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Abstract: In this article, we consider the coexistence of competing actors within a specific eco-
industrial park. The competing firms dynamics evolves by means of an interplay agreement de-
termined among the competitors themselves. In particular, we show a possible scenario in which
the selected eco-industrial competitors could greatly benefit from a coopetitive interaction, within
their common eco-park, while improving the general conditions of a near residential area. The
associated dynamical coopetitive agreement, aims at the growth and improvement of the firms
themselves and of their industrial network (within a virtuous environmental path). As an example,
we assume the existence of two competitors selling the same good on the same market, so that, from
a competitive point of view, we construct a classic Cournot duopoly model upon which we build
up a multidimensional coopetitive agreement. Our eco-friendly deal allows to “enlarge the pie” of
possible gains by diminishing sunk costs and other forms of costs, especially the environmental
costs associated to the management of urban waste recycling. Consequently, we suggest produc-
tion methods and production quantitative profiles in order to “share the gains fairly”. We show
a complete mathematical analysis of our new economic game and show some of its possible and
relevant solutions.

Keywords: sustainability; industrial symbiosis; game theory; coopetition; green technologies; indus-
trial ecology

1. Introduction

In this paper, we apply game theory and coopetition to the study and economic
development of eco-industrial parks. In particular, we consider the possibility of coexis-
tence of competing actors within eco-industrial parks, by means of agreements among the
competitors themselves.

1.1. Industrial Symbiosis and Eco-Industrial Parks

Industrial ecology explains how to learn from natural ecosystems in order to reduce
the environmental impacts of human activities to levels that natural systems could sustain.
The use of energy and material is optimized and the generation of waste minimized. Wastes
from one process can be used as raw materials in another [1]. Industrial ecology can have
a few approaches: “the first approach uses tools like material flow analysis including
substance flow analysis, life cycle analysis and design for environment. A local approach
is taken in studying eco-industrial parks” (see [2]). An eco-industrial park is defined as
“companies and institutes working together and building a production network to develop
their environmental and economic performances”. According to this, an eco-industrial
park is an “ecosystem where waste minimization is sought in the use of energy and raw
materials, material and energy exchange is planned, and economic, ecologic, and social
relations are established” [3].
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1.2. Literature Review on Industrial Symbiosis and Game Theory

In the scientific literature, we find essentially three different types of game theory
approach for the applications in the industrial symbiosis context.

The first type of game theory applications in that field is linked to the theory of
cooperative games, games in which the values of individual components are evaluated
with respect to possible coalitions of participants (see [4]). An example of game-theory
application is presented in Fiestras-Janeiro et al. (2011), where the authors solved cost
allocation problems through cooperative games applied to natural resources and power
industry [5]. A more recent work of Jin et al. (2020), instead, establishes a game model
of government value compensation for different types of industrial waste recycling in
industrial parks and examines the standards for recycling firm waste based on maximizing
government benefits [6].

A second type of applications concerns non-cooperative finite games, where essentially
the scholars are looking for possible balances and optimal gains for the participants in the
eco-industrial park (see [7]). This approach leads to articles of a more strict applicative na-
ture but with developments that appear still quite elementary and not widely useful (used)
in the general case. An existing model that could be easily extended to analyze competition
and cooperation in an eco-industrial park is presented in Attanasi et al. (2012), where the
authors analyze environmental agreements among two parties negotiating over environ-
mental standards [8]. Similarly, the model of strategic preservation/developing choice
of two parties holding a similar environmental resource presented in [9], could be easily
applied to two companies in the same eco-industrial park. Only recently, Yazan et al. (2020)
propose a non-cooperative game-theoretical model based on coopetition [10]: a “coopeti-
tion” problem where companies need to cooperate to reduce waste discharge costs and
traditional input purchase costs and dive into competition to pay a minimum share of addi-
tional costs (i.e., waste treatment, waste transportation, and transaction costs) of operating
industrial symbiosis.

A third line of research adopts the theory of evolutionary games for the analysis of
growth dynamics within eco-industrial parks, in order to understand if an eco-industrial
park could grow or shrink over time and which of its components can be successful or
losers in the short and medium term. In this case, we also find software and graphics
applications, typical of dynamic systems, with a probabilistic approach and characterized
by the resolution of ordinary first order differential equations (see [11]). Examples are
presented, for instance, in Luo et al. (2019), where the authors construct a dynamic
evolutionary game model between three game players of E-commerce industrial park
symbiosis system and analyze the replication dynamic equations [12] or in Tilman et al.
(2020), where a new general framework for eco-evolutionary games is proposed [13].

1.3. Our Game Theory Approach

We should notice that our game theory approach could be thought as a dynamic game
theory approach, in a wide sense. Usually, dynamic games are conceived as sequences of
non-cooperative games (discrete case) or curves of non-cooperative games (continuous
case), where the indexing parameters are essentially of time nature [14]. Our game model
can be considered a generalized dynamic game model, in particular a differentiable curve
of non-cooperative games (and in more complex cases it could be a differential parametric
manifold in the space of non-cooperative games). Nevertheless, the parameter indexing
the parametric curve is the cooperative strategy chosen by the players. This new kind of
dynamic games, by its own nature, requires new kind of solutions. The two players can
choose the cooperative strategy together and simultaneously optimizing the corresponding
manifolds of classic solutions. For example, more specifically, each point-game of the
coopetitive game shows a Nash equilibrium, therefore the players can choose inside a
curve of infinitely many Nash equilibria. Clearly, they will find an optimization technique
to choose the correspondingly optimal Nash equilibrium. Selection of the above type,
a selection of an optimal Nash equilibrium, will be called a purely coopetitive solution.
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1.4. Novelty of the Approach in an Industrial Symbiosis Context

Therefore, our approach could be considered significantly new because, on the one
hand, we use infinite non-cooperative games for the determination of equilibria and Pareto
boundaries in a possible realistic competitive interaction outside the eco-industrial park;
on the other hand, we introduce a collaborative dynamics to find efficient policies for the
expansion of the eco-industrial park and for the improvement of its facilities as well as the
environmental protection and respect for public health. Other studies in which the authors
have used this new approach applied to different environmental contexts are [15–19].

Our Coopetitive Game Approach

We observe that our approach would fall within the coopetitive game qualitative idea
of Brandenburger and Nalebuff (see, e.g., [20,21]). However, we should notice that there is
no general consensus in quantitatively modeling such empirical and epistemological idea.
In our case, we choose explicitly the modeling suggested by Carfì in 2010 [22]: he essen-
tially (and substantially) suggests that a possible model of Brandenburger and Nalebuff’s
idea is that of a “parametric manifold of non-cooperative games indexed (parametrized)
by a shared cooperative strategy space”. Even more complex, when introducing these
games, is the problem of providing a definition of coopetitive solution (which cannot be
an “equilibrium solution” because of the presence of its cooperative part). In the next
subsection, we recall briefly the definition of coopetitive game and some related solutions.

1.5. Coopetitive Games and Dynamic Games

We desire to point out that, even if our game can be considered as a dynamic game,
nevertheless, the third strategy, that is the continuous variable z—which represents a
common investment in green technologies—is our dynamic parameter: what in usual
dynamic games would be time, in our game G is the cooperative strategy z. In this sense,
the trajectories we design and construct here are trajectories in a continuous cooperative
strategy, not in time. From a mathematical point of view, this economic interpretation
doesn’t change much, but from an economic point of view the solutions that we need to
find rely to a completely different decision problem. We are not searching here for optimal
times or optimal noncooperative strategies within a time horizon, but we are searching
for optimal cooperative strategies z∗, some Nash equilibria N(z∗) corresponding to those
optimal cooperative strategies z∗ and finally fair sharings W ′ of the consequential Nash
payoffs N′(z∗). The approach considered in the article relies on graphical and analytical
(not probabilistic) descriptions. Our trajectories are solutions of second-order differential
equations, but we determine those trajectories not by solving differential equations, rather,
by a method proper of game theory: we have analytically determined the curve of all
Nash equilibria, depending on the continuous variable z, and simply obtain the objective
trajectories as the continuous curves formed by those equilibria and by the payoffs of
those equilibria, respectively. The novelty of this approach, for studying eco-park systems,
lies not in the use of classic dynamic games, but in the use of new techniques that can
be also interpreted in a dynamic fashion. That new approach contains a more specific
economic and strategic meaning. That new coopetitive meaning requires the construction
of a completely new mathematical toolbox of definitions and procedures, which is proper
of the growing field of coopetitive games. Nevertheless, from an economic and intuitive
point of view, that new game theoretical toolbox can be fully appreciated and understood
without going too deeply into the mathematics.

1.6. Coopetitive Games and Their Solutions: Formal Definitions

A coopetitive game is a game in which two or more players (participants) can in-
teract cooperatively and non-cooperatively at the same time. Even Brandenburger and
Nalebuff [21], creators of coopetition, did not define, precisely, a quantitative way to im-
plement coopetition in the Game Theory context. The problem to implement the notion of
coopetition in Game Theory is summarized in the following question:
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how do, in normal-form games, cooperative and non-cooperative interactions coexist
simultaneously, in a Brandenburger-Nalebuff sense?

