
UNIVERSITÀ DEGLI STUDI DI MESSINA

DEPARTMENT OF ENGINEERING

DOCTORAL PROGRAMME IN CYBER PHYSICAL SYSTEMS XXXIV
CYCLE

DEEP LEARNING FOR HYPERSPECTRAL IMAGE
CLASSIFICATION

Student:

MUHAMMAD AHMAD

Advisor:

PROF. DR. SALVATORE DISTEFANO

Co-Advisors:
PROF. DR. MANUEL MAZZARA

PROF. DR. ADIL MEHMOOD KHAN

ACADEMIC YEAR 2020 - 2021

https://www.unime.it/it
https://www.unime.it/it/dipartimenti/mift
http://mdslab.unime.it/user/130
https://scholar.google.com/citations?user=th6g2bgAAAAJ&hl=en
https://scholar.google.com/citations?user=NMrHhLwAAAAJ&hl=en


i

Dedicated to My Beloved Family. . .



ii

Advisor:

PROF. DR. SALVATORE DISTEFANO

Co-Advisors:

PROF. DR. MANUEL MAZZARA
PROF. DR. ADIL MEHMOOD KHAN

http://mdslab.unime.it/user/130
https://scholar.google.com/citations?user=th6g2bgAAAAJ&hl=en
https://scholar.google.com/citations?user=NMrHhLwAAAAJ&hl=en


iii

Declaration of Authorship

I, MUHAMMAD AHMAD, declare that this thesis titled, “Deep Learning for Hyperspectral
Image Classification” and the work presented in it is my own. I confirm that:

• This work was done wholly or mainly while in candidature for a Doctorate degree at
Università degli Studi di Messina.

• Where any part of this thesis has previously been submitted for a degree or any other
qualification at Università degli Studi di Messina or any other institution, this has
been clearly stated, credited and properly cited.

• Where I have consulted the published work of others, this is always clearly attributed.

• Where I have quoted from the work of others, the source is always given. With the
exception of such quotations, the proposed scheme is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have made
clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

https://www.unime.it/it
https://www.unime.it/it


iv

Acknowledgements

In the Name of Allah (Subhanahu Wa Ta’ala), the Most Beneficent and the Most Merciful.
All praise and glory go to Allah Almighty (Subhanahu Wa Ta’ala) Who gave me the courage
and patience to carry out this research work. Peace and blessings of Allah be upon His
last Prophet Muhammad (Sallulah-o-Alaihihe-Wassalam) and all his Sahaba (Razi-Allah-o-
Anhum) who devoted their lives for the prosperity and spread of Islam. By the grace of
Allah Almighty (Subhanahu Wa Ta’ala), I would like to express my admiration for the assis-
tance provided during the groundwork of this thesis.

My sincere thanks go to Università degli Studi di Messina for offering me the Ph.D.
position and Innopolis University for providing me the Scholarship and Teaching opportu-
nities to complete this milestone.

Foremost, I would also like to express the deepest appreciation to my Advisor PROF.
DR. SALVATORE DISTEFANO , my co-Advisors PROF. DR. MANUEL MAZZARA

PROF. DR. ADIL MEHMOOD KHAN who have shown the attitude and the substance of
a genius: they continually and persuasively conveyed a spirit of adventure regarding re-
search and excitement in regards to teaching. Without their supervision and constant help,
this dissertation would not have been possible. I could not have imagined having a better
advisors and mentors for my Ph.D. study. Besides my advisor, I would like to thank the rest
of my thesis committee for their encouragement, insightful comments, and hard questions.

I extend my gratitude to all my close friends and fellows who helped me a lot during my
research and completion of this thesis. I am also thankful to all my fellows for their materi-
alistic support and prayers.

Last but not the least, I would like to thanks My Parents, Siblings, wife, and son. Their
prayers and encouragement have always helped me to take the right steps in my life. There
is no way, no words, to express my love and gratitude. May Allah (Subhanahu Wa Ta’ala)
help us in following the true spirit and principles of ISLAM write down in the Holy Quran
and Sunnah! (Ameen).

https://www.unime.it/it
http://mdslab.unime.it/user/130
http://mdslab.unime.it/user/130
https://scholar.google.com/citations?user=th6g2bgAAAAJ&hl=en
https://scholar.google.com/citations?user=NMrHhLwAAAAJ&hl=en


v

Abstract
Deep Learning for Hyperspectral Image Classification

Hyperspectral Imaging (HSI) has been extensively utilized in many real-life applications
because it benefits from the detailed spectral information contained in each pixel. Notably,
the complex characteristics i.e., the nonlinear relation among the captured spectral infor-
mation and the corresponding object of HSI data make accurate classification challenging
for traditional methods. In the last few years, Deep Learning (DL) has been substantiated
as a powerful feature extractor that effectively addresses the nonlinear problems that ap-
peared in a number of computer vision tasks. This prompts the deployment of DL for HSI
Classification (HSIC) which revealed good performance.

Keeping in mind the aforementioned issues, this thesis first enlists a systematic overview
of DL for HSIC and compared state-of-the-art strategies of the said topic. Primarily, this
thesis encapsulates the main challenges of traditional machine learning for HSIC and then
acquaint the superiority of DL to address these problems. The literature is breakdown the
state-of-the-art DL frameworks into spectral features, spatial features, and together spatial-
spectral features to systematically analyze the achievements and future directions. This the-
sis also investigates the behavior and performance in terms of computational cost and clas-
sification accuracy, of the most commonly and widely used classification algorithms under
different experimental setups. In a nutshell, the following specific contributions are made in
this thesis:

1. A Fast and Compact 3D CNN that utilizes both spatial-spectral feature maps to im-
prove the performance of HSIC.

2. 3D CNNs are computationally expensive and 2D CNN alone cannot efficiently ex-
tract discriminating spectral-spatial features. Therefore, to overcome these challenges,
this part presents a compact hybrid CNN model which overcomes the aforementioned
challenges by distributing spatial-spectral feature extraction across 3D and 2D layers.
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3. CNN’s are known to be effective in exploiting joint spatial-spectral information with
the expense of lower generalization performance and learning speed due to the hard
labels and non-uniform distribution over labels. Several regularization techniques
such as dropout, L1, L2, etc., have been used to overcome the aforesaid issues. How-
ever, sometimes models learn to predict the samples extremely confidently which is
not good from a generalization point of view. Therefore, this thesis proposed an idea
to enhance the generalization performance of a hybrid CNN for HSIC using soft labels
that are a weighted average of the hard labels and uniform distribution over ground
labels. The proposed method helps to prevent CNN from becoming over-confident.

4. DL usually required a large amount of labeled training samples which is not a real
scenario. Thus, a fully automatic Spatial-Spectral approach has been proposed for the
selection of most informative and heterogeneous samples for training using a novel
Spectral Angle Mapper (SAM) based objective function for the computation of at-
tribute profiles in a computationally efficient fashion.
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Chapter 1

Preface

1.1 Overview of Remote Sensing

Remote sensing is a field of science that includes all those activities necessary for the obser-
vation, acquisition, and interpretation of information related to objects, events, phenomena,
or any other item under investigation, without making physical contact with the object,
event, or phenomenon under investigation.

Remote sensing systems (space-borne and airborne) used for earth observation collect
data by detecting the energy that is reflected from an object or area under investigation on
the earth’s surface. Considering electromagnetic radiation as the principal physical carrier of
information, the main differentiation of such systems is based on the type of source of energy
exploited. Depending on whether these systems measure the radiation that is naturally
available or omitted by the sensor, they can be defined as passive or active sensors.

Passive sensors rely on the energy provided by the Sun, which is either reflected or ab-
sorbed and then re-emitted from the Earth’s surface. The reflected energy (e.g., visible ra-
diation) is available only when the Sun illuminates the Earth. The emitted energy can be
detected as long as the amount of energy is large enough to be recorded. Examples of the
most popular passive sensors include cameras, scanning sensors, and microwave radiome-
ters.

Active sensors, on the other hand, emit the energy required to illuminate the target un-
der investigation and then detect the back-scattered radiation. Examples of broadly used
active systems are Radio Detection and Ranging (RADAR) and Light Detection and Rang-
ing (LiDAR). In this case, being the sensor, the source of radiation, the data acquisition can
be performed at any time. The vast variety of available sensors, which provide data either
in image or signal formats, allows tackling a large number of applications with remarkable
advantages. In general, each family of sensors is characterized by properties such as spatial,
spectral, radio-metrical, and temporal resolutions, which are strictly related to their physical
implementation resulting in more or less suitable for a precise application. This entails the
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development of advanced techniques for data processing and interpretation that are sensor
and application-dependent.

1.2 Hyperspectral Imaging (HSI)

The human eye sees the color of visible light mostly in red, green, and blue (RGB) channels
(bands). In contrast, spectral imaging divides the spectrum into many more channels. There-
fore, in comparison to a traditional camera, an HSI camera (sensor) does not record images
in RGB channels only, but in hundreds of channels. For each of these channels, an image is
created and coded with grayscale levels. When we combine these images or channels we
form an HSI cube for processing and analysis.

In other words, HSI combines digital imaging with spectroscopy - and provides high
spatial and spectral information in each image pixel. Each pixel can then be associated
with the spectral signature of the target. This result can be then used to identify, measure,
and locate different materials and their chemical and physical properties [1]. It is for these
reasons, that HSI has attracted the formidable interest of the scientific community in recent
years and has been applied to an increasing number of applications in different fields. These
applications include biomedical imaging, geosciences, surveillance, object detection, and
recognition, change detection, human-made material identification, semantic annotation,
unmixing, and remote sensing [2, 3].

1.3 Problem Statement

HSIC is a challenging task due to high inter-class similarity, high intra-class variability, over-
lapping, and nested regions. 2D CNN is a viable classification approach since HSIC depends
on both Spectral-Spatial information. 3D CNN is a good alternative for improving the ac-
curacy of HSIC, but it can be computationally intensive due to the volume and spectral
dimensions of HSI. Furthermore, these models may fail to extract quality feature maps and
underperform over the regions having similar textures.

Precisely, one of the main challenges in the field of HSI is connected to the characteristics
of the data. More specifically, Hyperspectral data yields hundreds of contiguous and narrow
spectral bands with very high spatial resolution throughout the electromagnetic spectrum
[4]. When combined with the limited availability of labeled training data, it can lead to
Hughes Phenomenon [5], which is also known as the curse of dimensionality. It occurs
whenever the number of available labeled training samples is considerably lower than the
number of spectral bands present in the data [6]. This aspect results in a relatively poor
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predictive performance of supervised [7] and semi-supervised learning methods [8] for HSI
classification (HSIC).

For example, some of the supervised classification methods used for HSIC include Multi-
nomial Logistic Regression [9], Random Forests [10], Ensemble Learning [11], Deep Learn-
ing [12], Support Vector Machine [13], and K-Nearest Neighbors [6]. Figure 1.1 illustrates
the loss in the predictive performance of such classification methods for a particular ground
image when using two different sample sizes.

FIGURE 1.1: (A): Pavia University ground image, (B): True ground truths differentiate nine (9) classes,
(C): SVM trained with 1% randomly selected training samples with overall accuracy 68.18% and
kappa 58.53%, (D): SVM trained with 10% randomly selected training samples with overall accuracy
83.65% and kappa 78.04%, (E): KNN trained with 1% randomly selected training samples with overall
accuracy 64.88% and kappa 48.97%, (F): KNN trained with 10% randomly selected training samples
with overall accuracy 76.91% and kappa 67.91%, (G): LB trained with 1% randomly selected training
samples with overall accuracy 64.88% and kappa 52.16%, (H): LB trained with 10% randomly selected

training samples with overall accuracy 83.65% and kappa 75.31%.

One solution to overcome this problem is to collect large amounts of labeled training
samples or to reduce the dimensions, but labeled samples collection is expensive, difficult,
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and time-intensive in real-life scenarios because of the unavailability of field experts. More-
over, dimensionality reduction may lead to the loss of important geographical information
associated with the HIS. Therefore, this dissertation aims to address the aforementioned
HSIC problem without collecting a large number of labeled training samples and without
losing the important information for HISC in a computationally efficient fashion. In this
regard, this dissertation proposed several integrated design choices as listed in section 1.4.

1.4 Overview of the Dissertation

HSI has been extensively utilized in many real-life applications because it benefits from the
detailed spectral information contained in each pixel. Notably, the complex characteristics
i.e., the nonlinear relation among the captured spectral information and the corresponding
object of HSI data make accurate classification challenging for traditional methods. In the
last few years, deep learning (DL) has been substantiated as a powerful feature extractor that
effectively addresses the nonlinear problems that appeared in a number of computer vision
tasks. This prompts the deployment of DL for HSI classification (HSIC) which revealed good
performance.

Keeping in mind the aforementioned issues and the conditions, this thesis makes the
following contributions. This thesis first enlists a systematic overview of Deep Learning
(DL) for HSIC and compared state-of-the-art strategies of the said topic. Primarily, this
thesis encapsulates the main challenges of traditional machine learning for HSIC and then
acquaint the superiority of DL to address these problems. The literature is breakdown the
state-of-the-art DL frameworks into spectral features, spatial features, and together spatial-
spectral features to systematically analyze the achievements (future directions as well) of
these frameworks for HSIC. Moreover, we will consider the fact that DL requires a large
number of labeled training examples whereas acquiring such a number for HSIC is chal-
lenging in terms of time and cost. Therefore, this thesis discusses some strategies to improve
the generalization performance of DL strategies which can provide some future guidelines.
In a nutshell, the following specific contributions are made in this thesis. A flow-graph is
also added (Figure 1.2) to show the hierarchy among the proposed methodologies.

1. Investigates the behavior and performance, in terms of computational cost and clas-
sification accuracy, of the most common and widely used classification algorithms in
the HSI domain under different experimental setups.

2. This thesis develops the following novel strategies to overcome the aforementioned
problems.
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FIGURE 1.2: Workflow of proposed methodologies.

(a) A Fast and Compact 3D CNN that utilizes both spatial-spectral feature maps to
improve the performance of HSIC. For this purpose, the HSI cube is first divided
into small overlapping 3D patches, which are processed to generate 3D feature
maps using a 3D kernel function over multiple contiguous bands of the spectral
information in a computationally efficient way. In brief, the end-to-end trained
model requires fewer parameters to significantly reduce the convergence time
while providing better accuracy than existing models.

(b) 3D CNNs are computationally expensive and 2D CNN alone cannot efficiently ex-
tract discriminating spectral-spatial features. Therefore, to overcome these chal-
lenges, this part presents a compact hybrid CNN model which overcomes the
aforementioned challenges by distributing spatial-spectral feature extraction across
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3D and 2D layers. The experimental results show that the proposed pipeline out-
performed in terms of generalization performance and statistical significance as
compared to the state-of-the-art CNN models except commonly used computa-
tionally expensive design choices.

(c) CNN’s are known to be effective in exploiting joint spatial-spectral information
with the expense of lower generalization performance and learning speed due to
the hard labels and non-uniform distribution over labels. Several regularization
techniques such as dropout, L1, L2, etc., have been used to overcome the afore-
said issues. However, sometimes models learn to predict the samples extremely
confidently which is not good from a generalization point of view. Therefore, this
paper proposed an idea to enhance the generalization performance of a hybrid
CNN for HSIC using soft labels that are a weighted average of the hard labels
and uniform distribution over ground labels. The proposed method helps to pre-
vent CNN from becoming over-confident. We empirically show that in improv-
ing generalization performance, label smoothing also improves model calibration
which significantly improves beam-search.

(d) A fully automatic approach for the selection of most informative and heteroge-
neous samples for training using a novel Spectral Angle Mapper (SAM) based
objective function for the computation of attribute profiles in a computationally
efficient fashion.

1.5 Dissertation Organization

This dissertation is organized as follows: Part I, which consists of chapters 1 and 2, provides
an introduction to the HSI field and the context in which the dissertation is developed. More
specifically, chapter 2 introduces the HSI field, describing both the challenges and the objec-
tives addressed in this dissertation. Whereas, chapter 3 presents an overview of the several
frameworks proposed for HISC. Moreover, it provides the theoretical background of the
proposed methodologies.

Part II consisting of chapters 4-7 (Chapter 4, 5, 6, and 7 presents the contributions made
in this dissertation. Part III consisting of Chapter 8 presents the experimental evaluation of
the proposed methodologies. Finally, Chapter 9 concludes this dissertation remarking its
most important findings and discussing the most prominent future research directions.
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Chapter 2

Introduction to Hyperspectral Imaging

This chapter introduces HSI and its scope in real-world applications. This chapter also discusses the
issues related to the HSIC in real-life scenarios along with the detailed description of the problem
statement and their solutions proposed in this dissertation.

2.1 Hyperspectral Imaging Technology

The concept of HSI was first introduced by A. F. H. Goetz and his colleagues at the Na-
tional Aeronautics and Space Administration (NASA’s) Jet Propulsion Laboratory (JPL) in
the 1980s, where a system called Airborne Imaging Spectrometer (AIS) was built to demon-
strate HI technology [2, 14].

Nowadays, NASA is continuously collecting high-dimensional HSI datasets with in-
struments such as Airborne Visible Infrared Imaging Spectrometer (AVIRIS), an example is
shown in Figure 2.1. The advanced AVIRIS sensor for earth observation records the visible
to near and mid-infrared spectrum of the reflected light using more than 200 spectral bands,
thus producing a stack of images in which each pixel vector is represented by a spectral
signal that uniquely characterizes the underlying objects [4, 15].

According to the characteristics of the scanner, sensor systems are distinguished by their
different resolutions, which also define the characteristics of the acquired images. The mini-
mum size of an object that the sensor can distinguish from the ground represents the spatial
resolution and depends on the altitude of the sensor and its angle of view (i.e., the angle
subtended by the sensor), which is defined in terms of Instantaneous Field of View (IFOV).

The spectral resolution is the minimum wavelength at which the instrument is sensitive
while the radiometric resolution is defined as the minimum energy able to be detected by the
sensing system. The intrinsic radiometric resolution of a sensor depends on the detector’s
signal-to-noise ratio (SNR). In a digital image, the radiometric resolution is limited by the
number of discrete quantization levels used to digitize the continuous intensity value.

The spectral resolution is the minimum bandwidth on which the measured radiation is
integrated. Although the acquisition system could detect signals with high resolutions, it
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FIGURE 2.1: Hyperspectral Imaging Concept in Remote Sensing [16].

counts on various critical points due to physical constraints and instrumental limitations.
Indeed, the acquisition of the images is usually affected by the sensor’s noise, bad pixel
location, and atmospheric contribution, requiring different levels of pre-processing to ensure
the image quality in terms of spectral, spatial, and radiometric accuracy and make the data
available for further analysis. Moreover, recent technological advances in sensor technology
have led to the development of a new generation of Hyperspectral sensors able to provide
images with improved spatial resolution.

For instance, data acquired by Hyperion sensors (mounted on EO-1 satellite) has a spatial
resolution of 30m, while ROSIS-3 (Airborne Spectrometer) can provide images with a spatial
resolution of 1.7m if the acquisition is taken at the altitude of 3km. CASI-1500 can provide
a data cube of 144 spectral bands with a spectral resolution of 1.25m. From these few exam-
ples, one can see that contextual information becomes an important source of information
that can be exploited for distinguishing different objects on the ground.

Moreover, the concept of HSI is extended to describe systems with hundreds to thou-
sands of spectral bands with many new instruments currently in development for space-
borne operations. Table 2.1 presents a summary of several hyperspectral sensor systems
which are currently in operation [17–21]. Whereas, Table 2.2 provides a summary of the
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TABLE 2.1: Characteristics of Different HSI Sensors.

Sensor AVIRIS 62 HyDICE 143 Hymap 134 Probe-1 104 Hyperion 167
Year 1997 1995 1996 1997 2000

Platform Airborne Airborne Airborne Airborne Space borne
Nominal Altitude (km) 20 6 5 2.5 705
Spatial Resolution (m) 20 3 10 5 30

Spectral Resolution (nm) 10 10 17 10 10
Spectral Coverage (¯m) 0.4-2.5 0.4-2.5 0.4-2.5 0.4-2.5 0.4-2.5
Number of Channels 224 210 128 128 220

Swath Width (km) 12 0.9 6 3 7.7

most commonly used sensors usually mounted on aircraft or spacecraft reporting the prin-
cipal spectral characteristics. Thus, the characterization of HSI based on their spectral prop-
erties has led to the use of this type of dataset in a growing number of real-life applications.

TABLE 2.2: Technical characteristics of some HSI sensors developed over last years.

Sensor Manufacturer Platform No. of Bands Spectral Resolution Spectral Range
Hyperion NASA GSFC Satellite 220 10 nm 0.4− 2.5 µm
MODIS NASA Satellite 36 40 nm 0.4− 14.3 µm

CHRIS Proba ESA Satellite up to 63 1.25 nm 0.415− 1.05 µm
AVIRIS NASA JPL Aerial 224 10 nm 0.4− 2.5 µm

HYDICE Naval Research Lab Aerial 210 7.6 nm 0.4− 2.5 µm
PROBE-1 Earth Search Science Aerial 128 12 nm 0.4− 2.45 µm
CASI 550 ITRES Research Ltd Aerial 288 1.9 nm 0.4− 1 µm

CASI 1500 ITRES Research Ltd Aerial 288 2.5 nm 0.4− 1.05 µm
SASI 600 ITRES Research Ltd Aerial 100 15 nm 0.95− 2.45 µm
TASI 600 ITRES Research Ltd Aerial 64 250 nm 8− 11.5 µm
HyMap Intergrated Spectronics Aerial 125 17 nm 0.4− 2.5 µm
ROSIS-3 DLR Aerial 115 4 nm 0.43− 0.85 µm
EPS-H GER Corporation Aerial 133 0.67 nm 0.43− 12.5 µm
EPS-A GER Corporation Aerial 31 23 nm 0.43− 12.5 µm

DAIS 7915 GER Corporation Aerial 79 15 nm 0.43− 12.3 µm
AISA Eagle Spectral Imaging Aerial 244 2.3 nm 0.4− 0.97 µm
AISA Eaglet Spectral Imaging Aerial 200 - 0.4− 1.0 µm
AISA Hawk Spectral Imaging Aerial 320 8.5 nm 0.97− 2.45 µm
AISA Dual Spectral Imaging Aerial 500 2.9 nm 0.4− 2.45 µm

MIVIS Daedalus Aerial 102 20 nm 0.43− 12.7 µm
AVNIR OKSI Aerial 60 10 nm 0.43− 1.03 µm

The high capability of the HSI sensors enables the acquisition of images in which an
individual pixel is a vector with very high spatial-spectral resolution [22, 23] as shown in
Tables 2.1 and 2.2. This unprecedented high spectral-spatial resolution has opened the door
to a series of civilian and military applications among which refer to; agriculture assess-
ment, land use, environmental and ecological monitoring, mineral exploitation, man-made
materials detection, and identification, change detection and observation, target detection,
and recognition, target activities recognition, surveillance, ground cover classification, and
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natural minerals identification [24, 25]. Underlying all these applications is the fact that
all substances scatter electromagnetic energy at specific wavelengths in distinctive patterns
related to their molecular composition [26].

2.2 Scope of Hyperspectral Imaging

The majority of image processing and analysis methods dealing with HSI can be classified
as follows:

1. Detect known and unknown materials and objects in a given scene.

2. Classification and segmentation of the HSI’s into the regions where the material or
objects are predominant.

3. Estimate the materials or objects and the respective area fractions that they occupy
within a pixel. This is so-called Hyperspectral Unmixing.

However, the HSI Dataset representation involves an array of spectral measurements on
the natural scene where each of them corresponds to a pixel. This most elementary unit of
the image provides a piece of extremely local information. Furthermore, besides the scale
issue, the pixel-based representation also suffers from the lack of structure. As a result,
HSI processing at the pixel level has to face major difficulties in terms of scale: the scale of
representation is most of the time far too low with respect to the interpretation or decision
scale.

As earlier explained, HSI sensors collect multivariate discrete images in a series of nar-
row and contiguous wavelength bands. The resulting HSI cube contains numerous bands
in which each of them depicting the scene as viewed with a given wavelength λ. This whole
set of images can be seen as a three-dimensional data cube where each pixel is characterized
by a discrete spectrum related to the light absorption and/or scattering properties of the
spatial region that it represents. Figure 2.2 shows an illustration of different HSI cubes.

FIGURE 2.2: Hyperspectral Image Cubes.
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2.3 Applications of Hyperspectral Imaging

The information provided by the HSI cube is a huge amount of data that cannot be fully
exploited using traditional image analysis methods. Hence, given the wide range of real-life
applications, for instance; civilian and military applications among which refer to; agricul-
ture assessment, land use, environmental and ecological monitoring, mineral exploitation,
man-made materials detection, and identification, change detection and observation, target
detection, and recognition, target activities recognition, surveillance, ground cover classifi-
cation, and natural minerals identification [24, 25], a great deal of research is devoted to the
field of HIS data pre and/or post-processing [27, 28]. The number and variety of process-
ing tasks in HSI are also enormous. However, the majority of algorithms can be organized
according to the following specific tasks [29].

1. Classification consists of assigning a unique label (class representation) to each pixel
of a hyperspectral cube [29].

2. Dimensionality Reduction consists of reducing the dimensionality of the input scene
to facilitate subsequent processing tasks [30].

3. Spectral Unmixing consists of estimating the fraction of the pixel area covered by each
material present in the scene [31].

4. Target and Anomaly Detection consist of searching the pixels of a hyperspectral cube
for rare (either known or unknown) spectral signatures [25].

5. Change Detection consists of finding the significant (i.e., important to the user) changes
between two hyperspectral scenes of the same geographic region acquired at different
times [32].

This dissertation mainly focused on HSIC which is mainly focused on the integration
of supervised and semi-supervised classification techniques for classification performance
and generalization improvement using different classifiers i.e. generative, discriminative,
ensemble, and parametric classifiers. In HSIC, we are generally, given a set of observations
(i.e. possibly mixed pixel vectors). The goal of the HSIC algorithm is to assign a unique
label to each sample so that it is well defined by a given class in a computationally efficient
fashion [33].

2.4 Problem Formulation

A feature is a characteristic, value, or aspect of an object where several features of an object
make up a feature vector. The set of available feature vectors spans the feature space. 2D or
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3D subsets of features or the projection on feature space can be visualized as scatter plots.
In Figure 2.3 one can easily observe an illustration of a feature vector, its feature space and a
scatter plot in 2D.

FIGURE 2.3: Relationship between feature vector and feature space [34].

An HSI cube can be modeled with Euclidean space where the number of bands is the di-
mension of the space and the pixels in the image are represented as points in that particular
space. In supervised classification, each pixel of the cube is labeled as representing a par-
ticular ground cover or class taking the information provided by the training samples. The
training can be established using maps, site visits, or aerial photography. The parameters of
a particular classifier are calculated from these training samples.

However, in recent years, HSI data has become increasingly larger in both number of pix-
els per image (Spatial Resolution) and several bands (Spectral Resolution). As the number
of spectral bands increases the separability of classes also increases but so does the number
of statistical parameters defining the classes. Since there are only a fixed number of training
samples available for deriving the statistical parameters, therefore, at some point the accu-
racy of the estimation must begin to decrease. An optimal value of dimensions and training
samples is shown to exist in any given practical circumstance and depending upon the na-
ture of the problem, more dimensions do not necessarily lead to better results in terms of
accuracy.

Such high dimensionality of HSI datasets makes it difficult to analyze due to several
reasons. Among high dimensionality, we can say that a lot of features increase the noise
factor and hence the error factor that there are not enough observations to get good estimates
or that most data is scattered and the bands in Hyperspectral data are highly correlated.

