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Abstract—Power SiC MOSFETs are going to substitute
Si devices by to their significantly better performances that
make them much suitable in power switching applications
such as electric/hybrid vehicles. The increasingly use of
these devices in critical mission profiles requires an ever-
higher reliability, whereas the increase of the dissipated
power during high-speed working cycling due to short
current pulses leads to unavoidable thermal and mechan-
ical stress. Here, we propose a direct method to evaluate
the mechanical stress due to current pulses. This method
highlights that high Power SiC-based MOSFET undergoes
to almost two different thermomechanical processes with
completely different time scale. The results allow a link
between the thermo-mechanical stress and the device fail-
ure conditions, with special focus on the current pulses
effects on metal surface, as this is a main power devices
weakness.

Index Terms— Power MOSFET, reliability, silicon carbide,
strain wide band gap semiconductors, Coffin Manson.

|. INTRODUCTION

IDE Band Gap (WBG) semiconductors, such as Silicon

Carbide (SiC) and Gallium Nitride (GaN), push the
research to improve the devices that are already commercially
available since the begun of the century. The SiC-based
devices largely outperform the silicon-based ones and find
applications in many fields of power electronics. [1]-[4]. These
devices are increasingly used in mission critical application;
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hence a deeper comprehension of their failure mechanisms
is needed. Due to its higher stiffness compared to silicon,
the power cycling capability of SiC devices is particularly
crucial [5], [6]. The repetitive quick increasing of temperature
during high current pulses cycling leads to both thermal and
mechanical stress, that wears out the gate oxide layer, the metal
and the bonding [7]-[9].

In this frame, the reliability becomes more challenging to
evaluate, specially taking into account that the modern devices
technology has shifted towards ultra-thin body transistors
and high thermal conductivity materials. In these devices,
the crowding of carriers along a confined dimension [10] not
only reates local hotspots but also gives rise to mechanical
stress among the layers. Hence, the study of deformation
mechanisms and the relationship between temperature and
failure mechanisms could provide key information to improve
reliability modeling and prediction. In the last years, many
experimental techniques and theoretical simulations have been
proposed in order to measure micrometric mechanical defor-
mations and cracks, such as: Digital Image Correlation (DIC)
method [11], Finite Element Analysis [12], Shearography [13].
The industry qualification of the devices is based on the
reliability prediction that relies on the well know statistical
methods based on the Coffin Manson model that defines the
number of actual failures occurring as a fraction of the total
number of units subjected to an accelerated test [14], [15].
The temperature cycles are one of the considered critical
parameters for the premature aging of the electronic devices,
as well as the gate threshold voltage, avalanche events, body
diode degradation and so on [7]. Usually, this statistical
approach is based on information about the difference induced
by the accelerating parameters in the DUT after and before the
aging treatment.

In Si-based devices, it has been observed that high current
pulses may lead to a quick temperature increasing (beyond
100 °C) during their operation. The overheating can irre-
versibly damage the DUT surface [6]. Therefore, detecting
the presence of hot spots is a powerful method for improving
design and increasing reliability. A direct consequence of the
thermomechanical cycles is an alternance of compressive and
expansive displacements that involve the entire DUT. The out-
of-plane mechanical displacement can be evaluated without
decapsulating the DUT, hence observing it in its real working
conditions [16]. The above phenomena become very important
in automotive applications where the frequencies involved are
of the order of a few hundreds of Hz, for example in applica-
tions such as gasoline or diesel injection, or power manage-
ment in electric engine. In these cases, the strain mechanisms
and the thermal behavior are fast enough to follow the current
pulses and give rise to cumulative effects of mechanical stress.
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Fig. 1. (a) Electric configuration for TSC (Terminal Short Circuit) overload
test; (b) Optical image of the entire device after its failure.

In this letter, we focus on the strain mechanisms involved
during the power cycling at frequencies of a few hundreds
of Hz, and demonstrate that the DUT undergoes almost two
different thermomechanical processes. Even if the temperature
reaches relatively low values, both mechanisms are able to
damage the metal and should be taken into account for a
more precise lifetime estimation. The described experimental
approach can be applied to many different kinds of electronic
devices. However, some simple conditions must be satisfied:
(i) the analyzed surface is reflective, indeed the out-of-
plane mechanical displacement measurements are based on the
optical interferometry principle; (if) the package is removed
to detect the temperature achieved by the metal layer. The
thermo-mechanical results are correlated to the morphological
variations of the metal induced by the stress. This allowed
individuating a precise mechanism of the metal degradation.

