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Introduction

The aim of this thesis is to discuss theoretical approaches and numerical
results suitable for describing some phenomena that characterize the inter-
action between electromagnetic radiation and micro-nanostructured matter,
going from nano-plasmonic particles and nanowires in optical traps, to inter-
stellar and interplanetary dust particles.

We know that the electromagnetic scattering theory is accurately de-
scribed by the transition matrix formalism (T-matrix) that allows to calcu-
late the optical properties of spherical, composite, aggregated, and multi-
stratified model particles. The T-matrix method, initially introduced by
Waterman [1], is among the most efficient tools for the accurate calculation
of light scattering from non-spherical particles, both isolated and interacting
in composite structures [2]. It is based on the calculation of a linear oper-
ator (Transition operator) which, acting on the multipole amplitudes of the
incident fields, gives as a result the multipole amplitudes of the scattered
field. For a homogeneous spherical particle under plane wave illumination
this coincides with the Mie theory [3]. The T-matrix approach is particularly
advantageous when we deal with particles that can be modeled as cluster or
aggregates of spheres, spheres with spherical (eccentric) inclusions, and mul-
tilayered spheres [2]. This technique takes into proper account the multiple
scattering processes occurring among the spherical sub-units composing the
aggregate and the contribution of all the details of the model structure. Op-
tical properties of composite scatterers can be exactly calculated without
introducing any approximation except the truncation of the expansion of the
fields, being able to check the convergence of the results at every step. The
elements of the T-matrix contain all the information on the particle nature
(refractive index, size relative to the wavelength, and shape) and on the ori-
entation of the scatterer with respect to the incident field. A fundamental
feature is that the T-matrix is independent of the propagation direction and
polarization states of the incident and of the scattered fields. This means
that, once we compute the T-matrix elements, we do not need to compute
them again if the incident field direction and polarization state changes [4].
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This is a key property when dealing with optical trapping calculations since
the particle has to be placed in different positions to reconstruct the optical
force within the focal spot [5]. Thanks to the flexibility and the accuracy of
the T-matrix technique, we have the possibility to explore several systems
and configurations in a broad range of applications, going from optical force
theory, i.e. Optical Tweezers [6–8], through fundamental physics problems
such as optical forces related to non-local spin-dependent components [9], in-
terstellar dust modelling [10–12], to the study of the behaviour of plasmonic
systems [13, 14].

This thesis is structured as follows. In the first chapter, we describe the
electromagnetic theory of light scattering in the T-matrix formalism. Af-
ter introducing different scattering regimes, useful for justifying approxima-
tions under certain conditions, we introduce the scattering problem. Then,
we present the T-matrix formalism discussing the special cases of Mie the-
ory (scattering by a spherical particle) and light scattering by aggregates of
spheres.

The second chapter deals with the theory of optical forces, focusing in
particular on optical tweezers. After an historical overview, we introduce the
Maxwell stress tensor and describe the general equations from which optical
forces and torques can be calculated within the electromagnetic scattering
theory. We focus on two different particle size regimes, much larger (ray
optics) and much smaller (dipole approximation) than the light wavelength,
where simple expressions of the force are obtained thanks to specific ap-
proximations. We then describe how to calculate optical forces within the
T-Matrix formalism both in a plane wave configuration and in optical tweez-
ers. We conclude by discussing a key example of optical trapping calculations
on non-spherical particles, the size scaling of optical trapping of nanowires.

In the third chapter, we present the behaviour of resonant gain assisted
metallic/dielectric nanoshells in optical tweezers. We investigate gain-assisted
optical forces on dye-enriched silver nanoshells in the quasi-static limit by
means of a theoretical/numerical approach. We demonstrate the onset of
nonlinear optical trapping of these resonant nanostructures in a counter-
propagating Gaussian beam configuration. We study the optical forces and
trapping behaviour as a function of wavelength, particle gain level, and laser
power. We support the theoretical analysis with Brownian dynamics simu-
lations that show how particle position locking is achieved at high gains in
extended optical trapping potentials. Finally, for wavelengths blue-detuned
with respect to the plasmon-enhanced resonance, we observe particle chan-
neling by the standing wave antinodes due to gradient force reversal.

In the fourth chapter, spin-dependent optical forces in optically trapped
nanowires are studied. We present computational results associated with the
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onset of a spin-dependent optical force component occurring on zinc oxide
nanowires trapped in optical tweezers with circularly polarized light. This
type of non-conservative force appears directed perpendicularly with respect
to the propagation direction of the incident light on the nanowires both for
plane wave illumination and for optical tweezers. We show how this trans-
verse optical force component is also shape dependent and connected with
the imaginary part of the local Poynting vector and the local spin density.

