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We present an equation of the fourth-order which does not possess a second-order Lagrangian
and demonstrate by means of the method of reduction of order that one can obtain a first-order
Lagrangian for it. This opens the way to quantization through the construction of an Hamiltonian
which is suitable to be quantized according to the procedure of Dirac with the correct physical
attributes.

Keywords: Fourth-order ODE; Lagrangian; Lie symmetries; Hamiltonian; quantization.

1. Introduction

In the context of the quantization of higher-order field theories, it has been found that
some unpleasant properties occur. A classic example is the model of Pais–Uhlenbeck [15]
described by a second-order Lagrangian in the Action,

A =
1
2
γ

∫
{z̈2 − (Ω2

1 + Ω2
2)ż

2 + Ω2
1Ω

2
2z

2}dt, (1.1)

so that the Euler–Lagrange equation is of the fourth-order, being

....
z + (Ω2

1 + Ω2
2)z̈ + Ω2

1Ω
2
2z = 0. (1.2)

To bring this model within the context of Hamiltonian Theory, Davidson [6] and
Mannheim [7] introduced a new variable y, to describe the model in terms of a system
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with two degrees of freedom. The problem with the model of Pais–Uhlenbeck when it
is quantized according to the method advanced by Dirac almost a century ago is that it
possesses “ghost” states, i.e. the norm of the (quantum) state is negative. This is not accept-
able mathematically as well as physically since the whole concept of a norm is rooted in
the essence of being nonnegative. Consequently the model has been regarded as unphysi-
cal. A procedure which produced a satisfactory result in terms of the properties expected
in the quantal description was provided by Bender and Mannheim [1] in the context of
PT -symmetric quantum mechanics. The construction of the Hamiltonian by the authors
mentioned above was according to the procedure of Ostrogradski [14]. An alternate approach
[12,13] showed by means of the method of reduction of order [9] that it is possible to con-
struct an Hamiltonian which gives rise to a satisfactory quantal description without having
to depart from the standard methods of quantization. By resorting to the new methods of
PT -symmetric quantum mechanics, Bender and Mannheim were able to resolve the problem
of the unfortunate properties of the Hamiltonian obtained from the fourth-order model of
Pais–Uhlenbeck. Nucci et al. recognized that the problem of incorrect quantization following
Dirac was caused by following the procedure of Ostrogradsky. Whilst it would be unfair to
classify the former result as “two wrongs make a right”, the latter result showed that the
avoidance of an unusual wrong made it unnecessary to introduce a new theory. One could
remain within the purview of the theory of Dirac.

The fourth-order equation in the model of Pais–Uhlenbeck is the Euler–Lagrange equa-
tion obtained from the application of Hamilton’s Principle to the Action Integral (1.1).
In this note we consider a fourth-order equation which does not have a second-order
Lagrangian. Nevertheless we are able, by means of group theoretical methods, to obtain
a Hamiltonian and consequently provide a route to quantization in the standard fashion
given to us by Dirac [2] so that there is no ambiguity in the interpretation of the quantum
mechanics.

The fourth-order equation which we consider is

....
w = 3w + 2ẅ +

4(ẇ +
...
w)2

3(w + ẅ)
. (1.3)

Fels [3] has demonstrated that a fourth-order equation of the form

u(iv) = F (t, u, u′, u′′, u′′′) (1.4)

admits a unique second-order Lagrangian iff the following conditions are satisfied:

∂3F

∂(u′′′)3
= 0, (1.5)
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∂u′′
∂F

∂u′′′ +
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8

(
∂F

∂u′′′

)3

= 0. (1.6)

A simple calculation shows that Eq. (1.3) does not satisfies condition (1.6) — although
satisfies condition (1.5). Therefore Eq. (1.3) does not possess a second-order Lagrangian.
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Despite the absence of a Lagrangian equation (1.3) does have six Lie point symmetries.
They are

Γ1 = sin t∂w Γ4 = ∂t

Γ2 = cos t∂w Γ5 = sin 2t∂t + w cos 2t∂w

Γ3 = w∂w Γ6 = cos 2t∂t − w sin 2t∂w

(1.7)

and the algebra is sl(2, R) ⊕s {D ⊕s 2A1}, i.e. the semidirect sum of sl(2, R) with the
group of translations and dilations in the plane. This algebra is the same of that of the
one-dimensional linear oscillator apart from the absence of the two non-Cartan symmetries
of the latter.