As an interesting note about the observation, consider a sphere of radius r inscribed
inside a hypercube of dimension d with sides of length 2r. The volume of the hypercube is
2rd where d is the number of dimensions. It is possible to find that the volume of the sphere
as;
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(2r)dπ
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(2.1)

Therefore, the proportion of the volume of the square that is inside the sphere is shown
in equation (2.2) [35];
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π

d
2

dΓ
d
2
→ 0 (2.2)

It looks like that in high dimensionality, the data accumulated in the corners. The work
[36] referring to the computational complexity of searching the neighborhood of data points
in high-dimensional settings was the first to put forward the term curse of dimensionality to
describe the problem of data sparseness.

In addition to [36], the work [5] conducted a statistical analysis showing how the ac-
curacy of a classifier depends on the number of labeled training samples and the number
of bands which is known as the curse of dimensionality. Many works have dealt with the
high dimensionality phenomenon for the last four decades. Recently, the work [37] pro-
posed a general non-parametric method trying to avoid or reduce the Hughes effect. In
contrast to the above, the work [38] presents a hybrid algorithm and as they claim, "no ex-
isting algorithm is entirely satisfactory isolation, but that a carefully designed combination
can overcome the weaknesses of each".

The work [39] presents a methodology for band selection for the HSI cube, tailored to tar-
get detection applications that choose a subset of bands that maximized an objective func-
tion suitable for target detection. However, in [40], the authors propose two methods for
dimensionality reduction of HSI data via spectral feature extraction and compared them to
the traditional methods for finding relevant bands to determine optical regions. Moreover,
instead of optimizing separability criteria, the overall classification accuracy of a validation
dataset is used to decide which disjoint optical regions yield maximum accuracy.

In the last decade, a number of band selection, feature selection/extraction, and feature
learning-based classification techniques have been proposed which proves the increasing
interest in the more detailed analysis of HSI cube but in reduced dimensions. These in-
vestigations include but not limited to Linear Discriminant Analysis [40–44], Discriminant
Neighbor Embedding [45], Stepwise Linear Discriminant Analysis [46], Local Discriminant
Embedding [47], Marginal Fisher Analysis [48, 49], Exponential Local Discriminant Em-
bedding [49], Double Adjacency Graph-based Discriminant Neighborhood Embedding [50],
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Laplacian Linear Discriminant Analysis [51], Local and Global Structure Preservation Fea-
ture Selection [52], Similarity Preserving Feature Learning [53], Principal Component Anal-
ysis [54, 55], Locally Linear Embedding [56], ISOMAP [57], Laplacian Eigen Map [58], Unsu-
pervised Discriminant Projection [59], Neighborhood Preserving Embedding [60], Locality
Preserving Projections [61], Sammon Projection, Incremental Semi-Supervised Low-Rank
Representation Graph [62], Sparse Probability Graph [63] and Graph-based Constrained
Semi-Supervised Learning [64].

All the above-discussed methods select a subset of HSI data for classification purposes.
However, there is a high probability that these methods lose important spatial information
while reducing dimensionality. Such as geometrical representation of original HSI space
i.e. spatial coordinates of original data. Another way around, these methods select a few
numbers of bands from the entire HSI space that may discard some important bands which
may contain more information about one particular material or object than other material
or object of interest. Moreover, there is another issue related to the number of bands to be
select for classification. In a nutshell, the following challenges that come across:

• Complex Training Process: Training of Deep Neural Network (DNN) and optimiza-
tion by tuning parameters is an NP-complete problem where the convergence of the
optimization process is not guaranteed [65]. Therefore, it is assumed that training of
DNN is very difficult [66] especially in the case of HSI when a large number of param-
eters need to be adjusted/tuned.

• Limited Availability of Training Data: As discussed above, supervised DNN requires
a considerably large amount of training data otherwise their tendency to overfit in-
creases significantly [67] leads to the Hughes phenomena. The high dimensional char-
acteristic of HSI coupled with a small amount of labeled training data makes the DNNs
ineffective for HSIC as it demands a lot of adjustments during the training phase [68].

• Model’s Interpretability: The training procedure of DNNs is difficult to interpret and
understand. The black box kind of nature is considered as a potential weakness of
DNNs and may affect the design decisions of the optimization process. Although, a
lot of work has been done to interpret the model’s internal dynamics.

• High Computational Burden: One of the main challenges of DNN is dealing with a
big amount of data that involves increased memory bandwidth, high computational
cost, and storage consumption [69]. However, advanced processing techniques like
parallel and distributed architectures [70, 71] and high-performance computing (HPC)
[72] make it possible for DNNs to process large amounts of data.
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• Training Accuracy Degradation: It is assumed that deeper networks extract more rich
features from data [73], however, this is not true for all systems to achieve higher ac-
curacy by simply adding more layers. Because by increasing the network’s depth, the
problem of exploding or vanishing gradient becomes more prominent [74] and affects
the convergence of the model [73].

Keeping in mind the aforementioned issues and conditions, this dissertation makes sev-
eral contributions and investigates the behavior and performance, in terms of computa-
tional cost and classification accuracy, of the most common and widely used classification
algorithms in the HSI domain under different experimental setups. Moreover, this thesis
developed several integrated methodologies, for instance, 1): A fast and compact 3D CNN
model to overcome the computational complexity of DL, 2): A Hybrid CNN (3D followed
by 2D CNN) to further improve the generalization performance in a computationally ef-
ficient fashion. 3): Soft labeling technique (Regularization) for DL to avoid non-uniform
distribution over labels which leads to improving the accuracy of Deep models, finally, 4): a
fully automatic approach for the selection of most informative and heterogeneous samples
for training using a novel Spectral Angle Mapper (SAM) based objective function for the
computation of attribute profiles in a computationally efficient fashion.
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Chapter 3

Literature Review – Traditional to Deep
Models

This chapter enlists a systematic overview of DL for HSIC and compared state-of-the-art strategies
of the said topic. Primarily, this chapter encapsulates the main challenges of traditional machine
learning for HSIC and then acquaint the superiority of DL to address these problems. This chapter
breakdown the state-of-the-art DL frameworks into spectral features, spatial features, and together
spatial-spectral features to systematically analyze the achievements of these frameworks. Moreover,
this chapter shall consider the fact that DL requires a large number of labeled training examples
whereas acquiring such a number for HSIC is challenging in terms of time and cost. Therefore, this
chapter discusses some strategies to improve the generalization performance of DL strategies which
can provide some future guidelines.

3.1 Motivation

HSI has been utilized for several real-world applications including but not limited to the
atmosphere, ecology, urban, agriculture, geology and mineral exploration, coastal zone, ma-
rine, forestry i.e. track forest health, water quality and surface contamination, inland waters
and wetlands, snow and ice, biological and medical (A few applications have been shown in
Figure 3.1). There are several military applications in camouflage, landmine detection, and
littoral zone mapping. HSI has been used in space, air, and underwater vehicles to acquire
detailed spectral information for a wide range of uses as well [75–77]. Therefore, it is quite
important to detach the surface features where each feature has a different spectrum band.
HSI can capture more than 200 spectral bands which helps practitioners to discriminate ob-
jects that were not possible before.

Infield collection and spectral library indexing of ground truth signatures for any of the
said applications are critical for many reasons. For instance, the spectral information of veg-
etation is prejudiced by a wide range of environmental situations that make it challenging to
satisfactorily represent variability without the collection of site-specific field spectra. Thus,
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FIGURE 3.1: Various real-world applications of HSI.

considering the aforementioned limitations, HSI analysis is categorized into the following
main streams: dimensionality reduction [2, 78, 79], spectral unmixing [80–85], change de-
tection [86–88] classification [6, 89–91], feature learning for classification [92–94], restoration
and denoising [95, 96], resolution enhancement [97, 98]. Figure 3.2 shows an exponentially
growing trend in literature published per year for HSI analysis-related tasks and applica-
tions.

This chapter specifically focuses on HSIC, which has achieved a phenomenal interest
of the research community due to its broad applications in the areas of land use and land
cover [99–102], environment monitoring and natural hazards detection [103, 104], vegeta-
tion mapping [105, 106] and urban planning. HSIC methodologies exploit machine learn-
ing algorithms to perform the classification task [107, 108]. These methods are outlined in
various comprehensive reviews published during/in the last decade [90, 109–116]. Never-
theless, continuous advancements in the field of Machine Learning (ML) provide improved
methods from time to time. The development of DL models is one of such revolutionary
advancements in ML, which has proven to provide improved HSIC results [89, 117–119].

This chapter aims to give an overview of the widely used DL-based techniques to per-
form HSIC. Specifically, this chapter first summarizes the main challenges of HSIC which
cannot be effectively overcome by traditional ML, and later enlist the advantages of DL to
handle the above-mentioned issues. At a later stage, this chapter builds a framework that
divides the corresponding works into:

1. Spectral and spatial feature learning, individually, and
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FIGURE 3.2: Various HSI related articles published per year, the results (including patents and cita-
tions) were sorted by relevance].

2. Spectral-spatial feature learning to systematically review the achievements in DL-based
HSIC.

3. Future research stems to improve the generalization performance and robustness of
DL models while considering the limited availability of reliable training samples.

3.2 Hyperspectral Image Classification (Background and Chal-

lenges)

3.2.1 Traditional to DL Models

The main task of HSIC is to assign a unique label to each pixel vector of HSI cube based
on its spectral or spectral-spatial properties. Mathematically, an HSI cube can be repre-
sented as X = [x1, x2, x3, . . . , xB]

T ∈ RB×(N×M), where B represent total number of spec-
tral bands consisting of (N × M) samples per band belonging to Y classes where xi =



Chapter 3. Literature Review – Traditional to Deep Models 19

[x1,i, x2,i, x3,i, . . . , xB,i]
T is the ith sample in the HSI cube with class label yi ∈ RY. The

classification problem can be considered as an optimization one, in which a mapping func-
tion fc(.) takes the input data X and after applying some transformations over it, obtains the
corresponding label Y, to reduce the gap between obtained output and the actual one [68].

Y = fc(X, θ) (3.1)

where θ is certain adjustable parameter that may be required to apply transformations on
input data X such that fc : X → Y.

In literature, substantial work has been done on HSIC and there is a growing trend in the
development of such techniques as shown in Figure 3.3. Most HSIC frameworks seemed to
be influenced by the methodologies used in the computer vision domain [68]. Traditional
machine learning-based HSIC approaches use hand-crafted features to train the classifier.
These methods generally rely on utilizing engineering skills and domain expertise to de-
sign several human-engineered features, for instance, shape, texture, color, shape, spectral
and spatial details. All these features are basic characteristics of an image and carry effec-
tive information for image classification. Commonly used hand-crafted feature extraction
and classification methods include: texture descriptors such as Local Binary Patterns (LBPs)
[120], Histogram of Oriented Gradients (HOG) [121], Global Image Scale-invariant Trans-
form / Global Invariant Scalable Transform (GIST) [122], Pyramid Histogram of Oriented
Gradients (PHOG), Scale-invariant Feature Transform (SIFT) [123], Random Forests [124],
kernel-based Support Vector Machine (SVM) [125], K-nearest Neighbours (KNN), and Ex-
treme Learning Machine (ELM).

Color histograms are simple and effective handcrafted features used for an image classi-
fication task. They are easy to compute and invariant to small changes in images i.e. trans-
lation and rotation. The major drawback of a color histogram is that it does not provide
spatial contextual information, hence it becomes difficult to distinguish between objects of
the same color but different distribution. Moreover, color histograms are sensitive to vari-
ance in illumination. HOG features represent the histogram of edge orientations of spatial
sub-regions. It can effectively extract the edge and local shape details and has been utilized
in various remote sensing related works [102, 126, 127].

Scale-invariant Feature Transform (SIFT) is a broadly used robust feature descriptor ap-
plied to image classification tasks [128–131]. The advantage of the SIFT descriptor is that it
is invariant to the changes in image scale, rotation, illumination, and noise. SIFT is used to
extract local features that describe a specific point in the image. The disadvantage of SIFT
is that it is mathematically complex which increases its computational cost. GIST represents
the global description of important aspects of an image that is the scales and orientations
(gradient information) of various subregions of an image. GIST builds a spatial envelope in
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FIGURE 3.3: Remote sensing/Hyperspectral Image Classification related articles published per year.
[Source: Google Scholar, the results (including patents and citations) were sorted by relevance].

terms of different statistical properties like roughness, openness, and ruggedness, etc [132].
Texture descriptors such as local binary patterns (LBPs) are used for remote sensing image
analysis [120, 133]. LBPs are used to describe the texture around each pixel by choosing
pixels from the square neighborhood and gray level values of all neighborhood pixels are
thresholded with respect to the central pixel.

The color histograms, GIST, and texture descriptors are global features that represent cer-
tain statistical characteristics of an image like color, texture [134, 135], and spatial structure
[122]. While HOG and SIFT are local features that describe geometrical information. Usu-
ally they are used to construct bag-of-visual-words (BoVW) models [100, 101, 104, 131, 136–
141] and HOG feature-based models [102, 142]. Some popular feature encoding or pooling
strategies to enhance the performance of BoVW are Fisher vector coding [120, 143, 144], Spa-
tial Pyramid Matching (SPM) [145], and Probabilistic Topic Model (PTM) [141, 146–148]. A
single feature is insufficient to represent the whole image information, hence a combination
of these features is used for image classification [100, 136, 146, 148–154].

Hand-crafted features can effectively represent the various attributes of an image, hence
work well with the data being analyzed. However, these features may be insubstantial in the
case of real data, therefore it is difficult to fine-tune between robustness and discriminability
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as the set of optimal features considerably vary between different data. Furthermore, human
involvement in designing the features considerably affects the classification process, as it
requires a high level of domain expertise to design hand-crafted features.

To mitigate the limitations of hand-crafted feature designing, a deep feature learning
strategy was proposed by Hinton and Salakhutdinov in 2006 [155]. Deep learning (DL)
based methods can automatically learn the features from data in a hierarchical manner, to
construct a model with growing semantic layers until a suitable representation is achieved.
Such models have shown great potential for feature representation in remote sensing image
classification [156, 157].

DL architectures can learn the behavior of any data without any prior knowledge re-
garding the statistical distribution of the input data [66] and can extract both linear and
non-linear features of input data without any pre-specified information. Such systems are
capable of handling HSI data in both spectral and spatial domains individually, and also
in a coupled fashion. DL systems possess a flexible architecture in terms of types of layers
and their depth and are adaptive to various machine learning strategies like supervised,
semi-supervised, and unsupervised techniques.

3.2.2 Hyperspectral Data Characteristics and DL Challenges

Despite the above-discussed DL potentials, there are still some challenges that need to be
considered while applying DL to HSI data. Most of these challenges are related to the char-
acteristics of HSI data i.e. hundreds of contiguous and narrow spectral channels with very
high spectral resolution and low spatial resolution throughout the electromagnetic spectrum
coupled with limited availability of training data. Although the pixels with rich spectral
information are useful for classification purposes, however, the computation of such data
takes a lot of time and resources.

Furthermore, processing such high-dimensional data is a somewhat complex task due
to an increased number of parameters. This is known as the curse of dimensionality which
considerably influences the classification performance especially in the case of supervised
learning [158]. Since the size of training data is not adequate/insufficient and/or not reli-
able (i.e. the training samples may not provide any new information to the model or may
have similar patterns/structures) to properly train the classifier which may lead the model
to overfit. This is known as the Hughes phenomena [159] which occurs when labeled train-
ing data is significantly smaller than the number of spectral bands present in the data. Lack
of labeled HSI data is a major issue in HSIC as labeling of HSI is a time-consuming and
expensive task because it usually requires human experts or investigation of real-time sce-
narios.
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In addition to high dimensionality, HSIC suffers from various other artifacts like high
intra-class variability due to unconfined variations in reflectance values caused by several
environmental interferers and degradation of data caused by instrumental noise while cap-
turing the data [160]. Furthermore, the addition of redundant bands due to HSI instruments
affects the computational complexity of the model. Spectral mixing is another challenge
related to the spatial resolution of HSI. HSI pixels with low to average spatial resolution
cover vast spatial regions on the surface of earth leading to mixed spectral signatures which
result in high inter-class similarity in border regions. As a result, it becomes difficult to iden-
tify the materials based on their spectral reflectance values [72]. Following are some main
challenges that come across when DL is applied to HSIC:

• Complex Training Process: Training of Deep Neural Network (DNN) and optimiza-
tion by tuning parameters is an NP-complete problem where the convergence of the
optimization process is not guaranteed [65]. Therefore, it is assumed that training of
DNN is very difficult [66] especially in the case of HSI when a large number of param-
eters need to be adjusted/tuned.

• Limited Availability of Training Data: As discussed above, supervised DNN requires
a considerably large amount of training data otherwise their tendency to overfit in-
creases significantly [67] leads to the Hughes phenomena. The high dimensional char-
acteristic of HSI coupled with a small amount of labeled training data makes the DNNs
ineffective for HSIC as it demands a lot of adjustments during the training phase [68].

• Model’s Interpretability: The training procedure of DNNs is difficult to interpret and
understand. The black box kind of nature is considered as a potential weakness of
DNNs and may affect the design decisions of the optimization process. Although, a
lot of work has been done to interpret the model’s internal dynamics.

• High Computational Burden: One of the main challenges of DNN is dealing with a
big amount of data that involves increased memory bandwidth, high computational
cost, and storage consumption [69]. However, advanced processing techniques like
parallel and distributed architectures [70, 71] and high-performance computing (HPC)
[72] make it possible for DNNs to process large amounts of data.

• Training Accuracy Degradation: It is assumed that deeper networks extract more rich
features from data [73], however, this is not true for all systems to achieve higher ac-
curacy by simply adding more layers. Because by increasing the network’s depth, the
problem of exploding or vanishing gradient becomes more prominent [74] and affects
the convergence of the model [73].
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3.3 Hyperspectral Data Representation

Hyperspectral data is represented in the form of a 3D hypercube, X ∈ RB×(N×M), which
contains 1D spectral and 2D spatial details of a sample where B represents the total number
of spectral bands and N and M are spatial components i.e., width and height, respectively.

3.3.1 Spectral Representation

In such representations, each pixel vector is isolated from other pixels and processed based
on spectral signatures only which means the pixel is represented only in spectral space
xi ∈ RB. Where B can either be the actual number of spectral channels or just relevant spec-
tral bands extracted after some Dimensionality Reduction (DR) method. Usually, instead
of using original spectral bands, a low dimensional representation of HSI is preferred for
data processing in order to avoid redundancy and achieve better class separability, without
considerable loss of useful information.

DR approaches for spectral HSI representation can either be supervised or unsuper-
vised. Unsupervised techniques transform the high dimensional HSI into a low dimensional
space without using the class label information, for example, Principal Component Analysis
(PCA) and Locally Linear Embedding [161]. On the other hand, supervised DR methods uti-
lize labeled samples to learn the data distribution i.e. to keep data points of the same classes
near to each other and separate the data points of different classes. For instance, linear
discriminant analysis (LDA), local Fisher discriminant analysis (LFDA) [162], local discrimi-
nant embedding (LDE) [163] and nonparametric weighted feature extraction (NWFE) [164].
LDA and LDFA provide better class separability by maximizing the inter-class distance of
data points and minimizing the intra-class distance. However, due to the spectral mixing
effect, in which the same material may appear with different spectra or different materials
may have the same spectral signatures, it becomes difficult to differentiate among different
classes based on the spectral reflectance values alone.

3.3.2 Spatial Representation

To deal with the limitations of spectral representation, another approach is to exploit the
spatial information of the pixels, in which pixels in each band are represented in the form
of a matrix, xi ∈ RN×M. Due to high spatial correlation, neighboring pixels have higher
probabilities to belong to the same class. Therefore, in the case of spatial representation,
neighboring pixels’ information is also considered and the neighborhood of a pixel can be
determined using kernel or pixel centric window [165]. Some common methods to extract
spatial information from HSI cube are morphological profiles (MPs), texture features (like
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Gabor filters, gray-level co-occurrence matrix (GLCM), and local binary pattern (LBP), etc.)
and DNN based methods. Morphological profiles are capable of extracting geometrical char-
acteristics. Few extensions of MPs include extended morphological profiles (EMPs) [166]
and multiple-structure-element morphological profiles [167].

The texture of the image provides useful spatial contextual information of HSI. For in-
stance, a Gabor filter, a texture analysis technique, can efficiently obtain textural information
at various scales and orientations. Similarly, LBP can provide rotation-invariant spatial tex-
ture representation. The GLCM can effectively determine the spatial variability of HSI by
exploiting the relative positions of neighborhood pixels. The DNNs can also extract spatial
information of HSI by considering the pixel as an image patch instead of representing it as a
spectral vector. The spatial information contained in HSI can also be extracted by combining
various of the afore discussed methods. For instance, [168]combined Gabor filter and differ-
ential morphological profiles [169] to extract local spatial sequential features for a recurrent
neural network (RNN) based HSIC framework.

3.3.3 Spectral-Spatial Representation

This representation jointly exploits both spectral and spatial information of data. In such
approaches, a pixel vector is processed based on spectral features while considering spatial-
contextual information. The strategies that simultaneously use both spectral and spatial
representations of HSI, either concatenate the spatial details with spectral vector [114, 170]
or process the 3D HSI cube to preserve the actual structure and contextual information [171].

In literature, all these HSI representations are widely exploited for HSIC. Most of the
DNNs for pixel-wise classification utilized the spectral representation of HSIs [172, 173].
However, to mitigate the limitations of spectral representation, many efforts have been made
to incorporate the spatial information [174, 175]. Recently, joint exploitation of both spectral
and spatial features has gained much popularity and led to improved classification accuracy
[2, 117, 176–179]. These HSI feature exploitation approaches, for HSIC, are further discussed
in the following sections.

3.4 Learning Strategies

DL models can adopt various learning strategies that can be broadly categorized into the
following:
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3.4.1 Supervised Learning

In a supervised learning approach, the model is trained based on the labeled training data
which means training data is comprised of a set of inputs and their corresponding outputs
or class labels. During the training phase, the model iteratively updates its parameters in
order to predict the desired outputs accurately. In the testing phase, the model is tested
against the new input/test data in order to validate its ability to predict the correct labels. If
trained sufficiently, the model can predict the labels of new input data. However, supervised
learning of DNNs requires a lot of labeled training data to fine-tune the model parameter.
Therefore, they are best suited to scenarios where plentiful labeled data is available. The de-
tails of various supervised learning techniques for DNNs will be explained in the respective
sections.

3.4.2 Unsupervised Learning

In contrast to the supervised learning approach, unsupervised learning techniques learn
from the input data with no explicit labels associated with it. These approaches try to iden-
tify the underlying statistical structure of input representations or patterns in the absence of
corresponding labels. As there is no ground truth available for the training data so it might
be difficult to measure the accuracy of the trained model. However, such learning strategies
are useful in the cases where we want to learn the inherent structure of such datasets which
have a scarcity of training data. The PCA is an unsupervised learning technique that can
be used to learn a low-dimensional representation of the input. Similarly, k-means cluster-
ing is another unsupervised learning method that groups the input data into homogeneous
clusters.

3.4.3 Semi-supervised Learning

The semi-supervised learning technique is halfway between unsupervised and supervised
approaches. It learns from the partially labeled Datasets that are a small amount of labeled
training data that can be utilized to label the rest of the unlabeled data. These techniques
effectively utilize all available data instead of just labeled data, therefore, these techniques
have gained much popularity among the research community and are being widely used
for HSIC [180–183]. The details of these methods are briefly described in section 3.10.
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3.5 Development of DNNs (Types of Layers)

In the following, we review recent developments of some widely used DNN frameworks for
HSIC. We specifically surveyed the literature published from 2017 onward. DNNs exhibit
a great variety of flexible and configurable models for HSIC that allow the incorporation
of several types of layers. Few widely used types of layers are explained in the following
subsection.

A layer is the key building block of DNN and the type of layer has a decisive impact in
terms of feature processing. A layer takes the weighted input, processes it through linear or
non-linear transformation, and outputs these values to the next layer. Generally, a layer is a
uniform, as it has a single activation function. The first layer of the network is known as the
input layer and the last layer as an output layer. All other layers in the network, in between
the input and output layers, are known as hidden layers. These layers progressively find
different features in the input data by performing various transformations. The choice of
layer type depends on the task at hand, as some layers perform better for some tasks than
others. The most commonly used layers for HSIC are explained below.

3.5.1 Fully Connected Layers

A fully connected (FC) layer connects every neuron in the lower layer to every neuron in
the upper/next layer. Mostly, they are used as the last few layers of a model usually after
convolution/pooling layers. FC takes the output of the previous layer and assigns weights
to predict the probabilities for class labels. Due to a large number of connections, a large
number of parameters need to be adjusted which significantly increases the computational
overhead. Moreover, due to a large number of parameters, the model becomes more sensi-
tive to overfitting [99]. However, to mitigate the effect of overfitting, a dropout method is
introduced in [184].

3.5.2 Convolutional Layers

The convolutional (CONV) layer convolve the input data or feature maps from a lower layer
with the filters (kernels). The filter contains weights whose dot product is calculated with
the subset of input data by moving it across the width, height, and depth of the input region.
The output of the filter is known as a feature map. CONV layer provides spatial invariance
via a local connectivity approach in which the neuron in the feature map connects to a subset
of input from the previous layer rather than connecting to every neuron. This reduces the
number of parameters that need to train. To further reduce the number of parameters, the
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CONV layer uses the mechanism of parameter sharing in which the same weights are used
in a particular feature map.

3.5.3 Activation Layers

Activation layers are assumed to be a feature detector stage of DNNs [185]. FC and CONV
layers provide linear representations of input data or it can be said that they work simi-
larly to linear regressors and data transformed by these layers is considered to be at the
feature extraction stage [68]. Therefore, to learn non-linear features of data, an activation
layer must be used after FC and CONV layers. In the activation layer, feature maps from
previous layers go through an activation function to form an activation map. Some com-
monly used activation functions are sigmoid, hyperbolic tangent (tanh), rectified linear unit
(ReLU), and softmax. However, in HSI analysis, softmax and ReLU are widely employed
activation functions [68]. Figure 3.4 presents a graphical representation of a few commonly
utilized activation functions.

FIGURE 3.4: Graphical representation of various commonly used activation functions
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3.5.4 Pooling or Sub-sampling layers

The pooling layer, also known as the sub-sampling or down-sampling layer, takes a certain
input volume and reduces it to a single value as shown in Figure 3.5. This provides invari-
ance to small distortions in the data. The pooling layer helps the model to control overfitting
as the size of data and model parameters both are reduced which also leads to a decrease in
the computational time. The commonly used down-sampling operations are max-pooling,
average-pooling, and sum-pooling. Recently, a pooling technique, wavelet-pooling is intro-
duced in [186] whose performance is commensurable to max-pooling and average-pooling.
Alternatively, [187] proposed another trend in which the pooling layer is replaced by the
CONV layer of increased filter stride.

FIGURE 3.5: Max-pooling and average-pooling operations of down-sampling/pooling layer

3.6 Convolutional Neural Network (CNN)

The architecture of the CNN is inspired by the biological visual system presented in [188].
Following the natural visual recognition mechanism proposed by Hubel and Wiesel [188],
Neocognitron [189] is regarded as the first hierarchical, position-invariant model for pattern
recognition [190] which can be considered as the predecessor of CNN [191]. The architecture
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of CNN can be divided into two main stages: one is Feature Extraction (FE) network and
the other is a classification based on the feature maps extracted in the first stage.