In the fifth chapter the polarization constraints on core-mantle interstellar
dust grain models are discussed. The morphology, structure, and composi-
tion of interstellar dust grains is still a much debated issue in the literature.
Strong evidences point toward the possibility that dust grains are character-
ized by a stratified structure, made by a silicate core covered with a carbon
shell. However, such model has been challenged by the spectropolarimetric
observations of the carbon absorption feature at 3.4 µm in the diffuse inter-
stellar medium. The negligible polarization of this feature, together with the
observation of a strong polarization in the silicate feature at 9.7 µm along the
same sightline, seems to suggest that carbon and silicate are separate com-
ponents in grains. We numerically investigate this problem, comparing the
computed polarization feature with the observational evidences and trying
to understand if a model in which carbon and silicate co-exist in the same
core-mantle structure is still plausible.

In the last chapter, we present calculations of optical forces for extra-
terrestrial applications, space tweezers. We describe how optical tweezers
can be used to trap and characterize extraterrestrial particulate matter. In
particular, we calculate radiation pressure and optical trapping properties
of a variety of complex particles of astrophysical interest. Our results open
perspectives in the investigation of extraterrestrial particles on our planet,
in controlled laboratory experiments, aiming for space tweezers applications
where optical tweezers are used to trap and characterize dust particles di-
rectly in space or on extraterrestrial bodies during exploratory missions.
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Chapter 1

Light scattering and T-matrix
formalism

1.1 Introduction

By electromagnetic scattering we mean a wide class of radiation-matter
interaction phenomena in which electromagnetic fields are deflected due to
collision with material particles. We can distinguish between elastic scatter-
ing when no energy transfers are involved in the process, and inelastic, in the
otherwise. For example, Rayleigh scattering or Mie scattering belongs to the
first category while a typical example of inelastic scattering is Raman scatter-
ing. In this thesis, we will consider only the case of elastic scattering because
we assume that, in the considered matter-radiation interactions, the energy
is conserved. A complete study of the problem should be dealt by treat-
ing both radiation and matter using the Quantum Electrodynamics (QED).
However, computing with wavelengths greater than those of De Broglie, we
can neglect eventually quantum contributions. In such manner, we can take
advantage of appropriate approximations to treat the radiation-matter inter-
action in Classical Electrodynamics (CED). Historically, the light scattering
classical theoretical understanding has been investigated through the use of
suitable approximations that depend on the size of the particle [2, 8, 15]. For
homogeneous spherical particles, accurate evaluation of the radiation fields
can be obtained by Mie theory [3]. In general, when we study the scattering
process involving non-spherical or non-homogeneous particles, we must use
a full electromagnetic theory based on the Maxwell’s equations [4] and the
integration of the Maxwell stress tensor [15]. However, such calculations can
be extremely complex through computational intensive procedures. For this
reason different methods, such as the transition matrix (T-matrix) approach
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[1, 2], have been developed to solve the scattering problem and calculate
optical forces more efficiently. The T-matrix is the matrix representation
of a linear operator which, acting on the multipole amplitudes of the inci-
dent field, gives as a result the multipole amplitudes of the scattered field.
When the scatterer is a homogeneous spherical particle, i.e., in the highly
symmetric case, the scattered field does not depend on the orientation of the
particle and is exactly described by the Mie theory [3]. However, the spher-
ical model is not able to describe a great number of real scatterers, which,
in general, may exhibit an asymmetric shape or may result from the aggre-
gation of several constituent monomers. The introduction of asymmetry is
immediately reflected in the polarization of the scattered field as well as in
its dependence on the position and orientation of the particle. In such case,
a model scatterer must be used which can simulate as accurately as possible
the details of the structure of such composite particles. The T-matrix ap-
proach is particularly advantageous when we deal with particles composed
by spherical constituents, i.e., cluster or aggregates of spheres, spheres with
spherical (eccentric) inclusions, and multilayered spheres [2]. By varying the
number of the constituent spheres (as well as of the layers of the inclusions),
their refractive index and their mutual position, structures can be obtained
which better approximate the shape and the composition of the scatterers
in the analysed system. This technique takes into proper account the multi-
ple scattering processes occurring among the spherical sub-units composing
the aggregate and the contribution of all the details of the model structure.
Optical properties of composite scatterers can be exactly calculated without
introducing any approximation except the truncation of the expansion of the
fields, being able to check the convergence of the results at every step.

