

I12 =
M13

M23

= 1
2

t2
(

w2
2 + 4w4

1

)

+ 4tw1w2 + 2w2
1

t
(

w2
2 + 4w4

1

)

+ 2w1w2
. (3.9)

We note that

1
4I2

23 = I13 −
16

J2
,

where

J =
w2

2

w3
1

+ 4w1 =
ẋ2

x3
+ 4x (3.10)

is an autonomous integral8. The explicitly time-dependent integral can be taken as

I = t +
2w1w2

w2
2 + 4w4

1

= t +
2xẋ

ẋ2 + 4x4
. (3.11)

8This integral may be obtained directly from the second-order equation, (1.11), by use of the integrating
factor ẋ/x4.
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The two integrals, (3.10) and (3.11), provide the solution

x =
4J

16 + J2(I − t)2
. (3.12)

4 Symmetries from the multipliers

Given the multipliers and the autonomy of the equation one can determine the symmetries
from

det





w2
3w2

2

2w1
− 2w3

1

η ζ



 =







1
2

(

w2
2 + 4w4

1

)

t
(

w2
2 + 4w4

1

)

+ 2w1w2
1
2t2
(

w2
2 + 4w4

1

)

+ 2tw1w2 + 2w2
1

, (4.1)

where we assume that the symmetry is Γ = ξ∂t + η∂w1
+ ζ∂w2

. The absence of ξ from
(4.1) is covered by the relationship ζ = η̇ − w2ξ̇.

Consider the case of the first multiplier, M12. Equation (4.1) gives

ζw2 − η

(

3w2
2

2w1
− 2w3

1

)

= 1
2

(

w2
2 + 4w4

1

)

(4.2)

which, of course, gives an infinite number of symmetries as

η = exp

[
∫
(

3w2

2w1
−

2w3
1

w2

)

dt

]{

A +

∫
[

1
2

(

w2 +
4w4

1

w2

)

+ w2ξ̇

]

× exp

[

−

∫
(

3w2

2w1
−

2w3
1

w2

)

dt

]}

. (4.3)

Similar expressions can be obtained using the two other multipliers.

Alternatively one may look in (4.2) and the two related equations for point symmetries
(in terms of the x = w1 variable). The symmetries, not surprisingly, obtained are just the
three symmetries already listed in (2.1/3.3).

One may wonder whether the nonlocal symmetries are of any use. It happens that
there is no way to determine the invariants of the symmetry using the form in (4.3) (and
its two companions) even if one puts ξ = 0 and A = 0. Alternatively one can put η = 0
and A = 0 to obtain an expression for ξ. In the case of the first multiplier, ie using (4.3),
we find that

ξ1 = −t −
w1

w2
.

However, when we apply the symmetry, we find that it is just the same as the effect of
Λ1 of (3.3). The same is true of the symmetries corresponding to the second and third
multipliers.

Although in principle Jacobi’s last multiplier can lead us to new symmetries in the
manner of solving (4.1), there has been no success.
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5 Implementation of the method of reduction of order

The method of reduction of order [27] consists of two parts. The system of differential
equations is written in terms of first-order equations and ignorable variables [29] may
be eliminated to reduce the order of the system. To enable an algorithmic calculation
of symmetries the reduced system of the first-order equations is rewritten to include at
least one second-order equation. There is always the question of an appropriate choice of
variables. As it happens, the last multiplier of Jacobi provides a method to identify the
useful variables [28]. We firstly use Strategy 3 and then use Strategy 2.

The Jacobi last multiplier of the system (3.1) and (3.2) may formally be written as

JLM = exp

[

−

∫
(

∂ẇ1

∂w1
+

∂ẇ2

∂w2

)

dt

]

= exp

[

−

∫

3w2

w1
dt

]

and the integral may be formally evaluated by the introduction of a new variable9

ż =
w2

w1
. (5.1)

The very definition of z introduces a second-order equation. This is Strategy 3 [28].
In the analysis of the system to determine the Lie symmetries Nucci’s interactive Reduce

program for calculating Lie symmetries [25, 26] produces a parabolic differential equation
the characteristic of which is a first integral of the system [19]. This provides a new
variable satisfying a trivial first-order equation. The variable is

u1 = w1 exp

[

−
w2

w1

]

. (5.2)

The system (3.1) and (3.2) is now

u̇1 = 0 (5.3)

z̈ − 1
2 ż2 + 2u2

1e
2z = 0. (5.4)

Equation (5.4) is rendered more transparent by the transformation u2 = exp [−2z] and
becomes

ü2 +
u2

1

u3
2

= 0. (5.5)

The system (5.3) and (5.5) possesses the four Lie point symmetries

Γ1 = ∂t

Γ2 = t∂t − u1∂u1

Γ3 = t2∂t + tu2∂u2

Γ4 = 2u1∂u1
+ u2∂u2

(5.6)

with the algebra A1 ⊕s A3,8 in the Mubarakzyanov classification scheme [20, 21, 22, 23].
As the latter subalgebra is sl(2, R), we are in the same situation that we encountered in

9Note that it is not necessary to include the constant 3 in the definition of the new variable.
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§2. Although we have the correct number of symmetries for the complete specification of
the system (5.3) and (5.5), the algebra is not correct.