In order to answer the above question, consider a classic two-player normal-form gain
game G = ( f ,>)—such a game is a pair in which f is a vector valued function defined
on a Cartesian product E× F with values in the Euclidean plane R2 and > is the natural
strict sup-order of the Euclidean plane itself (the sup-order is indicating that the game,
with payoff function f , is a gain game and not a loss game). Let E and F be the strategy
sets of the two players in the game G. The two players can choose the respective strategies
x ∈ E and y ∈ F

• cooperatively (exchanging information and making binding agreements);
• non-cooperatively (not exchanging information or exchanging information but with-

out possibility to make binding agreements).

The above two behavioral ways are mutually exclusive, at least in normal-form games:

• the two ways cannot be adopted simultaneously in the model of normal-form game
(without using convex probability mixtures, but this is not the way suggested by
Brandenburger and Nalebuff in their approach);

• there is no room, in the classic normal-form game model, for a simultaneous (non-
probabilistic) employment of the two behavioral extremes cooperation and non-cooperation.

Carfì [22,23] has proposed a manner to overcome this impasse, according to the
idea of coopetition in the sense of Brandenburger and Nalebuff. In a Carfì’s coopetitive
game model,

• the players of the game have their respective strategy-sets (in which they can choose
cooperatively or not cooperatively);

• there is a common strategy set C containing other strategies (possibly of different
type with respect to those in the respective classic strategy sets) that must be chosen
cooperatively;

• the strategy set C can also be structured as a Cartesian product (similarly to the profile
strategy space of normal-form games), but in any case the strategies belonging to this
new set C must be chosen cooperatively.

1.6.1. Two-Player Coopetitive Games

Definition 1. Definition (of coopetitive game). Let E, F and C be three nonempty sets. We
define as two-player coopetitive gain game carried by the strategic triple (E, F, C) any pair
of the form G = ( f ,>), where f is a function from the Cartesian product E× F×C into the
real Euclidean plane R2 and the binary relation > is the usual sup-order of the Cartesian
plane (defined component-wise, for every couple of points p and q, by p > q iff pi > qi, for
each index i).

Remark 1. Remark (coopetitive games and normal-form games). The difference between a two-
player normal-form (gain) game and a two player coopetitive (gain) game is the fundamental
presence of the third strategy Cartesian-factor C. The presence of this third set C determines a total
change of perspective with respect to the usual exam of two-player normal-form games, since we
now have to consider a normal-form game G(z), for every element z of the set C; we have, then, to
study an entire ordered family of normal form games in its own totality, and we have to define a
new manner to study this kinds of game families.

1.6.2. Solutions of a Coopetitive Games

The two players of a coopetitive game G—according to the general economic principles
of monotonicity of preferences and of non-satiation—should choose the cooperative strategy z
in C in order that:

• the reasonable Nash equilibria of the game Gz are f -preferable than the reasonable
Nash equilibria in each other game Gz′ ;
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• the supremum of Gz is greater (in the sense of the usual order of the Cartesian plane)
than the supremum of any other game Gz′ ;

• the Pareto maximal boundary of Gz is higher than that of any other game Gz′ ;
• the Nash bargaining solutions in Gz are f -preferable than those in Gz′ ;
• in general, fixed a common kind of solution for any game Gz, say S(z) the set of these

kind of solutions for the game Gz, we can consider the problem to find all the optimal
solutions (in the sense of Pareto) of the set valued path S, defined on the cooperative
strategy set C. Then, we should face the problem of selection of reasonable Pareto
strategies in the set-valued path S via proper selection methods (Nash-bargaining,
Kalai-Smorodinsky and so on).

Moreover, we shall consider the maximal Pareto boundary of the payoff space im( f )
as an appropriate zone for the bargaining solutions. The payoff function of a two-player
coopetitive game is (as in the case of normal-form game) a vector valued function with
values belonging to the Cartesian plane R2. We note that in general the above criteria are
multi-criteria and so they will generate multi-criteria optimization problems.

1.6.3. Nash (Proper) Solution of a Coopetitive Game

Let N := N (G) be the union of the Nash-zone family of a coopetitive game G, that
is the union of the family (N (Gz))z∈C of all Nash-zones of the game family g = (gz)z∈C
associated to the coopetitive game G. We call Nash path of the game G the multi-valued path

z 7→ N (Gz)

and Nash zone of G the trajectory N of the above multi-path. Let N∗ be the Pareto maximal
boundary of the Nash zone N. We can consider the bargaining problem

PN = (N∗, inf(N∗), sup(N∗)).

Definition 2. If the above bargaining problem PN has a Kalai-Smorodinsky solution k, we say that
k is the properly coopetitive solution of the coopetitive game G.

The term “properly coopetitive” means that:

• this solution k is determined by cooperation on the common strategy set C and to be selfish
(competitive in the Nash sense) on the bi-strategy space E× F.

For a specific study of n-players coopetitive games and of other possible solutions of
coopetitive games (bargaining solutions, Pareto compromise solutions, purely coopetitive
solution, transferable utility solutions, win-win solutions) we recommend [22,23].

1.7. Motivations and Objectives of the Paper

Why should two companies of the same type, belonging to the same eco-industrial
park, establish a coopetitive relationship?

In reality, belonging to an industrial park is a clear collaboration, in the strict sense,
that not only benefits the individual elements of the park but also determines positive
repercussions on the environment and on the health of the community, within the park
and its surroundings. However, the classic literature and theory on the subject does not
consider one aspect of the matter: the economic coexistence dynamics of different factories
of the same industrial park producing the same good. We focus precisely on what happens
dynamically when two products of the same type, produced by two different competitors
living in the park, end up for sale on the same market. Of course, two companies of the
same type end up competing in the market; this could also generate negative repercussions
on the ecological park.



Mathematics 2021, 9, 2520 6 of 30

1.7.1. Symmetric Competition and Asymmetric Cooperation

As explained, we model the interaction between two companies “of the same type”.
They are of the same type in the sense that they produce the same good and sell it in the
same market with similar variable costs, according to classical duopoly theory; from an
economical point of view, we have chosen to satisfy the general duopoly assumptions,
in a classic microeconomics settings (which determines the non-cooperative core of the
game). From a cooperative point of view, we shall add a quadratic perturbation acting
on the common cooperative strategy space C. Generally speaking, in coopetitive games,
the “type of a producer” is defined by the non-cooperative core payoff function (which is
a classic Cournot payoff function). However, in our numerical example, we choose the
cooperative part in such a way that the second player will show only a linear cooperative
perturbation, so the two companies differ in their payoff function: comparing Equation (1)
with Equation (2), company 1 has a proper quadratic cooperative-strategy function, while
company 2 has a linear one (which is, nevertheless, a particular case of quadratic function).
The cooperative part of the payoff function could be put in the form

v(x, y, z) = A(z, z2),

for a convenient bi-dimensional square matrix A. We choose, for our numerical example,
a more variegated asymmetric matrix A, just to show the versatility of the model: therefore,
our model, is symmetric in the first two variables and asymmetric in the third one.

1.7.2. Improvement of the Park and Possible Additional Earnings

We want to demonstrate, in this article, that there exist scenarios in which, not only the
competition can be sustained in equilibrium—without negative effects on the park—but we
can dynamically conceive a way to improve the park itself. In this respect, the coopetitive
approach and game theory help us to build up quantitative models that examines possible
strategic scenarios.

We, in our model, will deal exclusively with the interaction between two companies
of the same type and their possible additional earnings due to the proposed coopetitive
interaction and we will not deal specifically with the positive effects that our approach
provides for all the other elements of the park. When we talk about the “possible addi-
tional earnings” due to the proposed coopetitive interaction, usually we consider as the
reference earnings, those that the two companies would get in the absence of the proposed
coopetitive interaction: those coming from a classic non-cooperative solution, that is the
equilibrium obtained for the shared cooperative strategy z equal to 0; in other terms, the
Nash equilibrium of the “initial” game G0. In our specific case, since we base our analysis
on a classic duopoly, we have a unique Nash equilibrium for every value of the cooperative
strategy z and, in particular, for z equal zero. More generally, since the possible coopetitive
solutions are determined within convenient “coopetitive paths”, starting from convenient
“disagreement points” (initial equilibria or other classic choices of defense or menace in
game theory), we could consider (and propose) various options in order to measure the
“additional” earnings that our proposed coopetitive agreement would allow to the com-
panies. Anyway, in our case, we choose as a starting point for the bargaining the Nash
equilibrium of the game G0.

1.7.3. From Cournot Duopoly to Coopetitive Clusters

Our approach, as we already underlined, is dynamic, since it foresees an evolution
that develops within some temporal horizon. In the present model, we have chosen a
medium-term time horizon; this modeling choice allows us to use a quadratic translation
vector field in addition to the competitive payoff functions. In the present case, our
competitive core game comes from consolidated economic models and analyzed in details
(see [24–26]): the duopoly models. Therefore, we start from a classic duopoly interaction
and then we improve it through cooperative binding agreements between competitors.
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The collaborative agreements that we initially propose are positively affecting the entire
park and, in the medium term, bring more revenues and/or benefits to the two companies
of our game in terms of saving production costs, saving in the more efficient disposal of
waste materials.