Il. EXPERIMENTAL SECTION

The analyzed DUT is a Power MOSFET based on silicon
carbide technology provided by ST Microelectronics. The
DUT has been decapsulated to allow the detecting of the
thermal behaviour and the mechanical strain of the DUT
during the test. The latter was performed using a Terminal
Short Circuit (TSC) configuration (see Fig. 1) [17]. Through
the Vipvoltage, DUT is activated for a fixed ton time interval
(ton = 5 ms) and it is switched off for toff = 1.5 s. For each
Vin pulse, the peak current value is 80 A with Vps = 10 V
and Vgs = 15 V. Thermal measurements have been performed
by a high-speed emission microscope working in the infrared
range [18]. The sub micrometric out-of-plane mechanical
displacements have been measured by a microscope-based
vibrometer (Polytec, MSA-500).

Synchronizing the current pulses with the acquisition, it is
possible to record point by point the time resolved displace-
ment of the surface. Designing a suitable grid of points,
the system will produce a movie of the deformation during
the pulses. AFM measurements have been performed in semi-
contact mode using an NT-MDT mod. SMENA microscope.

I1l. RESULTS AND DISCUSSION

Figure 2a shows the thermal map of the DUT acquired at
5 ms after the current pulse started, also corresponding to the
instant when the temperature reaches its maximum. The ther-
mal map shows that the temperature reaches its maximum near
to the bonding wire area. Figure 2b describes the temporal
behavior of the temperature acquired at the hottest point on
the metal surface. The temperature does not exceed 80 °C in
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Fig. 2. (a) Thermal map acquired at 5ms after the start of the current
pulse. (b) temperature behaviour versus time acquired at the hottest
point of the metal surface. Mechanical deformations of DUT during its
operation in TSC configuration: (c) maximum displacement acquired at
5ms; (d) displacement vs time at the center of the DUT (considered point
is marked in Figure 3a) acquired for 20ms.

the above defined working conditions. Figure 2c shows the
surface displacement frozen at the end of the current pulse.

The displacement map is characterized by a maximum dis-
placement located at the hottest point of the surface. Figure 2d
reports the displacement trend vs time, acquired in the point
marked in Figure 2c. Interestingly, the displacement shows a
narrow peak when the current pulse occurs, after the end of the
current pulse, the metal comes back near to the zero position
and a slow displacement starts (not shown for a single pulse).
For a better understanding of the stress undergoes the DUT,
we repeated the experiment exciting the DUT with a burst
consisting of three current pulses at a frequency of 100Hz.
Each pulse was 5ms wide with a duty cycle of 50%. The
three pulses have been obtained by a 0.16 F capacitor; hence
they have a decreasing peak current, and precisely of 85A,
80A and 75 A.

The DUT surface displacement vs time during the current
train collected at the position, where the temperature reaches
its maximum, is showed in Figure 3. The surface displacement
follows the current pulses amplitude, and ranges between
1,6-107°m to 1-107®m as the current peaks decrease from
85A to 75A. After each pulse, the displacement goes back,
but never reaching the starting point (Figure 3a). After the
current train end, a slow displacement of the entire surface is
observed (Figure 3b). These findings suggest that, during the
pulse current cycling, the DUT undergoes two rather different
processes: at the beginning, a quick strain that mainly involves
the metal and presumably the first layers of semiconductor
affecting the solder joint too. Subsequently, a displacement
that involves the whole device is observed. This displacement
is related to the slow heat diffusion related to the power dis-
sipation inside the semiconductor that produces an increasing
of the temperature of the entire chip and a thermal expansion.