The FE network consists of multiple hierarchically stacked CONV, activation, and pool-
ing layers. The CONV layer extracts the features from input data by convolving a learned
kernel with it. On each CONV layer, the kernel is spatially shared with whole input data
which reduces the model’s complexity and the network becomes easier to train as the num-
ber of parameters that need to be fine-tuned is reduced. Convolved results are then passed
through an activation layer which adds nonlinearities in the network to extract non-linear
features of the input. This is achieved by applying a non-linear function to the convolved
results. Afterward, the resolution of the feature map is reduced by applying a pooling op-
eration to achieve shift-invariance. Generally, the pooling layer is added with every CONV
layer followed by the activation function.

The classification stage consisting of FC layers and a Softmax operator gives the proba-
bility of input pattern belonging to a specific class based on the feature maps extracted at the
FE stage. FC layer connects every single neuron in the previous layer to every neuron in the
current layer. In [192] and [193], the authors proposed that the FC layer can be disregarded
by using a global average pooling layer. Softmax is commonly used for classification tasks
[194–196] however, many works have also utilized SVM [197, 198] for this purpose.

In the following, we reviewed three types of CNN architectures for HSIC: i) Spectral
CNN, ii) Spatial CNN and iii) Spectral-spatial CNN. Figure 3.6 illustrates the general archi-
tecture of these three frameworks.

3.6.1 Spectral CNN Frameworks for HSIC

Spectral CNN models only consider 1D spectral information (xi ∈ RB) as input, where B
could either be the original number of spectral bands or the appropriate number of bands
extracted after some dimensionality reduction method. In [199], a CNN structure was pro-
posed to mitigate the overfitting problem and achieved a better generalization capability by
utilizes 1× 1 convolutional kernels and enhanced dropout rates. Moreover, a global average
pooling layer is used in place of a fully connected layer in order to reduce the network pa-
rameters. To reduce high correlation among HSI bands [193] proposed a CNN architecture
for HSIC which fully utilized the spectral information by transforming the 1D spectral vec-
tor to a 2D feature matrix and by cascading composite layers consisting of 1× 1 and 3× 3
CONV layers, the architecture achieved the feature reuse capability. Similar to [193, 199]
also utilized the global average pooling layer to lower the network’s training parameters
and to extract high dimensional features.

In [200] authors presented a hybrid model for HSIC in which the first few CONV layers
are employed to extract position invariant middle-level features and then recurrent layers
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FIGURE 3.6: General architecture of Spectral CNN, Spatial CNN and Spectral-spatial CNN frame-
works for HSIC.

are used to extract spectral-contextual details. Similarly, [172] used a hybrid architecture for
classifying healthy and diseased Wheat heads. For the input layer, they transform spectral
information into a 2D data structure. In [201] CNN proved to be more effective as compared
to SVM and KNN for the spectral-based identification of rice seed’s variety. A similar ap-
plication of CNN was explored in [173] where various varieties of Chrysanthemum were
identified using spectral data of the first five PCs of Principal component analysis (PCA).
PCA is a dimensionality reduction method that is widely used in many DL applications to
handle/preprocess high dimensional data. In [202] PCA was utilized to preprocess medical
HSI and then the fusion of CNN kernels with Gabor kernels using dot product is used for
classification.

The study [203] analyzed another dimensionality reduction technique Dynamic Mode
Decomposition (DMD) which converted 3D HSI data to 2D and then this data is fed to
vectorized CNN (VCNN) for classification. To overcome the noise effect in pixel-wise HSIC,
a method of averaged spectra is used in [204] where an averaged spectra of a group of pixels
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belonging to bacterial colonies is extracted for further analysis.

3.6.2 Spatial CNN frameworks for HSIC

Spatial CNN models only consider spatial information and to extract the spatial information
from HSI data, dimensionality reduction (DR) methods are employed on spectral-domain to
lower the dimensionality of original HSI data. For instance, [205] used PCA to extract the
first PC with refined spatial information and fed it to a fully CNN framework for classifica-
tion. Similarly, [206] trained a spatial-based 2D-CNN with one PC. In [207], PCA whitened
input data considering three PCs is fed to a random patches network as a 2D-CNN classifi-
cation framework.

The method proposed in [208] cropped the patches from 2D input images (i.e. im-
ages from the different spectral bands) to train a 2D-CNN architecture that learns the data-
adaptive kernels by itself. Furthermore, some authors also proposed the utilization of hand-
crafted features along with spectral-domain reduction. For example, [209] combined the
Gabor filtering technique with 2D-CNN for HSIC to overcome the overfitting problem due
to limited training samples. The Gabor filtering extracts the spatial details including edges
and textures which effectively reduce the overfitting problem. The work [210] proposed a
deformable HSIC network based on the concept of deformable sampling locations which
can adaptively adjust their size and shape in accordance with HSI’s spatial features. Such
sampling locations are created by calculating 2D offsets for every pixel in the input image
through regular convolutions by taking into account three PCs. These offsets are able to
cover the locations of similar neighboring pixels possessing similar characteristics. Then
structural information of neighboring pixels is fused to make deformable feature images.
Regular convolution employed on these deformable feature images can extract more effec-
tive complex structures.

3.6.3 Spectral-Spatial CNN frameworks for HSIC

Spectral-spatial pixel-wise HSIC can be achieved by integrating spatial features into spec-
tral information. For instance, [211] presented an improved pixel pair feature (PPF) [212]
approach called spatial pixel pair feature which is different from traditional PPFs with re-
spect to two main aspects: one is the selection of pixel pair that is only the pixel from the
immediate neighborhood of central pixel can be used to make a pair, second is the label of
pixel pair would be as of central pixel. To extract discriminative joint representation [213]
introduced a supervised spectral-spatial residual Network (SSRN) that uses a series of 3D
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convolutions in the respective spectral and spatial residual blocks. An efficient deep 3D-
CNN framework was proposed in [214] that simultaneously exploits both spectral and spa-
tial information for HSIC. Similarly, to reflect the variations of spatial contexture in various
hyperspectral patches, [215] implemented an adaptive weight learning technique instead
of assigning fixed weights to incorporate spatial details. Besides this, to make the convo-
lutional kernel more flexible [179] explored a new architectural design that can adaptively
find adjustable receptive filed and then an improved spectral-spatial residual network for
joint feature extraction. The discriminative power of the extracted features can be further
improved by combining both the max and min convolutional features before the ReLU non-
linearity reported in [216] for the classification task.

The deeper networks may suffer from the issues of overfitting and gradient vanishing
problems due to the smaller number of available labeled training samples and to over-
come this shortcoming the lightweight CNN’s gain good attention in HSIC communities.
The paper [217] introduced an end-to-end 3D lightweight convolutional neural network to
tackle the limited numbers of training samples for HSI classification. To reduce the large
gap between the massive trainable parameters and the limited labeled samples [218] pro-
posed to extract the spatial-spectral Schroedinger eigenmaps (SSSE) joint spatial-spectral
information, and then further reduced the dimensionality using compression technique.
Approximately 90% of trainable weights of the total parameters are used immediately af-
ter the flatten operation i.e., in the fully connected layer, whereas the remaining only 10%
weights are used on the previous convolutional layers of the whole network. To overcome
the paper [219] introduced a lightweight bag-of-feature learning paradigm into an end-to-
end spectral-spatial squeeze-and-excitation residual network for HSIC.

The morphological operations i.e., erosion and dilation are powerful nonlinear feature
transformations that are widely used to preserve the essential characteristics of shape and
structural information of an image. Inspired by these the paper [220] introduced a new end-
to-end morphological convolutional neural network (MorphCNN) for HSIC which utilizes
both the spectral and spatial features by concatenating the outputs from spectral and spatial
morphological blocks extracted in a dual-path fashion.

The work [215] proposed a two-stage framework for joint spectral-spatial HSIC which
can directly extract both spectral and spatial features instead of independently concatenat-
ing them. The first stage of the proposed network is comprised of a CNN and softmax nor-
malization that adaptively learns the weights for input patches and extracts joint shallow
features. These shallow features are then fed to a network of Stacked Autoencoder (SAE)
to obtain deep hierarchical features and final classification is performed with a Multinomial
Logistic Regression (MLR) layer. A 3D-CNN model was introduced in [221] to jointly exploit
spectral-spatial features from HSI and to validate its performance comparison is performed
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with spectral-based DBN, SAE, and 2D-spatial CNN for HSIC. The work [222] introduced a
bilinear fusion mechanism over the two branches of squeeze operation based on the global
and max-pooling whereas the excitation operation is performed with the fused output of
squeeze operation.

The work [223] proposed a deep multiscale spectral-spatial feature extraction approach
for HSIC which can learn effective discriminant features from the images with high spatial
diversity. The framework utilizes the Fully Convolutional Network (FCN) to extract deep
spatial information and then, these features are fused with spectral information by using
a weighted fusion strategy. Finally, pixel-wise classification is performed on these fused
features.

In [224] a dual-channel CNN framework was implemented for spectral-spatial HSIC. In
the proposed approach, 1D-CNN is used to hierarchically extract spectral features and 2D-
CNN to extract hierarchical spatial features. These features are then combined together for
the final classification task. Furthermore, to overcome the deficiency of training data and
to achieve higher classification accuracy, the proposed framework is supported by a data
augmentation technique that can increase the training samples by a factor of 6. In [225], a
multiscale 3D deep CNN is introduced for end-to-end HSIC which can jointly learn both 1D
spectral and 2D multiscale spatial features without any pre-processing or post-processing
techniques like PCA, etc. In order to reduce the band redundancy or noise in HSI, [226]
explored a novel architecture for HSIC by embedding a band attention module in the tra-
ditional CNN framework. The study [227] proposed an HSIC architecture in which PCA
transformed images are used to obtain multi-scale cubes for handcrafted feature extraction
by utilizing multi-scale covariance maps which can simultaneously exploit spectral-spatial
details of HSI. These maps are then used to train the traditional CNN model for classifica-
tion.

The work [228] combined CNN with metric learning-based HSIC framework which first
utilizes CNN to extract deep spatial information using the first three PCs extracted by PCA.
Then, in a metric learning-based framework, spectral and spatial features are fused together
for spectral-spatial feature learning by embedding a metric learning regularization factor for
the classifier’s training (SVM).

Similarly, [229] combines multi-scale convolution-based CNN (MS-CNN) with diversi-
fied deep metrics based on determinantal point process (DPP) [230] priors for (1-D spectral,
2-D spectral-spatial, and 3-D spectral-spatial) HSIC. Multiscale filters are used in CNN to
obtain multi-scale features and DPP-based diversified metric transformation is performed
to increase the inter-class variance and decrease intra-class variance, and better HSI repre-
sentational ability. Final classification maps are obtained by using a softmax classifier.
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In recent work, [231] an HSIC framework is proposed to extract multi-scale spatial fea-
tures by constructing a three-channel virtual RGB image from HSI instead of extracting the
first three PCs through PCA. The purpose of using a three-channel RGB image is to utilize
existing networks trained on natural images to extract spatial features. For multi-scale fea-
ture extraction, these images are passed to a fully convolutional network. These multi-scale
spatial features are fused and further joined with PCS extracted spectral features for final
classification via SVM.

A two-branch (spectral and spatial) DNN for HSIC was introduced in [232]. The spatial
branch consists of a band selection layer and a convolutional and de-convolutional frame-
work with skip architecture to extract spatial information of HSI, and in the spectral branch,
a contextual DNN is used to extract spectral features. The paper [233] introduced an adap-
tive band selection based semi-supervised 3D-CNN to jointly exploit spectral-spatial fea-
tures whereas [234] explored dual-attention based autoencoder-decoder network for unsu-
pervised hyperspectral band selection and then joint feature extraction for land cover class
prediction. Similarly, in [235] spectral-spatial features are simultaneously exploited in an
unsupervised manner using a 3D convolution autoencoder. A hybrid 3D − 2D-CNN ar-
chitecture was presented by [236] in which 3D-CNN is first used to extract joint spectral-
spatial features and then 2D-CNN is further used to obtain more abstract spatial contex-
tual features. The study [237] proposed a Bayesian HSIC architecture that combines CNN
with Markov random field. The CNN first extracts joint spectral-spatial features and then a
smooth MRF prior is placed on class labels to further refine the spatial details.

3.6.4 Future directions for CNN-based HSIC

In the preceding section, we have reviewed the recent developments of CNNs for HSIC.
Although CNN’s based HSIC frameworks have achieved great success with respect to clas-
sification performance, there are still many aspects that need further investigation. For in-
stance, there is a need to further work on such models that can jointly employ spatial and
spectral information for HSIC. Many of the above-surveyed frameworks use dimensionality
reduction methods to achieve better spectral-spatial representation but such approaches dis-
card useful spectral information of HSI. Hence the development of robust HSIC approaches
that can preserve spectral information is required. However, processing of such approaches
increases the computational burden, and the training process becomes slower, therefore,
parallel processing of such networks using FPGAs and GPUs is desired in order to achieve
the computationally fast models, that can even be suitable for mobile platforms, without the
performance degradation. Moreover, as the CNNs are becoming deeper and deeper, more
labeled training data is required for accurate classification, and as discussed before, there
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is a lack of labeled training data in HSI. In order to overcome this issue, more research is
required to integrate the CNN with unsupervised or semi-supervised approaches.

3.7 Autoencoders (AE)

Autoencoder (AE) is a popular symmetrical neural network for HSIC due to its unsuper-
vised feature learning capability. AE itself does not perform a classification task instead it
gives a compressed feature representation of high-dimensional HSI data. AE consists of an
input layer, one hidden or encoding layer, one reconstruction or decoding layer, and an out-
put layer as shown in Figure 3.7. AE is trained on input data in such a manner to encode
it into a latent representation that is able to reconstruct the input. To learn a compressed
feature representation of input data, AE tries to reduce the reconstruction error that is mini-
mizing the difference between the input and the output.

FIGURE 3.7: A general Autoencoder Architecture

Whereas, the Stacked Autoencoder (SAE) is built by stacking multiple layers of AEs in
such a way that the output of one layer is served as an input of the subsequent layer. Denois-
ing autoencoder (DAE) is a variant of AE that has a similar structure as AE except for the
input data. In DAE, the input is corrupted by adding noise to it, however, the output is the
original input signal without noise. Therefore, DAE, different from AE, has the capability to
recover original input from a noisy input signal.

To learn high-level representation from data, the work [238] proposed a combination of
multi-layer AEs with maximum noise fraction which reduces the spectral dimensionality of
HSI, while a softmax logistic regression classifier is employed for HSIC. The study reported
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in [239] combined multi-manifold learning framework proposed by [240] with Counterac-
tive Autoencoder [241] for improved unsupervised HSIC. The work [242] jointly exploited
spectral-spatial features of HSI through an unsupervised feature extracting framework com-
posed of recursive autoencoders (RAE) network. It extracts the features from the neighbor-
hood of the target pixel and weights are assigned based on the spectral similarity between
target and neighboring pixels. A two-stream DNN with a class-specific fusion scheme was
introduced in [243] which learns the fusion weights adaptively. One stream composed of
stacked denoising auto-encoder is used to extract spectral features and the second stream
is implemented to extract spatial information using Convolutional Neural Network (CNN),
while final classification is performed by fusing the class prediction scores obtained from
the classification results of both streams.

Another work proposed a hybrid architecture for multi-feature based spectral-spatial
HSIC which utilizes Principle Component Analysis (PCA) for dimensionality reduction,
guided filters [244] to obtain spatial information and sparse AE for high-level feature ex-
traction. The framework proposed in [245] exploited both spectral and spatial information
for HSIC by adopting batch-based training of AEs and features are generated by fusing
spectral and spatial information via a mean pooling scheme. Another work [246] developed
a spectral-spatial HSIC framework by extracting appropriate spatial resolution of HSI and
utilization of stacked sparse AE for high-level feature extraction followed by Random Forest
(RF) for the final classification task.

Similarly, [247] also used stacked sparse AE for various types of representation that is
spectral-spatial and multi-fractal features along with other higher-order statistical represen-
tations. A combination of SAE and extreme learning machine was proposed in [248] for
HSIC, which segments the features of the training set and transform them via SAE, after
transformation, feature subsets are rearranged according to the original order of the training
set and fed to extreme learning machine-based classifiers, while Q-statistics is used for final
classification result. This processing of feature subsets helps to improve variance among
base classifiers [248]. Similarly, in a recent work [249] implemented a computationally ef-
ficient multi-layer extreme learning machine-based AE which learns the features in three
folds, as proposed in [250] for HSIC.

To overcome the issue of high intra-class variability and high inter-class similarity in HSI,
[251] developed a stacked Autoencoder (SAE) based HSIC which can learn compact and dis-
criminative features by imposing a local fisher discriminant regularization. Similarly, in the
latest work [252] a k-sparse denoising AE is spliced with and spectral–restricted spatial fea-
tures that overcome the high intra-class variability of spatial features for HSIC. The study
[253] proposed an HSIC architecture that first makes the spectral segments of HSI based
on mutual information measure to reduce the computation time during feature extraction
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via SAE, while spatial information is incorporated by using extended morphological pro-
files (EMPs) and SVM/RF is used for final classification. Recently, [254] used SAE for the
classification of an oil slick on the sea surface by jointly exploit spectral-spatial features of
HSI.

3.7.1 Future Directions for AE-based HSIC

In the above section, we have surveyed the recent developments of AEs based techniques
for HSIC. Although such frameworks provide powerful predictive performance and show
good generalization capabilities, more sophisticated work is still desired. Many of the dis-
cussed approaches do not fully exploit abundant spatial information so further techniques
need to be developed that can fully employ joint spatial and spectral information for HSIC.
Moreover, the issue of high intra-class variability and high inter-class similarity in HSI also
hinders the classification performance. Many of the above-reviewed works have addressed
this issue but further research to overcome this aforesaid issue is required. One direction
could be further exploring approaches like pre-training, co-training, and adaptive neural
networks, etc for AE-based HSIC frameworks.

3.8 Deep Belief Network (DBN)

Deep Belief Network (DBN) [255] is a hierarchical deep DNN that learns the features from
input in an unsupervised, layer-by-layer approach. The layers in DBN are built using Re-
stricted Boltzmann Machine (RBM) comprised of a two-layer architecture in which visible
units are connected to hidden units [256] as shown in Figure 3.8.

A detailed overview of RBM can be found at [256]. To extract more comprehensive fea-
tures from input data, the hidden unit of one RBM can be feed to the visible units of other
RBM. This type of layer-by-layer architecture builds a DBN, which is trained greedily and
can capture deep features from HSI. The architecture of three-layer DBN is shown in Figure
3.9.

In literature, several works implemented DBN for HSIC. For instance, [257] used DBN
for land cover classification by combining spectral-spatial information and made a compar-
ison with some other classification approaches. The usual learning process of DBN involves
two steps: one is unsupervised pre-training with unlabeled samples and the second is su-
pervised fine-tuning with the help of labeled samples. However, this training process may
result in two problems: first, multiple hidden units may tend to respond similarly [258] due
to co-adaptation [259] and second is linked with the sparsity and selectivity of activations
neurons that are some neurons may always be dead or always responding [260]. To mitigate
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FIGURE 3.8: Basic architecture of RBM

FIGURE 3.9: A three layer DBN architecture

these two problems, [261] introduced a diversified DBN model through regularizing the
pre-training and fine-tuning process by imposing a diversity prior to enhancing the DBN’s
classification accuracy for HSI.
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To extract efficient texture features for the HSIC, the work [262] proposed a DBN based
texture feature enhancement framework that combines band grouping and sample band se-
lection approach with a guided filter to enhance the texture features, which are then learned
by a DBN model and final classification results are obtained by a softmax classifier. The
work [263] implemented a parallel layers framework consisting of Gaussian-Bernoulli RBM
which extracts high-level, local invariant, and nonlinear features from HSI and a logistic
regression layer is used for classification.

To improve the classification accuracy, some works are considered to jointly exploit the
spectral and spatial information contained in HSI. For instance, [264] introduced a DBN
framework with the logistics regression layer and verified that the joint exploitation of
spectral-spatial features leads to improved classification accuracy. Similarly, [265] proposed
a spectral-spatial graph-based RBM method for HSIC which constructs the spectral-spatial
graph through joint similarity measurement based on spectral and spatial details, then an
RBM is trained to extract useful joint spectral-spatial features from HSI, and finally, these
features are passed to a DBN and logistic regression layer for classification.

3.8.1 Future directions for DBN-based HSIC

In the preceding section, we have reviewed the latest developments of DBN-based HSIC
frameworks. We have observed that relative to other DNNs, very few works have utilized
the DBNs for HSIC. Therefore, there is a need to further explore the DBN-based robust tech-
niques that can jointly employ spatial and spectral features for HSIC. In addition, another
research direction can be the regularization of the pretraining and fine-tuning processes of
DBN to efficiently overcome the issue of dead or potentially over-tolerant (always respond-
ing) neurons.

3.9 Recurrent Neural Network (RNN)

The architecture of the Recurrent Neural Network (RNN) (Shown in Figure 3.10) comprises
loop connections, where the node activation of the next step depends on the previous step
[266]. Therefore, RNNs are capable of learning temporal sequences. RNN models process
the spectral information of HSI data as time sequence considering the spectral bands as time
steps [267]. There are three basic models of RNN as follows;

1. Vanilla

2. Long-Short-Term Memory (LSTM)

3. Gated Recurrent Unit (GRU)
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FIGURE 3.10: RNN architecture

Vanilla is the simplest RNN model and leads to information degradation while process-
ing high-dimensional data. LSTM models composing of two states overcome this issue by
controlling the information flow through three gates: input, forget, and output gates. It
learns the relevant information over time by discarding the extraneous information. How-
ever, the gate controlling strategy makes the LSTM a considerably complex approach. GRU
variant of LSTM enjoys the simplicity of the Vanilla model and provides high performance
similar to LSTM. GRU is a simpler version of LSTM which modifies the input and forget
gate as an update (zt) and reset (rt) gate and removes the output gate. A comparison of
LSTM and GRU’s internal architecture is presented in Figure 3.11.

FIGURE 3.11: Internal architecture of LSTM and GRU

For the first time, [268] proposed an RNN based HSIC framework with a novel activation
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function (parametric rectified tanh) and GRU, which utilizes the sequential property of HSI
to determine the class labels. In [168] a local spatial sequential (LSS) method based RNN
framework was introduced which first extracts low-level features from HSI by using Gabor
filter and differential morphological profiles [169] and then fuse these features to obtain LSS
features from the proposed method, these LSS features are further passed to an RNN model
to extract high-level features, while a softmax layer is used for final classification.

Keeping in view the usefulness of spatial information to achieve improved classification
accuracies, [269] proposed a spectral-spatial LSTM based network that learns spectral and
spatial features of HSI by utilizing two separate LSTM followed softmax layer for classifica-
tion, while a decision fusion strategy is implemented to get joint spectral-spatial classifica-
tion results. Similarly, [270] proposed a patch-based RNN with LSTM cells that incorporate
multi-temporal and multi-spectral information along with spatial characteristics for land
cover classification.

In literature, several works proposed Convolutional Neural Network (CNN) based hy-
brid RNN architectures (CRNN) for HSIC. For instance, [200] implemented a convolutional
RNN in which the first few CONV layers are employed to extract position invariant middle-
level features, and then recurrent layers are used to extract spectral-contextual details for
HSIC. Similarly, [271] utilized such a model for semi-supervised HSIC by using pseudo la-
bels. The study [272] suggested an HSIC framework in which CNN is used to extract spatial
features from HSI, then these features are passed to a GRU-based fusion network that per-
forms feature level and decision level fusion.

Similarly, Luo, et.al., [273] exploited both spectral and spatial information contained in
HSI by combining CNN with parallel GRU-based RNN which simplifies the training of
GRU and improves performance. Bidirectional Convolutional LSTM (CLSTM) was pro-
posed in [178] to jointly exploit spectral-spatial feature of HSI for classification. In, [274]
combined multiscale local spectral-spatial features extracted by 3D-CNN with a hierarchi-
cal RNN which learns the spatial dependencies of local spectral-spatial features at multiple
scales. Recurrent 2D-CNN and recurrent 3D-CNN for HSIC were proposed in [275] and
along with an interesting comparison of these frameworks with their corresponding 2D and
3D-CNN models, which validates the superiority of recurrent CNN. The work [276] inte-
grated CNN with CLSTM in which a 3D-CNN model is used to capture low-level spectral-
spatial features and CLSTM recurrently analyzes this low-level spectral-spatial information.
Recently, [277], introduced a cascade RNN for HSIC which consist of two layers of GRU-
based RNN, the first layer is used to reduce the redundant spectral bands and the second
layer is used to learn the features from HSI, furthermore, few convolutional layers are em-
ployed to incorporate the rich spatial information contained in HSI.
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3.9.1 Future directions for RNN-based HSIC

In the above section, we have surveyed the recent developments of AEs based techniques
for HSIC. Although RNN-based HSIC frameworks have attracted considerable attention
to the remote sensing community and achieved great success with respect to classification
performance, there are still many aspects that need further investigation. For instance, the
construction of sequential input data for RNN. Most of the surveyed methods considered
HSI pixel as a sequential point that is the pixel from each spectral band that forms a data
sequence. However, This increases the length of RNN’s input sequence considerably large
which can lead to an overfitting issue. Moreover, processing such large data sequences in-
creases the computational time and the learning process becomes slower. Therefore, the use
of parallel processing tools needs to be further investigated to achieve good generalization
performance of RNN-based HSIC. In addition, approaches like a grouping of spectral bands
to decrease the data sequence length and utilization of the entire spectral signature to bet-
ter discriminate between various classes can further be explored to construct the sequential
input of the RNN model. Another interesting future direction may involve the implementa-
tion of RNN-based HSIC frameworks in a real multi-temporal HSI context.

3.10 Strategies for Limited Labeled Samples

Although DNNs have been successfully exploited for the task of HSIC however, they require
a considerably large amount of labeled training data. However, as discussed earlier, the
collection of labeled HSI is very critical and expensive due to numerous factors that either
demand human experts or exploration of real-time scenarios. The limited availability of
labeled training data hinders classification performance. To overcome the aforesaid issue,
many effective strategies have been proposed in the literature. In this section, we will briefly
discuss some of these strategies while focusing on active learning algorithms.

3.10.1 Data Augmentation

To combat the issue of limited training samples, data augmentation is proven to be an ef-
fective tool for HSIC. It generates new samples from the original training samples with-
out introducing additional labeling costs. Data augmentation approaches can be catego-
rized into two main strategies as i) data wrapping; ii) oversampling [278]. Data wrapping
usually encodes several invariances (translational, size, viewpoint, and/or illumination)
by conducting geometric and color-based transformations while preserving the labels, and
oversampling-based augmentation methods inflate the training data by generating synthetic
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samples based on original data distributions. Oversampling techniques include mixture-
based instance generation, feature space augmentations [278], and Generative Adversarial
Networks (GANs) [279].

Referring to HSIC literature, several data augmentation-based frameworks have been
employed to improve the classification performance by avoiding potential overfitting, which
is generally caused by the limited availability of training data. For instance, [280] enhanced
the training data by using three data augmentation operations (flip, rotate, and translation),
and then this enhanced data is exploited to train CNN for HSIC. The paper [281] presented
a comprehensive comparison of various extensively utilized HSI data augmentation tech-
niques and proposed a pixel-block pair-based data augmentation that utilized both spec-
tral and spatial information of HSI to synthesis new instances, to train a CNN model for
HSIC. The work [194] compared the classification performance of their diverse region-based
CNN framework with and without data augmentation techniques and demonstrated that
the data augmentation leads to higher classification accuracies. Similarly, in another com-
parison [282], data augmentation based CNN exhibited a 10% increase in HSIC accuracy
when compared to a PCA based CNN model.