Moreover, we desire to emphasize how the presence of two (or more) competitors in
the same industrial eco-park might dynamically produce beneficial effects on the entire
industrial park. We do not analyze quantitatively the positive effects of the two companies’
production choices on the whole industrial park, however, from a qualitative standpoint:

• the presence of two similar industries in the same eco-industrial park might determine
the critical financial availability for a “technology leap” and, in particular, for a
transition to a greener and more efficient production (which represents per se an
improvement of the eco-park, beyond the possible financial positive effects that our
model might forecast for all the other elements of the park);

• the win-win coexistence of more competitive producers in the park might represent
an incentive for new potentially innovative enterprises to enter the park, allowing the
park itself to grow and improve from technical and ecological standpoints;

• one could conceive of situations in which an industrial park arises precisely from the
needs of two companies competing on the same market;

• the presence of more competitors within the same industrial park determines a sort of
dynamic imbalance that may translate into economic growth both for the companies
themselves and for the various members of the industrial park, because of the greater
production capacity of the arising “coopetitive clusters”;

• the empowerment of the park determines positive effects on the safeguarding of the
local environment, improving the nearby natural resources and contributing to the
safeguard of public health.

Our model can be generalized to several companies (coopetitive oligopoly clusters).

2. Study Case: Eco-Industrial Park of Styria

We consider the eco-industrial park of Styria, located in Austria. This is one of the most
familiar eco-industrial parks in the literature. “Styria is an industrial zone where there are
firms from different sectors with high innovation potential. Primary sectors are paper and
wood products, machinery, metal and steel, and automotive. Clustering of firms in a region
help them reduce their costs as well as make it possible to establish a network among firms
where wastes are used. It is possible to recycle materials such as paper, gypsum, iron parts,
used oil, and rubber in the established system. With these non-expensive by-products,
costs of the firms are reduced and at the same time, environmental benefits are obtained.
Hence, whole region benefits from the established recycling system” [3].

We consider a part of the Styria recycling network (Figure 1)—another excerpt of the
real eco-industrial park could be found in [27]—and we focus our attention upon the two
producers of the same type, the two paper factories. They collaborate because they belong
to the eco-industrial park and in particular the waste paper of the factory 2 is used as input
material for the paper factory 1, but they are also competitors because they sell on the same
market. We propose two possible agreements among the two competitors, agreements
that increase the total gain of the two competitors in the eco-industrial park (specifically,
one maximizing the total payoff and at the same time equalizing the two competitors’
payoffs and one maximizing the total payoff and at the same time differentiating the two
competitors’ payoffs proportionally to the financial participation in the initial investment.).
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Figure 1. Part of the Styria recycling network.

3. Methods: The Economic Model

The two players of the game are the two paper factories, that invest on the develop-
ment of the eco-industrial park, and in particular, their cooperative strategy is represented
by the strategy z.

3.1. Sketch of the Model

Now we provide a verbal, intuitive sketch of our coopetitive game and of its related
solution procedure. First of all, our game G can be defined and viewed as a continuous
curve of classic non-cooperative Cournot games (a continuous family of Cournot games).
To each noncooperative strategy z, we associate a classic duopoly game Gz. That duopoly
game is a symmetric noncooperative game. The payoff functions of our game G reveal
simply the payoff functions of the classic duopoly model translated by a quadratic vector
field v, determined by a matrix A of coefficients containing information about the efficiency
and costs of the new technology. In other terms, our payoff functions are the sum of a
classic duopoly function plus a quadratic term.

Fixed a cooperative strategy z, we determine the Nash equilibrium, the classic Nash
Equilibrium, of the game Gz, for every cooperative strategy z. So, we have constructed a
curve N that we called the Nash path. Now, we need to find the optimal Nash equilibrium
by using a reasonable criterium, we choose to maximize the collective gain. The optimal
Nash solution with respect to the above reasonable criterium, the criterion of maximum
collective gain, provides us the first part of our solution: according to the general idea of
cooperation, we have enlarged the pie of possible gains with respect to the initial duopoly
game G0, with zero cooperation, by constructing an infinite set of new Cournot duopoly
games which are at virtual disposal of the two industries. After that the two industries
choose what duopoly Gz should be played (one that guarantees “more profits” with respect
to G0) and how to share the revenues. Infact, the second part of the solution consists in the
sharing of the maximum collective gain, for which we use a classic linear selection.
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3.2. Strategies

The two players’ strategies are:

1. the strategy
x ∈ E := U = [0, 1],

representing any paper quantity produced by paper factory 1;
2. the strategy

y ∈ F := U = [0, 1],

representing any paper quantity produced by paper factory 2;
3. the shared strategy

z ∈ C := [0, 3](million dollars),

representing the cooperative strategy. The set C is determined together by the
two players.

3.2.1. Measure Units

Any shared strategy z in C is expressed in million dollars (it is a shared investment of
the two enterprises). Differently, for what concerns the units of measure of strategies x in E
and y in F, they are not expressed in million dollars, but they are expressed (as usual in
Cournot games) by a normalized quantity unit, chosen once and for all in our game. This
normalized unit is equal for both players and reduces the strategy sets E and F to the unit
interval [0, 1]. The maximum 1 is the so called critical quantity of the Cournot game: any
player certainly loses by choosing a strategy s > 1, independently of the choice of the other
player (this is true for the non-cooperative core of our game).

Now, we need to observe three fundamental aspects of the model:

1. the model is asymmetric in z, but it is absolutely symmetric in x and y, so the units of
measure of E and F are the same; our asymmetric game G is a curve of symmetric
games Gz;

2. the payoff
4x(1− x− y),

as well as
4y(1− x− y),

is monetary and should be measured in money units—previous multiplications times
unit price have transformed quantities into money. Now, without losing generality,
we have assumed that the unit of measure is a million dollar—any other possible
measure unit determines only the change of the coefficient 4.

3. we prefer to distinguish, at least at a nominal level, the sets E and F, although they
are exactly the same set U = [0, 1].

3.2.2. Cooperative Strategy

The strategy z in C is the aggregate investment for the environmental sustainability
economic approach, specifically

z ∈ C = [0, 3]

represents the investments to acquire advanced green technologies for recycling paper
waste. This strategy could be implemented by acquiring an advanced paper production ma-
chinery that allows to reach sustainable development and create environmentally friendly
products.

We remind that, on average, the need to produce a ton of paper pulp is 2.2–4.4 tons of
wood, while, for obtaining the same quantity of paper pulp, we need to recycle 1.4 tons of
waste paper. Moreover, recycling of 1 ton waste paper will save energy, material and natural
resources (“17 trees, 380 gallons of oil, three cubic yards of landfill space, 4000 kilowatts
of energy, and 7000 gallons of water, that represent a 64% energy savings, a 58% water
savings, and 60 pounds less of air pollution” [28]).
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3.2.3. Recap: Interpretation of the Strategies

At this point of the paper, we desire to underline that:

1. any z in C is a possible shared total investment by the two firms (namely decompos-
able into respective parts β1z and β2z). We call it “cooperative strategy” because the
strategy set C introduces and defines together with the translating vector field v the
coopetitive agreement of the two enterprises in its cooperative part (the competitive
one is defined by the classic duopoly model).

2. strategies x in E and y in F are the classic Cournot production strategies: they are
quantities of production chosen separately and simultaneously by the two players,
exactly as in the duopoly game.

We observe again that payoff functions of the duopoly game and the translating vector
field v transform the strategy triple (x, y, z) into money. Strictly speaking, the vector field v
should be considered as defined upon the entire tri-dimensional coopetitive strategy set P,
not only upon the one-dimensional strategy set C, firstly because that is the general case
and secondly because mathematics requires to add functions defined on the same domains;
for instance, we consider even the non-cooperative part defined upon the entire strategy
space P, even if that part is constant with respect to z.

In the case of z, both players control this cooperative strategy, in a shared and consen-
sual fashion. They may contribute asymmetrically to z by different amounts β1z and β2z,
with β1 + β2 = 1. The cooperative strategy z is chosen by the two companies together, as
their total investment to acquire advanced technologies for recycling paper waste, and this
technology, once obtained, is available to both companies and they can use it according to
the convex pair β (first player uses the machine for β1 of the total production time and the
second player for β2 of the total production time).

For what concerns the timing in the game G, we observe that the two players:

1. firstly analyze the general situation,
2. secondly choose the cooperative strategy z,
3. thirdly, they play the fixed duopoly game Gz, determined by the strategy z,
4. finally they share the gains according to the coopetitive solution.

3.3. Payoff Functions

For what concerns the duopoly core G0, we have simply used the payoff function in
the reduced form proposed in [25,29,30].

In the payoff function of any player i, paper factory 1 controls x, paper factory 2
controls y, and the two paper factories choose z together and consensually (the two players
choose to invest a total aggregate amount z, contributing with respective complementary
parts β1z and β2z). Furthermore, the two values of x and y are chosen independently and
simultaneously (as usually happens in non-cooperative game theory), after both of them
have chosen together and implemented the cooperative strategy z.