The elements of the T-matrix contain all the information on the par-
ticle nature (refractive index, size relative to the wavelength, and shape)
and on the orientation of the scatterer with respect to the incident field. A
fundamental feature is that the T-matrix is independent of the propagation
direction and polarization states of the incident and of the scattered fields.
This means that, once we compute the T-matrix elements, we do not need
to compute them again if the incident field direction and polarization state
changes [4]. Borghese et al. [16] succeeded in showing that the transforma-
tion properties of the multipole fields under rotation of the coordinate frame
imply corresponding transformation properties of the T-matrix elements un-
der rotation of the scattering particle. Such transformation properties enable
us to calculate orientational averages of the optical quantities of interest with
a reasonable computational effort [2]. This is one of the greatest advantages
offered by the T-matrix approach respect to other computational techniques
like, for example, the discrete dipole approximation [17, 18]. Thanks to the
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flexibility and the accuracy of the T-matrix technique, we have the opportu-
nity to explore several systems and configurations in a broad range of fields
of applications, going from interstellar dust modelling [10, 11] to the study of
the behaviour of plasmon systems and finally to the optical trapping theory
that we discuss in this thesis. We will formally discuss this method in details
afterwards, while in the next section we give an overview of the approximated
approaches that often can grant a fast and simple way to obtain reasonable
results in specific regimes.

1.2 Scattering regimes

For calculating the light fields acting on spherical or quasi-spherical parti-
cles, it is customary to identify several regimes which depend on the particle
size [15]. For each regime, simplifications and approximations have been
made for a better and more qualitative understanding and calculation of the
light scattering. The size parameter x is crucially used to determine the
range of validity of these approximations:

x = kma =
2πnm

λ0

a (1.1)

where km = 2πnm/λ0 is the light wavenumber in the medium surround-
ing the particle, a is the particle radius, λ0 is the incoming monochromatic
wavelength in vacuum and nm is the refractive index of the surrounding
non-magnetic medium. When the particle radius is larger than the incident
wavelength, i.e. kma � 1, we can use the geometrical optics (GO) approx-
imation. In some of the problems addressed in this thesis, we can perform
the computations within the ray optics regime, as we will see more systemat-
ically in the Chap. 2. The accuracy of this approximation increases with the
size parameter, whereas the exact theories become unpractical due to the in-
creasing computational complexity. This makes ray optics very useful when
dealing with large particles. In the opposite case, if the radius of the particle
is much smaller than λ0 (kma� 1), we can use the Rayleigh approximation
and consider the particle as a dipole [19] or a collection of dipoles [17]. This
means we are considering the electromagnetic fields homogeneous inside the

particle under the condition
∣∣∣ np

nm

∣∣∣ ka� 1 where np is the refractive index of

the particle. This particular relation has to be considered when we deal with
high refractive index dielectric particles (e.g., silicon) or noble metal (e.g.,
gold, silver) nanoparticles, where the presence of plasmonic resonances domi-
nate the optical response [13]. In the intermediate regime, where we work for
most of this work, the particle size is comparable with the light wavelength
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Figure 1.1: Pictorial view of a scattering process. Scattering theory studies
how an incoming electromagnetic wave is scattered by a particle. In general,
when light impinges on an object, the latter emits a scattered electromag-
netic field, which in the far-field is a spherical wave. In particular, given an
incoming linearly polarised plane electromagnetic wave (Ei) in a medium of
refractive index nm impinging on a particle of homogeneous refractive index
np, one wants to determine the electromagnetic field inside the particle (Ep)
and the scattered electromagnetic field (Es), both in the near-field and in the
far-field.

(kma ' 1). In this way, we need a complete wave-optical modeling of the
particle-light interaction to calculate the trapping forces. In such case, the
T-matrix approach proves to be a very convenient choice.

1.3 The scattering problem

The scattering problem aims at describing the electromagnetic fields scat-
tered by a particle when it is illuminated by an incoming electromagnetic
wave. In Fig. (1.1) we represent a pictorial view of a scattering process.
For a homogeneous particle of refractive index np in a medium of refractive
index nm, the three-dimensional homogeneous Helmholtz equations describe
the scattering process: 

(∇2 + k2
m) Ei(r) = 0

(∇2 + k2
m) Es(r) = 0(

∇2 + k2
p

)
Ep(r) = 0

, (1.2)
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where Ei(r) is the incident electric field, Es(r) is the scattered electric field,
so that the total electric field outside the particle is Et(r) = Ei(r) + Es(r),
Ep(r) is the total electric field inside the particle, km = nmk0, kp = npk0 and
k0 is the vacuum wavenumber. To derive the vector solutions of the previous
equations, it is advisable to introduce a spherical coordinate system (r, ϑ, ϕ)
and a scalar function F (r, ϑ, ϕ), solution of the scalar Helmholtz equation:

(∇2 + k2)F (r, ϑ, ϕ) = 0. (1.3)

The most general solution of the Helmholtz equation that is regular at
the origin is:

Fj(r) =
+∞∑
l=0

+l∑
m=−l

Blm jl(kr) Ylm(r̂) (1.4)

and the general solution that satisfies the radiation condition at infinity is

Fh(r) =
+∞∑
l=0

+l∑
m=−l

Clm hl(kr) Ylm(r̂) , (1.5)

where Blm and Clm are the amplitudes corresponding to each mode, jl(kr)
and hl(kr) are respectively the Bessel and the Hankel functions, Ylm(r̂) are
the spherical harmonics and l is a natural number. The electromagnetic fields
outside and inside the particle are related by the boundary conditions across
the surface of the particle.