Since the system (3.1) and (3.2) is autonomous, we may replace it by the single first-
order equation

dw2

dw1
=

3w2
2 − 4w4

1

2w1w2
. (5.7)

The last multiplier for (5.7) is given by

JLM = exp

[

−

∫

∂

∂w2

(

dw2

dw1

)

dw1

]

= exp

[

−

∫

3w2
2 + 4w4

1

2w1w
2
2

dw1

]

.

We write the independent variable w1 as y and introduce a new independent variable
through du/dy =

(

3w2
2 + 4y4

)

/
(

2yw2
2

)

so that (5.7) becomes the second-order equation

y2

(

d2u

dy2
− 2

(

du

dy

)2
)

+ 6y
du

dy
− 3 = 0. (5.8)

A further simplification is achieved by the change of variables y = exp[ρ] and s(ρ) =
exp [−2u]. Then (5.8) becomes

s′′ + 5s′ + 6s = 0, (5.9)

where prime indicates differentiation with respect to the new independent variable, ρ.

Equation (5.9) is a linear second-order equation and possesses eight Lie point symme-
tries. They are

Γ1 = exp [−2ρ] ∂s

Γ2 = exp [−3ρ] ∂s

Γ3 = s∂s

Γ4 = ∂ρ

Γ5 = exp [−ρ] (∂ρ − 3s∂s)

Γ6 = exp [ρ] (∂ρ − 2s∂s)

Γ7 = exp [2ρ]
(

s∂ρ − 3s2∂s

)

Γ8 = exp [3ρ]
(

s∂ρ − 2s2∂s

)

(5.10)

which is a representation of the algebra sl(3, R).

The symmetries in (5.10) were listed in one of the standard orderings for the elements of
sl(3, R). The first two symmetries come from the solutions of (5.9), Γ3 is the homogeneity
symmetry, the next three are the elements of the subalgebra sl(2, R) and the last two the
nonfibre-preserving symmetries.
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When we express these in terms of the original variables, we find that

Γ1 −→ Λ1 = exp

(

4

∫

y3

w2
2

dy

)

w2

4y3
(w2

2 + 4 y4) ∂w2

Γ2 −→ Λ2 = exp

(

4

∫

y3

w2
2

dy

)

w2 ∂w2

Γ3 −→ zero in terms of the new coordinates

Γ4 −→ Λ4 = y ∂y + 2w2 ∂w2

Γ5 −→ Λ5 = ∂y +
3w2

2y
∂w2

Γ6 −→ Λ6 = y2 ∂y +
w2

8y3
(w2

2 + 20 y4) ∂w2

Γ7 −→ Λ7 = exp

(

−4

∫

y3

w2
2

dy

) [

∂y +
1

2y w2

(

3w2
2 − 4 y4

)

∂w2

]

Γ8 −→ Λ8 = exp

(

−4

∫

y3

w2
2

dy

) [

y∂y +
1

2w2

(

3w2
2 − 4 y4

)

∂w2

]

,

(5.11)

where we see that Λ1, Λ2, Λ7 and Λ8 become exponential nonlocal due to the presence of
the factor exp

[

±4
∫ (

y3/w2
2

)

dy
]

.
We note that only the elements of sl(2, R) are inherited by (5.7) as point symmetries.

The normal representation of the complete symmetry group of (5.9) would be in terms
of Γi, i = 1, 3, [4]. The fact that the usual symmetries become nonlocal symmetries
of the first-order equation is doubtless the explanation for the problems we have had
in determining the complete symmetry group. However, we may use the transitivity
property of complete symmetry groups [6] to establish a representation of the group.
Given a subalgebra of three symmetries of (5.9) and a reduction of order, those symmetries
are symmetries of the reduced equation. If the reduction of order is based upon one of
the symmetries of the subalgebra, the remaining two symmetries constitute the complete
symmetry group of the reduced equation. There are three representations of the complete
symmetry group of a linear second-order equation [5, 14]. Since the symmetry, Γ3, is
the symmetry of the reduction of order, it must be an element of a representation of
the complete symmetry group of (5.9) for us to obtain the desired result. There are two
such representations, videlicet {Γ1,Γ2,Γ3} and {Γ7,Γ8,Γ3}. One finds it more than a little
ironic that the relevant symmetries are the nonlocal symmetries of the reduced equation10.