The payoff function of the paper factory 1 is the function f1 of the parallelepiped
P = E× F× C into the real line, defined by

f1(x, y, z) = 4x(1− x− y) + m1(z− az2) (1)

for every triple (x, y, z) in the parallelepiped P where m1 is a real parameter representing the
interest rate of the investments decided by the two players upon the economic performances
of the paper factory 1 (see Section 3.5 for the specific evaluation) and a is a random erosion
coefficient.

The payoff function of the paper factory 2 is the function f2 of the parallelepiped P
into the real line, defined by

f2(x, y, z) = 4y(1− x− y) + m2z (2)
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for every triple (x, y, z) in the parallelepiped P where m2 is a real parameter representing the
interest rate of the investments decided by the two players upon the economic performances
of the paper factory 2 (see Section 3.5 for the specific evaluation).

The payoff function of the coopetitive game G is given by

f (x, y, z) = (4x(1− x− y) + m1(z− az2), 4y(1− x− y) + m2z),

= 4(x(1− x− y), y(1− x− y)) + v(x, y, z), (3)

for every triple (x, y, z) in the compact parallelepiped P, where

v(x, y, z) = (m1(z− az2), m2z)

defines our translation vector field perturbing the classic Cournot duopoly. We assume the
erosion coefficient a equal to 1.5, but it could be considered a stochastic variable.

The Cooperative Translating Vector Field V

We write v(x, y, z), because we need two functions defined over the same strategy
space P in order to properly define their summation and also to obtain a function f defined
(similarly) on the same space P. Our scalar and the vector fields are correctly and properly
defined over the tri-dimensional strategy space P. Nevertheless, we observe that here the
vector field v depends properly only on the strategy z. In fact, it is a constant function
with respect to x and y (although it is defined on the entire three-dimensional space P).
In more complex situations the coefficients m1 and m2 could also properly depend on
x, y and z, but that is not the case in our model; our general case is well represented by
constant coefficients.

3.4. The Game G as a Curve of Infinitely Many Duopoly Games

We desire to underline that the two players are not playing one duopoly game at the
time, they should consider all the infinitely many duopoly games Gz, optimize with respect
to z, for which we need a reasonable criterium for determining the optimal duopoly game
to play, then they should select the Nash equilibrium strategies of that optimal game and
furthermore they need to share fairly the collective gain at that Nash equilibrium N(z∗),
which can be done also by a Nash bargaining procedure, that is not the problem. The real
technical problem is to find the set of all possible Nash equilibria and to find there the
“best” Nash equilibrium with respect to a reasonable criterium. Then, we can classically
determine a possible compromise. In other terms, the problem in solving a coopetitive
game G consists of:

1. analytically determine the Pareto boundary H of all possible focal (incomparable)
strategy profiles (for instance, all possible Nash equilibria of all possible classic non-
cooperative games forming G);

2. then propose/use a first reasonable selection procedure of the “win-win” solution in
H (for instance, the collective maximum criterion);

3. then determine the way to share the “win-win” solution (for example a linear selection,
Kalai selection, a Nash bargaining selection. . . and so on. . . ).

Dealing with infinitely many games at a time, at our best knowledge, we cannot use any
simpler way to determine the final solution (N(z∗), W ′).

3.5. Determination of the Interest Rate of the Investment M

From Figure 1, we can see that the paper factory 2 of the eco-industrial park produces
paper starting only from the waste wood of the sawmill, while the paper factory 1 produces
paper from the waste wood of the sawmill and from waste paper of the paper factory 2.
So, let us assume that the input materials are free for the two paper factories. If the paper
factories desire to produce a greater quantity of paper (according to the market demand),
with the same available waste material as input, we propose the joint investment for the
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purchase of a more efficient, sustainable and modern machinery producing paper from
recycled paper.

Moreover, we assume that the waste paper could come from cities in the nearby of
the eco-industrial park that enter into an agreement with the paper factories and deposit
their paper waste at a zero price for the factories, while the cities could avoid landfill
(which as we know implies not only high management costs, but more and more heavy
and unsustainable environmental issues).

3.5.1. Description of the New Recycling Cycle

Consequently, we assume that a quantity qw of free waste paper comes from the
near cities and from the eco-industrial park in a year. From the quantity qw, one new
machine produces another quantity qe of recycled paper in a year. The quantity qw never
appears in the analysis. We assume here, that the quantity nqe produced by n machines
(bought by the enterprises by means of z) can be sold on the market at a price pe (price
proposed by the two enterprises themselves and obtained by minimizing the company’s
costs which depend on the input quantity qw). In other terms, we assume the existence
of an equilibrium pair (pe, qe) in the market, the equilibrium pair price-quantity coming
from the intersection of a possible market demand multi-curve and an enterprise’s supply
multi-curve. Here, we desire to observe that, in our model, we assume the old production
technology described by the classic duopoly and the new production described by the
matrix A strictly separated from an economic point of view. In other terms, we assume
that the two enterprises maintained the old production together with the new one.

With this, we have that qe is the production of one machine, which is completely sold
at the price pe, the quantity qe is aggregately sold by both players (player i sells βiqe of the
total quantity qe), so the pair (pe, qe) does not depend on i because it is not an individual
pair but an aggregate pair. In other terms, the aggregate supply of the two enterprises
(coming from the new production technology) is qe for any machine production at unit
price pe. On the other hand, mi depends on i exactly by the factor βi, because that factor
specifies the quantity sold by player i in the market, the quantity βiqe produced by one
machine. The quantity qe is the annual production of one new machine, in particular nβiqe
is the annual production of all n machines sold in the market by the i-th player, but, this
does not mean that x is equal to βiqe, because not all the production of the first factory
depends on the new machines (x is the old paper production of factory 1 that coexists
together with the new production nβiqe). Similar remark holds for the second player.

3.5.2. Analytic Expression of the Coefficient Mi

We calculate now the annual interest rate mi of the i-th player, which is independent of
z; mi depends on i by the factor βi. The payoff asymmetry in z is not relevant here because
mi depends only on one machine, that belongs to both players in proportion β.

The annual interest rate of this investment is

mi = βi(npeqe − z− c(pe)nqe)/z

= βi(peqez/pm − z− c(pe)qez/pm)/z

= βi(peqe/pm − 1− c(pe)qe/pm), (4)

where:

• n is the number of the recycling machines bought by the investment z;
• pm is the price of one machine, so that, n = z/pm;
• pe is the unit selling price of the paper in $/tons (in the examined year);
• peqe is the revenue of the paper factories from selling a quantity qe of paper at price pe;
• nqe is the paper produced by n machines in a year;
• z is the total investments of the enterprises in acquiring the recycling machines, which

is our cooperative strategy;
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• c(pe) is the marginal cost of production, depending on the selling price pe. We assume
that the value c(pe) belongs to the interval

[0, 1]pe = [0, pe].

The marginal cost c(pe) represents an erosion coefficient containing information about
taxes, general costs of the factory, cost of using electric power and fresh water;

• βi is the percentage of the common investment paid by player i = 1, 2;
• in other terms, we assume that a choice of a shared investment z determines a state of

the market and, consequently, an equilibrium pair (pe, qe).

3.5.3. Possible Dependence of Mi upon Z

We note that the dependence of mi upon z is only apparent in the above Equation (4),
which is the definition of those coefficients. The two functions mi reveal constant functions,
so that we identify those constant functions with their respective values. We shall clarify
better later.

As we tried to explain before, all the part of the payoff space determined by the
cooperative strategy shows a general quadratic behavior for both players, but, for sake
of simplicity and in order to take into account the asymmetric economic situation of the
two industries—for which the first enterprise will possibly receive less material from the
second, because the second one will use part of the material previously devoted to the first
enterprise for himself—we decided an asymmetric matrix A. We desire here to underline
that our model clearly, in general, can easily handle any possible choice of A, in particular
those choices in which both enterprises possess a proper quadratic form of the cooperative
payoff. The asymmetry, in our case, derives exactly from the different role played by the
two enterprises initially: without coopetitive strategy, the first one receives also from the
second one; on the contrary, the presence of the coopetitive strategy could diminish the
free row material coming from the second one, but we underline that the choice of A is just
for the sake of example.

3.5.4. The Subdivision Strategy β

We hypothesize that the investment z is subdivided into two additive terms according
to a convex pair of percentages (β1, β2), with

β1 + β2 = 1.

We don’t assume that the two players should contribute symmetrically to the invest-
ment z, we find a symmetric assumption too restrictive. Moreover, we shall see that the
choice of the erosion coefficient a will determine uniquely the optimal subdivision strategy
β, solving the entire decision problem.

3.6. Numerical Example

Table 1 shows production details of a machinery that produces A4 paper from paper
waste [31].

Moreover, we assume a total production quantity per machine qe equal to 4000 tons
(in a year) at equilibrium price pe of 150$ per tons (by “equilibrium price” we means simply
that at unit price pe the market is capable of acquiring the entire production qe).

We assume that the marginal cost for producing pe is equal to

c(pe) = 0.3pe.
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Table 1. Detailsof production of the machinery. Source: [31].