The above-discussed methods utilize offline data augmentation techniques that increase
the training data by creating new instances during/before the training process of a model.
Recently, a novel data augmentation framework for HSI is proposed in [283] which, rather
than inflating the training data, generates the samples at test time, and a DNN trained over
original training data along with a voting scheme is used for the final class label. To im-
prove the generalization capability of DNN models, [283] also proposed two fast data aug-
mentation techniques for high-quality data syncretization. A similar PCA-based online data
augmentation strategy is proposed in [284] which also synthesis new instances during the
inference, instead of training.

3.10.2 Semi-supervised/Unsupervised Methods

Semi-supervised learning (SSL) approaches learn data distribution by jointly exploiting both
labeled and unlabeled data. These techniques expand the training data by utilizing unla-
beled samples along with labeled ones in order to construct a relationship between feature
space and class labels. Several SSL-based HSIC frameworks have been proposed in the
literature that can mainly be categorized as follows: i) Co-training, ii) Self-training, iii) Gen-
erative adversarial networks (GANs), iv) Graph-based SSL models and v) Semi-supervised
SVM. A recent comprehensive survey on these SSL techniques can be found in [285]. More-
over, another in-depth survey of SSL approaches is also presented in [286].

The SSL-based HSIC techniques are briefly summarized in [287], where authors also
made a detailed comparison of these methods. The method presented in [271] used pseudo
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or cluster-labeled samples to pre-train a CRNN for HSIC and small-sized labeled data is
used to fine-tune the network. Similarly, [181] proposed a semi-supervised HSIC frame-
work that exploits PCA and extended morphological attribute profiles to extract pseudo-
labeled samples which are fed to a CNN-based deep feature fusion network. The work
[288] proposed a dual strategy co-training approach based on spectral and spatial features
of HSI. Similarly, [289] separately pre-trained two SAEs, one using spectral and the other
using spatial features of HSI, and fine-tuning is achieved via a co-training approach. [290]
proposed a region information-based self-training approach to enhance the training data.
A graph-based self-training framework was developed in [291] where initial sampling is
achieved through subtractive clustering. Recently, [182] improved the HSIC performance
by pseudo-labeling the unlabeled samples through a clustering-based self-training mecha-
nism and regulate the self-training by employing spatial constraints.

3.10.3 Generative Adversarial Networks (GANs)

Generative Adversarial Networks (GANs), proposed by [292], are comprised of two neural
networks, one is known as a generator and the other is known as a discriminator (Figure
3.12). GANs can learn to replicate the samples by exploiting the data distribution details.

FIGURE 3.12: A general architecture of generative adversarial network (GAN)
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The work [293] proposed a spectral feature-based GAN for SSL-based HSIC. Similarly,
[294] proposed a GAN-based spectral-spatial HSIC framework. Similarly, [295] developed a
CNN-based 1D-GAN and 3D-GAN architectures to enhance the classification performance.
A 1D customized GAN is used to generate the spectral features [296], which is further used
by CNN for feature extraction, and then majority voting is performed HSIC. Very recently,
[297] introduced a spatial-spectral multi-class GAN (MSGAN) which utilizes two generators
to produce spatial and spectral information with the help of multiple adversarial objectives.

To address the data imbalance problem for HSI classification [298] proposed a new semi-
supervised model which combines GAN with conditional random fields (CRFs). Similarly,
[299] investigated a Caps-TripleGAN model which effectively generates new samples us-
ing a 1D structure triple generative adversarial network (TripleGAN) and classifying the
generated HSI samples using the capsule network (CapsNet). In [300] proposed to utilize
a 3D CNN-based generator network and a 3D deep residual network-based discriminator
network for HSIC.

To learn high-level contextual features combination of both capsule network and con-
volutional long short-term memory (ConvLSTM) based discriminator model has been pro-
posed in [301] for HSIC. [302] proposed to addresses the scarcity of training examples by uti-
lizing a GAN model where the performance of the discriminator is further improved by an
auxiliary classifier to produce more structurally coherent virtual training samples. Besides
this, to enhance the model performance [303] proposed a generative adversarial minority
oversampling-based technique for addressing the longstanding problem of class-wise data
imbalanced imposed by HSIC.

3.10.4 Transfer Learning

Transfer learning enhances the performance of a model by using prior knowledge of a rele-
vant primary task to perform a secondary task. In other words, information extracted from
the relevant source domain is transferred to the target domain to learn unseen/unlabeled
data. Therefore, transfer learning can be effectively employed in domains with insufficient
or no training data. Based on the availability of labeled training instances, transfer learn-
ing frameworks can further be categorized as supervised or unsupervised transfer learning.
Generally, both source and target domains are assumed to be related but not exactly similar.
However, they may follow different distributions as in the case of HSIC where categories of
interest are the same but data in two domains may vary due to different acquisition circum-
stances.

In DNN based HSIC, the model learns features in a hierarchical manner, where lower lay-
ers usually extract generic features, when trained on various images. Therefore, the features
learned by these layers can be transferred to learn a new classifier for the target dataset. For
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instance, [304] pertained to a two-branch spectral-spatial CNN model with an ample amount
of training data from other HSIs and then applied the lower layers of the pre-trained model
to the target network for the robust classification of target HSI. To learn the target-specific
features, higher layers of the target network are randomly initialized and the whole network
is fine-tuned by utilizing limited labeled instances of target HSI. Similarly, [305] proposed a
suitable method to pre-train and fine-tune a CNN network to utilize it for the classification
of new HSIs. The study [306] combined data augmentation and transfer learning approaches
to combat the shortage of training data in order to improve HSIC performance.

As discussed before, data in source and target domain may vary in many aspects, for
instance, in the case of HSIs, the dimensions of two HSIs may vary due to the acquisition
from different sensors. Handling such cross-domain variations and transferring the knowl-
edge between them is known as heterogeneous transfer learning (a detailed survey of such
methods can be found in [307]). In HSIC literature, several works have been proposed to
bridge the gap for transferring the knowledge between two HSIs, with varying dimensions
and/or distributions.

For example, [308] proposed an effective heterogeneous transfer learning-based HSIC
framework that works well with both homogeneous and heterogeneous HSIs, and [309]
used an iterative re-weighting mechanism-based heterogeneous transfer learning for HSIC.
Similarly, a recent work [310] proposed a band selection-based transfer learning approach to
pre-train a CNN, which retains the same number of dimensions for various HSIs. Further-
more, [311] proposed an unsupervised transfer learning technique to classify completely
unknown target HSI and [312] demonstrate that the networks trained on natural images
can enhance the performance of transfer learning for remote sensing data classification as
compared to the networks trained from scratch using smaller HSI data.

3.10.5 Active Learning

Active Learning (AL) iteratively enhances the predictive performance of a classifier by ac-
tively increasing the size of training data, for each training iteration, by utilizing an un-
labeled pool of samples. In each iteration, AL enhances the training dataset by actively
selecting the most valuable instances from the pool of unlabeled data and an oracle (Human
or machine-based) assigns the true class labels to these instances. Finally, these useful in-
stances are added to the existing training dataset and the classifier is retrained on this new
training dataset. The process continues until a stopping criterion, that maybe the size of
the training dataset, the number of iterations, or the desired accuracy score, is achieved. A
general framework of AL is illustrated in Figure 3.13.

The selection of the most useful/effective samples is made in such a way that the sam-
ples should be informative and representative of the overall input distribution in order to
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FIGURE 3.13: A general overview of Active Learning

improve accuracy. Based on the criteria of adding new instances to the training set, AL
frameworks can be designated as either stream-based or pool-based. In stream-based selec-
tion, one instance at a time is drawn from an actual set of unlabeled samples and the model
decides whether to label it or not based on its usefulness. While in pool-based strategy,
samples are queried from a pool/subset of unlabeled data based on ranking scores com-
puted from various measures to evaluate the sample’s usefulness. The work [313] found
that streamed-based selection gives poorer learning rates as compared to pool-based selec-
tion as the former tends to query extra instances. In pool-based selection, it is important to
incorporate diversity in the pool of samples, in order to avoid redundancy within the pool
of samples. Generally, the following three aspects are focused on while selecting/querying
the most valuable samples: heterogeneity behavior, model’s performance, and representa-
tiveness of samples. A brief introduction of these sampling approaches is given below:

Heterogeneity-based selection

These approaches select the samples that are more heterogeneous to the already seen in-
stances with respect to model diversity, classification uncertainty, and contention between a
committee of various classifiers. Uncertainty sampling, expected model change, and query-
by-committee are examples of heterogeneity-based models.
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• Uncertainty Sampling: In this approach, the classifier iteratively tries to query the
label of those samples for which it is most uncertain while predicting the label. The
selection of new instances is based on ranking scores against a specified threshold
and the instances with scores closest to that threshold are queried for labels. One
simple example of such a scheme could be implementing the probabilistic classifier
on a sample in a scenario of binary classification and query its label if the predicted
class probability is close to 0.5.

• Query-by-Committee: Such heterogeneity-based approaches perform the sampling
process based on the dissimilarities in the predictions of various classifiers trained on
the same set of labeled samples. A committee of various classifiers trained on the same
set of training data is used to predict the class labels of unlabeled samples and the sam-
ples for which classifiers differ more are selected for querying labels. The committee
of different classifiers can either be built by using ensemble learning algorithms like
Bagging and Boosting [314] or by changing the model parameters [315]. Generally, a
less number of diverse classifiers is adequate for constructing a committee [314, 316].

• Expected Model Change: Such a heterogeneity-based approach chooses the instances
which result in a significant change from the current model in terms of the gradient of
the objective function. Such techniques attempt to query the label for those instances
that are considerably different from the current model. These sampling techniques
only fit the models which follow gradient-based training procedures/optimization.

Performance-based Selection

Such methods consider the effect of adding queried samples to the model performance.
They try to optimize the performance of the model by reducing variance and error. There
are two types of performance-based sampling:

• Expected Error Reduction: This approach is interrelated to uncertainty sampling in
such a way that uncertainty measures maximize the label uncertainty of the sample to
be queried for the label while expected error reduction reduces the label uncertainty
of the queried sample. Referring to the already discussed example of the binary clas-
sification problem, the expected error reduction approach would choose the samples
with a probability far away from 0.5 in order to reduce the error rate. Such techniques
are also known as the greatest certainty models [315].

• Expected Variance Reduction: Reducing the variance of the model is guaranteed to
reduce future generalization error [317]. Therefore, expected variance reduction tech-
niques attempt to indirectly reduce the generalization error by minimizing the model
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variance. Such approaches query the instances that result in the lowest model vari-
ance. The Fisher information ratio is a well-known variance minimization framework.

Representativeness-based selection

Heterogeneity-based models are prone to include outlier and controversial samples but
performance-based approaches implicitly avoid such samples by estimating future errors.
Representative sampling tends to query such instances that are representative of the overall
input distribution, hence, avoid outliers and unrepresentative samples. These approaches
weigh the dense input region to a higher degree while the querying process. Density-
weighted techniques like information density are examples of representativeness sampling
approaches that consider the representativeness of samples along with heterogeneity behav-
ior, and are also known as hybrid models [315].

Recently, AL has been intensively utilized in HSIC. [318] proposed a feature-driven AL
framework to define a well-constructed feature space for HSIC. [319] proposed a Random
Forest-based semi-supervised AL method that exploits spectral-spatial features to define a
query function to select the most informative samples as target candidates for the training
set.

Spatial information has been intensively exploited in many AL-based HSIC. For instance,
[320] presented an AL framework that splice together the spectral and spatial features of
superpixels. Similarly, [321] considered the neighborhood and superpixel information to
enhance the uncertainty of queried samples. In recent work, [322] exploited the attribute
profiles to incorporate spatial information in an AL-based HSIC framework.

Batch-mode AL frameworks have been widely employed to accelerate the learning pro-
cess. Such approaches select a batch of samples, in each iteration, to be queried for a la-
bel. Therefore, the diversity of the samples is extremely critical in batch mode AL tech-
niques in order to avoid redundancy. A multi-criteria batch-mode AL method proposed by
[323] defines a novel query function based on diversity, uncertainty, and cluster assump-
tion measures. These criteria are defined by exploiting the properties of KNN, SVM, and
K-means clustering respectively, and finally, genetic algorithms are used to choose the batch
of most effective samples. Similarly, [324] proposed a regularized multi-metric batch-mode
AL framework for HSIC that exploits various features of HSI.

A multiview AL (MVAL) framework was proposed in [325] that analyzes the object from
various views and measure the informativeness of the sample through multiview Intensity-
based query criteria. Similarly, [326] also exploited the concept of multiview learning using
the Fisher Discriminant Ratio to generate multiple views. In another work, [327] proposed
a novel adaptive MVAL framework for HSIC which jointly exploits the spatial and spectral
features in each view. Recently, [328] proposed an MVAL technique that utilizes pixel-level,
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subpixel-level, and superpixel-level details to generate multiple views for the purpose of
HSIC. Moreover, the proposed method exploits joint posterior probability estimation and
dissimilarities among multiple views to query the representative samples.

In the HSIC literature, several works have combined the AL and DNN. For instance, [329]
joined autoencoder with AL technique and [330] proposed a DBN-based AL framework for
HSIC. Similarly, [331] coupled Bayesian CNN with AL paradigm for the purpose of spectral-
spatial HSIC. Recently, [332] proposed a CNN-based AL framework to better exploit the
unlabeled samples for HSIC.

Many works integrated AL with transfer learning for the purpose of HSIC. For example,
[333] proposed an AL-based transfer learning framework that extracts the salient samples
and exploits high-level features to correlate the source and target domain data. Another
work, [334] proposed a stacked sparse AE-based active transfer learning technique that
jointly utilizes both spectral and spatial features for HSIC. Another work [335] combined
domain adaptation and AL methods based on multiple kernels for HSIC.

AL-based HSIC offers some sophisticated frameworks to enhance the generalization ca-
pabilities of models. For instance, [6] proposed a fuzziness-based AL method to improve the
generalization performance of discriminative and generative classifiers. The method com-
putes the fuzziness-based distance of each instance and estimated class boundary, and the
instances having greater fuzziness values and smaller distances from class boundaries are
selected to be the candidates for the training set. Recently, [336] proposed a non-randomized
spectral-spatial AL framework for multiclass HSIC that combines the spatial prior Fuzziness
approach with Multinomial Logistic Regression via a Splitting and Augmented Lagrangian
classifier. The authors also made a comprehensive comparison of the proposed framework
with state-of-the-art sample selection methods along with diverse classifiers.

3.11 Concluding Remarks

The rich information contained in HSI data is a captivating factor that constitutes the utiliza-
tion of HSI technology in real-world applications. Moreover, advances in machine learning
methods strengthen the deployment potentials of such technologies. This chapter surveyed
recent developments of Hyperspectral Image Classification (HSIC) using state of the art
Deep Neural Networks (for instance, Auto-encoder (AE), Deep Belief Network (DBN), Re-
current Neural Network (RNN), Convolutional Neural Network (CNN), Transfer Learn-
ing (TL), Few-shot Learning (FSL), Active/Self Learning (AL/SL), and Data Augmentation
(DA)) in a variety of learning schemes (specifically, supervised, semi-supervised and unsu-
pervised learning). In addition, this chapter also analyzed the strategies to overcome the
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challenges of limited availability of training data like Data Augmentation, Few-shot Learn-
ing (FSL), Transfer Learning, and Active Learning, etc.

Although the current HSIC techniques reflect a rapid and remarkable sophistication of
the task, further developments are still required to improve the generalization capabilities.
The main issue of deep neural network-based HSIC is the lack of labeled data. HSI data is
infamous due to the limited availability of labeled data and deep neural networks demand a
sufficiently large amount of labeled training data. Section 3.10 discussed some widely used
strategies to combat the aforesaid issue but significant improvements are still needed to ef-
ficiently utilize limited available training data. One direction to solve this problem could be
to explore the integration of various learning strategies discussed in section 3.10 to cash in
the joint benefits. One more way is to exploit a few-shot or K-shot learning approaches that
can accurately predict the class labels with only a few labeled samples. Moreover, there is
a need to focus on the joint exploitation of spectral-spatial features of HSI to complement
classification accuracies achieved from the aforementioned HSIC frameworks. Another fu-
ture potential of HSIC is computationally efficient architectures. Therefore, the issue of the
high computational complexity of deep neural networks is of paramount importance and
it is crucial to implement parallel HSIC architectures to speed up the processing of deep
neural networks to meet the computational stipulation of time-critical HSI applications. In
this direction, high-performance computing platforms and specialized hardware modules
like graphical processing units (GPUs) and field-programmable gate arrays (FPGAs) can be
used to implement the parallel HSIC frameworks. Hence, to assimilate aforesaid aspects in
the development of a new HSIC framework is to appropriately utilize the limited training
samples while considering joint spectral-spatial features of HSI and maintaining the low
computational burden.
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Chapter 4

A Fast and Compact 3D CNN

This chapter proposes a 3D CNN model that utilizes both spatial-spectral feature maps to improve
the performance of HSIC. For this purpose, the HSI cube is first divided into small overlapping 3D
patches, which are processed to generate 3D feature maps using a 3D kernel function over multiple
contiguous bands of the spectral information in a computationally efficient way. In brief, an end-
to-end trained model requires fewer parameters to significantly reduce the convergence time while
providing better accuracy than existing models.

4.1 Motivation

The simplest way to improve the HSIC performance is to design a classifier that should in-
corporate both spectral and spatial information. Spatial information is considered as addi-
tional discriminatory information associated with the size, shape, and structure of the object
which, if provided correctly, brings more competitive results. Spatial-spectral classifiers can
generally be classified into two groups. The first category explores spatial and spectral in-
formation separately. The spatial information is extracted in advance using entropy [337],
morphological operations [338, 339], low rank representation [340], attribute profiles [341]
and fuzziness [342]. Later this information is combined with spectral information to perform
pixel-level classification.

The second category fuses spatial-spectral information to get joint features [343], for in-
stance, 3D wavelet, scattering wavelet and Gabor filter [344, 345] are generated at different
frequencies and scales to extract the joint spatial-spectral features for classification. HSI is in
3D cubes thus the former category results in several 3D features, i.e., spatial-spectra feature
cubes comprising key information, thus preserving joint spatial-spectral correlations that
enable the extracted features to produce better results. However, the classical feature extrac-
tion methods are based on shallow learning and handcrafted features which largely depend
on domain knowledge [346]. Accordingly, Deep models have been used to automatically
learn low to high-level features from raw HSI data which have attained incredible success
for HSIC.
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The last few years witnessed an intensive improvement in CNN for HSIC where the spa-
tial features are tailored by a 2D CNN model [347–349]. These spatial features are usually ex-
tracted separately that, to some extent, void the reason to jointly exploit the spatial-spectral
information for HISC. A hybrid spectral CNN for HSIC has been proposed in [346], in which
the authors proposed a 3D CNN followed by a spatial 2D CNN model. The 3D convolu-
tional layers facilitate the spectral-spatial feature representation whereas 2D convolutional
layers are used to learn abstract level information. The hybrid model produces better re-
sults as compared to the conventional 3D models but still lacks at extracting the abstract
level spatial information. Recently, Paoletti et. al., [350, 351] proposed two deep pyrami-
dal residual networks for HSI feature extraction and classification. The former work only
considered spectral information for HSIC whereas the latter considered both the spectral-
spatial capsule network for feature learning and classification. Chen et. al., proposed a 3D
CNN model for feature extraction and classification [352]. Similarly, Zhong et. al., [353]
proposed a spatial-spectral residual network for HSIC in which the residual blocks used
identity mapping to connect 3D convolutional layers. Mou et. al., [354] proposed an unsu-
pervised HSIC to further explore the residual CNNs. The review of the literature revealed
several shortcomings, including but not limited to;

1. Though CNNs have become a promising method for HSIC, their memory require-
ment and high computational complexity make it challenging to accelerate their per-
formance. This work investigates their application to HSIC targetting high accuracy
but under controlled computational cost, in terms of the time, it takes for them to
converge. To achieve this, our work progressively modifies a baseline model while
preserving its accuracy and reducing its time complexity.

2. Preserving channel relationship information is a challenging problem. CNN models
are usually trained on reshaped spectral bands or use single band (gray-scale) infor-
mation (containing different properties), failing to extract the “fine structural/spatial
information of HSI". Furthermore, the high inter-class similarity, intra-class variability,
overlapping, and nested regions of HSI data make classification a challenging prob-
lem. To overcome the said issue, the proposed architecture first divides the HSI cube
into small overlapping 3D patches. These patches are processed to generate 3D fea-
ture maps using 3D kernel function over multiple contiguous bands to preserve the
joint spatial and spectral information for the feature learning process which exploits
important discriminatory information for HSIC.

3. As a preprocessing step, incremental Principle Component Analysis (iPCA) is em-
ployed to reduce the redundancy among the bands to process the few important wave-
lengths out of the entire HSI cube. Finally, to increase the number of spatial-spectral
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feature maps, four 3D convolutional layers are deployed to ensure that the model can
discriminate the spatial information within different spectral bands without any loss.

In a nutshell, our end-to-end trained model requires fewer parameters, which signifi-
cantly reduces the time it takes for the model to converge without compromising its accu-
racy, which is better than the existing models, as evident by our experimental results.

4.2 Proposed Methodology

Let us assume a HSI can be expressed as X = [x1, x2, x3, ..., xL]
T ∈ RL×(N×M) consisting of

N×M samples associated with C classes per band with total L bands, in which each sample
is represented as (xi, yj), where yj is the class label of xi sample. The HSI pixels exhibit high
inter-class similarity, high intra-class variability, overlapping, and nested regions. To over-
come the aforesaid issues, iPCA is applied to eliminate the redundant bands. iPCA reduces
the number of bands (L to B, where B ≪ L) while maintaining the spatial dimensions as
shown in Figure 4.1.

FIGURE 4.1: Proposed 3D CNN Model for HSIC. 3D CNN Model details, i.e., the number of 3D
Convectional and fully connected layers, can be found in Table 4.1.

In order to pass the HSI cube to the model, it must be divided into a small overlapping
3D spatial patches on which the ground labels are formed based on the central pixel, as
shown in Figure 4.2. The process creates neighboring patches P ∈ RS×S×B centered at the
spatial location (a, b) covering (S× S) spatial windows [346]. The total of n patches given
by (M˘S + 1)× (N˘S + 1). Thus, these patches cover the width from a−(S−1)

2 to a+(S−1)
2 and

height from b−(S−1)
2 to b+(S−1)

2 .
The input patches are first convolved with a 3D kernel function which computes the sum

of the dot product between kernel function and input patch [346, 355]. Later these learned
features are processed through an activation function that introduces the nonlinearity. The
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TABLE 4.1: Layer based Summary of our Proposed 3D CNN Model architecture shown in Figure 4.2
with Window Size set as 11× 11.

Layer Output Shape # of Parameters
Input Layer (11, 11, 20, 1) 0

Conv3D_1 (Conv3D) (9, 9, 14, 8) 512
Conv3D_2 (Conv3D) (7, 7, 10, 16) 5776
Conv3D_3 (Conv3D) (5, 5, 8, 32) 13856
Conv3D_4 (Conv3D) (3, 3, 6, 64) 55360

Flatten_1 (Flatten) (3456) 0
Dense_1 (Dense) (256) 884992

Dropout_1 (Dropout) (256) 0
Dense_2 (Dense) (128) 32896

Dropout_2 (Dropout) (128) 0
Dense_3 (Dense) (# of Classes) 774
In total, 994,166 trainable parameters are required

FIGURE 4.2: 3D Convolution Operation

activation values at spatial position (x, y, z) in the ith layer and jth feature map is denoted as
vx,y,z

i,j . Thus, the final model can be created as follows:

vx,y,z
i,j = F

( di−1

∑
τ=1

ν

∑
λ=−ν

γ

∑
ρ=−γ

δ

∑
ϕ=−δ

wλ,ρ,ϕ
i,j,τ × v(x+λ),(y+ρ),(z+ϕ)

(i−1),τ + bi,j

)
(4.1)

where F is an activation function, di−1 be the number of 3D feature maps at (i− 1)th layer
and wi,j be the depth of the kernel, bi,j is the bias, 2δ + 1, 2γ + 1 and 2ν + 1 be the height,
width and depth of the kernel.

In short, the proposed 3D CNN convolutional kernels are as follows: 3D_conv_layer1 =
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8× 3× 3× 7× 1 where K1
1 = 3, K1

2 = 3 and K1
3 = 7. 3D_conv_layer2 = 16× 3× 3× 5× 8

where K2
1 = 3, K2

2 = 3 and K2
3 = 5. 3D_conv_layer3 = 32× 3× 3× 3× 16 where K3

1 = 3, K3
2 =

3 and K3
3 = 3 and finally 3D_conv_layer4 = 64× 3× 3× 3× 16 where K3

1 = 3, K3
2 = 3 and

K3
3 = 3. To increase the number of spatial-spectral feature maps, four 3D convolutional

layers are deployed before the flatten layer to make sure the model is able to discriminate
the spatial information within different spectral bands without any loss. Further details
regarding the proposed model can be found in Table 4.1. The total number of parameters
(i.e., tune-able weights) of our proposed 3D CNN model is 994, 166. The weights are initially
randomized and optimized using Adam optimizer back-propagation with a soft-max loss
function. The weights are updated using a mini-batch of size 256 with 50 epochs without
batch normalization and augmentation.
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Chapter 5

Regularized Hybrid CNN Feature
Hierarchy

This chapter proposed an idea to enhance the generalization performance of CNN for HSIC using
soft labels that are a weighted average of the hard labels and uniform distribution over ground labels.
The proposed method helps to prevent CNN from becoming over-confident. We empirically show
that in improving generalization performance, regularization also improves model calibration which
significantly improves beam-search.

5.1 Motivation

CNN models can be categorized into two groups, i.e., single and two-stream, more informa-
tion regarding single or two-stream methods can be found in [279]. This chapter explicitly
investigates a single-stream method similar to the works proposed in [225, 352, 356–363].
Irrespective of the single or two-stream methods, all DL frameworks are sensitive to the
loss which needs to be minimized [364]. Several classical works showed that the gradient
descent to minimize cross-entropy performs better in terms of classification and has fast
convergence, however, to some extent, leads to the overfitting [365]. Several regularization
techniques such as dropout [366], L1, L2 [367], etc., have been used to overcome the overfit-
ting issues together with several other exotic objectives performed exceptionally well than
the standard cross-entropy [368]. Recently, a work [369] proposed a regularization tech-
nique that improves the accuracy significantly by computing cross-entropy with a weighted
mixture of targets with uniform distribution instead of hard-coded targets.

Since then, regularization has been known to improve the classification performance
[370]. However, the original idea was used to improve the classification performance of
only the inception model on ImageNet data [369]. Despite this, various image classification
models have used regularization [371, 372]. Though the regularization technique is a widely
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used trick to improve the classification performance and to speed up the convergence pro-
cess, however, it has not been much explored for HSIC, and above all, it has not been much
explored regarding when and why regularization should work.

Considering the aforesaid issues, this chapter proposed a novel idea to enhance the gen-
eralization performance of CNN for HSIC using soft labels that are a weighted average of
the hard labels and uniform distribution over target labels. The proposed method helps to
prevent CNN from becoming over-confident.