1.3.1 Cross sections

Since any electromagnetic field can be described as a superpositions of
plane waves and Maxwell’s equations are linear, it suffices to consider the
scattering produced by a single linearly polarised incoming homogeneous
plane wave [15]:

Ei(r) = E0e
iki·rêi, (1.6)

where E0 is the modulo of a vector specifying the amplitude, êi is the unit vec-
tor indicating the polarisation direction and ki = kmk̂i is the real wavevector
along the incidence propagation direction. Es(r) = [Es,x(r), Es,y(r), Es,z(r)]
satisfies the vector Helmholtz equation and its Cartesian components must
satisfy the scalar Helmholtz equation. The solution to this equation satisfies
the radiation condition at infinity [20, 21], i.e., for the x-component:
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Es,x(r) = Es,x(r, k̂s) =
∑
lm

hl(kmr)Clm,x(k̂i) Ylm(k̂s), (1.7)

where k̂s is the radial unit vector indicating the direction of the scattered
wave, r = rk̂s and the amplitudes Clm,x(k̂i), which depend on the direction of
the incident wave, are determined by the boundary conditions at the surface
of the particle.

Using the asymptotic properties of hl(kmr) for kmr →∞, the asymptotic
form of Es,x(r) can be written as a spherical wave

Es,x(r) = E0
eikmr

r
fx(k̂s, k̂i) , (1.8)

where the x-component of the normalised scattering amplitude has been
introduced as

fx(k̂s, k̂i) = k−1
m

∑
lm

(−i)l+1Clm,x(k̂i) Ylm(k̂s) . (1.9)

Repeating the same procedure on Es,y(r) and Es,z(r), the normalised scat-

tering amplitude f(k̂s, k̂i) =
[
fx(k̂s, k̂i), fy(k̂s, k̂i), fz(k̂s, k̂i)

]
and the asymp-

totic form of the scattered field can be obtained and

Es(r) = Es(r, k̂s) = E0 f(k̂s, k̂i)
eikmr

r
. (1.10)

As known, from the scattering amplitude f(k̂s, k̂i) it is possible to derive
all the other optical properties such as the scattering cross-section σscat (tak-
ing the square modulus of the scattering amplitude and integrating over the
solid angle), the extinction cross-section σext thanks to the optical theorem,
and finally the absorption cross-section σabs. The asymmetry of the scat-
tering with respect to the incoming wave direction and polarisation can be
quantified by the asymmetry parameters and, in particular, by the asymme-
try parameter in the direction of the incoming wave defined as

gi =
1

σscat

∮
Ω

dσscat

dΩ
r̂ · k̂i dΩ (1.11)

and the transverse asymmetry parameters defined as

g1 =
1

σscat

∮
Ω

dσscat

dΩ
r̂ · û1 dΩ (1.12)

and
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g2 =
1

σscat

∮
Ω

dσscat

dΩ
r̂ · û2 dΩ , (1.13)

where û1 = êi and û2 = k̂i × êi. It is often convenient to characterize a
scattering particle through efficiencies that are defined by the ratios:

Qscat =
σscat

σgeom

, Qext =
σext

σgeom

, Qabs =
σabs

σgeom

. (1.14)

in which, σgeom is the geometrical cross section of the particle in a plane
orthogonal to the direction of incidence. Another quantity that characterizes
the optical properties of a particle is the albedo that is defined as

ω̄ =
σscat

σext

=
Qscat

Qgeom

. (1.15)

The albedo, when considered in terms of photons impinging on a particle,
gives the probability that a photon be scattered rather than absorbed [22].