Name A4 Paper Production Unit

Price 60,059 USD –150,000 USD
Product type A4 paper, photocopier paper
Power (W) 100–300 KW
Warranty 1 years

Applicable industries Production plant, Paper industry
Place of origin Henan, China (Mainland)

Brand Leizhan
Voltage 380 V

Certification CE, BV, ISO
Production capacity 20–270 t/d

Raw material Paper waste, virgin pulp
Paper output A4 paper, copy paper, office paper

So, assuming the maximum possible price for one machine (pm = 150,000 $), Equation (4)
becomes

mi = βi(peqe/pm − 1− c(pe)qe/pm)

= βi(0.7peqe/pm − 1)

= βi(0.7× 150[$/t]× 4000[t]/150, 000[$]− 1)

= βi(2.8− 1)

= 1.8βi.

We assume, for the sake of example, that the two paper factories contribute to the
investment z according to a percentage pair

(β1, β2) = (1/3, 2/3).

Remark 2. Our model can analyze completely the situation for any choice of the convex pair

β = (β1, β2).

To exemplify, we have chosen the pair (1/3, 2/3). One possible economic justification of the
chosen scenario would be that the payoff function of the first player is properly quadratic in z with
a negative coefficient of z2, but we desire to underline that here the choice of the convex pair β is
exogenous (it is another decision parameter of the model) and the investment of the first player
reveals, in any case, repaid by the convenient interest rate m1. We will see later that, fixed the
erosion coefficient a, the optimal choice of the strategy β will reveal uniquely determined.

3.7. Recap of the Coopetitive Game G

• The game proposed is a particular case of a coopetitive game which is symmetric in
the first two variables, indeed, fixing any strategy z, the game is a classic symmetric
duopoly game.

• The dependence on z is, in the general case, quadratic for both players, even if in some
cases some quadratic dependence may reveal indeed linear, since the coefficient of the
z2 may vanish.

• The Nash equilibrium path N, path of all Nash equilibria, is a constant path when
projected in E× F: the projection contains only the bi-strategy (1/3, 1/3), because we
do not consider the third strategy z. In the strategy space P, the Nash equilibrium
path N is the parametric straight-line associating to any z the triple

N(z) = (1/3, 1/3, z).
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• On the other hand the Nash payoff path is represented in a two-dimensional payoff
space and it is the parametric curve N′ associating to any z the pair

N′(z) = (4/9, 4/9) + (m1(z− az2), m2z).

• When we fix a strategy z, we obtain indeed a symmetric Nash equilibrium; we obtain
the classic symmetric Nash equilibrium and we could have expected that because,
when we fix the cooperative strategy z, we are dealing simply with a symmetric
duopoly. On the other hand, the asymmetry of the Nash payoff N path depends only
on the strategy z.

4. Results
4.1. Study of the Game

Fixed a cooperative strategy z in the interval C = [0, 3], the game

G(z) = (gz,≥),

with payoff function gz, defined on the square U2 by

gz(x, y) = f (x, y, z),

is the translation of the game G0 by the vector field

v(x, y, z) = (m1(z− az2), m2z),

so that we can study the game G0 and then we can translate the various information of the
game G0 by the vector v(x, y, z).

We show, in Figure 2, the payoff space of the game G0. Then, we translate the payoff
space of the game G0 by the vector v(x, y, z), and obtain the coopetitive dynamical path of
the initial payoff (see Figure 3).

Figure 2. Payoff space of the game G0.
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Figure 3. Payoff space of the game G.

4.2. Payoff Universe, Payoff Spaces and Their Interpretations

We just remind that the space represented in Figure 2 is the payoff universe of the
game G0, it is a two dimensional Euclidean space R2 in which the first coordinate represents
the payoffs of the first player and the second coordinate represents the payoffs of the second
player. The blue and green lines in the payoff universe constitute the boundary of the
payoff space of the game G0: all possible payoffs in the Cournot duopoly G0 lie inside
the above boundary. It is clear that the zone in which both players gain is the triangle
contained into the first quadrant, while the other part of the payoff space condemns the
players to certain losses.

4.3. Possible Coopetitive Solutions

We propose two possible solutions of the game: in a purely coopetitive fashion, we
provide the strategy-sharing solutions

(N(1), T′)

and
(N(1), W ′),

although we think the second is more adequate to solve our problem.
They are the pairs in which:

• the first member N(1) is a Nash equilibrium (N(1) is the Nash equilibrium

(1/3, 1/3, 1),

according to the notation of the Nash equilibrium path N);
• the second member is the sharing between the two players of the collective gain

f1(N(1)) + f2(N(1));

• the Nash equilibrium N(1) is obtained by maximizing the collective payoff function
upon the parametric curve (or trajectory) N determined by all the Nash equilibria of
the coopetitive game G (this maximum point is attained precisely at the value 1 of the
parameter z, as we can easily prove);
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• the second member T′ (or W ′) of our solution is determined by a Kalai-Smorodinsky
procedure, specifically, we solve a compromise decision problem on the Pareto bound-
ary, which is nothing but the straight-line of the maximum collective gain passing
through the point

N′(1) = f (N(1))

and by the threat point N′(0).

4.3.1. Geometric Determination of the Purely Coopetitive Solution N(1)

The purely coopetitive solution N(1) [23] can be obtained also by maximizing the
intercept k of the straight-line

X + Y = k,

(which represents the collective gain of the payoff pair (X, Y)) upon the curve N′ of Nash
points (the yellow curve in Figure 4), in other terms we consider the highest intercept k for
which the above straight-line touches the yellow curve. In our context, we consider the
parametric curve

N′ : C → R2 : z 7→ f (N(z)),

which is the image of the parametric curve N determined by all the Nash equilibria of the
parametric game G. We observe, in fact, that every member G(z) of our parametric game
G offers one unique Nash Cournot equilibrium

N(z) = (1/3, 1/3, z)

whose payoff N′(z) is f (N(z)). In particular, we will see that

N(1) =
(

1
3

,
1
3

, 1
)

,

while

N′(1) = f (N(1)) =
(

4
9

,
4
9

)
+

(
− 3

10
,

6
5

)
=

(
13
90

,
74
45

)
.

Figure 4. Maximum collective gain Nash payoff.
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4.3.2. Remark: Curve of Cournot Duopolies and Its Nash Path

Throughout the paper, we define our game as Cournot-like in the sense that it is a
parametric family, continuous family, of classic Cournot duopoly models. In this regards,
by better highlighting our notations, we have constructed a corresponding continuous
family of Nash equilibria

N(z) = (1/3, 1/3, z)

and associated payoffs
N′(z) = f (N(z)).

It is extremely natural to examine and analyze a coopetitive game as a family of
non-cooperative games and, correspondingly, to analyze the family of the Nash equilibria
of games forming the coopetitive game, viewing that Nash family as a locus of possible
candidate-solutions of the game G itself. For example, here, our purely coopetititve solution
is chosen among the locus of all Nash coopetitive equilibria by a procedure of optimization
based on the cooperative strategy z.

4.3.3. Symmetries of the Purely Coopetitive Solution

Here we underline that the 1 in N(1) refers to the optimal cooperative strategy

z∗ = 1.

We, moreover, underline that N is a function of z, it is a parametric curve containing
all the Nash equilibria of the game G in the form

N(z) = (1/3, 1/3, z).

Then, for z = 1 we have
N(1) = (1/3, 1/3, 1),

where (1/3, 1/3) is the Nash equilibrium of the game G(1). We observe that (1/3, 1/3, 1)
represents a symmetric Nash equilibrium of the game G, and this is possible because
the asymmetry between company 1 and company 2’s payoff functions (respectively,
Equations (1) and (2)) holds only with respect to the cooperative strategy z while the
two payoff functions are perfectly symmetric with respect to non-cooperative strategies x
and y. Indeed, the asymmetry of the two payoff functions, at the level of the solution, is
completely contained in the optimal value z∗ = 1 and in the sharing T′ or W ′. On the other
hand, there is no other natural and straightforward candidate as equilibrium solution of
our game G.

4.3.4. Economic Interpretation of the Purely Coopetitive Solution

The payoff vector
N′(1) = (13/90, 74/45)

means that, after deciding together the cooperative strategy z = 1 (because it maximizes
the collective gain upon all possible Nash equilibrium payoffs), the first player gains

X∗ = f1(N(1)) = 0, 14̄ (million dollars),

while the second player gains

Y∗ = f2(N(1)) = 1, 64̄ (million dollars).

We underline that the point N′(1) is the maximum collective gain Nash payoff. The
maximum collective gain upon the Nash path is indeed

X∗ + Y∗ = 1, 78̄ (million dollars).
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We should notice that N′(1) maximizes the payoff sum X + Y on the path N′, but it
does not provide (by no means) a fair subdivision of the collective gain: we need to find a
partition of X∗ + Y∗.

4.3.5. Transferable Utility Solutions

The relation between N′(1) and T′ (or W ′) is simply that they have the same collective
gain, but T′ nor W ′ are Nash (vector) payoffs: they provide a fair division of the collective
gain in N(1). We follow the usual procedures in bargaining problems: we determine a
point belonging to a Pareto boundary which condensates within itself the substance of
the deal. In our case, the Pareto boundary is the straight line of maximum collective gain,
the procedure we used to select a possible point belonging to that straight line is a linear
selection procedure (see Appendix A for the direct reachability of the payoff T′).