5.2 Proposed Methodology

Let us assume that the Hyperspectral data can be represented as R(M×N)×B∗ = [r1, r2, r3, . . . , rS]
T,

where B∗ be the total number of bands. (M× N) are the samples per band belonging to Y
classes and ri = [r1,i, r2,i, r3,i, . . . , rB∗,i]

T is the ith sample in the Hyperspectral Data. Suppose
(ri, yi) ∈ (RM×N×B∗ ,RY), where yi is the class label of the ith sample. For HSI classification
with Y candidate labels, for example, lets assume (ri, yi) ∈ (RM×N×B∗ ,RY), where yi is the
class label of the ri sample belonging to the training set and the ground truth distribution
p over labels p(y|ri) and ∑Y

y=1 p(y|ri) = 1. One can have a model with parameters θ that
predicts the predicted label distribution as qθ(y|ri) and of course ∑Y

y=1 qθ(y|ri) = 1. Thus the
cross entropy in this particular case would be:

Hi(p, qθ) =
Y

∑
y=1

p(y|ri) log qθ(y|ri) (5.1)

If one has M× N instance in the training set, then the loss function would be:

L = Hi(p, qθ) (5.2)

L = −
M×N

∑
i=1

Y

∑
j=1

p(y|ri) log 1θ(y|ri) (5.3)

However, in nature the p(y|ri) would be a one-hot-encoded vector [373, 374], which can
be defined as:

p(y|ri) =

1 i f y = yi

0 otherwise
(5.4)

Based on the above objective, one can reduce the loss function as:
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L =
M×N

∑
i=1

Hi(p, qθ) (5.5)

L = −
M×N

∑
i=1

Y

∑
y=1

p(y|ri) log qθ(y|ri) (5.6)

L = −
M×N

∑
i=1

p(yi|ri) log qθ(yi|ri) (5.7)

L = −
M×N

∑
i=1

log qθ(yi|ri) (5.8)

Minimizing the above loss function is equivalent to do maximum likelihood estimation
over the training set. However, during optimization, it is possible to minimize L to almost
0, if and only if, all the instances in the dataset do not have conflicting labels 1 This is due to
qθ(yi|ri) is computed from soft-max as:

θ(yi|ri) =
exp(zyi)

∑Y
j=1 exp(zj)

(5.9)

where zi be the logit for candidate class i. The consequence of using one-hot-encoding is
exp(zyi) will be extremely large and exp(zj) where j ̸= yi will be extremely small. Given
a non-conflicting dataset, the ultimate model will classify every training instance correctly
with the confidence of almost 1. This is certainly a signature of overfitting, and the overfit-
ted model does not generalize well. Thus, this work introduces a regularization technique
µ(y|ri) (noise distribution) irrespective to traditional techniques proposed in literature [375–
377] for deep models [378]. Thus the new HSI ground truths (ri, yi) would be:

p′(y|ri) = (1− ε)p(y|ri) + εµ(y|ri) (5.10)

f (x) =

1− ε + εµ(y|ri) i f y = yi

εµ(y|xi) otherwise
(5.11)

where ε ∈ [0, 1] is a weight factor, and note that ∑Y
y=1 p′(y|ri) = 1. These new ground truths

has been used in loss function instead of one hot-encoding [379].

L′ = −
M×N

∑
i=1

Y

∑
y=1

p′(y|ri) log qθ(y|ri) (5.12)

1Conflicting labels means, there are two examples with the extract same features from the dataset, but their
ground truth labels are different.
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L′ = −
M×N

∑
i=1

Y

∑
y=1

[
(1− ε)p(y|ri) + εµ(y|ri)

]
log qθ(y|ri) (5.13)

L′ =
M×N

∑
i=1

{
(1− ε)

[
−

Y

∑
y=1

p(y|ri) log qθ(y|ri)
]
+

ε
[
−

Y

∑
y=1

µ(y|xi) log qθ(y|ri)
]} (5.14)

L′ =
M×N

∑
i=1

[
(1− ε)Hi(p, qθ) + εHi(u, qθ)

]
(5.15)

where L′ be the loss function and p′ be the estimated probabilities. One can observe that
each ground truth, the loss contribution is a mixture of entropy between predicted distri-
bution (Hi(p, qθ)) and the one hot-encoding, and the entropy between the predicted dis-
tribution (Hi(µ, qθ)) and the noise distribution. While training, Hi(p, qθ) = 0 if the model
learns to predict the distribution confidently, however, Hi(µ, qθ) will increase dramatically.
To overcome this phenomenon, we used a regularizer Hi(µ, qθ) to prevent the model from
predicting too confidently. In practice, µ(y|r) is a uniform distribution that does not depend
on Hyperspectral data. That is to say µ(y|r) = 1

Y .
In a nutshell, the details of 3D/2D convolutional layers and kernels are as follows: 3D

conv layer 1 = 8 × 5 × 5 × 7 × 1 i.e. K1
1 = 5, K1

2 = 5 and K1
3 = 7. 3D_conv_layer_2 =

16× 5× 5× 5× 8 i.e. K2
1 = 5, K2

2 = 5. K2
3 = 5. 3D_conv_layer_3 = 32× 3× 3× 3× 16 i.e.

K3
1 = 3, K3

2 = 3 and K3
3 = 3. 3D_conv_layer_4 = 64× 3× 3× 3× 32 i.e. K3

1 = 3, K3
2 = 3 and

K3
3 = 3. 2D_conv_layer_5 = 128× 3× 3× 64 i.e. K2

1 = 3 and K2
2 = 3. Three 3D convolu-

tional layers are employed to increase the number of spectral-spatial feature maps and one
2D convolutional layer is used to discriminate the spatial features within different spectral
bands while preserving the spectral information. Initially, the weights are randomized and
then optimized using back-propagation with the Adam optimizer by using the loss function
presented in equation 5.15. Further details regarding the Hybrid CNN architecture in terms
of types of layers, dimensions of output feature maps and number of trainable parameters
can be found in [380] also shown in Table 5.1.
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TABLE 5.1: Regularized Hybrid CNN Model

Layers Output Shape Parameters
Input 15× 15× 15× 1 0

Conv-3D 11× 11× 9× 8 1408
Conv-3D 7× 7× 5× 16 16016
Conv-3D 5× 5× 3× 32 13856
Conv-3D 3× 3× 1× 64 55360
Reshape 3× 3× 64 0
Conv-2D 1× 1× 128 73856
Flatten 128 0
Dense 256 33024

Droupout (0.4%) 256 0
Dense 128 32896

Droupout (0.4%) 128 0
Output # of classes 2064
Total # of trainable parameters = 228,480
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Chapter 6

Artifacts of Dimension Reduction on
Hybrid CNN

3D CNNs are computationally expensive and 2D CNN alone cannot efficiently extract discriminat-
ing spectral-spatial features. Therefore, to overcome these challenges, this chapter presents a compact
hybrid CNN model which overcomes the aforementioned challenges by distributing spatial-spectral
feature extraction across 3D and 2D layers. An intensive preprocessing (several dimensional reduc-
tion methods) has been carried out to improve the classification results and to reduce the computa-
tional time.

6.1 Motivation

The classification performance of DL can be enhanced by considering two aspects: dimen-
sionality reduction and utilization of spatial information. Dimensionality reduction is an
important preprocessing step to reduce the spectral redundancy that subsequently results in
less processing time and enhanced classification accuracy. Dimensionality reduction meth-
ods transform the high-dimensional data into a low-dimensional space whilst preserving
the potential spectral information [381]. Whereas, the spatial information can improve the
discriminative power of the classifier by considering the neighboring pixels’ information.

Thus, processing spatial-spectral information together would be considered as a viable
approach for HSIC. The spectral-spatial classification approaches can be categorized into
two groups. The first group excavates for both spectral and spatial features individually.
Spatial information is educed in advanced using various methods for instance, morpholog-
ical operations [382], attribute profiles [383] and entropy [384, 385] etc., and then spliced
together with spectral information for pixels-wise classification. The other group coalesces
spectral and spatial information to acquire joint features like Gabor filter and wavelets [386,
387] are constructed at various scales to simultaneously extract spectral-spatial features for
classification.



Chapter 6. Artifacts of Dimension Reduction on Hybrid CNN 63

However, the handcrafted features and usually extract shallow features and rely on a
high level of domain knowledge for feature designing [388]. To overcome these limita-
tions, end-to-end models (i.e., feature extraction/learning and classification) such as Con-
volutional Neural Network (CNN) have been widely used to automatically learn the low
and high-level representation of HSI in a hierarchical manner [363, 389]. CNN-based HSIC
improves the generalization capabilities and predictive performance [264, 390]. CNN-based
HSIC architectures have attracted prevalent attention due to substantial performance gain,
in which 2D CNNs are used for spatial feature extraction and to extract both spectral and
spatial features of HSI, many variants of 3D CNN have been proposed [214, 221, 225, 391,
392]. However, 3D CNN is computationally complex and 2D CNN alone cannot efficiently
extract discriminating spectral features.

To overcome the aforesaid challenges, a hybrid CNN Feature Hierarchy is used that
splices together 3D components with 2D components. The aim is to synergies the competen-
cies of 3D and 2D CNN to obtain important discriminating spectral-spatial features of HSI
for classification. Prior to the feature extraction, we incorporated dimensionality reduction
as a preprocessing step and comprehensively investigated the impact of various state-of-
the-art dimensionality reduction approaches on the performance of the hybrid CNN model.
Also, we evaluated the impact of different input window sizes on the performance of the
end model.

6.2 Proposed Methodology

Let us assume that the HSI cube can be represented as X = [x1, x2, x3, . . . , xS]
T ∈ RS×(C×D),

where S denotes total number of spectral bands and (C × D) are the samples per band
belonging to Y classes and xi = [x1,i, x2,i, x3,i, . . . , xS,i]

T is the ith sample in the HSI cube.
Suppose (xi, yi) ∈ (RS×(C×D),RY), where yi is the class label of the ith sample [393].

Due to the spectral mixing effect which induces high intra-class variability and inter-
class similarity in X, it becomes difficult to classify various materials based on their spectral
signatures. To combat the aforesaid issue, we used dimensionality reduction as a preprocess-
ing step to eliminate the spectral redundancy which reduces the number of spectral bands
(S → B, where B ≪ S) while keeping the spatial dimensions unimpaired. Subsequently,
this also results in a reduced computational overhead owing to a lower-dimensional fea-
ture subspace. In this work, we evaluated the effectiveness of the following dimensionality
reduction methods for the hybrid CNN model.
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6.2.1 Principle Component Analysis (PCA)

Principal Component Analysis (PCA) is based on the orthogonal transformation that com-
putes linearly uncorrelated variables, known as principal components (PCs), from possibly
correlated data. The first PC is the projection in the direction of the highest variance and it
gradually decreases as we move towards the last PC. The transformation of the original im-
age to PCs is the Eigen decomposition of the covariance matrix of mean-centered HSI data
[389]. Eigen decomposition of covariance matrix i.e. finding the eigenvalues along with their
corresponding eigenvectors is E = ADAT where A = [a1, a2, a3 . . . , aX] is a transformation
matrix and D = diag[λ1, λ2, λ3, . . . , λX] is a diagonal matrix of eigenvalues of covariance
matrix. The linear HSI transformation is defined as H = AX.

6.2.2 Incremental PCA (iPCA)

Generally, PCA is performed in batch mode i.e., all the data is simultaneously available to
compute the projection matrix. In order to find the updated PCs after incorporating the
new data into the existing training set, PCA needs to be retrained with complete data. To
combat this limitation, an incremental PCA (iPCA) approach is used that can be categorized
as either covariance-based iPCA or covariance-free iPCA method. Covariance-based meth-
ods are further divided into two approaches. In the first approach, the covariance matrix is
computed using existing training data and then the matrix is updated whenever new data
samples are added. In the second approach, a reduced covariance matrix is computed using
previous PCs and the new training data. Covariance-free iPCA methods update the PCs
without computing the covariance methods, however, such methods usually face conver-
gence problems in case of high dimensional data [117, 394].

6.2.3 Sparse PCA (SPCA)

The conventional PCA has a limitation that the PCs are the linear combinations of all input
features/predictors or in other words, all the components are nonzero and direct interpreta-
tion becomes difficult. Therefore, to improve interpretability, it is desirable to use sparsity-
promoting regularizers. In this regard, sparse PCA (SPCA) has emerged as an effective
technique that finds the linear combinations of a few input features i.e. only a few active
(nonzero) coefficients. SPCA works well in the scenarios where input features are redun-
dant, that is, they do not contribute to identifying the underlying rational model structure
[395].
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6.2.4 Singular Value Decomposition (SVD)

Singular Value Decomposition (SVD) is a mathematical technique that decomposes a matrix
into three different matrices. It is knowns as truncated SVD when used for dimensionality
reduction [396]. This matrix decomposition is represented as X = PSQT where P and Q
are orthogonal matrices of left and right singular vectors and S is a diagonal matrix having
singular values as its diagonal entries. An SVD reduced X is obtained by taking into account
the contribution of only the first k eigenimages, computed as XSVD = ∑k

i=1 PiSiQT
i .

6.2.5 Independent Component Analysis (ICA)

Independent Component Analysis (ICA) is one of the popular approaches among other di-
mensionality reduction methods, that extracts statistically independent components (ICs)
through a linear or non-linear transformation that minimizes the mutual information be-
tween ICs or maximizes the likelihood or non-Gaussianity of ICs. It transforms the HSI into
a lower-dimensional feature space by comparing the average absolute weight coefficients
for each spectral band of HSI and retain only those independent bands which contain max-
imum information [397]. Given n-dimensional data X, the main task of ICA is to find the
linear transformation W such that H = WX where H has statistically independent compo-
nents.

6.2.6 Hybrid CNN

In order to pass the reduced HSI data cube to the Hybrid model, it is divided into multiple
small overlapping 3D patches, and the class labels of these patches are decided based on
the label of central pixel. The 3D neighboring patches P ∈ R(W×W)×B are formed that are
centered at spatial position (a, b), covering the W ×W windows. The total number of 3D
spatial patches created from X is given by (M−W + 1)× (N −W + 1). These 3D patches
centered at location (a, b) represented by P(a,b) covers the width from a−(W−1)

2 to a+(W−1)
2

and height from b˘(W−1)
2 to b+(W−1)

2 and all B spectral bands obtained after dimensionality
reduction method.

In 2D CNN, the input data is convolved with the 2D kernel function that computes the
sum of the dot product between the input and the 2D kernel function. The kernel is stridden
over the input in order to cover the whole spatial dimension. Then these convolved features
are processed through an activation function that helps to learn non-linear features of data
by introducing non-linearity in the model. In case of 2D convolution, the activation value of
jth feature map at spatial location (x, y) in the ith layer, denoted by vx,y

i,j , can be formulated
as follows:
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vx,y
i,j = F (bi,j +

dl−1

∑
τ=1

γ

∑
ρ=−γ

δ

∑
σ=−δ

wσ,ρ
i,j,τ × vx+σ,y+ρ

i−1,τ ) (6.1)

where F is the activation function, dl−1 is the number of feature map at (l − 1)th layer and
the depth of kernel wi,j for jth feature map at ith layer, bi,j denotes the bias parameter for jth

feature map at ith layer, 2γ + 1 and 2σ + 1 be the width and height of the kernel.
Whereas, the 3D convolutional process first computes the sum of the dot product be-

tween input patches and 3D kernel function i.e. the 3D input patches are convolved with
3D kernel function [363, 389]. Later these feature maps are passed through an activation
function to induce non-linearity. The Hybrid model generates the features maps of the 3D
convolutional layer by using the 3D kernel function over B spectral bands, extracted after di-
mensionality reduction, in the input layer. In 3D convolutional process, the activation value
at spatial location (x, y, z) at the ith layer and jth feature map can be formulated as [389, 398]:

vx,y
i,j = F (bi,j +

dl−1

∑
τ=1

v

∑
λ=−v

γ

∑
ρ=−γ

δ

∑
σ=−δ

wσ,ρ,λ
i,j,τ × vx+σ,y+ρ,z+λ

i−1,τ ) (6.2)

where all the parameters are the same as defined in Equation 6.1 except 2v + 1 which is the
depth of 3D kernel along a spectral dimension.

The details of 3D convolutional kernels are as follows: 3D_conv_layer_1 = 8× 3× 3×
7× 1 i.e. K1

1 = 3, K1
2 = 3 and K1

3 = 7. 3D_conv_layer_2 = 16× 3× 3× 5× 8 i.e. K2
1 =

3, K2
2 = 3 and K2

3 = 5. 3D_conv_layer_3 = 32× 3× 3× 3× 16 i.e. K3
1 = 3, K3

2 = 3 and
K3

3 = 3. The details of 2D convolutional kernel are: 2D_conv_layer_1 = 64× 3× 3× 96 i.e.
K4

1 = 3 and K4
2 = 3. Three 3D convolutional layers are employed to increase the number

of spectral-spatial feature maps and one 2D convolutional layer is used to discriminate the
spatial features within different spectral bands while preserving the spectral information.

Further details regarding the Hybrid CNN architecture in terms of types of layers, di-
mensions of output feature maps, number of trainable parameters, and layer-wise hierarchy
are shown in Figure 6.1. The base model was proposed by Roy et.al [389] and explored
in this work with several dimensional reduction methods to further validate which dimen-
sionality reduction method works better with different settings. Initially, the weights are
randomized and then optimized using back-propagation with the Adam optimizer by us-
ing the Softmax loss function. The network is trained for 50 epochs using a mini-batch size
of 256 and without any batch normalization and data augmentation.
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FIGURE 6.1: Hybrid CNN Feature Hierarchy framework for HSIC.
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Chapter 7

Spectral Angle Mapper for
Spatial-Spectral Classification

Acquisition of labeled data for supervised HSIC is expensive in terms of both time and costs. More-
over, manual selection and labeling are often subjective and tend to induce redundancy into the clas-
sifier. Active learning (AL) can be a suitable approach for HSIC as it integrates data acquisition to the
classifier design by ranking the unlabeled data to provide advice for the next query that has the high-
est training utility. However, multiclass AL techniques tend to include redundant samples into the
classifier to some extent. This chapter addresses such a problem by introducing an AL pipeline that
preserves the most representative and spatially heterogeneous samples. The adopted strategy for sam-
ple selection utilizes fuzziness to assess the mapping between actual output and the approximated
a-posteriori probabilities, computed by a marginal probability distribution based on discriminative
random fields. The samples selected in each iteration are then provided to the spectral angle mapper-
based objective function to reduce the inter-class redundancy.

7.1 Motivation

Supervised classification methods are widely adopted in the analysis of HSI datasets. These
methods include, for example, multinomial logistic regression [9], random forests [10], en-
semble learning [11], deep learning [12], support vector machine (SVM) [13], and k-nearest
neighbors (KNN) [6]. However, supervised classifiers often underperform due to the Hughes
phenomenon [5], also known as the issue of dimensionality, which occurs whenever the
number of available labeled training samples is considerably lower than the number of spec-
tral bands required by the classifier [6]. Figure 7.1 (Loss of accuracy in terms of ground
maps) and Table 7.1 (Loss of accuracy in terms of overall and kappa (κ) for a different num-
ber of labeled training samples i.e., 1% and 10% respectively) illustrates the loss in the pre-
dictive performance of such classification methods for a particular ground image (Pavia
University) when using two different sample size.
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(A) Pavia Image (B) True Ground Truths (C) SVM (1% Training) (D) SVM (10% Training)

(E) KNN (1% Training) (F) KNN (10% Training) (G) LB (1% Training) (H) LB (10% Training)

FIGURE 7.1: (a) Pavia University image; (b) True ground truths differentiate nine different classes;
(c) SVM trained with 1% randomly selected training samples; (d) SVM trained with 10% randomly
selected training samples; (e) KNN trained with 1% randomly selected training samples; (f) KNN
trained with 10% randomly selected training samples; (g) Logistic boost (LB) trained with 1% ran-

domly selected training samples; (h) LB trained with 10% randomly selected training samples.

TABLE 7.1: Classification accuracies in-terms of overall and kappa (κ) obtained by three different
classifiers with two different number of randomly selected labeled training samples, i.e., 1% and
10% respectively. All these classifiers are trained and tested using 5-fold cross validation, and from
results one can conclude that SVM produce better results when trained with 10% randomly selected
training samples. However, the obtained results are not good enough to identify the ground materials

accurately, therefore, further investigations are required.

Classifiers
1% Training Samples 10% Training Samples

kappa (κ) Overall kappa (κ) Overall

SVM 0.5853% 0.6818% 0.7804% 0.8365%
KNN 0.4897% 0.6488% 0.6791% 0.7691%
LB 0.5216% 0.6488% 0.7531% 0.8365%

The limited availability of labeled training data in the HSI-domain is one of the moti-
vations for the utilization of semi-supervised learning [399]. Examples of such methods
include kernel techniques [400] such as SVM, Tri-training [401] algorithms which generate
three classifiers from the original labeled samples, then these classifiers are refined using
unlabeled samples in the tri-training process, and Graph-based learning [2, 402]. A major
limitation of such approaches, however, is the low predictive performance when utilizing
a small number of training samples within high dimensionality, as commonly observed in
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HSI classification [29, 92] as shown in Figure 7.1 and Table 7.1.
Active learning (AL) is a class of semi-supervised learning methods that tackles the lim-

itations as mentioned earlier [403, 404]. The main component of an AL method is the iter-
ative utilization of the training model to acquire new training samples to be entered into
the training set for the next iteration [405]. AL methods can be pool-based or stream-based
depending on how they enter new data to the training set, and employ measures like uncer-
tainty, representativeness, inconsistency, variance, and error to rank and select new samples
[406]. Despite the gained success, there are still particular characteristics that can cause AL
to present inflated false discovery rate and low statistical power [6]. These characteristics in-
clude (i) sample selection bias; (ii) high correlation among the bands; and (iii) non-stationary
behavior of unlabeled samples.

Alternatives of sample selection method utilized in AL and corresponding references
to the literature are shown in Table 7.2. Table 7.2 classifies the references in the literature
according to the information utilized by the sample selection methods, being either spectral
(consider only the wavelength of the pixel) or spectral-spatial (pixel location in addition to
the wavelength). The latter class is particularly relevant in the HSI domain as the acquisition
of training samples depends on a large degree on the spatial distribution of the queried
samples. However, only a few studies have integrated spatial constraints into AL methods
[407, 408]. Table 7.2 provides a unified summary of existing sample selection methods and
the information they use along with references to their respective papers.

TABLE 7.2: Different sample selection methods used in Active Learning frameworks for hyperspec-
tral image classification in the recent years.

Sample Selection Methods References

Spectral Spectral–Spatial

Random selection [6, 403, 409] [410]
Mutual information [411, 412] [413]

Breaking ties [414] [415, 416]
Modified breaking ties [415] [415, 416]

Uncertain sampling [417, 418] [419–421]
Fisher information ratio [422] [423]
Fuzziness information [6] ——-
Query by committee [316] ——-

Tuia et al. [409] presented a detailed survey on AL methods addressing HSI analysis
and contrasted non-probabilistic methods, which assume that all query classes are known
before the initialization, to probabilistic approaches that allow the discovery of new classes.
The latter class was also pointed as more suitable for cases when the prior assumption is
no longer fulfilled [424]. In addition to probabilistic and non-probabilistic AL methods,
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large margin heuristics have been utilized as the base learner to combine the benefits of HSI
analysis and AL [409, 425]. A particular approach for selecting samples that have achieved
remarkable results for several applications is query by committee (QBC) [426]. Contrarily
from previous methods, QBC selects samples based on the maximum disagreement of an
ensemble of classifiers. Overall, these sampling methods suffer from high computational
complexity due to the iterative training of the classifier for each sample [409].

Pool-based AL, also known as batch-mode AL, addresses the high computational com-
plexity observed in the aforementioned methods by concomitantly considering the uncer-
tainty (spectral information) and diversity (spatial information) of the selected samples [417].
Seminal work was presented by Munoz-Mari et al. [427], which highlighted the benefits of
integrating spatial-contextual information to AL even when the distribution of queried sam-
ples in the spatial space is ignored. This method was later expanded to include the position
of selected samples in the feature space [413]. One of the outcomes from such a transforma-
tion is the point-wise dispersed distribution in the spatial domain, which incurs the risk of
revisiting the same geographical location several times, especially in the HSI-domain [413].

A considerable amount of research has been conducted on AL in recent years, often an-
alyzing only spectral properties, whilst ignoring spatial information that plays a vital role
in HSIC as shown in [413, 428]. Spatial and spectral HSIC can achieve higher performance
than its pixel-wise counterpart as it utilizes not only information of spectral signature but
also from spatial domain [428]. Thus, the combination of spatial and spectral information
for AL represents a novel and promising contribution yet to be explored in the HSI domain.

Thus, this chapter introduces a customized AL pipeline for HSI to reduce sample selec-
tion bias whilst maintaining the data stability in the spatial domain. The presented pipeline
distinguishes from standard AL methods in three relevant aspects. First, instead of simply
using the uncertainty of samples to select new samples, it utilizes the fuzziness measure
associated with the confidence of the training model in classifying those samples correctly.
Second, it couples samples’ fuzziness with their diversity to select new training samples
which simultaneously minimizes the error among the training samples while maximizing
the spectral angle between the selected sample and the existing training samples. In this
chapter, instead of measuring angle-based distances among all new samples and all existing
training samples, a reference sample is selected from within the training set against which
the diversity of the new samples is measured. This achieves the same goal while reduc-
ing the computational overhead as the size of the training set is always much smaller than
the validation set which is the source of new samples. Thirdly, the proposed Fuzziness
and Spectral Angle Mapper (FSAM) method keep the pool of new samples balanced, giv-
ing equal representation to all classes, which is achieved via softening the thresholds at run
time.
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7.2 Proposed Methodology

This chapter addresses the small sample problem when classifying high dimensional HSI
data by defining an AL scheme selecting a pool of diverse samples by taking into account
two main criteria. The first step is to compute the fuzziness of samples, which is associated
with the confidence of the trained model in properly classifying the unseen samples. The
second is the diversity of the samples, thus reducing the redundancy among the selected
samples. The combination of two criteria results in the selection of a pool of potentially
most informative and diverse samples in each iteration.

Although there have been lots of different sampling methods (few mentioned in Table
7.2), uncertainty remains one of the most popular methods that can be used to select the
informative samples [6, 429]. Usually, the most uncertain samples have similar posterior
probabilities for the two most possible classes [429]. Thus, a probabilistic model could be
directly used to evaluate the uncertainty of unlabeled sample [429].

However, assessing the uncertainty of a sample is not as straightforward when one is
using non-probabilistic (NP) classifiers because their output does not exist in the form of
posteriori probabilities [406, 429]. The output of such classifiers can be manipulated to ob-
tain an approximation of posteriori probability functions for the classes being trained [406].

Suppose X = [x1, x2, x3, . . . , xL]
T ∈ RL×(M×N) is an HSI cube which is composed of L

spectral bands and (M× N) samples per band belonging to C classes where xi = [x1,i, x2,i

, x3,i, . . . , xL,i]
T is the ith sample in the cube. Let us assume (xi, yi) ∈ R(M×N) ×RC, where

yi is the class label of the ith sample. Let us further assume that n finite (limited) number
of labeled training samples are selected from X to create the training set DT = {(xi, yi)}n

i=1.
The rest of the samples form the validation set DV = {(xi, yi)}m

i=1. Please note that n ≪ m,
and (DT ∩ DV) = ∅.