We verify that Γ1 and Γ2 indeed completely specify (5.7) by demonstrating that the

actions of Λ
[1]
1 and Λ

[1]
2 on the general first-order equation

dw2

dy
= f(y,w2) (5.12)

10The problem with the sl(2, R) subalgebra becomes more obvious since it does not include Γ3 and so
the reduction is intransitive [6].
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explicitly lead to (5.7). The demonstration for Λ
[1]
7 and Λ

[1]
8 is similar and the calculations

are not repeated here. The first extension of Λ2 is

Λ
[1]
2 = Λ2 + exp

[

4

∫

y3

w2
2

dy

] {

w2 ∂w2
+

(

w′
2 +

4y3

w2

)

∂w′

2

}

(5.13)

and its action on (5.12) leads to the first-order partial differential equation

f +
4y3

w2
= w2

∂f

∂w2
(5.14)

which is easily solved to give

f = w2A(y) −
2y3

w2
, (5.15)

where A(y) is an arbitrary function of its argument, so that now (5.12) takes the form

dw2

dy
= w2A(y) −

2y3

w2
. (5.16)

In the case of Λ1 the the first extension is

Λ
[1]
1 = Λ1 + exp

[

4

∫

y3

w2
2

dy

] {

2w2 + 4
y4

w2
−

3w3
2

4y4
+

(

3w2
2

4y3
+ y

)

w′
2

}

∂w′

2
. (5.17)

The action of Λ
[1]
1 on (5.16) produces an algebraic equation for the function A(y). We

obtain

A(y) =
3

2y
(5.18)

and equation (5.7) is recovered.
The same result is found if Λ7 and Λ8 are used.
In both cases the algebra is abelian.
The single first-order differential equation, (5.7), was obtained from the system of two

first-order differential equations, (3.1) and (3.2), by means of eliminating the time which
is an ignorable coordinate in the system. This corresponds to the symmetry ∆3 = ∂t.
Consequently we may invoke Theorem 1 of [6] and conjoin this symmetry to Λ1 and Λ2

(equally to Λ7 and Λ8) to obtain a representation of the complete symmetry group of
the system. Note that we have demonstrated the existence of two representations. The
variables in Λ1 and Λ2 must be adjusted for the presence of the new variable t. The
representation of the complete symmetry group of the system (3.1) and (3.2) is given by

∆1 =

{
∫
(

w2
2

4w3
1

+ w1

)

exp

[

4

∫

w3
1

w2
dt

]

dt

}

∂t

−

{(

w3
2

4w3
1

+ w1w2

)

exp

[

4

∫

w3
1

w2
dt

]

dt

}

∂w2

∆2 =

{
∫

exp

[

4

∫

w3
1

w2
dt

]

dt

}

∂t −

{

w2 exp

[

4

∫

w3
1

w2
dt

]

dt

}

∂w2
(5.19)
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∆3 = ∂t.

Trivially the complete symmetry group of the Ermakov-Pinney equation is now

Σ1 =

{
∫
(

ẋ2

4x3
+ x

)

exp

[

4

∫

x3

ẋ
dt

]

dt

}

∂t

Σ2 =

{
∫

exp

[

4

∫

x3

ẋ
dt

]

dt

}

∂t (5.20)

Σ3 = ∂t.

We note that this representation of the complete symmetry group is expressed in terms
of generators of translations in time. Two of the elements of the algebra are quite nonlo-
cal. The appearance of the symmetries can be rendered simpler by the introduction of a
nonlocal variable, videlicet

W =

∫

exp

[

4

∫

x3

ẋ
dt

]

dt (5.21)

for then the symmetries listed in (5.20) become

Σ1 = IW∂t

Σ2 = W∂t (5.22)

Σ3 = ∂t,

where I = x + ẋ2/(4x3) is the first integral of (1.11) noted above. This type of structure
has been previously observed in the case of contact symmetries of second-order equations
[18].

6 Conclusion

In this paper we have determined representations of the complete symmetry group of
the Ermakov-Pinney equation. This proved to be a nontrivial task. We employed the
properties of the last multiplier of Jacobi in a variety of ways. In particular we used the
Jacobi last multiplier of the reduced system to find a suitable new dependent variable for
the reduced system, ie Strategy 2 in [28]. In the process of determining the symmetries
we also made use of the ability of the code of Nucci to provide a first integral [19] so
that the second equation of the system became a trivial first-order equation. Fortunately
the culmination of the method of reduction of order was a linear second-order equation
for which there are eight Lie point symmetries. One of those symmetries was lost in
the reduction of the second-order equation to the first-order equation and three of them
constituted the sl(2, R) subalgebra which, although it is characteristic of equations of
maximal symmetry, is very unsuitable for the construction of a representation of a complete
symmetry group of a differential equation. Fortunately the remaining symmetries had the
correct properties and so we were led to two representations of the complete symmetry
group. They are equivalent.

In the case of a (system of) differential equation(s) the determination of a representation
of the complete symmetry group becomes quite difficult if the number of point (contact
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for equations of order greater than two) symmetries is small for then one has to look for
nonlocal symmetries and generally their determination is difficult. The methodology we
have adapted in this paper has enabled us to determine these nonlocal symmetries in a
manner which is quite algorithmic by means of a combination of several tools, Jacobi’s
last multiplier, the method of reduction of order and Nucci’s interactive code.
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e Informatica, Università di Perugia, and particularly of Professor MC Nucci during the
period in which this work was initiated and thanks the University of KwaZulu-Natal for
its continuing support.

References

[1] Abraham-Shrauner B, Hidden symmetries and linearization of the modified Painlevé-Ince
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