1.3.2 Multipole expansion of a plane wave

Considering a homogeneous electromagnetic plane wave where planes
of equal phase and of equal amplitude are mutually parallel to each other
(Eq. 1.6). Since it is finite at the origin, it can be decomposed in J-multipoles
whose radial function is a spherical Bessel function jl(kr) to ensure the finite-
ness at the origin:

Ei(r, r̂) = E0

∑
p=1,2

∑
lm

W
(p)
i,lm(êi, k̂i)J

(p)
lm(kr, r̂). (1.16)

In this equation the scalar spherical harmonics Ylm(r̂) are been extended
in the radial vector orthonormal spherical harmonic Ylm(r̂) and in the transver-

sal vector orthonormal spherical harmonic Z
(1)
lm(r̂) and Z

(2)
lm(r̂) to deal with

vector fields. So they are defined as [2]:
Ylm(r̂) = Ylm(r̂)r̂

Z
(1)
lm(r̂) = − i√

l(l + 1)
r̂×∇Ylm(r̂)

Z
(2)
lm(r̂) = Z

(1)
lm(r̂)× r̂

. (1.17)

Then:
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W
(1)
i,lm = 4πil êi · Z(1)∗

lm (k̂i)

(1.18)

W
(2)
i,lm = 4πil+1 êi · Z(2)∗

lm (k̂i)

are numerical coefficients referred to the multipolar components of magnetic
(p = 1) and electric (p = 2) fields [23]. In analogy to incoming field, the scat-
tered wave is expanded in H-multipoles, whose radial function is a spherical
Hankel function h(1),l(kr) of the first kind because the scattered field has to
satisfy the radiation condition at infinity [21]:

Es(r, r̂) = E0

∑
p=1,2

∑
lm

A
(p)
s,lm(êi, k̂i)H

(p)
lm(kmr, r̂), (1.19)

where A
(1)
s,lm and A

(2)
s,lm are the amplitudes of the magnetic and electrical scat-

tered fields respectively which are determined by the boundary conditions
across the surface of the particle. In general, they depend on the orientation
of the scattering particle with respect to the incident field. The multipole
expansion of the normalized scattering amplitude is easily obtained by taking
the limit of the H-multipole fields for kr → ∞ [2]. Then, the asymptotic
form of the scattered field is:

Es(r, k̂s) = E0
eikmr

kmr

∑
plm

(−i)l+pA(p)
s,lm(êi, k̂i)Z

(p)
lm(k̂s). (1.20)

The comparison with Eq. 1.10 yields

f(k̂s, k̂i) =
1

km

∑
plm

(−i)l+pA(p)
s,lm(ûi,η, k̂i)Z

(p)
lm(k̂s), (1.21)

in which the temporary argument êi has been substituted by the label η
that recalls the polarization of the incident field. Therefore the normalized
scattering amplitude matrix elements on the basis ûs,η′ of the scattered field
is:

fη′η = − i

4πkm

∑
plm

W
(p)∗
i,lm (ûs,η′ , k̂s)A

(p)
s,lm(ûi,η, k̂i). (1.22)

At this stage, the explicit expressions of the scattering and the extinction
cross section of a particle can be written in terms of the amplitudes of the
fields. Taking the square modulus of Eq. 1.21 and operating the integral over
the entire solid angle, the scattering cross section is:
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σscat =
1

k2
m

∑
plm

A
(p)∗
s,lm(êi, k̂i)A

(p)
s,lm(êi, k̂i). (1.23)

The extinction cross section is related to the scattering amplitude through
the optical theorem, then:

σext = − 1

k2
m

<

{∑
plm

W
(p)∗
i,lm (êi, k̂i)A

(p)
s,lm(êi, k̂i)

}
(1.24)

1.4 T-matrix

The transition matrix, or T-matrix, formalism was derived by Water-
man [1] starting from the integral equation formulation of electromagnetic
scattering to solve the scattering problem. The T-matrix was calculated by
expanding the field into a series of spherical multipole fields and by imposing
boundary conditions across the surface of the particles. This formulation
of the T-matrix method, which is known as extended boundary condition
method (EBCM), can then be regarded as a generalisation of Mie theory
which is the paradigmatic solution of the light scattering problem obtained
by Gustav Mie for a homogeneous sphere of arbitrary size. While, as we have
seen, the analytical approach of the multipole expansion is relatively simple
and general, the computational methods needed to calculate the expansion
coefficients from the imposition of the boundary conditions can be quite
complex [4]. The formulation used hereinafter is provided by Ferdinando
Borghese and coworkers and shows the advantage that most calculations are
carried out analytically and the resulting algorithms are, therefore, compu-
tationally efficient and accurate.