2. Application of the Method of Reduction of Order

The essential feature of the method of reduction of order [9] is to rewrite the system under
consideration as a set of first-order equations. We write (1.3) as

ẇ1 = w2 (2.1)

ẇ2 = w3 (2.2)

ẇ3 = w4 (2.3)

ẇ4 = 3w1 + 2w3 +
4(w2 + w4)2

3(w1 + w3)
(2.4)

in which it is quite obvious that the w1 of (2.1) is the dependent variable in (1.3).
We calculate a Jacobi Last Multiplier from the system (2.1)–(2.4) using the formula

[4, 16]

M = exp


−

∫ 4∑
j=1

∂Wj

∂wj
dt


, (2.5)

where Wj is the right-hand-side of the jth member of the system (2.1)–(2.4). Evidently the
only contribution comes from (2.4) and we have

M = exp
[
−

∫
8(w2 + w4)
3(w1 + w3)

dt

]

= (w1 + w3)−8/3, (2.6)

in which we have made use of (2.1) and (2.3) to perform the quadrature. We can also use the
symmetries of (1.7), expressed in the variables of (2.1)–(2.4), to calculate further multipliers
[5, 10]. When we use Γ1,Γ2,Γ3 and Γ4, we obtain the matrix

C1234 =




1 W1 W2 W3 W4

0 sin t cos t − sin t − cos t

0 cos t − sin t − cos t sin t

0 w1 w2 w3 w4

1 0 0 0 0




. (2.7)
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The reciprocal of its determinant is another multiplier, i.e.

M1234 =
3

(w2 + w4)2 + 9(w1 + w3)2
. (2.8)

These two multipliers are singular if w2 + w4 = 0 and w1 + w3 = 0. This suggests [11] the
introduction of two new variables through

w4 = r4 − w2 and w3 = r3 − w1. (2.9)

To raise the system to the second order we make the substitutions [9]

r4 = ṙ3 and w1 = −ẇ2 + r3 (2.10)

and obtain the pair of second-order equations,

ẅ2 = ṙ3 − w2, (2.11)

r̈3 = 3r3 +
4ṙ2

3

3r3
. (2.12)

The variable r3 has its own equation in (2.12) and it is a simple matter [8] to determine
that (2.12) possesses eight Lie point symmetries and so is linearisable. Under the transfor-
mation

r3 = R−3
3 (2.13)

the system (2.11), (2.12) becomes

ẅ2 = −w2 −
3Ṙ3

R4
3

, (2.14)

R̈3 = −R3. (2.15)

A further simplification is achieved by means of the transformationa

w2 = r2 −
Ṙ2

3 − iṘ3R3 − R2
3

2(Ṙ2
3 + R2

3)(Ṙ3 − iR3)R2
3

(2.16)

aEquation (2.14) can be written as

ẅ2 = −w2 − 3i
c1 exp[it] − c2 exp[−it]

(c1 exp[it] + c2 exp[−it])4
,

if one substitutes for the general solution of (2.15). Then its particular solution is

−i
3c21 exp[4it] + c22

16c21c2 exp[it](c1 exp[2it] + c2)2
,

namely

Ṙ2
3 − iṘ3R3 − R2

3

2(Ṙ2
3 + R2

3)(Ṙ3 − iR3)R2
3

.
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for then the system (2.14), (2.15) becomes

r̈2 = −r2, (2.17)

R̈3 = −R3. (2.18)

By means of the application of the method of reduction of order, the fourth-order nonlinear
equation (1.3), has been reduced to an uncoupled pair of linear equations which represents
an isotropic two-dimensional linear oscillator. The process of quantization is now elementary.
It is obvious that system (2.17), (2.18) possesses the Lagrangian

L =
1
2
(ṙ2

2 + Ṙ2
3 − r2

2 − R2
3), (2.19)

so that the conjugate momenta are

pr =
∂L

ṙ2
= ṙ2 and PR =

∂L

Ṙ3

= Ṙ3. (2.20)

Under the Legendre transformation

H = prṙ2 + PRṘ3 − L

we obtain the Hamiltonian

H =
1
2
(p2

r + P 2
R + r2

2 + R2
3). (2.21)

It is then straightforward to see that the corresponding Schrödinger equation is

2iut = −ur2r2 − uR3R3 + (r2
2 + R2

3)u, (2.22)

i.e. once the original fourth-order nonlinear equation (1.3), is reduced by the method of
reduction of order to the system of two second-order equations (2.17) and (2.18), the stan-
dard, i.e. Dirac’s, method of quantization proceeds smoothly.

3. Discussion

A critical feature in the treatment of high-order field theories for the purposes of quantum
mechanics is the manner in which the system is reduced to an Hamiltonian system. What
we have done here is to demonstrate that even an equation of the form of (1.3), which does
not have a Lagrangian and so is not amenable to traditional methods of treatment, can
be written in a fashion which leads to the quantization of a physically acceptable system.
The purpose of the reduction of the system to a set of first-order equations is to enable the
selection of appropriate variables to render the system in terms of the usual second-order
equations of classical mechanics from which the process of quantization is easily initiated.
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