4.3.6. Purely Coopetitive Solutions and Super-Cooperative Solutions

We should moreover underline that N′(1) is what the two companies obtain by
cooperating on strategy z and (just) competing on strategies x,y, while T′ and W ′ represent
further cooperation to find a fair subdivision of the gains. The ultimate aim of coopetition
is to enlarge the pie of possible gains and share it fairly.

We finally note that if the players would cooperate both on z and x, y, that would
provide another even better solution, which, however, would be used in order to construct
another linear selection of fair division.

4.3.7. Threat Points and Fair Sharing

The second member of our solution, that comes from the threat point

M′ = N′(0)

and which is the intersection of the maximum collective gain straight-line

X + Y =
161
90

with Kalai-Smorodinsky straight-line

X = Y

(in Figure 5) and
M′ +R(1/3, 2/3)

(in Figure 6), are the two payoff profiles

T′ =
(

161
180

,
161
180

)
≈ (0.89, 0.89)

and

W ′ =
(

201
270

,
282
270

)
≈ (0.74, 1.04).

We desire to stress that the maximum collective gain Nash payoff N′(1) is the max-
imum of the Nash payoff curve N′ with respect to the total preorder induced by the
collective payoff function f1 + f2, when we identify the parametric curve N′ with its graph.
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Figure 5. Sharing solution T′.

Figure 6. Sharingsolution W ′.

5. Discussion
5.1. Results Discussion

The results of the mathematical study prove that, fixed an investment sharing β, we
can find two possible coopetitive solutions: the pairs

(N(1), T′)

and
(N(1), W ′).

They are the pairs in which the first member N(1) is one Nash equilibrium and the
second member is the sharing between the two players of the collective gain

f1(N(1)) + f2(N(1)).
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Those solutions reveal advantageous both for the firms involved, for the eco-industrial
park, for the environment nearby the park, for the cities cooperating with the park.

Definition of a Transferable Utility Coopetitive Solution

We desire to underline here that a transferable utility coopetitive solution, in general,
can be configured as a hybrid-pair in which the first component belongs to the strategy
space of the game and the second component belongs to the payoff space of the game. The
first component indicates what kind of actions the two players must adopt, individually
and collectively, in order to obtain the payoff indicated by the second component of the
solution itself. Clearly, we cannot obtain the second component T′ (or W ′) by a mere
transformation of the strategy N(1) by the payoff function f , because a coopetitive solution
requires a two stage process: firstly we optimize a collective gain upon a reasonable
enlarged pie, secondly we teach to the players how to fairly share the maximum collective
gain just obtained.

5.2. Model Discussion

Our approach can be considered also dynamic in time, therefore it foresees an evolu-
tion that develops within some temporal horizon. In the present model, we have chosen a
medium term time horizon; this choice allows us to use a quadratic translation vector field
in addition to the competitive payoff function, because the cooperative strategy z can affect
the payoffs of the two enterprises acting on the level of revenues and costs.

Remark 3. We desire to observe that

• firstly, in the long term very plausibly we should use more powers of z and greater dimensions
for the coefficient matrix A;

• secondly, in the medium term, we use a translating vector field of the form

v(x, y, z) = A(z, z2),

for any possible choice of the (2, 2) matrix A, which, as it could be readily understood, in the
majority instance provides vector fields with both components properly quadratic, sometimes
gives only one properly quadratic component and in a negligible remaining cases provides a
linear translation, depending on the coefficients in A: the point is that our model can describe
faithfully any possible choice of A and our methods can analyze any possible consequence
in details.

5.2.1. Econometric Determination of the Technical Matrix A

We desire however to specify that we have used, as an example, a case in which one
out of the two companies of our game is properly quadratic and the other is linear, because,
in the real case of the considered industrial park, the two industries are slightly different in
the way they receive waste paper. It remains, however, intended that the coefficients in the
matrix A should be evaluated in the actual and real state of the industrial area by a careful
examination of the real costs and economic frictions of the two enterprises. So, the present
values of A must be intended only for the sake of example.

5.2.2. Indirect Positive Effect on the Entire Park

The coopetitive agreement, that we propose, positively affects the entire park because:

• it shows how to compensate the negative effects of the competition inside the park;
• it allows possible technology leaps towards a more efficient model of waste disposal,

by new innovative machines;
• in the medium term, it brings more revenues and/or benefits to the two companies

(or possible competitive clusters) of our game, in terms of production costs and more
efficient disposal of waste materials (because all the coopetitive agreement is founded
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upon the acquisition and use of new technologies capable to mitigate the production
costs and bringing a more efficient and profitable disposal of waste materials).

Although we had quantitatively and particularly focused on the two companies’
coopetitive agreement, and related optimal strategies, together with the fair sharing of the
acquired earnings, we desire to stress that:

• all the production costs and market information of the competitive base game G0 (that
is, “status quo” before the additional cooperative agreement) is contained in the g0
payoff vector function, which is the classic payoff vector function of the duopoly;

• all the production costs, economic values and market information of the coopetitive
agreement interaction G (continuous curve of non-cooperative symmetrical Cournot
games) is contained in the g0 payoff function and in the matrix A, which should be
determined by econometric and statistical analysis upon the real status of the two
industries, times by times.

5.2.3. Efficient Disposal of Waste Materials and Technology Leap

For what concerns the efficient disposal of waste materials, any information about the
new more efficient and more green use of the paper wastes produced inside the industrial
park and in the vicinity of it (i.e., towns near the industrial park or other nearby facilities)
is completely contained in the features of the machines that constitute the technological
core of the agreement itself.

The choice of the machine is a decision problem which we consider solved and we
can reduce that choice to the amount z of money which serves to buy n machines.

The quantitative information about the technical efficiency of the agreement changes
with the machine and ultimately it is contained again in the matrix A.

Although we quantitatively do not compute explicitly all the positive effects on the
entire park (if we exclude the more efficient and more sustainable use of the wastes inside
the park by the new technology), we observe that, from a qualitative point of view, we have
constructed a mathematical model that allows a rational and controllable way to enlarge
the industrial park in a semi-free market regime and improve the technological level of the
park itself towards a greener and more sustainable status.

5.3. Sensitivity Analysis: Optimal Strategy β∗ and Z∗β and General Optimal Solutions

5.3.1. The General Solution in Analytic Form

We recall that the Nash payoff path is the parametric curve N′ associating to any z
the pair

N′(z) = (4/9, 4/9) + (m1(z− az2), m2z).

Let γ ∈ R+ be such that
mi = γβi.

The collective gain at the Nash equilibrium N(z) is

µ(z) := f1(N(z)) + f2(N(z)),

that is the function µ defined by

µ(z) = 8/9 + m1z−m1az2 + m2z = 8/9 + γz−m1az2,

where
γ = m1 + m2.

The first derivative of the function µ is defined by

µ′(z) = γ− 2m1az = γ− 2(γβ1)az,
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for every z ∈ C, which is greater than 0 if and only if

z <
1

2β1a
,

since γ > 0. So, the maximum point of µ is the strategy

z∗β =
1

2β1a
,

if
1

2β1a
≤ 3,

that is if
β1 ≥

1
6a

.

Otherwise, the maximum z∗ is 3. Therefore, the optimal Nash equilibrium, after fixing
the vector β, is

N(z∗β) =
(

1/3, 1/3,
1

2β1a

)
for all β1 ∈ [1/(6a), 1] and

N(z∗β) = (1/3, 1/3, 3)

for β1 < 1/(6a). The collective gain, in the first case, is

µ(z∗β) =
8
9
+ γz∗β − γβ1a(z∗β)

2 =

=
8
9
+ γ

1
2β1a

− γβ1a(
1

4β2
1a2

) =

=
8
9
+

γ

4β1a
.

In this first case, the term
γ/(4β1a)

is greater than 0 and that the maximum value of µ(z∗β) is attained at the minimum possible
value of β1, which is

β∗1 =
1
6a

.

The maximum value of the function associating with β the above value µ(z∗β), is the
value

µ(z∗β∗) =
8
9
+

γ

4β∗1a
=

=
8
9
+ γ

6a
4a

=

=
8
9
+

3
2

γ.

5.3.2. Example

Provided that:
γ = 9/5 and a = 3/2,

we have

β∗ = (β∗1, β∗2) =

(
1
6a

,
6a− 1

6a

)
=

(
1
9

,
8
9

)
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and
z∗ =

1
2β∗1a

= 3.

The collective gain µ(z∗β∗) is

µ(z∗β∗) =
8
9
+

3γ

2
=

323
90

= 3, 58̄ (million dollars).

If, however, the two players cannot invest the optimal z∗ = 3 and they can invest
only z = 1 (million dollars), as in our game, we obtain a non-optimal β1, that is, for fixed
a = 3/2,

β1 =
1

2z∗a
=

1
3

,

and so the pair β is equal to

β =

(
1
3

,
2
3

)
.

5.3.3. Graphical Representation for Every Value of β1

Here we represent, in Figure 7, the payoff space of the game G for β1 = 0, 1/2, 1.

Figure 7. Payoff spaces for three values of β1 and z ∈ [0, 3].

In Figure 8 we represent the payoff space of the game G for β1 ∈ [0, 1] and the Nash
payoff trajectories.