Because of the linearity of Maxwell’s equations and of the boundary con-
ditions, the scattering process can be considered as a linear operator T (tran-
sition operator) so that

Es = TEi , (1.25)

with Ei the incoming electric field and Es the scattered electric field. There-
fore, if both Ei and Es are expanded on suitable bases (not necessarily the
same), it is possible to find a transition matrix T that relates the coefficients
of such expansions, encompassing all the information on the morphology and
orientation of the particle with respect to the incident field [1]. Since Ei is
in general finite at the origin, its expansion is conveniently given in terms
of J-multipoles (Eq. 1.16) with amplitudes W

(p)
i,lm (Eq. 1.18). Since Es must
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satisfy the radiation condition at infinity, it is convenient to expand it in
terms of H-multipoles (Eq. 1.19) with amplitudes A

(p)
s,lm. These amplitudes

are determined by imposing the boundary conditions across the surface of

the scattering particle. The transition matrix T = {T (p′p)
l′m′lm} of the scattering

particle acts on the known multipole amplitudes of the incident field W
(p)
i,lm

to give the unknown amplitudes of the scattered field A
(p′)
s,l′m′ , i.e.,

A
(p′)
s,l′m′(êi, k̂i) =

∑
plm

T
(p′p)
l′m′lm W

(p)
i,lm(êi, k̂i) . (1.26)

The quantities T
(p′p)
l′m′lm take into account the morphology of the particle

as well as the boundary conditions, but are independent of the state of po-
larization of the incident field. Therefore, Eq. 1.26 holds true whatever the
polarization is. For instance, the equation

A
(p′)
s,ηl′m′ =

∑
plm

T
(p′p)
l′m′lm W

(p)
i,ηlm (1.27)

relates the basis-polarized amplitudes of the incident and of the scattered
field. Then, substituting Eq. 1.27 into Eq. 1.22, the explicit relation between
the scattering amplitude and the T-matrix can be obtained:

fη′η = − i

4πkm

∑
plm

∑
p′l′m′

W
(p)∗
s,η′lmT

(p′p)
l′m′lmW

(p′)
i,ηl′m′ . (1.28)

This equation, giving the explicit relation between the scattering ampli-
tude and the Transition matrix, is perhaps the most important equation in
the theory of light scattering. In fact, the observable quantities, such as the
optical cross sections of the particles, are given in terms of the scattering am-
plitude matrix elements, and so can be easily computed once the T-matrix
elements are known.

1.5 Applications to model particles

The T-matrix method can be used to rigorously describe light scattering
by many particle models, specifically, homogeneous spheres, first described
by Gustav Mie [3], radially non-homogeneous spheres, which is an extension
of Mie theory to spheres where the refractive index is a regular function of
the distance from the center [24], and aggregates or cluster of spheres, where
the T-matrix approach proves to be a very powerful approach.
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1.5.1 Mie theory

A milestone result in electromagnetic scattering theory is the complete
solution to the problem of light scattering of a linearly polarised plane wave
by a homogeneous sphere of arbitrary radius a and refractive index np sur-
rounded by a medium of refractive index nm [3]. This result was obtained
by Gustav Mie in 1908 and is therefore known as Mie theory. If the ma-
terial of the sphere and that of the surrounding medium are nonmagnetic,
the boundary conditions reduce to the requirement of continuity of the tan-
gential components of both the electric and magnetic fields, where the latter
is related to the electric components by the rotor operator. The relations
between the amplitudes of the scattered and of the incident fields represent
the Mie coefficients, which are defined as:

al = −
A

(2)
s,lm

W
(2)
i,lm

(1.29)

bl = −
A

(1)
s,lm

W
(1)
i,lm

.

Mie coefficients are used to calculate the exact expressions of the scat-
tered electrical and magnetic fields and, imposing the appropriate boundary
conditions, they are:

al =
nmu

′
l(ρp)ul(ρm)− npul(ρp)u′l(ρm)

nmu′l(ρp)wl(ρm)− npul(ρp)w′l(ρm)
(1.30)

bl =
npu

′
l(ρp)ul(ρm)− nmul(ρp)u′l(ρm)

npu′l(ρp)wl(ρm)− nmul(ρp)w′l(ρm)
(1.31)

where ul(ρ) = ρjl(ρ) and wl(ρ) = ρhl(ρ) are Riccati-Bessel and Riccati-
Hankel functions, respectively [25], while the prime denotes derivation with
respect to the argument, ρm = nmk0a and ρp = npk0a. Thus, the scattering
problem is reduced to the calculations of these coefficients through, e.g., the
imposition of the boundary conditions across the particle surface or by point
matching numerically the fields at the surface [2]. The T-matrix formalism
for a spherical scatterer provides the Mie coefficients. The T-matrix for a
homogenous spherical particle is diagonal, independent of m and connected
to the Mie coefficients al and bl , i.e.,
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As = −RWi , (1.32)

where R = {−T (p′p)
l′m′lm} = {R(p′p)

l′m′lm} [22] and

R
(p′p)
l′m′lm =


bl p = p′ = 1 and l = l′ and m = m′

al p = p′ = 2 and l = l′ and m = m′

0 otherwise
(1.33)

Moreover, according to Eq. 1.28 and Eq. 1.32 the scattering amplitude
has the form:

fη′η =
i

4πkm

∑
plm

W
(p)∗
s,ηlmR

(p)
l W

(p)
i,η′lm. (1.34)