An NP classifier trained on DT when tested on DV would produce an output matrix
µ of m × C dimensions containing NP outputs of the classifier. Let µij be the jth output
(membership for the jth class) for ith sample. There are several methods proposed in the
literature to transform such NP outputs into the posteriori probabilities [406, 429]. Such
methods are computationally complex in two folds. First these methods need to compute
the Bayesian decision for each samples xi choosing the category yj having the largest dis-
criminant function f j(xi) = p(µj|xi). Secondly, these methods assume that the training
outputs are restricted as {0, 1}. However, these methods also consider manipulating each
Bayes rule using Jacobin’s derivation over the limit theorem on infinite number samples to
approximate the posterior probabilities in the least-squares sense, i.e., f (xi, µj) = p(µj, xi)

[429].
In order to overcome the above-mentioned difficulties, in this chapter, we used marginal

probability distribution [413] which is obtained from the DV information in the HSI data,
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serves as an engine in which our AL pipeline can exploit both the spatial and spectral infor-
mation in the data. The posteriori class probabilities are modeled with the discriminative
random field [413, 430] in which the association potential is linked with a discriminative,
generative, ensemble, and signal hidden layer feed-forward neural network-based classi-
fiers. Thus, the posteriori probabilities are computed as similar to the work [413]. From
these posteriori probabilities we obtained the membership matrix which should satisfy the
following properties [6]:

C

∑
j=1

µij = 1 and 0 <
N

∑
i=1

µij < 1 (7.1)

In Equation (7.1), µij ∈ [0, 1] and µij = µj(xi) is a function that represents the member-
ship of ith sample xi to the jth class [6]. For the true class, the posteriori probability would
be approximated as close to 1, whereas, if the output is small (wrong class), the probability
would be approximated as close to 0. However, AL methods do not require accurate prob-
abilities, but only need a ranking of the samples according to their posteriori probabilities
which would help to estimate the fuzziness [429] and the output of the sample.

The fuzziness (E(µ)) upon (M× N) samples for C classes from the membership matrix
(µij) can then be defined as expressed in Equation (7.2) which must satisfy the properties
defined in [431, 432].

E(µ) =
−1

N × C

N

∑
i=1

C

∑
j=1

[
µijlog(µij) + (1− µij)log(1− µij)

]
(7.2)

Then, we first associate E(µ), predicted class labels, and actual class labels with DV and
then sort the DV in descending order based on the fuzziness values. We then heuristically
select the m̂ number of misclassified samples which have higher fuzziness, where m̂ ≪ m.
The proposed strategy keeps the pool of m̂ new samples balanced, giving equal representa-
tion to all classes, which is achieved via softening the thresholds at run time.

Next, the spectral angular mapper (SAM) (More information about spectral angle map-
per (SAM) function can be found in the following papers [433–435]) function is used to
discriminate the samples within the same class to minimize the redundancy among the pool
of m̂ selected samples. SAM is an automated method for directly comparing sample spectra
to known spectra. It treats both spectra as vectors and calculates the spectral angle between
them. It is insensitive to illumination since it uses only the vector direction and not the vec-
tor length [436]. The output of SAM is an image showing the best match of each pixel at
each spatial location [437]. This approach is typically used as a first cut for determining the
mineralogy and works well in the area of homogeneous regions.
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In this chapter, SAM takes the arc-cosine-based dot product between the test spectrum
which have higher fuzziness DH

V = {(xl
ij), yj)}m̂

i=1 to a reference (training samples) spectrum
DT = {(xl

pj, yj)}n
p=1, where j ∈ {1, 2, 3, . . . , C} and l ∈ {1, 2, 3, . . . , L} where L is the total

number of bands in HSI dataset, with the following objective functions:

∠(αj) = min
p∈n

(
cos−1 ∑L

l=1 xl
pj · xl

pj√
∑L

l=1(xl
pj)

2
√

∑L
l=1(xl

pj)
2

)
(7.3)

Equation (7.3) aims to compute the spectral difference among all the training samples
for C classes, respectively. We then select one reference spectrum from each class which
minimizes the angular distance among others within the same class, i.e., the sample which
is more similar to others in the given class. This process will return the number of reference
spectrum up to the number of classes in HSI. We then pick one reference spectrum from
∠(αj) to compare with all the selected test spectrum for the same class and account the
angular distance among them in ∠(βij) as shown in Equation (7.4).

∠(βij) =
C

∑
j=1

m̂

∑
i=1

(
cos−1 ∑L

l=1
(
∠(αj)

)
· xl

ij√
∑L

l=1(∠(αj))2
√

∑L
l=1(xl

ij)
2

)
(7.4)

Ind(DH
V ) = argmax

i∈(DH
V )|X

(
ϕ
(
∠(βij)

))
(7.5)

where Ind(DH
V ) denotes the induces of samples which have higher fuzziness, DH

V |X rep-
resents the index of samples of DH

V that are not contained in X , ϕ provides the trade-off
between diversity, and X denotes the index of the unlabeled sample that will be included
in the pool. Please note that here we used a soft threshing scheme to balance the number of
classes in both training and selected samples. The proposed pipeline systematically selects
the (h/(number o f classes)) higher fuzziness samples from DH

V for each class, if one or more
classes are missed in the pool of selected samples. This process is repeated until the cardi-
nality of X is equal to h, i.e., |X | = h, where h is the size of pool. This technique guarantees
that the selected samples in X are diverse regarding their angles to all the others in (∠(βij)).
Since the initial size of X is zero, thus, the first sample included in X is always the higher
fuzziness sample from E(µ).

There are several advantages of using fuzziness information carried out through SAM
as query function: (i) easy to implement; (ii) robust in mapping the spectral similarity for
reference to higher fuzziness test spectrum only; (iii) powerful because it represents the
influence of shading effects to accentuate the selected test reflectance characteristics [435].

On the other hand, the main drawback of SAM is spectral mixture problems, i.e., SAM
assumes that the reference spectrum chosen to classify the HSI represents the pure spectrum



Chapter 7. Spectral Angle Mapper for Spatial-Spectral Classification 75

which is not the case in our problem. Such problems occur when the HSI is in low or medium
spatial resolution. Furthermore, as we know, the surface of the earth is heterogeneous and
complex in many ways, thus, containing many mixed samples. The spectral confusion in
samples can lead to overestimation or underestimation errors for spectral signatures.

This is not the case of the proposed solution, since we iteratively select the reference spec-
trum from each class using Equation (7.3) as a pure spectrum and comparing this with the
selected test spectrum respectively using Equation (7.4) with the help of whiting parameter
to minimize the redundancy among the selected samples. The complete workflow of our
proposed pipeline is described in Algorithm 1 and Figure 7.2.

Algorithm 1: Pseudo-code of our Proposed FSAM Algorithm.
Data: DT, DV training and test set, respectively.

1 Initialization: X ; m̂ = number of samples to select; ϕ; h;
2 while |DT| ≤ Threshold do
3 Train and Test ELM, SVM, kNN and EL;
4 µij ← Compute the membership matrix;
5 E(µ)← Compute the fuzziness;
6 DH

V ← Associate the fuzziness, actual and predicted class and spatial information
with DV and sort in descending order;

7 Select m̂ misclassified samples from DH
V ;

8 ∠(αj)← Compute the spectral angle between training samples;
9 while |X | ≤ h do

10 ∠(βij)← Compute the spectral angle between reference spectrum and m̂
selected samples;

11 IndDH
V
← Pick the index of most diverse samples.;

12 X ← index of selected samples;
13 end
14 Pick X samples from DV , add them to DT, and remove from DV ;
15 end



Chapter 7. Spectral Angle Mapper for Spatial-Spectral Classification 76

FIGURE 7.2: Proposed FSAM-AL Pipeline in which red labeled boxes represent where we contribute.
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Chapter 8

Experimental Evaluation

8.1 Experimental Datasets

This section discusses several benchmark real HSI datasets used in this dissertation. All
these datasets are being acquired by different airborne and satellite sensors. These sensors
include Airborne Visible Infrared Imaging Spectrometer (AVIRIS), Reflective Optics Sys-
tem Imaging Spectrometer (ROSIS), and National Aeronautics and Space Administration
(NASA) EO-1 Satellite Hyperion sensor. These datasets include Salinas-A, Salinas, Kennedy
Space Center, and Indian Pines datasets acquired by AVIRIS sensor, Pavia University and
Pavia Center datasets acquired by ROSIS sensor, Botswana dataset acquired by Satellite Hy-
perion sensor. Evaluating ROSIS and Hyperion sensors datasets are a more challenging
classification problem dominated by complex urban classes and nested regions than AVIRIS
sensor datasets. Table 8.1 provides a summary description of each dataset used in this thesis.

TABLE 8.1: Summary of the HSI datasets.

Dataset Year Source Spatial dimensions Spectral Wavelength Samples Classes Sensor Resolution
Botswana 2001-2004 NASA EO-1 1496× 256 242 bands 400-2500 3248 14 Satellite 30
Indian Pines 1992 NASA AVIRIS 145× 145 220 bands 400 - 2500 10249 16 Aerial 20
Salinas 1998 NASA AVIRIS 512× 217 224 bands 360 - 2500 54129 16 Aerial 3.7
Pavia University 2001 ROSIS-03 sensor 610× 610 115 bands 430 - 860 42776 9 Aerial 1.3
Pavia Center 2001 ROSIS-03 sensor 1096× 1096 102 bands 430 - 860 7256 9 Aerial 1.3

8.1.1 Indian Pines Dataset

Indian Pines (IP) data was gathered by airborne visible infrared spectroscopy (AVIRIS) sen-
sor over the Indian Pines test site in North Western Indiana. Indian Pines dataset consists
of (145× 145) pixels and 224 spectral reflectance bands (channels) in the wavelength range
(0.4− 2.5)10−6 meters. Indian Pines scene is a subset of a larger one. The Indian Pines scene
contains 2/3 agriculture and 1/3 forest or other natural perennial vegetation. There are two
major dual-lane highways, a rail line, as well as some low-density housing, other built struc-
tures, and smaller roads. Since the Indian Pines scene was taken in June some of the crops
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present, corn, soybeans, are in the early stages of growth with less than 5% coverage. The
ground truth available is designated into sixteen classes and is not all mutually exclusive.
We have also reduced the number of bands to 200 by removing bands covering the region
of water absorption. The removed bands are [104-108], [150-163], and 220. Per class, ground
truths are presented in Figure 8.1b and full ground truths are presented in Figure 8.1a. Class
description with the number of samples and class names are described in Table 8.2.

(A) Ground Truth for Indian Pines

(B) Per Class Ground Truth for Indian Pines

FIGURE 8.1: Ground Truth for IP.

8.1.2 Salinas-A Dataset

The Salinas-A (SLA) scene was collected by the AVIRIS sensor over Salinas Valley, Califor-
nia, and is characterized by high spatial resolution with 3.7 meter per pixel with 224 bands.
The area is covered by 86× 83 samples. As with the Indian Pines dataset, we discarded the
20 water absorption bands which are [108-112], [154-167], and 224. This image was avail-
able only as at-sensor radiance data. It includes vegetables, bare soils, and vineyard fields.
Salinas-A ground truths contain 6 classes. Per class, ground truths are presented in Figure
8.2b and full ground truths are presented in Figure 8.2a. Class description with the number
of samples and class names are described in Table 8.3.
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TABLE 8.2: Class Description for IP Dataset

Class Class Name Samples in Class
1 Alfalfa 46
2 Corn notill 1428
3 Corn mintill 830
4 Corn 237
5 Grass pasture 483
6 Grass trees 730
7 Grass pasture mowed 28
8 Hay windrowed 478
9 Oats 20
10 Soybean notill 972
11 Soybean mintill 2455
12 Soybean clean 593
13 Wheat 205
14 Woods 1265
15 Buildings Grass Trees Drives 386
16 Stone Steel Towers 93

TABLE 8.3: Class Description for SLA Dataset

Class Class Name Samples in Class
1 Brocoli green weeds 1 391
2 Corn senesced green weeds 1343
3 Lettuce romaine 4wk 616
4 Lettuce romaine 5wk 1525
5 Lettuce romaine 6wk 674
6 Lettuce romaine 7wk 799

8.1.3 Salinas Dataset

The Salinas (SA) scene was collected by the AVIRIS sensor over Salinas Valley, California,
and is characterized by high spatial resolution with 3.7 meter per pixel with 224 bands.
The area is covered by 512× 217 samples. As with the Indian Pines dataset, we discarded
the 20 water absorption bands which are [108-112], [154-167], and 224. This image was
available only as at-sensor radiance data. It includes vegetables, bare soils, and vineyard
fields. Salinas-A ground truths contain 16 classes. Full ground truths are presented in Figure
8.3a and per class, ground truths are presented in Figure 8.3b. Class description with the
number of training samples and class names are described in Table 8.4.
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(A) Ground Truth for Salinas-A

(B) Per Class Ground Truth for Salinas-A

FIGURE 8.2: Ground Truth for SLA.

TABLE 8.4: Class Description for SA Dataset

Class Class Name Samples in Class
1 Brocoli green weeds 1 2009
2 Brocoli green weeds 2 3726
3 Fallow 1976
4 Fallow rough plow 1394
5 Fallow smooth 2678
6 Stubble 3959
7 Celery 3579
8 Grapes untrained 11271
9 Soil vinyard develop 6203

10 Corn senesced green weeds 3278
11 Lettuce romaine 4wk 1068
12 Lettuce romaine 5wk 1927
13 Lettuce romaine 6wk 916
14 Lettuce romaine 7wk 1070
15 Vinyard untrained 7268
16 Vinyard vertical trellis 1807

8.1.4 Pavia Center Dataset

Pavia Center (PC) scene is acquired by the ROSIS sensor during a flight campaign over
Pavia, northern Italy. The number of spectral bands is 102 for Pavia Center. Pavia Center is
a 1096× 1096 pixels image, but some of the samples in both images contain no information
and have to be discarded before the analysis.
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(A) Ground Truth for Salinas

(B) Per Class Ground Truth for Salinas

FIGURE 8.3: Ground Truth for SA.

The geometric resolution is 1.3 meters. Pavia Center image ground truths differentiate 9
classes. It can be seen the discarded samples in the figures as abroad black strips. Per class,
ground truths are presented in Figure 8.4b and full ground truths are presented in Figure
8.4a. Class description with the number of training samples and class names are described
in Table 8.5.

8.1.5 Pavia University Dataset

Pavia University (PU) scene is acquired by the ROSIS sensor during a flight campaign over
Pavia, northern Italy. The number of spectral bands is 103 for Pavia University. Pavia Uni-
versity is a 610× 610 pixels image, but some of the samples in both images contain no infor-
mation and have to be discarded before the analysis.

The geometric resolution is 1.3 meters. Pavia University image ground truths differen-
tiate 9 classes. It can be seen the discarded samples in the figures as abroad black strips.
Per class, ground truths are presented in Figure 8.5b and full ground truths are presented
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TABLE 8.5: Class Description for PC Dataset

Class Class Name Samples in Class
1 Water 824
2 Trees 820
3 Asphalt 816
4 Self-Blocking Bricks 808
5 Bitumen 808
6 Tiles 1260
7 Shadows 476
8 Meadows 824
9 Bare Soil 820

(A) Ground Truth for Pavia Cen-
ter

(B) Per Class Ground Truth for Pavia Center

FIGURE 8.4: Ground Truth for PC.

in Figure 8.5a. Class description with the number of training samples and class names are
described in Table 8.6.
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TABLE 8.6: Class Description for PU Dataset

Class Class Name Samples in Class
1 Asphalt 6631
2 Meadows 18649
3 Gravel 2099
4 Trees 3064
5 Painted metal sheets 1345
6 Bare Soil 5029
7 Bitumen 1330
8 Self-Blocking Bricks 3682
9 Shadows 947

(A) Ground Truth for Pavia Uni-
versity

(B) Per Class Ground Truth for Pavia University

FIGURE 8.5: Ground Truth for PU.

8.1.6 Botswana Dataset

The NASA EO-1 satellite acquired a sequence of data over the Okavango Delta, Botswana
(BS) in 2001-2004. The Hyperion sensor on EO-1 acquires data at 30 m pixel resolution over
a 7.7 km strip in 242 bands covering the 400-2500 nm portion of the spectrum in 10 nm
windows.
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Preprocessing of the data was performed by the UT Center for Space Research to miti-
gate the effects of bad detectors, inter-detector miscalibration, and intermittent anomalies.
Uncalibrated and noisy bands that cover water absorption features were removed, and the
remaining 145 bands were included as candidate features: [10-55, 82-97, 102-119, 134-164,
187-220].

The data analyzed in this study, acquired May 31, 2001, consist of observations from 14
identified classes representing the land cover types in seasonal swamps, occasional swamps,
and drier woodlands located in the distal portion of the Delta. Per class, ground truths are
presented in Figure 8.6b and full ground truths are presented in Figure 8.6a. Class descrip-
tion with the number of training samples and class names are described in Table 8.7.

TABLE 8.7: Class Description for BS Dataset

Class Class Name Samples in Class
1 Water 270
2 Hippo grass 101
3 Floodplain grasses1 251
4 Floodplain grasses2 215
5 Reeds1 269
6 Riparian 269
7 Firescar2 259
8 Island interior 203
9 Acacia woodlands 314
10 Acacia shrublands 248
11 Acacia grasslands 305
12 Short mopane 181
13 Mixed mopane 268
14 Exposed soils 95

8.2 Performance Evaluation Metrics

The following accuracy metrics have been used to validate the claims made in this disserta-
tion. The accuracy metrics include Kappa (κ)1, Average Accuracy (AA)2, and Overall Accu-
racy (OA)3. All these metrics are computed using the following equations.

Kappa (κ) =
Po − Pe

1− Pe
(8.1)

1κ is known as a statistical metric that considered the mutual information regarding a strong agreement
among classification and ground-truth maps

2AA represents the average class-wise classification performance
3OA is computed as the number of correctly classified examples out of the total test examples
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(A) Ground
Truth for

Botswana
(B) Per Class Ground Truth for Botswana

FIGURE 8.6: Ground Truth for BS.

where
Pe = P+ + P−

P+ =
TP + FN

TP + FN + FP + TN
× TP + FN

TP + FN + FP + TN

P− =
FN + TN

TP + FN + FP + TN
× FP + TN

TP + FN + FP + TN

Po =
TP + TN

TP + FN + FP + TN

Overall (OA) =
1
K

K

∑
i=1

TPi (8.2)

Moreover, to validate the experimental results, several statistical tests such as Precision
(Pr), Recall (Rc), and F1 Score are also considered. The said metrics are computed using the
following mathematical expressions:
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Pr =
1
K

K

∑
i=1

TPi

TPi + FPi
(8.3)

Rc =
1
K

K

∑
i=1

TPi

TPi + FNi
(8.4)

F1 =
2× (Rc × Pr)

(Rc + Pr)
(8.5)

where K be the total number of classes present in HSI dataset, TP and FP are true and false
positive, TN and FN are true and false negative, respectively.

8.3 Experimental Results for A Fast and Compact 3D CNN

All the experiments were performed on an online platform known as Google Colab [438].
Google Colab is an online platform that requires a good speed of the internet to run any
environment. Google Colab provides an option to execute the codes on python 3 notebook
with Graphical Processing Unit (GPU), 25 GB of Random Access Memory (RAM) and 358.27
GB of could storage for data computation. In all the experiments, the initial Test/Train set
is divided into a 30/70% ratio on which Training samples (70% of the entire population) are
further divided into 50/50% for the Training and Validation set.

For fair comparisons, the learning rate for all the experiments is set to 0.001, relu as an
activation function is used for all layers except last on which so f tmax is used, the patch sizes
are set as 11× 11× 20, 13× 13× 20, 15× 15× 20, 17× 17× 20, 19× 19× 20, 21× 21× 20
and 25× 25× 20, respectively with 20 most informative bands selected by iPCA method.
For evaluation purposes, the Average Accuracy (AA), Overall Accuracy (OA), and Kappa
(κ) coefficient have been computed from the confusion matrices. AA represents the average
class-wise classification performance, OA is computed as the number of correctly classified
examples out of the total test examples, and finally, κ is known as a statistical metric that
considered the mutual information regarding a strong agreement among classification and
ground-truth maps. Along with OA, AA, and κ metrics, several statistical tests are also being
considered such as F1-Score, Precision, and Recall.

The convergence loss and accuracy of our proposed 3D CNN model for a 50 number of
epochs are shown in Figure 8.7. From these figures, one can conclude that the proposed
model converged almost around 20 epochs.

Whereas, the computational time of our proposed model is shown in Table 8.8 which
reveals a fast convergence and computational efficiency of our proposed model. The com-
putational time highly depends on the speed of the internet and available RAM.
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FIGURE 8.7: Accuracy and Loss for Training and Validation sets on IP Dataset with 11× 11 window
patch correspond to the 50 number of Epochs.

TABLE 8.8: Computational time in minutes for all the experimental datasets with several window
sizes.

Dataset Proposed with Several Window Sizes 2D CNN 3D-CNN MS-3D-CNN11× 11 13× 13 15× 15 17× 17 19× 19 21× 21 25× 25
SL-A 0.22 0.23 0.56 0.28 0.98 0.37 0.45 — — —

SL 1.34 1.41 1.60 2.00 3.17 2.63 3.52 2.2 74.0 25.5
IP 0.33 0.33 0.61 0.78 0.62 0.58 0.76 1.9 15.2 14.1
PU 2.16 5.26 1.35 2.00 2.46 2.14 2.83 1.8 58.0 20.3

TABLE 8.9: Impact of window size on our proposed model

Window PU IP SA SL-A
OA AA κ OA AA κ OA AA κ OA AA κ

11× 11 99.94 99.89 99.92 88.65 83.52 87.11 99.80 99.91 99.78 100 100 100
13× 13 99.81 99.65 99.75 95.38 94.14 94.72 99.93 99.94 99.93 100 100 100
15× 15 99.85 99.62 99.80 93.69 93.09 92.79 99.99 99.99 99.99 100 100 100
17× 17 99.05 98.49 98.75 91.80 91.74 90.62 99.95 99.97 99.95 99.93 99.93 99.92
19× 19 99.93 99.78 99.91 93.13 93.42 92.15 98.04 94.02 97.81 100 100 100
21× 21 99.78 99.43 99.72 94.34 91.31 93.52 99.99 99.99 99.99 100 100 100
25× 25 98.79 97.67 98.39 97.75 96.17 97.44 99.96 99.93 99.95 100 100 100

The accuracy analysis i.e., OA, AA, and κ based on the impact of spatial dimensions pro-
cessed by the proposed model is presented in Table 8.9. While looking into the Table 8.9,
one can conclude that the window size of 11× 11 is enough for Pavia University, Salinas,
and Salinas-A dataset whereas the window size of 13× 13 and 25× 25 both works almost
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(A) IP (B) GT (C) 11× 11 (D) 13× 13 (E) 15× 15 (F) 17× 17 (G) 19× 19 (H) 21× 21 (I) 25× 25

FIGURE 8.8: IP Dataset Ground Truths for different spatial dimensions processed through our pro-
posed model.

(A) SA (B) GT (C) 11× 11 (D) 13× 13 (E) 15× 15 (F) 17× 17 (G) 19× 19 (H) 21× 21 (I) 25× 25

FIGURE 8.9: SA Dataset Ground Truths for different spatial dimensions processed through our pro-
posed model.

(A) PU (B) GT (C) 11× 11 (D) 13× 13 (E) 15× 15 (F) 17× 17 (G) 19× 19 (H) 21× 21 (I) 25× 25

FIGURE 8.10: PU Dataset Ground Truths for different spatial dimensions processed through our
proposed model.

(A) SLA (B) GT (C) 11× 11 (D) 13× 13 (E) 15× 15 (F) 17× 17 (G) 19× 19 (H) 21× 21 (I) 25× 25

FIGURE 8.11: SLA Dataset Ground Truths for different spatial dimensions processed through our
proposed model.

the same. Furthermore, the classification maps (geographical locations for each class) ac-
cording to the different number of window sizes (spatial dimensions) are shown in Figures
8.8-8.11. In regards to comparison, the proposed model is compared with several state-of-
the-art methods published in recent years. From experimental results listed in Table 8.10
one can conclude that the proposed model has competitive results and to some extent better
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in regards to the other methods. The comparative methods includes Multi-scale-3D-CNN
[439], 3D/2D-CNN [355, 359]. All the comparative methods are being trained according to
the settings mentioned in their respective papers. Experiments listed in Table 8.10 shows the
proposed method improves the results significantly than the state-of-the-art methods with
even fewer training samples, number of convolutional layers, number of filters, number of
epochs, and above all, in less computational time.

TABLE 8.10: Comparative evaluations with State-of-the-art methods while considering 11× 11 Spa-
tial dimensions with even less number of training samples (i.e., 60/40% (train/test) and 70/30%

(train/validation)).

Dataset MS-3D-CNN 3D-CNN 2D-CNN Proposed
OA AA Kappa OA AA Kappa OA AA Kappa OA AA Kappa

PU 95.95 97.52 93.40 96.34 97.03 94.90 96.63 94.84 95.53 98.40 97.89 97.89
IP 81.39 75.22 81.20 82.62 76.51 79.25 80.27 68.32 75.26 97.75 94.54 97.44
SA 94.20 96.66 93.61 85.00 89.63 83.20 96.34 94.36 95.93 98.06 98.80 97.85

8.4 Concluding Remarks for A Fast and Compact 3D CNN

The proposed model provided state-of-the-art experimental results in a computationally ef-
ficient fashion on four HSI benchmark datasets which resolved the problem of inter-class
similarity and high intra-class variability using 3D convolution-based spatial-spectral infor-
mation. To summarize, the proposed end-to-end trained 3D CNN has fewer parameters, bet-
ter recognition accuracy, and fast convergence time than existing 2D/3D CNN models. The
experimental results reveal that the proposed method outperformed state-of-the-art meth-
ods on various public benchmarks while being less complex than the conventional 3D CNN
models.

8.5 Experimental Results for Regularized Hybrid CNN Fea-

ture Hierarchy

The experiments have been conducted on three real HSI datasets, namely, IP, SA, and PU.
These datasets are acquired by two different sensors i.e, Reflective Optics System Imaging
Spectrometer (ROSIS) and Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) [380].
The experimental results explained in this work have been obtained through Google Colab
[438] which is an online platform to execute any python environment while having a good
internet speed to execute the code. Google Colab provides the option to execute many ver-
sions of python, Graphical Process Unit (GPU), up to 358+ GB of cloud storage, and 25 GB
of Random Access Memory (RAM).
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In all the experiments, the initial size of the train/validation/test sets is set to 25%/25%/50%
to validate the proposed model as well as several other state-of-art-deep models. The base-
line models include AlexNet (5 Convolutional layers (96, 256, 384, 384, 256 filters while each
layer has filter sizes as (7,7), (5,5), (3,3), (3,3), and (3,3)), 1 pooling layer (after first Convolu-
tional layer), flatten layer, dense layers with 4096 units and after each dense layer a dropout
layer has been used with 0.5% and finally an output layer has been used with the total num-
ber of classes to predict.) [440], LeNet (2 Convolutional layers (32 and 64 filters while each
layer has filter sizes as (5,5) and (3,3)), 1 pooling layer (after first Convolutional layer), flatten
layer, dense layer with 100 units and after dense layer, an output layer has been used with
the total number of classes to predict.) [441], 2D CNN (4 Convolutional layers (8, 16, 32,
and 64 filters while each layer has filter size (3,3)), flatten layer, 2 dense layers with 256 and
100 units and after each dense layer, a dropout layer has been used with 0.4% and finally,
an output layer has been used with the total number of classes to predict.) [442], 3D CNN
(4 Convolutional layers (8, 16, 32, and 64 filters while each layer has filter sizes as (3,3,7),
(3,3,5), (3,3,3), and (3,3,3)), flatten layer, 2 dense layers with 256 and 128 units and after each
dense layer, a dropout layer has been used with 0.4% and finally, an output layer has been
used with the total number of classes to predict) [356], and 3D/2D hybrid model [380].