Figure 8. Payoff spaces and Nash trajectories for different values of β1 and z ∈ [0, 3].
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In Figure 9 we represent the Nash trajectories of the game G for β1 ∈ [0, 1] together
with the optimal point N(z∗β∗). Matlab Code showed in Appendix B.

Figure 9. Payoff Nash trajectories and related optimal point N′(z∗β∗ ).

5.4. Limitations and Future Research Directions

A limitation, as we previously pointed out, regards the coefficients of the matrix A.
They should be evaluated in the actual and real state of the industrial area by a careful
examination of the real costs and economic frictions of the two enterprises. So, the present
values of A must be intended only for the sake of example.

Our game theory approach could also consider quantitative information that we have
not yet included in the initial network constituting the park, in terms of costs, revenues,
savings on raw materials and waste disposal.

Moreover, we would, in future research, propose additional agreements that encourage
the participation of other firms and the development of the entire eco-industrial park in
order to increase the total gain of any enterprise belonging there. In fact, our model can
be generalized to several companies. We have proposed possible agreements among the
two paper factories that increase the total gain of the two competitors with respect to the
earnings they would obtain without any coopetitive agreement. The final net bi-gain of the
agreement in one year is the vector

W ′ −M′ (or T′ −M′)

which is a vector strictly greater than the null vector.
We desire to stress that, before the agreement, we have a duopoly G0, while after

the coopetitive agreement we have a greatly enlarged game-curve G. Our future research
proposal foresees a proof of the increase in the total gain of any (new) competing company
(entering and) belonging to the park, thanks to the capacity of the coopetition to enlarge
the economic pie.

Oligopoly Theory and Coopetition

The increase in total gain of any competing company in oligopoly conditions is not
inconsistent with the predictions of oligopoly theory, which clearly indicates that under
Cournot competition new firms entering the market will reduce the individual payoff of
each firm. Indeed, letting

W ′ −M′
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be the net bi-gain from passing from duopoly to our previous coopetitive agreement, we
put a third competitor on the industrial park, so we pass from M′ to a Nash equilibrium
M′′ of the 3-poly, with

M′′ < M′;

we now could easily imagine the possibility to acquire more machines with more efficient
technology represented by an interest rate vector m (or to develop such new more efficient
technology) that can generate a payoff triple

(X∗m, Y∗m, Z∗m),

whose sum can be greater than the sum of the pair

W ′ −M′

plus the theoretical 3-poly payoff Z∗∗ of the new enterprise. It should exist a theoretical
efficiency m of the machine such that:

(X∗m + Y∗m + Z∗m)− 3Z∗∗ > ∑(W ′ −M′) + Z∗∗.

Anyway, the above inequality represents the condition of feasibility for the entering
of a third enterprise in the industrial park starting from an already successful coopetitive
agreement of two players. If, ab initio, we have no previous agreement between two
industries, we have only to satisfy the below inequality:

(X∗m + Y∗m + Z∗m) > 3Z∗∗,

which is more easily possible.
As other possible future research directions, to stress that our approach is a dynamic

one, our model can be generalized in order to study the evolution over time of the pay-
off of each factory by using a stochastic process such as a Markov process (as in, e.g.,
D’Amico et al., 2021) [32] or more complex processes.

6. Conclusions

Our coopetitive model has considered the possibility of coexistence of competing
actors within a specific eco-industrial park, by means of possible agreements among the
competitors themselves.

In particular, we have showed a possible scenario in which the selected eco-industrial
competitors could greatly benefit from a coopetitive interaction, within their common
eco-park, while improving the general conditions of a near residential area.

The associated dynamical coopetitive agreement has aimed at the growth and im-
provement of the firms themselves and of their industrial network (within a virtuous
environmental path).

We have assumed the existence of two competitors selling the same good on the
same market, so that, from a competitive point of view, we have constructed a Cournot
duopoly as a base upon which we have build up a multidimensional coopetitive agreement.
This policy concerns investments to acquire advanced green technologies for recycling
paper waste.

Specifically, we model the interaction between two companies “of the same type”
(in the sense that they produce the same good and sell it in the same market with similar
variable costs and so on); from an economic point of view, we have chosen to satisfy the
general duopoly assumptions, in a classic microeconomics settings (which determines
the non-cooperative core of the game). From a cooperative point of view, we shall add
a quadratic perturbation acting on the common cooperative strategy space C. We have
chosen the cooperative part in such a way that the second player will show only a linear
cooperative perturbation, so the two companies differ in their payoff function: comparing
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Equation (1) with Equation (2), company 1 has a proper quadratic cooperative-strategy
function, while company 2 has a linear one (which is a particular case of quadratic function).
The asymmetry, in our case, derives exactly from the different role played by the two
enterprises initially: without coopetitive strategy, the first one receives material also from
the second one; on the contrary, the presence of the coopetitive strategy diminishes the free
row material coming from the second one.

Our eco-friendly deal allowed to “enlarge the pie” of possible gains—by diminishing
sunk costs and other forms of costs, especially the environmental costs associated to the
management of urban waste recycling. Consequently, we suggested production methods
and production quantitative profiles in order to “share the gains fairly”.

We have shown the complete analysis of our proposed game and we suggested some
its possible solutions.

We have demonstrated how the presence of two competitors in the same industrial
eco-park can dynamically produce beneficial effects on the entire industrial park; indeed,
one could conceive of situations in which an industrial park arises precisely from the need
of two companies competing on the same market. In fact, the presence of these competitors
within the same industrial park determines a sort of dynamic imbalance that our approach
can translate into economic growth. Last but not least, our proposal helps the safeguarding
of the environment and environmental resources and aims to improve the public health
and the quality of life.
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Appendix A. Direct Reachability of the Payoff T ′

We could ask if we can obtain the payoff T′ (or W ′) by using strategies belonging to
the strategy space by means of a mere transformation. In other words, we ask if we can
obtain directly the payoff T′ (or W ′) by choosing a convenient strategy profile. Indeed,
as we see immediately for instance for T′, we could find infinite many strategy profiles T
such that

f (T) = T′.

Here we need to explicitly observe the existence of strategy point T in P, possible
triple (x, y, z) such that

f (T) = T′

and of τ, the infinite set (continuous curve, as the reader shall see soon) of all such triples
(x, y, z)—in technical terms, τ is the anti-image of T′ by f . What is the point in considering
such curve τ? Well, any point of that curve specifies what actions the players should
implement in order to obtain immediately the compromise solution T′. We should notice
that the knowledge of such actions and consequently the knowledge of the existence of
such direct actions is interesting per se (from a classic game theory perspective) but it is
not necessary in our generalized coopetitive context, because, from a coopetitive point
of view, we have already explained how to obtain indirectly the solutions (N(1), T′) and
(N(1), W ′). Indeed, in a more practical and realistic way (by a compromise procedure
after collective optimization) we have already explained how to obtain such coopetitive
solutions by a linear Pareto selection.
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In particular, we can obtain a curve τ of infinite possible profile strategies T such that

∀T ∈ τ : f (T) = T′.

The curve τ is the intersection of two surfaces (see Figures A1–A3). Specifically, we
have the intersection

f (x, y, z) = T′ = (161/180, 161/180)

that is 
4x(1− x− y) + 3

5 z− 9
10 z2 = 161

180

4y(1− x− y) + 6
5 z = 161

180

Figure A1. Projection of the curve τ upon the (x,y) plane (curve starting approximately from
0.2 to 0.8).

Figure A2. Curve τ as intersection of the two surfaces in the strategy space.
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Figure A3. Curve τ as intersection of the two surfaces in the strategy space.

Appendix B. Matlab Code for the Graphical Representation of the Nash Optimal Point
N′(Z∗β∗)

The code is

for β1 = [0:0.1:1];
β2 = 1-β1;
a = 1.5;
p = 4;
z = linspace(0,1/(2.*β1.*a));
x = 1/3;
y = 1/3;
N1 = 4*x.*(1-x-y) + ((β1)*(0.7*p*z-z)).*(1-a*z);
N2 = 4*y.*(1-x-y) + ((β2)*(0.7*p*z-z))
plot(N1,N2,’g’)
end

References
1. Frosch, R.; Gallopoulos, N. Strategies for Manufacturing. Sci. Am. 1989, 261, 144–152. [CrossRef]
2. Saikku, L. Eco-Industrial Parks. A background report for the eco-industrial park project at Rantasalmi. In Publications of Regional

Council of Etela-Savo 71; University of Tampere: Mikkeli, Finland, 2006.
3. Sendlier, N.; Albayrak, A. Opportunities for Sustainable Industrial Development in Turkey: Eco-industrial Parks. Gazi Univ. J. Sci.

2011, 24, 637–646.
4. Yazdanpanah, V.; Yazan, D.M. Industrial Symbiotic Relations as Cooperative Games. arXiv 2018, arXiv:1802.01167.
5. Fiestras-Janeiro, M.; García-Jurado, I.; Mosquera, M. Cooperative games and cost allocation problems. Top 2011, 19, 1–22.

[CrossRef]
6. Jin, Y.; Tang, Z.; Zhou, Q.; Zeng, H.; Mo, S. A government value compensation model of waste recycling in an industrial park:

A game theory approach. J. Clean. Prod. 2020, 275, 122976. [CrossRef]
7. Chew, I.; Foo, D.; Tan, R.; Chiu, A. Game theory approach to the analysis of inter-plant water integration in an eco-industrial park.