The above observation let us conclude that during the
normal operation, the DUT temperature will increases its
baseline reaching a mean value. At operational frequencies
of the order of hundreds of Hz, the temperature quickly
increases following the current pulses and reaching a value
far beyond the one measured with standard systems such as
thermal cameras. Moreover, despite the relative low value
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Fig. 4. Optical images of the DUT surface close to the bonding area
acquired with a magnification of 10X: (a) before the stress (b) after the
stress.

reached by the temperature, the quick displacement due to
the current pulses induces a cumulative stress on the metal
that, together with the slow surface movement, must be taken
into account for a more complete estimation of the lifetime.
During the above reported test, the investigated DUT fails after
approximately 21500 current pulses.

Figure 4 shows the optical image of the DUT surface, after
the failure. Noticeably, the optical image acquired with a
magnification of 10X clearly shows a stressed area at the
center of the DUT, while close to the gate contact it is still
intact (Figure 1b), with a smooth surface. We can foresee
that the metal layer suffers a considerable compressive stress
during the heating cycles.

Literature distinguishes two temperature regimes [22]:
above 175 °C when diffusional creep and plastic deformation
involving conservative motion of dislocations occurred and
below 175 °C when the main mechanism of mass trans-
port is the plastic deformation caused by the compressional
fatigue [19]. The plastic deformation can lead to the extrusion
of single grains the surface roughness of the metallization
with the macroscopic observable effect of a dull non-reflective
surface appearance. In the cooling phase of the temperature
cycle, if the elastic regime is exceeded, tensile stress can
lead to cavitation effects at the grain boundaries. In the
chosen operating conditions, the repetitive thermo-mechanical
cycles activate the reconstruction of metallization. Since the
maximum achieved temperature (about 80 °C, see Figure 2b)
is well below of the threshold 175 °C, we attribute the cause of
the reconstruction of metallization to the mechanical fatigue of
the metal layer. The relatively low number of operating cycles
of the DUT (before its failure) highlights that the strain/strain
rate ratio acts as a very high efficiency acceleration factor.

Figure 5 a-b shows the AFM images (scan size 80 um x
80 um) and the distribution of the radius of the metal grains
measured in the good and in the stressed region respectively.
The average roughness of the metal surfaces is reported inside
the AFM images. AFM analysis and calculated roughness
agree with the previous analyses: the average roughness
increases from about 190 nm, in the good region, to 292 nm

r(um) r(m

Fig. 5. (a) AFM image (scan size 80 um x um) of the good area
(close to the gate contact) and measured average roughness; (b) AFM
image (scan size 80 um x 80 um) of the stressed area (close to the
drain contact) and measured average roughness. Histogram of the grains
radius distribution calculated (c) in the good area and (d) in the stressed
area of the DUT metallization.

in the stressed region. This variation, of about 100 nm, of the
surface average roughness is linked to the variation of the
metal grains size.

Figure 5 c-d shows the histograms of the grain radius
distribution calculated in both analyzed regions. The roughness
related to the good metal surface is characterized by a narrow
band centered at 0.8 um, with a shoulder at lower values.
The histogram of the stressed region is characterized by a flat
and large band, slightly shifted towards higher values of the
radius size highlighting an increasing of the grains size that
confirms the grains reconstruction process of metallization,
which leads to a progressive damage of the metal contact,
until the DUT failure.

IV. CONCLUSION

In conclusion, the high-speed thermal maps confirm that
the SiC-based DUT operates at low temperatures (maximum
temperature detected is 80 °C on the metal layer in the
selected operating conditions). However, the failure of the
device occurs after approximately 21500 current pulses. This
rapid irreversible damage has been studied, considering the
thermo-mechanical behaviour of the DUT. The time resolved
mechanical displacement maps allow to identify two different
processes that affect the device during its cycle of operation:
a fast process engaging the metallization and the DUT first
layers and a slow process due to the to heat diffusion involving
the whole device [21].

The heat capacity and the thermal conductivity play a key
role in the dynamics of the strain. In this frame, from the
thermal point of view, the system works as a low pass filter,
therefore, if the frequency increase too, the phenomenon will
be cut off, and, presumably, other damage mechanisms may
be activated. Under the test conditions considered, the fast
process is individuated as the main responsible of the metal
damage. For long operation time, the repetitive fast current
pulses generate a cumulative stress in the metallization that
act as input for the grain reconstruction process. Hence the
displacement and strain-rate must be taken into account as a
key factor in a predictive Coffin Manson model to obtain a
more realistic evaluation of the lifetime.
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