For fair comparison purposes, the learning rate for all these models including hybrid
models is set to 0.001, Relu as the activation function for all layers except the output layer
on which Softmax is used, patch size is set of 15, and for all the experiments, 15 most in-
formative bands have been selected using PCA to reduce the computational load. The con-
vergence, accuracy, and loss of our proposed regularization technique with several CNN
models for 50 epochs are presented in Figure 8.12. From loss and accuracy curves, one can
conclude that the regularization has faster convergence.

Table 8.11 and Figure 8.13 presents in-depth comparative accuracy analysis on the IP
dataset. Table 8.12 and Figure 8.14 presents in-depth comparative accuracy analysis on the
PU dataset. Table 8.13 and Figure 8.15 presents in-depth comparative accuracy analysis on
the SA dataset.

In all experimental results, the training, validation, and test sets are selected using a 5-
fold cross-validation process with 25, 25, and 50% samples for training, validation, and test
sets, respectively. The hybrid and all other competing models are trained using 15× 15 patch
size because, the classification performance strongly depends on the patch size, in which if
the patch size is too big, then the model may take pixels from various classes whereas if the
patch size is too small, the model may decrease the inter-class diversity in samples. Hence in
both cases, the ultimate result will be in terms of a higher misclassification rate, lead to low
generalization performance. Therefore, an appropriate patch size must need to opt before
the final experimental setup. The patch size selected in these experiments is selected based
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(A) Accuracy (B) Loss

FIGURE 8.12: Accuracy and Loss for Training and Validation sets on IP for 50 epochs.

(A) 2D (B) 3D (C) A.Net (D) LeNet (E) Hybrid

FIGURE 8.13: IP: Classification accuracy: Fig. 8.13a: 2D-CNN = 98.94%, Fig. 8.13b: 3D CNN =
91.57%, Fig. 8.13c: AlexNet = 97.65%, Fig. 8.13d: LeNet = 98.14%, and Fig. 8.13e Hybrid = 99.29%.

on the hit and trial method (i.e., provided the best accuracy).
The experimental results on benchmark HSI datasets are presented in Table 8.14. From

these results, one can conclude that the proposed label smoothing process significantly im-
proves the performance, in terms of accuracy, speed of convergence, and computational
time. For comparison purposes, the framework, i.e., label smoothing for the Hybrid CNN
model is compared with various state-of-the-art works published in recent years. From the
experimental results presented in Table 8.14, one can conclude that label smoothing with
Hybrid CNN has obtained better results as compared to the state-of-the-art frameworks
and to some extent outperformed with respect to the other models.

The comparative models include Support Vector Machine (SVM) with and without any
grid optimization. Multi-layer Perceptron (MLP) having four fully connected layers with
dropout. 2-D CNN model proposed by Sharma et.al. [357]. Semi-supervised CNN model
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TABLE 8.11: IP: Performance analysis of different state-of-the-art models trained using the label
smoothing technique.

Class Train/Val/Test 2D 3D AlexNet LeNet Hybrid
Alfalfa 11/12/23 100 91.3043 95.6521 82.6086 100

Corn-notill 357/357/714 98.3193 93.5574 97.3389 97.0588 98.8795
Corn-mintill 207/208/415 99.5180 66.7469 98.3132 99.5180 99.5180

Corn 59/59/118 94.0677 90.6779 93.2203 99.1525 100
Grass-pasture 121/121/242 98.3471 97.1074 96.2809 94.2148 96.2809

Grass-trees 182/183/365 98.9041 97.5342 98.3561 98.9041 99.7260
Grass-mowed 7/7/14 92.8571 92.8571 100 100 100

Hay-windrowed 119/120/239 100 100 100 100 100
Oats 5/5/10 70 0 100 70 100

Soybean-notill 243/243/486 98.5596 82.3045 93.6213 99.3827 97.9423
Soybean-mintill 614/614/1228 99.6742 92.4267 97.8013 99.9185 99.8371
Soybean-clean 148/149/297 97.6430 98.6531 96.9696 95.2861 99.6632

Wheat 51/51/102 99.0196 98.0392 100 99.0196 99.0196
Woods 316/317/633 99.8420 99.3680 99.5260 98.8941 99.8420

Buildings 96/97/193 99.4818 90.6735 100 91.1917 99.4818
Stone-Steel 23/23/46 100 97.8260 100 93.4782 100

Training Time 55.6695 250.1662 919.5566 61.8763 248.5993
Test Time 1.4897 4.0402 5.6891 1.2752 3.9997

Overall Accuracy 98.9463 91.5707 97.6585 98.14634 99.2975
Average Accuracy 98.7980 86.8173 97.9425 94.9142 99.3869

Kappa (κ) 96.6396 90.3561 97.3312 97.8853 99.1990

(A) 2D (B) 3D (C) A.Net (D) LeNet (E) Hybrid

FIGURE 8.14: PU: Classification accuracy: Fig. 8.14a: 2D-CNN = 99.9070%, Fig. 8.14b: 3D CNN =
99.9256%, Fig. 8.14c: AlexNet = 99.0768%, Fig. 8.14d: LeNet = 99.9318%, and Fig. 8.14e: Hybrid =

99.9628%.
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TABLE 8.12: PU: Performance analysis of different state-of-the-art models trained using the label
smoothing technique.

Class Train/Val/Test 2D 3D AlexNet LeNet Hybrid
Asphalt 1658/1658/3316 100 100 98.9143 100 100

Meadows 4662/4662/9324 100 99.9892 100 100 100
Gravel 524/525/1049 99.5233 99.3326 95.5195 99.4280 99.6186
Trees 766/766/1532 99.6736 100 98.8250 99.7389 100

Painted 336/337/673 100 100 100 100 100
Soil 1257/1257/2514 100 100 99.9602 100 100

Bitumen 332/333/665 100 100 99.6992 100 100
Bricks 920/921/1841 99.8913 99.8913 97.9359 100 99.8913

Shadows 237/237/74 99.3670 99.5780 98.5232 99.7890 100
Training Time 296.0174 1145.9233 4716.4900 308.6389 1143.4996

Test Time 5.7400 14.8634 24.1701 4.5054 15.5904
Overall Accuracy 99.9298 99.9438 99.3033 99.9485 99.9719
Average Accuracy 99.8283 99.8657 98.8197 99.8839 99.9455

Kappa (κ) 99.9070 99.9256 99.0768 99.9318 99.9628

TABLE 8.13: SA: Performance analysis of different state-of-the-art models trained using the label
smoothing technique.

Class Train/Val/Test 2D 3D AlexNet LeNet Hybrid
Weeds 1 502/502/1005 100 100 100 100 100
Weeds 2 931/931/1863 100 100 100 100 100
Fallow 494/494/988 100 100 100 100 100

Fallow rough plow 348/348/698 100 100 100 100 100
Fallow smooth 669/669/1340 100 100 99.7012 100 100

Stubble 990/990/1980 100 100 100 100 100
Celery 894/894/1790 99.9441 100 100 100 100

Grapes untrained 2817/2818/5636 99.9822 100 99.9822 100 100
Soil vinyard develop 1550/1551/3102 100 100 100 100 100

Corn Weeds 819/820/1639 100 100 100 100 100
Lettuce 4wk 267/267/534 100 100 100 100 100
Lettuce 5wk 481/482/963 100 100 100 100 100
Lettuce 6wk 229/229/458 100 100 100 100 100
Lettuce 7wk 267/268/535 100 99.6261 100 100 100

Vinyard untrained 1817/1817/3634 99.8130 99.9174 99.1744 100 100
Vinyard trellis 451/452/904 100 100 100 100 100
Training Time — 257.9992 1256.1199 4667.9047 288.3353 1267.9766

Test Time — 7.3995 16.8058 27.8388 6.3860 19.2670
Overall Accuracy — 99.9889 99.9815 99.8706 100.0 100.0
Average Accuracy — 99.9837 99.9714 99.9286 100.0 100.0

Kappa (κ) — 99.9876 99.9794 99.8559 100.0 100.0
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(A) 2D (B) 3D (C) A.Net (D) LeNet (E) Hybrid

FIGURE 8.15: SA: Classification accuracy: Fig. 8.15a: 2D-CNN = 99.9876%, Fig. 8.15b: 3D CNN
= 99.9794%, Fig. 8.15c: AlexNet = 99.8559%, Fig. 8.15d: LeNet = 100.0%, and Fig. 8.15e Hybrid =

100.0%.

proposed by Liu et.al. [358]. A 3-D CNN model proposed by Hamida et. al., [359]. A hybrid
CNN model proposed by Lee et.al. [360] consists of two 3D and eight 2D convolutional
layers. A simple and compact 3D CNN model proposed by Chen et.al., [352] consists of three
3D convolutional layers. A lightweight 3D CNN model proposed by Li et.al. [361] consists
of two 3D convolutional layers and a fully connected layer. Li’s work is different from
traditional 3D CNN models as it uses fixed spatial-sized 3D convolutional layers with slight
changes in spectral depth. Multi-scale-3D-CNN [225], a fast and compact 3D-CNN (FC-
3D-CNN) [356] and three different versions of Hybrid Depth-Separable Residual Network
[362].

All the comparative models are being trained as per the settings mentioned in their re-
spective papers except for the number of dimensions and patch size (i.e., 15 dimensions
selected using PCA, and 15 × 15 path size). The experimental results listed in Table 8.14
show that the proposed framework has significantly improved the classification results as
compared to the other methods with fewer training samples.

8.6 Concluding Remarks for Regularized Hybrid CNN Fea-

ture Hierarchy

This section proposed the use of an entropy-based regularization process to improve the
generalization performance using soft labels. These soft labels are the weighted average of
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TABLE 8.14: Experimental Comparison with State-of-the-art models.

Methods Salinas Full Scene IP
OA AA Kappa OA AA Kappa

MLP 79.79 67.37 77.40 87.57 89.07 85.80
SVM-Grid 67.39 45.89 62.80 87.93 88.02 86.20

SVM 92.95 94.60 92.11 85.30 79.03 83.10
FC-3D-CNN [356] 98.06 98.80 97.85 98.20 96.46 97.95

Xie et al. [357] 93.35 91.88 92.60 95.64 96.01 95.10
Liu et al. [358] 84.27 79.10 82.50 89.56 89.32 88.10
3D-CNN [359] 85.00 89.63 83.20 82.62 76.51 79.25
Lee et al. [360] 84.14 73.27 82.30 87.87 83.42 86.10

Chen et al. [352] 86.83 92.08 85.50 93.20 95.51 92.30
Li [361] 88.62 86.84 87.40 94.22 96.71 93.40

MS-3D-CNN [225] 94.69 94.03 94.10 91.87 92.21 90.80
Zhao et al. [362] 98.89 98.88 98.85 95.86 96.08 95.09
SyCNN-S [363] 97.44 98.46 97.20 95.90 97.84 95.30
SyCNN-D [363] 97.76 98.95 97.50 96.13 98.08 95.60

SyCNN-ATT [363] 98.92 99.35 98.80 97.31 98.43 96.90
Regularized AlexNet 99.87 99.92 99.85 97.65 97.94 97.33
Regularized LeNet 100.0 100.0 100.0 98.14 94.91 97.88

Regularized 2D 99.98 99.98 99.98 98.94 98.79 96.63
Regularized 3D 99.98 99.97 99.97 91.57 86.81 90.35

Regularized Hybrid 100.0 100.0 100.0 99.29 99.38 99.19

the hard labels and uniform distribution over entire ground truths. The entropy-based reg-
ularization process prevents CNN from becoming over-confident while learning and pre-
dicting thus improves the model calibration and beam-search. Extensive experiments have
confirmed that the proposed pipeline outperformed several state-of-the-art methods.

8.7 Experimental Results for Artifacts of Dimension Reduc-

tion on Hybrid CNN

In all the experiments, each dataset is initially divided into a 50/50% ratio for the training
and test set and then the training set is further split into a 50/50% ratio for training and
validation samples. In all the experiments, learning rate is set to 0.001 and relu activation
function used for all the layers except the last layer where softmax is applied. Spatial dimen-
sions of 3D input patches for all datasets are set as as 9× 9× 15, 11× 11× 15, 9× 9× 18,
11× 11× 18, 9× 9× 21, 11× 11× 21, 9× 9× 24, 11× 11× 24, and 9× 9× 27, 11× 11× 27,
where 15, 18, 21, 24 and 27 are the number of most informative bands extracted by PCA,
iPCA, SPCA, ICA, and SVD, respectively.
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The convergence loss and accuracy of Hybrid CNN for 50 epochs with two different
patch sizes are illustrated in Figure 8.16. From these accuracy and loss curves, one can
deduce that the model is converged almost around the 35 epoch for both 9× 9 and 11× 11
window sizes. A detailed experimental results on IP dataset is shown in Table 8.15 and
Figure 8.17. Moreover, per class statistical significance is shown in Table 8.16. A detailed
experimental result on SA is shown in Table 8.17 and Figure 8.18. Moreover, the statistical
significance is shown in Table 8.18. A detailed experimental result on the PU is shown in
Table 8.19 and Figure 8.19. Moreover, the statistical significance is shown in Table 8.20.

(A) Accuracy, 9× 9× 15 (B) Loss, 9× 9× 15 (C) Accuracy, 11× 11× 15 (D) Loss, 11× 11× 15

FIGURE 8.16: Accuracy and Loss for Training and Validation sets on IP for 50 number of epochs with
two different spatial dimensions (9× 9 and 11× 11) and 15 number of dimensions.

(A) 15, 9 (B) 15, 11 (C) 18, 9 (D) 18, 11 (E) 21, 9 (F) 21, 11 (G) 24, 9 (H) 24, 11 (I) 27, 9 (J) 27, 11

FIGURE 8.17: Classification results of IP for different number of dimensions (15, 18, 21, 24, 27 dimen-
sions selected using PCA) with 9× 9 and 11× 11 patch sizes respectively.
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TABLE 8.15: Kappa, Overall and Average accuracy for IP with different number of dimensions (15,
18, 21, 24, 27) and different number of patch sizes (i.e., 9× 9 and 11× 11).

Method 15 Bands 18 Bands 21 Bands 24 Bands 27 Bands
9 × 9 11 × 11 9 × 9 11 × 11 9 × 9 11 × 11 9 × 9 11 × 11 9 × 9 11 × 11

PCA
96.75 96.84 96.75 97.00 97.55 96.95 97.53 97.24 91.54 97.00
97.15 97.23 97.15 97.37 97.85 97.33 97.83 97.58 92.57 97.37
97.54 95.57 97.51 93.39 97.37 96.98 97.49 95.96 91.53 96.95

iPCA
62.30 35.54 18.81 66.48 83.29 73.33 38.91 86.50 0.00 84.72
66.87 47.47 36.27 70.71 85.40 76.82 49.89 88.18 23.96 86.63
56.35 25.41 12.49 46.91 67.58 50.32 31.16 81.44 6.25 75.68

SPCA
73.20 75.66 76.12 81.86 68.95 11.82 73.96 79.81 0.00 75.88
76.72 78.87 79.08 84.16 72.88 28.45 77.23 82.44 23.96 78.79
65.43 56.02 64.46 74.97 59.91 12.27 65.39 60.81 6.25 53.97

ICA
68.52 71.24 65.13 71.36 79.84 84.42 91.83 90.23 79.94 90.55
72.72 75.10 69.76 75.36 82.42 86.40 92.84 91.41 82.48 91.75
60.79 59.92 57.74 61.50 70.80 81.28 86.59 85.93 74.69 85.49

SVD
14.77 0.00 0.00 0.00 0.00 0.00 0.00 29.94 0.00 0.00
30.79 23.96 23.96 23.96 23.96 23.96 23.96 43.28 23.96 23.96
12.34 6.25 6.25 6.25 6.25 6.25 6.25 18.70 6.25 6.25
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(A) 15, 9 (B) 15, 11 (C) 18, 9 (D) 18, 11 (E) 21, 9 (F) 21, 11 (G) 24, 9 (H) 24, 11 (I) 27, 9 (J) 27, 11

FIGURE 8.18: Classification results for SA for different number of dimensions (15, 18, 21, 24, 27
dimensions selected using PCA) with different number of patch sizes (9× 9 and 11× 11).

TABLE 8.17: Kappa, Overall and Average accuracy for SA dataset with different number of dimen-
sions (15, 18, 21, 24, 27) and different number of patch sizes (9× 9 and 11× 11).

Method 15 Bands 18 Bands 21 Bands 24 Bands 27 Bands
9 × 9 11 × 11 9 × 9 11 × 11 9 × 9 11 × 11 9 × 9 11 × 11 9 × 9 11 × 11

PCA
99.86 99.89 99.93 99.96 99.98 99.58 99.91 99.86 99.93 99.99
99.87 99.90 99.93 99.97 99.99 99.62 99.92 99.88 99.93 99.99
99.90 99.97 99.97 99.97 99.98 99.68 99.95 99.90 99.97 99.98

iPCA
97.42 21.48 91.66 42.17 97.70 1.57 93.46 84.19 84.19 91.70
97.69 33.73 92.53 49.45 97.93 21.91 94.13 85.82 85.84 92.54
93.35 18.66 90.33 33.55 97.61 7.37 91.46 72.51 70.23 85.30

SPCA
95.97 33.53 96.57 88.31 99.31 83.12 96.65 69.92 97.04 81.52
96.38 39.80 96.92 89.51 99.38 85.00 97.00 73.45 97.34 83.77
92.13 30.96 97.25 87.04 99.32 74.04 92.26 52.74 97.46 72.27

ICA
99.08 99.56 99.17 99.93 99.07 99.77 99.72 99.75 99.83 99.93
99.17 99.60 99.25 99.93 99.17 99.80 99.75 99.78 99.85 99.94
99.46 99.81 99.58 99.94 99.42 99.90 99.87 99.87 99.89 99.91

SVD
98.02 0.00 97.14 0.00 82.59 94.16 96.22 16.91 71.79 0.00
98.22 20.82 97.43 13.43 84.44 94.76 96.61 32.28 74.82 20.82
98.40 6.25 98.54 6.25 73.60 91.05 91.93 12.50 68.44 6.25
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(A) 15, 9 (B) 15, 11 (C) 18, 9 (D) 18, 11 (E) 21, 9 (F) 21, 11 (G) 24, 9 (H) 24, 11 (I) 27, 9 (J) 27, 11

FIGURE 8.19: Classification results of PU for different number of dimensions (15, 18, 21, 24, 27 di-
mensions selected using PCA) with different number of patch sizes (9× 9, and 11× 11).

TABLE 8.19: Kappa, Overall and Average accuracy for PU with different number of bands (15, 18, 21,
24, 27) and different number of patch sizes (9× 9 and 11× 11).

Method 15 Bands 18 Bands 21 Bands 24 Bands 27 Bands
9 × 9 11 × 11 9 × 9 11 × 11 9 × 9 11 × 11 9 × 9 11 × 11 9 × 9 11 × 11

PCA
56.97 99.61 58.56 99.69 56.77 99.76 59.40 99.77 64.80 99.68
61.93 99.71 63.39 99.77 61.74 99.82 63.62 99.83 68.73 99.76
44.55 99.54 47.32 99.55 46.56 99.69 55.41 99.64 57.55 99.59

iPCA
39.35 0.00 67.85 99.11 48.34 99.40 55.18 98.77 60.45 98.93
46.43 43.59 71.34 99.33 54.30 99.55 60.02 99.07 64.47 99.20
31.76 11.11 65.84 98.72 37.98 99.11 43.91 98.59 51.85 98.98

SPCA
51.37 19.39 46.13 99.18 62.65 99.70 56.53 99.45 60.21 99.44
56.45 41.50 52.53 99.38 66.50 99.78 61.28 99.59 64.74 99.57
42.69 15.70 34.69 98.95 55.65 99.64 46.94 99.25 47.46 99.18

ICA
0.00 98.78 0.00 98.96 0.00 99.18 0.00 99.57 0.00 99.30

17.81 99.08 17.81 99.21 17.81 99.38 17.81 99.67 17.81 99.47
7.69 98.28 7.69 98.85 7.69 99.11 7.69 99.53 7.69 99.25

SVD
45.29 0.00 50.72 97.13 56.33 99.08 49.49 0.00 54.06 98.57
52.57 43.59 57.06 97.83 61.17 99.30 56.10 43.59 59.59 98.92
33.28 11.11 40.52 97.48 50.77 98.73 37.56 11.11 45.42 98.51
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In all the experiments, we evaluated the performance of our proposed model for a set of
experiments that are initially analyzed using several dimensionality reductions approaches
for hybrid CNN and assessed the performance against a different number of spectral bands
(15, 18, 21, 24, and 27) extracted through PCA, iPCA, SPCA, SVD, and ICA methods. Later
we examined the effect of input window size on the classification performance of the pro-
posed model by choosing two different patch sizes (9× 9 and 11× 11).

The experimental results on benchmark HSI datasets are presented in Tables 8.17, 8.15
and 8.19 and Figures 8.17-8.19. From these results, one can conclude that for all the datasets,
the proposed model performed significantly better with PCA as compared to the other well-
known dimensionality reduction methods. However, from the experimental results, one
can observe that the κ, OA, AA values remain almost the same with an increasing number
of spectral bands extracted through dimensionality reduction techniques.

The classification performance of CNN-based HSIC models also relies on the input win-
dow size. If the patch size is too small, it decreases the inter-class diversity in samples and
if the patch size is set larger then it may take in the pixels from various classes, hence, both
cases result in misclassification. We evaluated the hybrid model against two window sizes
i.e. W1 = 9× 9 and W2 = 11× 11. From the experimental results, it can be observed that
there is a slight improvement in the classification results with increased window size for
both Indian Pines (IP) and Salinas Full Scene (SFS) datasets. However, in the case of the
Pavia University dataset, one can notice a considerable enhancement in the classification
accuracy with 11× 11 window patch as compared to 9× 9.

For comparison purposes, the Hybrid model is compared with various state-of-the-art
frameworks published in recent years. From the experimental results presented in Table ??
one can interpret that Hybrid CNN has obtained results comparable to the state-of-the-art
frameworks and to some extent outperformed with respect to the other models. The com-
parative frameworks used in this section include Support Vector Machine (SVM) without
any optimization. SVM is one of the most widely used classifiers for HSIC.

Moreover, the SVM-Grid approach was also tested which was optimized by the stochas-
tic gradient descent algorithm. Multi-layer Perceptron (MLP) model with 4 fully connected
layers with dropout is used for comparative purposes. The number of layers is set heuristi-
cally. MLP is considered as a baseline for many deep learning models. The work proposed
by Sharma [357] consists of a 2D CNN model that is built upon 2D convolutional operations
with band selection as preprocessing. The idea was initially proposed for HS imaging-based
face detection and recognition. Liu et.al. [358] proposed a semi-supervised CNN model for
HSIC. Liu’s model consists of convolutional operation, clean and corrupted encoder, and
decoder. The work Hamida et. al. [359] proposed a 3-D CNN model for HSIC that consists
of four 3-D convolutional layers. The work [360] proposed a fully convolutional network
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that doesn’t consider any subsampling layer with arbitrary sizes. The model proposed by
Lee et. al. consists of two 3-D and eight 2-D convolutional layers. The work proposed
by Chen et.al. [352] deployed a simple and compact 3-D CNN model consists of three 3-D
convolutional layers. The work [361] proposed a lightweight 3-D CNN model having two
3-D convolutional layers and a fully connected layer for HSIC. Li’s work is different from
other state-of-the-art 3-D CNN models. In this work, Li et.al. proposed the use of fixed
spatial size 3-D convolutional layers with slight changes in spectral depth. Multi-scale-3D-
CNN [225], a fast and compact 3D-CNN (FC-3D-CNN) [117] and Hybrid Depth-Separable
Residual Network [362].

All the comparative models are being trained as per the settings mentioned in their re-
spective papers except for the number of dimensions and patch size (i.e., 15 dimensions
selected using PCA, and 11× 11 path size is used for experimental purposes). The exper-
imental results listed in Table 8.21 show that Hybrid CNN has significantly improved the
classification results as compared to the other methods with fewer convolutional layers,
number of filters, number of epochs, and even a small number of training samples. More-
over, the loss and accuracy trend between 3D and hybrid CNN is shown in Figure 8.20.

FIGURE 8.20: Accuracy and Loss for training and validation sets for FC-3D-CNN and Hybrid CNN
model. The significant improvement in convergence can be observed.
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TABLE 8.21: Comparative evaluations with State-of-the-art methods while considering 11× 11 Spa-
tial dimensions with even less number of training samples. Where SVM stands for Support Vector
Machine, MLP stands for Multi-Layer Perceptron, MS-3D-CNN stands for Multi-Scale 3D CNN, FC-
3D-CNN stands for fast and compact 3D CNN, SyCNN stands for Synergistic CNN model, and rest
abbreviations are as follows: Simple Synergistic CNN (SyCNN-S), Deep SyCNN with Data Interac-

tion Module (SyCNN-D), and Deep SyCNN-attention Network (SyCNN-ATT).

Methods Indian Pines Salinas Full Scene
OA AA Kappa OA AA Kappa

SVM 85.30 79.03 83.10 92.95 94.60 92.11
SVM-Grid 87.93 88.02 86.20 67.39 45.89 62.80

MLP 87.57 89.07 85.80 79.79 67.37 77.40
3D-CNN 82.62 76.51 79.25 85.00 89.63 83.20

SyCNN-S [363] 95.90 97.84 95.30 97.44 98.46 97.20
SyCNN-D [363] 96.13 98.08 95.60 97.76 98.95 97.50

SyCNN-ATT [363] 97.31 98.43 96.90 98.92 99.35 98.80
2D-CNN [221] 80.27 68.32 75.26 96.34 94.36 95.93

MS-3D-CNN [225] 91.87 92.21 90.80 94.69 94.03 94.10
FC-3D-CNN [117] 98.20 96.46 97.95 98.06 98.80 97.85

Xie et.al. [357] 95.64 96.01 95.10 93.35 91.88 92.60
Liu et.al. [358] 89.56 89.32 88.10 84.27 79.10 82.50
Hamida [359] 86.99 90.16 85.20 76.22 62.82 73.10
Lee et.al. [360] 87.87 83.42 86.10 84.14 73.27 82.30

Chen et.al. [352] 93.20 95.51 92.30 86.83 92.08 85.50
Li [361] 94.22 96.71 93.40 88.62 86.84 87.40

Zhao et.al. [362] 95.86 96.08 95.09 98.89 98.88 98.85
Proposed 98.26 96.94 98.02 99.89 99.90 99.97

8.8 Concluding Remarks for Artifacts of Dimension Reduc-

tion on Hybrid CNN

HSIC is a challenging task due to the spectral mixing effect which induces high intra-class
variability and inter-class similarity. 2D CNNs are utilized for spatial feature extraction and
classification, whereas several variants of 3D CNN are used for joint spectral-spatial fea-
ture extraction and classification. However, 3D CNNs are computationally complex and
2D CNN alone cannot efficiently extract discriminating spectral features. Therefore, to over-
come these challenges, this chapter proposed a Hybrid CNN feature hierarchy that provided
outstanding classification results on benchmark HSI datasets.
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8.9 Experimental Results for Spectral Angle Mapper for Spatial-

Spectral Classification

The performance of the FSAM-AL pipeline is validated on five benchmark HSI datasets
acquired by two different sensors, e.g., Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS) and Reflective Optics System Imaging Spectrometer (ROSIS). These datasets in-
clude SLA, SA, KSC, PU, and PC.