J. Clean. Prod. 2009, 17, 1611–1619. [CrossRef]
8. Attanasi, G.; García-Gallego, A.; Georgantzís, N.; Montesano, A. Environmental agreements as a Hawk-Dove game with

confirmed proposals. Environ. Econ. 2012, 3, 35–42.
9. Attanasi, G.; Montesano, A. Competing for endogenous information in an irreversible environmental resource problem: A game-

theoretic analysis. Int. Game Theory Rev. 2008, 10, 229–243. [CrossRef]
10. Yazan, D.; Yazdanpanah, V.; Fraccascia, L. Learning strategic cooperative behavior in industrial symbiosis: A game-theoretic

approach integrated with agent-based simulation. Bus. Strategy Environ. 2020, 29, 2078–2091. [CrossRef]
11. Chen, S. An Evolutionary Game Study of an Ecological Industry Chain Based on Multi-Agent Simulation: A Case Study of the

Poyang Lake Eco-Economic Zone. Sustainability 2017, 9, 1165. [CrossRef]

http://doi.org/10.1038/scientificamerican0989-144
http://doi.org/10.1007/s11750-011-0200-1
http://doi.org/10.1016/j.jclepro.2020.122976
http://doi.org/10.1016/j.jclepro.2009.08.005
http://doi.org/10.1142/S0219198908001911
http://doi.org/10.1002/bse.2488
http://doi.org/10.3390/su9071165


Mathematics 2021, 9, 2520 30 of 30

12. Luo, N.; Wang, L.; Shi, S. Dynamic Evolutionary Game Analysis of Symbiosis System in E-commerce Industrial Park. In Proceed-
ings of the Eighteenth Wuhan International Conference on E-Business, Wuhan, China, 26 June 2019; pp. 110–117.

13. Tilman, A.R.; Plotkin, J.; Akçay, E. Evolutionary games with environmental feedbacks. Nat. Commun. 2020, 11, 915. [CrossRef]
14. Haurie, A.; Krawczyk, J. An Introduction to Dynamic Games. 2000. Available online: https://citeseerx.ist.psu.edu/viewdoc/

download?doi=10.1.1.394.3294&rep=rep1&type=pdf (accessed on 30 September 2021).
15. Carfì, D.; Donato, A.; Schiliró, D. Coopetitive Solutions of Environmental Agreements for the Global Economy after COP21 in

Paris. J. Environ. Manag. 2019, 249, 109331. [CrossRef]
16. Carfì, D.; Donato, A.; Fredella, M.I.; Squillante, M. Coopetitive games for Environmental Sustainability: Climate Change and

Decision Global Policies. Socio-Econ. Plan. Sci. 2021, 75, 100807. [CrossRef]
17. Carfì, D.; Donato, A. Risk Management of food health hazard by meat consumption reduction: A coopetitive game approach. Soft

Comput. 2020, 24, 13705–13716. [CrossRef]
18. Carfì, D.; Donato, A. Coopetitive Games for Sustainability of Global Feeding and Climate Change: Recent Developments.

J. Environ. Manag. Tour. 2018, 9, 200–215. [CrossRef]
19. Carfì, D.; Romeo, A. Improving Welfare in Congo: Italian National Hydrocarbons Authority Strategies and its Possible Coopetitive

Alliances with Green Energy Producers. J. Appl. Econ. Sci. 2015, 10, 571–592.
20. Nalebuff, B.; Brandenburger, A.M. Co-Opetition: Competitive and Cooperative Business Strategies for the Digital Economy.

Strategy Leadersh. 1997, 25, 28–33. [CrossRef]
21. Brandenburger, A.M.; Nalebuff, B. Co-Opetition; Currency Doubleday, Bantam Doubleday Dell Publishing Group, Inc.: New York,

NY, USA, 2011.
22. Carfì, D. A Model for Coopetitive Games. MPRA Paper 59633. 2010. Available online: http://mpra.ub.uni-muenchen.de/59633/

(accessed on 30 September 2021).
23. Carfì, D. A model for coopetitive games. J. Math. Econ. Financ. 2015, 1, 46–75.
24. Carfí, D.; Perrone, E. Asymmetric Cournot duopoly: A game complete analysis. J. Rev. Glob. Econ. 2013, 2, 194–202. [CrossRef]
25. Carfí, D.; Perrone, E. Game Complete Analysis of Classic Economic Duopolies; Lambert Academic Publishing: Chisinau, Republic of

Moldova, 2012.
26. Carfí, D.; Schiliró, D. Global Green Economy and Environmental Sustainability: A Coopetitive Model. In Advances in Computational

Intelligence, IPMU 2012, Proceedings, Part IV; Springer: Berlin/Heidelberg, Germany, 2012; pp. 593–606. [CrossRef]
27. Posch, A. Industrial Recycling Networks as Starting Points for Broader Sustainability-Oriented Cooperation? J. Ind. Ecol. 2010, 14,

242–257. [CrossRef]
28. Paper Recycling Facts. Available online: https://www.usi.edu/recycle/paper-recycling-facts/ (accessed on 31 May 2021).
29. Aubin, J. Mathematical Methods of Game and Economic Theory, Revised ed.; North Holland Publishing Co.: Amsterdam, The

Netherlands, 1982.
30. Aubin, J. Optima and Equilibria; Springer: Berlin/Heidelberg, Germany, 1998.
31. Small Scale a4 Paper Recycling Machine. Available online: https://italian.alibaba.com/product-detail/small-scale-a4-paper-

recycling-machine-paper-mill-machinery-for-a4-62136811945.html (accessed on 31 May 2021).
32. D’Amico, G.; Petroni, G.; Vergine, S. An Analysis of a Storage System for a Wind Farm with Ramp-Rate Limitation. Energies 2021,

14, 4066. [CrossRef]

http://doi.org/10.1038/s41467-020-14531-6
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.394.3294&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.394.3294&rep=rep1&type=pdf
http://doi.org/10.1016/j.jenvman.2019.109331
http://doi.org/10.1016/j.seps.2020.100807
http://doi.org/10.1007/s00500-019-04474-6
http://doi.org/10.14505//jemt.v9.1(25).25
http://doi.org/10.1108/eb054655
http://mpra.ub.uni-muenchen.de/59633/
http://doi.org/10.6000/1929-7092.2013.02.16
http://doi.org/10.1007/978-3-642-31724-8_63
http://doi.org/10.1111/j.1530-9290.2010.00231.x
https://www.usi.edu/recycle/paper-recycling-facts/
https://italian.alibaba.com/product-detail/small-scale-a4-paper-recycling-machine-paper-mill-machinery-for-a4-62136811945.html
https://italian.alibaba.com/product-detail/small-scale-a4-paper-recycling-machine-paper-mill-machinery-for-a4-62136811945.html
http://doi.org/10.3390/en14134066

	Introduction
	Industrial Symbiosis and Eco-Industrial Parks
	Literature Review on Industrial Symbiosis and Game Theory
	Our Game Theory Approach
	Novelty of the Approach in an Industrial Symbiosis Context
	Coopetitive Games and Dynamic Games
	Coopetitive Games and Their Solutions: Formal Definitions
	Two-Player Coopetitive Games
	Solutions of a Coopetitive Games
	Nash (Proper) Solution of a Coopetitive Game

	Motivations and Objectives of the Paper
	Symmetric Competition and Asymmetric Cooperation
	Improvement of the Park and Possible Additional Earnings
	From Cournot Duopoly to Coopetitive Clusters


	Study Case: Eco-Industrial Park of Styria
	Methods: The Economic Model
	Sketch of the Model
	Strategies
	Measure Units
	Cooperative Strategy
	Recap: Interpretation of the Strategies

	Payoff Functions
	The Game G as a Curve of Infinitely Many Duopoly Games
	Determination of the Interest Rate of the Investment M
	Description of the New Recycling Cycle
	Analytic Expression of the Coefficient Mi
	Possible Dependence of Mi upon Z
	The Subdivision Strategy  

	Numerical Example
	Recap of the Coopetitive Game G

	Results
	Study of the Game
	Payoff Universe, Payoff Spaces and Their Interpretations
	Possible Coopetitive Solutions
	Geometric Determination of the Purely Coopetitive Solution N(1)
	Remark: Curve of Cournot Duopolies and Its Nash Path
	Symmetries of the Purely Coopetitive Solution
	Economic Interpretation of the Purely Coopetitive Solution
	Transferable Utility Solutions
	Purely Coopetitive Solutions and Super-Cooperative Solutions
	Threat Points and Fair Sharing


	Discussion
	Results Discussion
	Model Discussion
	Econometric Determination of the Technical Matrix A
	Indirect Positive Effect on the Entire Park
	Efficient Disposal of Waste Materials and Technology Leap

	Sensitivity Analysis: Optimal Strategy  * and Z * and General Optimal Solutions
	The General Solution in Analytic Form
	Example
	Graphical Representation for Every Value of  1

	Limitations and Future Research Directions

	Conclusions
	Direct Reachability of the Payoff T'
	Matlab Code for the Graphical Representation of the Nash Optimal Point N'(Z* *)
	References