It is actually diagonal in η on account of the reciprocity theorem and the
diagonal elements fη′η are complex numbers with a different phase, so that
the scattered wave may turn out to be elliptically polarized even when the
incident wave is linearly polarized. To get an accurate representation of the
scattered field, the sum in Eq. 1.34 must be extended to a sufficiently high
value of l, say lM . In other words, the convergence of the calculation must
always be checked [2]. To get a fair convergence for a sphere of size parameter
x, it is necessary to include into Eq. 1.34 terms up to lM > x [20]. In practice,
when x ≤ 0.1 one needs to include terms up to lM = 1 or, at most, up to
lM = 2 only. For smaller values of x, one can expand the elements of the T-
matrix in powers of x, thus obtaining the Rayleigh scattering approximation
that assumes the scattered field from a small sphere is well approximated
by the field of the dipole moment induced by the incident electromagnetic
wave [22]. However, the elements of the T-matrix as well as the convergence
of the scattered field depend not only on the size parameter but also on
the refractive index np (that is contained in ρp). Therefore, as long as the
refractive indexes are frequency independent, the response of a spherical
scatterer does not depend separately on a and λ , but rather on their ratio.
This is the principle of optical scaling that allows the people to test the
reliability of the theoretical predictions using microwave devices and large
scale scatterers [26].

1.5.2 Aggregates of spheres

The spherical scatterer model, on account of the ease of computation, has
been widely used in the scientific literature and in many fields of application.
However, the particles that are most commonly met in actual observations
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are non-spherical and the effects that stem from the lack of sphericity may
be attenuated but never cancelled, not even by the use of an averaging pro-
cedure. Several attempts were made to devise model non-spherical particles
such that the optical properties could be calculated as exactly as possible, i.e.,
without resorting to any approximation. The first real progress was marked
by Bruning and Lo [27], who devised a technique to calculate the optical
properties of linear chains of identical spherical scatterers. The properties of
this model were investigated by Peterson and Ström [28] for general geom-
etry of the aggregation, whereas, the first application of the cluster model
to the description of real particles is due to Gérardy and Ausloos [29]. In
this subsection, we present the procedure devised by Borghese et al. for the
calculation of the T-matrix for a group of N , not necessarily equal, spheres
whose mutual distances are so small that they must be dealt with as one
object [16]. The geometry of such kind of scatterer is arbitrary to a large
extent, so that aggregates can be built to model particles of various shapes.
The emphasis is on the T-matrix on account of the usefulness of the latter
for performing orientational averages. The surrounding medium is assumed
to be a homogeneous dielectric so that the incident field still has the form of
a polarized plane wave whose multipole expansion is given by Eq. 1.16. The
spheres are numbered by an index α while Rα is the vector position of the
center of the αth sphere of radius aα and refractive index nα. Furthermore,
the following theory refers to aggregates of spheres that, if isolated, could be
described by Mie Theory. The field scattered by the whole aggregate as the
superposition of the fields scattered by each of the spheres is

Es,η = E0

N∑
α=1

∑
plm

A(p)
ηαlmH

(p)
lm(km, rα) (1.35)

where the amplitudes A(p)
ηαlm should be calculated so that Esη satisfy the ap-

propriate boundary conditions at the surface of each of the spheres. The
radiation condition at infinity is automatically satisfied because the expan-
sion includes H-multipole fields only. The field within each sphere is taken
in the form

Ep,ηα = E0

∑
plm

C(p)
ηαlmJ

(p)
lm(kα, rα) (1.36)

where kα is the wavenumber for each sphere. Due to the presence of the
J-multipole fields, the field is regular everywhere within the sphere. While
the scattered field is given by a linear combination of multipole fields that
have different origins, the incident field is given by a combination of multipole
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fields centered at the origin of the coordinates. Since the boundary conditions
must be imposed at the surface of each of the spheres, e.g., of the αth sphere,
the whole field can be rewritten in terms of multipole fields centered at Rα,
resorting to the addition theorem [30]. The scattered field at the surface of
the αth sphere turns out to be

Es,ηα = E0

∑
plm

[
A(p)
ηαlmH

(p)
lm(km, rα) +

∑
α′

∑
p′l′m′

A(p′)
ηα′l′m′H

(pp′)
αlmα′l′m′J

(p)
lm(km, rα)

]
.