We evaluated the FSAM pipeline against four different classifiers: extreme learning ma-
chine (ELM) [443], Support Vector Machine (SVM), k-nearest neighbor (kNN), and Ensemble
Learning (EL). These classifiers are chosen because they have been extensively studied in the
literature for HSIC and rigorously utilized for comparison purposes. Furthermore, our goal
is to show that the proposed method can work well with a diverse set of classifiers.

To further validate the real-time applicability of FSAM, we compared it against four
benchmark sample selection methods, namely: Random Sampling (RS), Mutual Informa-
tion (MI), Breaking Ties (BT), and Modified Breaking Ties (MBT).

1. Random Sampling (RS) [6, 409] method relies on the random selection of the samples
without considering any specific conditions.

2. Mutual Information (MI) [413] of two samples is a measure of the mutual dependence
between the two samples.

3. Breaking Ties (BT) [414] relies on the smallest difference of the posterior probabilities
for each sample. In multiclass settings, BT can be applied by calculating the difference
between the two highest probabilities. As a result, BT finds the samples minimizing the
distance between the first two most probable classes. The BT method generally focuses
on the boundaries comprising many samples, possibly disregarding boundaries with
fewer samples.

4. Modified Breaking Ties (MBT) [415, 416] includes more diversity in the sampling
process as compared to BT. The samples are selected by maximizing the probability
of the largest class for each class. MBT takes into account all the class boundaries by
cyclically conducting the sampling, making sure that the MBT does not get trapped in
any class whereas BT could be trapped in a single boundary.

In all experiments, the initial training size is set as 100 samples from an entire HSI data. In
each iteration, the size of the training set increases with h = 1% actively selected samples by
the FSAM pipeline. The best part of FSAM is that there are no hyper-parameters that need
to be tuned except classification methods. In ELM, the hidden neurons are systematically
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selected from the range of [1 - 500]. Similarly, in kNN, the nearest neighbors are set to k =
[2 - 20], SVM is tested with polynomial kernel function, and ensemble learning classifiers
are trained using a tree-based model with [1 - 100] a number of trees. All such parameters
are carefully tuned and optimized during the experimental setup. All these experiments are
carried out using MATLAB (2014b) on an Intel Core i5 3.20 GHz CPU with 12 GB of RAM.

Here we performed a set of experiments to evaluate the FSAM pipeline using both RO-
SIS and AVIRIS sensors datasets. Evaluating ROSIS sensor datasets is a more challenging
classification problem dominated by complex urban classes and nested regions than AVIRIS.
Here we evaluate the influence of the number of labeled samples on the classification perfor-
mance achieved by several classifiers. Figures 8.21 and 8.22 shows the overall and kappa (κ)

accuracy as a function of the number of labeled samples obtained by FSAM, i.e., fuzziness
and SAM diversity-based active selection of most informative and diverse samples in each
iteration. These labeled samples were selected by machine–machine interaction which sig-
nificantly reduces the cost in terms of labeled collection through human supervisors which
is the key aspect of automatic AL methods. The plots are shown in Figures 8.21 and 8.22 and
generated based on only selected samples in contrast to the entire population which reveals
clear advantages of using fewer labeled samples for the FSAM pipeline.

From Figures 8.21 and 8.22, it can be observed that FSAM greatly improved the accu-
racy. The results also reveal that SVM and LB outperformed other classifiers in most cases,
whereas, as expected, KNN provides lower classification accuracy than SVM and LB, since
the candidates are more relevant when the samples are acquired from the class boundaries.
Furthermore, it can also be observed that SVM always performed better than KNN, ELM,
and ensemble learning classifiers. ELM could perform better with more hidden neurons on
more powerful machines. For instance, when the 2% of labeled samples were used, the per-
formance has been significantly increased in contrast to the 1% of actively selected samples.
These observations confirm that FSAM can greatly improve the results obtained by different
classifiers based on a small portion of the entire population, i.e., the classifiers trained using
a limited number of selected labeled samples can produce better generalization performance
rather than selecting the bulk amount of label training samples.

It is perceived from Figures 8.21 and 8.22 that by including the samples back to the train-
ing set, the classification results are significantly improved for all the classifiers. Moreover,
it can be seen that SVM and ELM classifiers are more robust than ensemble and KNN clas-
sifiers. For example, with 1% actively selected samples in the ELM classifier case, only 2%
difference in classification with a different number of samples can be observed, however, for
the KNN and SVM classifiers, the difference is quite high. Similar observations can be made
for ensemble models.

In order to present the classification results in geographical fashioned for both ROSIS
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FIGURE 8.21: Overall accuracy with a different number of training samples (%) selected in each
iteration from different datasets. It is perceived from the above figure that by including the samples
back to the training set, the classification results are significantly improved for all the classifiers.
Moreover, it can be seen that SVM and ELM classifiers are more robust. For example, with 2% actively
selected samples in the ELM classifier case, only 2% difference in the classification with a different
number of samples can be observed, however, for the KNN and SVM classifiers, the difference is

quite high.

and AVIRIS sensors datasets, Figures 8.23–8.27 shows ground truths segmentation of all
experimental datasets used in this work. These ground truths are generated using 2% of
actively selected samples by the FSAM pipeline. In all the experiments, we provide the
number of labeled training samples and the test samples which indicate the number of true
versus estimated labels used in the experiments. It can be observed from the listed results,
that our proposed fuzziness and diversity-based active labeled sample selection pipeline
is quite robust as it achieved higher classification results which are way better or at least
comparable with several state-of-the-art AL methods.

To better analyze the performance of FSAM on ROSIS and AVIRIS datasets, Table 8.22
shows the statistical significance in terms of recall, precision, and F1-score tests. The ex-
periments shown in Table 8.22 are performed with 2% of actively selected labeled samples
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FIGURE 8.22: Kappa (κ) accuracy with different number of training samples (%) selected in each it-
eration from Salinas-A, Salinas, Kennedy Space Center, Pavia University, and Pavia Center datasets
respectively. It is perceived from the above figure that by including the samples back to the train-
ing set, the classification results in terms of kappa κ are significantly improved for all the classifiers.
Moreover, it can be seen that SVM and ELM classifiers are more robust than ensemble and KNN clas-
sifiers. For example, with 2% actively selected samples in the ELM classifier case, only 2% difference
in the classification with a different number of samples can be observed, however, for the KNN and
SVM classifiers, the difference is quite high. Similar observations can be made for ensemble learning

models.

(A) Band (B) GT (C) Train (D) Test (E) SVM (F) KNN (G) GB (H) LB (I) ELM

FIGURE 8.23: SLA: (a): Ground Band, (b): True Ground Truths, (c): Training Ground Truths, (d): Test
Ground Truths, and ground truths predicted by (e): SVM, (f): KNN, (g): GB, (h): LB, and (i): ELM

classifier with 2% of selected training samples.

from each class for all experimental datasets. Table 8.22 is produced to support the results
shown in Figures 8.21–8.27 for both AVIRIS and ROSIS sensor datasets. The global recall,
precision, and F1-score for each classifier of these results are obtained using 5 Monte Carlo
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(A) Band (B) GT (C) Train (D) Test (E) SVM (F) KNN (G) GB (H) LB (I) ELM

FIGURE 8.24: SA: (a) Ground Band, (b): True Ground Truths, (c): Training Ground Truths, (d): Test
Ground Truths, and ground truths predicted by (e): SVM, (f): KNN, (g): GB, (h): LB, and (i): ELM

classifier with 2% of selected training samples.

(A) Band (B) GT (C) Train (D) Test (E) SVM (F) KNN (G) GB (H) LB (I) ELM

FIGURE 8.25: KSC: (a) Ground Band, (b): True Ground Truths, (c): Training Ground Truths, (d): Test
Ground Truths, and ground truths predicted by (e): SVM, (f): KNN, (g): GB, (h): LB, and (i): ELM

classifiers with 2% of selected training samples.

(A) Band (B) GT (C) Train (D) Test (E) SVM (F) KNN (G) GB (H) LB (I) ELM

FIGURE 8.26: PU : (a) Ground Band, (b): True Ground Truths, (c): Training Ground Truths, (d): Test
Ground Truths, and ground truths predicted by (e): SVM, (f): KNN, (g): GB, (h): LB, and (i): ELM

classifier with 2% of selected training samples.

(A) Band (B) GT (C) Train (D) Test (E) SVM (F) KNN (G) GB (H) LB (I) ELM

FIGURE 8.27: PC: (a) Ground Band, (b): True Ground Truths, (c): Training Ground Truths, (d): Test
Ground Truths, and ground truths predicted by (e): SVM, (f): KNN, (g): GB, (h): LB, and (i): ELM

classifier with 2% of selected training samples.

runs. Furthermore, these Tables show the statistical significance of FSAM in terms of recall,
precision, and F1-score with the 99% confidence interval. The obtained values indicate the
ability of FSAM to correctly identify the unseen samples in which each classifier was trained
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on a very small amount of labeled training samples. For any good model, precision, recall,
and F1-score values should be greater than 80% on average, and in our case, these values
are almost above 80% for all experimental datasets and all classifiers, demonstrating that the
proposed FSAM-AL pipeline is not classifier sensitive.

TABLE 8.22: Statistical applicability of our proposed FSAM samples selection method. Each classifier
is trained with 2% of actively selected training samples.

Tests ELM KNN GB LB SVM

Salinas-A Dataset.

Recall 0.9852 ± 0.0037 0.9489 ± 0.0528 0.9644 ± 0.0281 0.9650 ± 0.0315 0.9855 ± 0.0092
Precision 0.9903 ± 0.0029 0.9567 ± 0.0352 0.9649 ± 0.0275 0.9672 ± 0.0287 0.9885 ± 0.0071
F1 Score 0.9875 ± 0.0031 0.9459 ± 0.0609 0.9639 ± 0.0270 0.9654 ± 0.0300 0.9867 ± 0.0076

Salinas Dataset.

Recall 0.9544 ± 0.0032 0.9247 ± 0.0162 0.9551 ± 0.0153 0.9580 ± 0.0135 0.9583 ± 0.0115
Precision 0.9584 ± 0.0030 0.9189 ± 0.0117 0.9596 ± 0.0127 0.9603 ± 0.0117 0.9642 ± 0.0091
F1 Score 0.9552 ± 0.0026 0.9225 ± 0.0129 0.9570 ± 0.0138 0.9588 ± 0.0124 0.9611 ± 0.0101

Kennedy Space Center Dataset.

Recall 0.8220 ± 0.0518 0.7513 ± 0.0739 0.8158 ± 0.0839 0.8159 ± 0.0790 0.8546 ± 0.0579
Precision 0.8445 ± 0.0423 0.8375 ± 0.0638 0.8315 ± 0.0751 0.8344 ± 0.0683 0.8596 ± 0.0509
F1 Score 0.8260 ± 0.0469 0.7491 ± 0.0760 0.8183 ± 0.0815 0.8195 ± 0.0775 0.8542 ± 0.0533

Pavia University Dataset.

Recall 0.7782 ± 0.0283 0.7954 ± 0.0346 0.8838 ± 0.0391 0.8856 ± 0.0376 0.8858 ± 0.0287
Precision 0.8708 ± 0.0229 0.9508 ± 0.0090 0.9165 ± 0.0247 0.9146 ± 0.0252 0.8929 ± 0.0203
F1 Score 0.8107 ± 0.0255 0.8122 ± 0.0316 0.8973 ± 0.0336 0.8976 ± 0.0327 0.8886 ± 0.0241

Pavia Center Dataset.

Recall 0.8913 ± 0.0073 0.9281 ± 0.0151 0.9493 ± 0.0124 0.9509 ± 0.0120 0.9568 ± 0.0115
Precision 0.9187 ± 0.0066 0.9125 ± 0.0136 0.9469 ± 0.0112 0.9489 ± 0.0107 0.9572 ± 0.0119
F1 Score 0.8999 ± 0.0064 0.9248 ± 0.0129 0.9480 ± 0.0116 0.9498 ± 0.0112 0.9568 ± 0.0117

The most advanced developments in AL are single-pass context and hybrid AL. These
techniques combine the concepts of incremental and adaptive learning from the field of on-
line and traditional machine learning. These advancements have resulted in a substantial
number of AL methods. The most classical and well studied AL methods include, for exam-
ple, the works [444, 445] focused on online learning. These works are specifically designed
for an online single-pass setting in which the data stream samples arrive continuously, thus,
do not allow classifier re-training. Furthermore, these works focused on close concepts of
conflict and ignorance. Conflict models how close a query point is to the actual class bound-
ary and ignorance represents the distance between already seen training samples and a new
sample.

Similar works proposed in [446, 447] focused only on early AL strategies such as early-
stage experimental design problems. The TED method was proposed to select the samples
using the robust AL method incorporated with structured sparsity-inducing norms to relax
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the NP-hard objective of the convex formulation. Thus, these works only focused on select-
ing an optimal set of initial samples to kick-start the AL. However, the superiority of our
proposed FSAM pipeline is that it shows state-of-the-art performance independent of how
the initial labeled training samples are selected. Such methods can easily be integrated into
the works which utilize the decision boundary-based sample selection methods.

A novel tri-training semi-supervised HSIC method based on regularized local discrimi-
nant embedding feature extraction (RLDE) was proposed in [448]. In this work, the RLDE
process is used for an optimal number of feature extraction to overcome the limitation of
singular values and over-fitting of local Fisher discriminant analysis and local discriminant
embedding. At a later stage, the AL method is used to select the informative samples from
the candidate set. This work solves the singularity issues of LDA, however, this may include
the redundant samples back to the training set which does not provide any new information
to the classifier.

Spatial-spectral multiview 3D Gabor inspired AL for HSIC method was proposed in
[449]. Trivial multiview AL methods can make a comprehensive analysis of both sample
selection and object characterization in active learning by using several features of multi-
ple views. However, multiview cannot effectively exploit spatial-spectral information by
respecting the 3D nature of HSI, therefore, the sample selection method in multiview is only
based on the disagreement of multiple views. To overcome such problems, J. Hu, et al. [449]
proposed a two-step 3D Gabor-inspired multiview method for HSIC. The first step consists
of the view generation step, in which a 3D Gabor filter was used to generate multiple cubes
with limited bands and utilize the features assessment strategies to select cubes for con-
structing views. In a second stage, an AL method was presented which used both external
and internal uncertainty estimation of views. More specifically, posterior probability distri-
bution was used to learn the internal uncertainty of each independent view, and external
uncertainty was computed using inconsistency between the views.

Of course, the frameworks proposed in the above papers can be easily integrated with
our proposed FSAM sample selection method instead of selecting the samples based on un-
certainty or tri-training methods. We initialize our active learning method from 100 number
of randomly selected labeled training samples and we experimentally demonstrate that ran-
domly increasing the size of the training set slightly increases the accuracy nevertheless the
classifiers become computationally complex. Therefore, at the first step, we decided to sep-
arate the set of misclassified samples that have higher fuzziness values (samples fuzziness
magnitude between 0.7–1.0). We then select a specific percentage of misclassified samples
that have higher fuzziness to compute the spectral angle among the reference training sam-
ples. We then fused a specific percentage of selected samples with the original training set
to retrain the classifier from scratch for better generalization and classification performance
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on those samples which were initially misclassified by the same classifier.
More specifically, FSAM has been rigorously investigated through comparison against

some significant works recently published in the HSI classification area, adopting different
sample selection methods such as Random Sampling (RS), Mutual Information (MI), Break-
ing Ties (BT), Modified Breaking Ties (MBT), uncertainty, and fuzziness. This comparison is
based on the Botswana HSI acquired by the NASA EO-1 Satellite Hyperion sensor.

The experiments are based on five Monte Carlo runs with 100 initial training samples
selected from this dataset. In each iteration, the training set size has been increased of 50
samples selected by a specific method among the ones to be compared. The results thus
obtained are presented in the Tables 8.23-8.27. Based on such results, we can argue that
the FSAM pipeline outperforms the other solutions taken into account in these experiments.
This is due to the dual soft thresholding method for the selection of the most informative as
well as spatially heterogeneous labeled training samples. Furthermore, another benefit of
the FSAM solution is that it systematically selects the most informative but least redundant
labeled training samples by machine-machine interaction without involving any supervisor,
automatically, while the other AL frameworks need that a supervisor selects the samples at
each iteration, manually.

TABLE 8.23: Kappa (κ) accuracy obtained by SVM Classifier with different number of training sam-
ples selected in each iteration from BS dataset with different sample selection methods from litera-

ture.

Sample Selection Method

Number of Training Samples

50 100 150 200 250 300 350 400 450 500

Kappa Accuracy

Random Sampling [409] 0.8156 0.8483 0.8738 0.8886 0.9005 0.9101 0.9170 0.9151 0.9163 0.9221
Mutual Information [411–413] 0.8149 0.8437 0.8602 0.8798 0.8863 0.9002 0.9108 0.9217 0.9195 0.9302

Breaking Ties [414] 0.8163 0.8316 0.8401 0.8561 0.8778 0.8919 0.9008 0.9014 0.9087 0.9128
Modified Breaking Ties [415, 416] 0.8156 0.8522 0.8563 0.8893 0.9007 0.9040 0.9068 0.9136 0.9138 0.9103

Fuzziness [6] 0.8174 0.8129 0.8422 0.8648 0.8755 0.8934 0.8989 0.8986 0.9156 0.9119
FSAM 0.8167 0.8749 0.9027 0.9091 0.9493 0.9556 0.9668 0.9788 0.9928 0.9984

By the Botswana dataset, we experimentally demonstrated that FSAM outperforms all
other sample selection methods, i.e., RS, MI, BT, MBT, and Fuzziness in terms of accuracy,
starting from the same classifiers and the same number of labeled training samples as shown
in Tables 8.23-8.27. Furthermore, all these sample selection methods are more often subjec-
tive and tend to bring redundancy into the classifiers. Moreover, it reducing the general-
ization performance of the classifiers. More specifically, the number of samples required to
learn a model in FSAM can be much lower than the number of selected samples. In such
scenarios, there is a risk, however, that the learning model may get overwhelmed because
of the uninformative or spatially miscellaneous samples selected by the query function.
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TABLE 8.24: Kappa (κ) accuracy obtained by ELM Classifier with different number of training sam-
ples selected in each iteration from BS dataset with different sample selection methods from litera-

ture.

Sample Selection Method

Number of Training Samples

50 100 150 200 250 300 350 400 450 500

Kappa Accuracy

Random Sampling [409] 0.8094 0.8253 0.8364 0.8564 0.8648 0.8730 0.8919 0.8958 0.9063 0.9140
Mutual Information [411–413] 0.8051 0.8246 0.8430 0.8538 0.8699 0.8772 0.8881 0.8962 0.8983 0.9070

Breaking Ties [414] 0.8051 0.8174 0.8392 0.8607 0.8680 0.8744 0.8819 0.8963 0.8927 0.9022
Modified Breaking Ties [415, 416] 0.7961 0.8216 0.8563 0.8654 0.8718 0.8769 0.8896 0.9012 0.9081 0.9149

Fuzziness [6] 0.7958 0.8224 0.8463 0.8513 0.8606 0.8733 0.8780 0.8841 0.9008 0.9083
FSAM 0.8021 0.8385 0.8544 0.8846 0.8923 0.8968 0.9213 0.9355 0.9492 0.9551

TABLE 8.25: Kappa (κ) accuracy obtained by KNN Classifier with different number of training sam-
ples selected in each iteration from BS dataset with different sample selection methods from litera-

ture.

Sample Selection Method

Number of Training Samples

50 100 150 200 250 300 350 400 450 500

Kappa Accuracy

Random Sampling [409] 0.7854 0.8145 0.8158 0.8428 0.8547 0.8556 0.8603 0.8640 0.8695 0.8757
Mutual Information [411–413] 0.7854 0.8029 0.8154 0.8342 0.8485 0.8519 0.8592 0.8653 0.8727 0.8814

Breaking Ties [414] 0.7854 0.8205 0.8330 0.8466 0.8469 0.8541 0.8626 0.8731 0.8760 0.8757
Modified Breaking Ties [415, 416] 0.7854 0.8396 0.8463 0.8474 0.8584 0.8635 0.8685 0.8749 0.8813 0.8841

Fuzziness [6] 0.7854 0.8248 0.8298 0.8445 0.8529 0.8584 0.8628 0.8678 0.8702 0.8771
FSAM 0.7854 0.8369 0.8512 0.8842 0.8919 0.9189 0.9236 0.9469 0.9584 0.9625

TABLE 8.26: Kappa (κ) accuracy obtained by GB Classifier with different number of training samples
selected in each iteration from BS dataset with different sample selection methods from literature.

Sample Selection Method

Number of Training Samples

50 100 150 200 250 300 350 400 450 500

Kappa Accuracy

Random Sampling [409] 0.8140 0.8272 0.8342 0.8358 0.8479 0.8597 0.8649 0.8703 0.8675 0.8717
Mutual Information [411–413] 0.8139 0.7941 0.8118 0.8406 0.8620 0.8608 0.8687 0.8750 0.8787 0.8712

Breaking Ties [414] 0.8139 0.7875 0.8318 0.8355 0.8625 0.8691 0.8795 0.8895 0.8935 0.8928
Modified Breaking Ties [415, 416] 0.8139 0.8067 0.8404 0.852 0.8570 0.8612 0.8711 0.8772 0.8750 0.8795

Fuzziness [6] 0.8139 0.8470 0.8488 0.8524 0.8559 0.8658 0.8692 0.8755 0.8782 0.8853
FSAM 0.8140 0.8054 0.8605 0.8852 0.9060 0.9268 0.9247 0.9280 0.9455 0.9592

8.10 Concluding Remarks for Spectral Angle Mapper for Spatial-

Spectral Classification

The classification of multiclass spatial-spectral HSI with a small labeled training sample size
is a challenging task. To overcome this problem, this chapter introduces a customized AL
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TABLE 8.27: Kappa (κ) accuracy obtained by LB Classifier with different number of training samples
selected in each iteration from BS dataset with different sample selection methods from literature.

Sample Selection Method

Number of Training Samples

50 100 150 200 250 300 350 400 450 500

Kappa Accuracy

Random Sampling [409] 0.8074 0.8105 0.8275 0.8359 0.8419 0.8429 0.8482 0.8620 0.8699 0.8768
Mutual Information [411–413] 0.8073 0.8212 0.83151 0.8366 0.8409 0.8442 0.8564 0.854 0.8571 0.8565

Breaking Ties [414] 0.8074 0.8155 0.8300 0.8293 0.8337 0.8467 0.8513 0.8490 0.8582 0.8679
Modified Breaking Ties [415, 416] 0.8074 0.8303 0.8402 0.8422 0.8484 0.8649 0.8704 0.8813 0.8816 0.8794

Fuzziness [6] 0.8073 0.8126 0.8236 0.8411 0.8447 0.8586 0.8626 0.8684 0.8669 0.8709
FSAM 0.8073 0.8118 0.8226 0.8779 0.8993 0.9094 0.9216 0.9402 0.9475 0.9588

pipeline for HSI to reduce the sample selection bias while maintaining the data stability in
the spatial domain. The proposed FSAM pipeline differs from traditional AL methods in
three relevant aspects. First, instead of simply using the uncertainty of samples to select
new samples, it utilizes the fuzziness measure associated with the confidence of the training
model in classifying those samples correctly.

Second, it couples the samples’ fuzziness with their diversity to select new training sam-
ples which simultaneously minimizes the error among the training samples while maximiz-
ing the spectral angle between the selected sample and the existing training samples. For
FSAM, instead of measuring angle-based distances among all new samples and all existing
training samples, a reference sample is selected from within the training set against which
the diversity of the new samples is measured. This achieves the same goal while reducing
the computational overhead as the size of the training set is always much smaller than the
validation set which is the source of new samples.

Thirdly, the FSAM keeps the pool of new samples balanced, giving equal representation
to all classes, which is achieved via softening the thresholds at run time. Experimental re-
sults on five benchmark datasets demonstrate that the FSAM leads to an increased predictive
power regarding kappa (κ) and overall accuracy, precision, recall, and F1-Score parameters.

A comparison of FSAM with state-of-the-art sample selection method is performed, con-
firming that the FSAM is effective in terms of overall accuracy and κ, also with few training
samples. However, the main drawback of SAM is spectral mixture problems, i.e., SAM as-
sumes that the reference spectra chosen to classify the HSI represent the pure spectra. Such
a problem occurs when the HSI is in low or medium spatial resolution. Furthermore, as we
know, the surface of the earth is widely heterogeneous and complex, thus containing many
mixed samples. The spectral confusion in samples can lead to overestimation or underesti-
mation errors for spectral signatures.

Future research direction aims to address such limitations to classify low or mid-spatial
resolution HSI’s in a computationally efficient way. Further work will be directed toward
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testing the FSAM pipeline in different analysis scenarios dominated by the limited availabil-
ity of training samples a priori.
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Chapter 9

Conclusion

The rich information contained in HSI data is a captivating factor that constitutes the utiliza-
tion of HSI technology in real-world applications. HIS Classification (HSIC) is a challenging
task due to high inter-class similarity, high intra-class variability, overlapping, and nested re-
gions. Thus, advances in machine learning methods strengthen the deployment potentials
of such technologies. Though 2D Convolutional Neural Networks (CNNs) have emerged
as a viable approach for HSIC, 3D CNNs are a better alternative because accurate HSIC
depends on both Spectral-Spatial information. However, 3D CNN can be highly computa-
tional complex due to its volume and spectral dimensions. Therefore, this Thesis proposed
several Deep Learning as well as Active Learning (AI) methods for HSIC to overcome the
aforesaid issues. Moreover, the comparative results are intensively compared with state
of the art Deep Neural Networks (for instance, Auto-encoder (AE), Deep Belief Network
(DBN), Recurrent Neural Network (RNN), Convolutional Neural Network (CNN), Transfer
Learning (TL), Few-shot Learning (FSL), Active/Self Learning (AL/SL), and Data Augmen-
tation (DA)) in a variety of learning schemes (specifically, supervised, semi-supervised and
unsupervised learning). In addition, this thesis also analyzed the strategies to overcome
the challenges of limited availability of training data like AI, Data Augmentation, Few-shot
Learning (FSL), Transfer Learning, and Active Learning, etc.

Although the current HSIC techniques reflect a rapid and remarkable sophistication of
the task, further developments are still required to improve the generalization capabilities.
The main issue of deep neural network-based HSIC is the lack of labeled data. HSI data is
infamous due to the limited availability of labeled data and deep neural networks demand a
sufficiently large amount of labeled training data. Thus this dissertation discussed some and
proposed some strategies to combat the aforesaid issues, however, significant improvements
are still needed to efficiently utilize limited available training data. One direction to solve
this problem could be to explore the integration of various learning strategies to cash in the
joint benefits. One more way is to exploit a few-shot or K-shot learning approaches that can
accurately predict the class labels with only a few labeled samples.

Moreover, there is a need to focus on the joint exploitation of spectral-spatial features of
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HSI to complement classification accuracies achieved from the aforementioned HSIC frame-
works as proposed in this dissertation. Another potential issue of HSIC is computationally
efficient architectures which have been overcome in this dissertation.

The issue of the high computational complexity of deep neural networks is of paramount
importance and it is crucial to implement parallel HSIC architectures to speed up the pro-
cessing of deep neural networks to meet the computational stipulation of time-critical HSI
applications. In this direction, high-performance computing platforms and specialized hard-
ware modules like graphical processing units (GPUs) and field-programmable gate arrays
(FPGAs) can be used to implement the parallel HSIC frameworks. Hence, to assimilate
aforesaid aspects in the development of a new HSIC framework is to appropriately uti-
lize the limited training samples while considering joint spectral-spatial features of HSI and
maintaining the low computational burden.
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