(1.37)

Analogously, the incident field at the surface of the αth sphere is

Ei,ηα = E0

∑
plm

[∑
p′l′m′

W
(p′)
i,ηl′m′J

(pp′)
αlm0l′m′

]
J

(p)
lm(km, rα) (1.38)

where R0 = 0 is the vector position of the origin and the quantities H and
J respectively in Eqs. 1.37, 1.38 are obtained applying the addition theorem
to the vector Helmholtz harmonics H and J together with the properties of
the Clebsch-Gordan coefficients. At this stage, using the same technique for
homogeneous spheres, the boundary conditions can be imposed. Once this
elimination is done, a system of linear nonhomogeneous equations is obtained
such as ∑

α′

∑
p′l′m′

M(pp′)
αlmα′l′m′A

(p)
ηαlm = −W(p)

i,ηαlm, (1.39)

where new coefficients have been defined as

W(p)
i,ηαlm =

∑
p′l′m′

W
(p′)
i,ηl′m′J

(pp′)
αlm0l′m′ (1.40)

M(p,p′)
αlmα′l′m′ = (R

(p)
αl )−1δαα′δpp′δll′δmm′ +H(pp′)

αlmα′l′m′ . (1.41)

In the last equation, the quantities R
(p)
αl are the Mie coefficients (Eq. 1.33)

for the scattering from the αth sphere. The matrix H describes the multiple
scattering processes that, in view of the small mutual distance, occur with
noticeable strength among the spheres of the aggregate. The amplitudes of
the scattered field are calculated by solving the system of Eq. 1.39. Further-

more, the elements H(p,p′)
αlmα′l′m′ of the transfer matrix couple multipole fields

both of the same and of different parity with origin on different spheres.
Then, the formal solution to the system of Eq. 1.39 is
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A(p)
ηαlm = −

∑
p′l′m′

[
M−1

](pp′)
αlmα′l′m′

W(p′)
i,ηα′l′m′ . (1.42)

This equation may lead to the conclusion that matrix M−1 be the T-
matrix of the aggregate. This conclusion is incorrect however, because, ac-
cording to Eq. 1.27, the T-matrix relates the multipole amplitudes of the
incident field to those of the field scattered by the whole object. On the
contrary, Eq. 1.42 relates the amplitudes of the incident field to those of the
fields scattered by each sphere in the aggregate. In order to define the T-
matrix for the whole aggregate it is necessary to express the scattered field
in terms of multipole fields with the same origin. Actually, with the help of
the addition theorem, the scattered field (Eq. 1.37) can be cast into the form

Es,η = E0

∑
plm

[∑
α′

∑
p′l′m′

A(p′)
ηα′l′m′J

(pp′)
0lmα′l′m′

]
H

(p)
lm(km, rα)

= E0

∑
plm

A
(p)
ηlmH

(p)
lm(km, rα), (1.43)

which is valid at a large distance from the aggregate or, at least, outside the
smallest sphere with center at R0 that includes the whole aggregate. The
preceding equation shows that the field scattered by the whole cluster can be
expanded as a series of vector multipole fields with a single origin provided
that the amplitudes are

A
(p)
ηlm =

∑
α′

∑
p′l′m′

A(p′)
ηα′l′m′J

(pp′)
0lmα′l′m′ . (1.44)

Then, the T-matrix of the aggregate can be defined in a compact form as

T
(pp′)
lml′m′ = −

∑
αα′

∑
qLM

∑
q′L′M ′

J (pq)
0lmαLM

[
M−1

](qq′)
αLMα′L′M ′

J (q′p′)
αL′M ′0l′m′ . (1.45)

The T-matrix defined in the preceding equation has the correct trans-
formation properties under rotation, although it is non diagonal as a conse-
quence of the lack of spherical symmetry of the aggregate.

1.5.3 Convergence

A crucial aspect concerning the computation is the convergence of the
results. The calculation of the T-matrix of an aggregate requires inverting the
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matrix M whose order is, in principle, infinite. Of course the system (1.39)
is truncated to some finite order by including in Eq. 1.45 terms up to order
LM , the maximum value both for L and L′ in Eq. 1.45. The maximum value
is chosen to ensure the required accuracy of the transition matrix elements.
For a cluster of N spheres this implies the solution of a system of order
DM = 2NLM(LM + 2), which may become too large. Actually, the inversion
of the matrix M is responsible for most of the time required for the calculation
and this time scales, in fact, as D3

M . Thus, on account of the definition of DM

, the computation time scales as L6
M whereas the storage requirements scale

as L4
M , so that it pays, in terms of both CPU time and storage requirements,

to keep LM as low as practicable. The choice of the appropriate value of
LM has been the concern of several researchers. For instance Quinten et
al. [31] used the criterion suggested by Wiscombe [32]. The choice of LM
has been guided by the considerations provided by Iat̀ı et al [11]. For an
isolated dielectric sphere with radius as we have to choose LM > kas + ms

[20], where k = nkν , kν = ω/c is the wavenumber of the particle and ms is an
integer that depends on the refractive index. Now, by looking to Eqs. 1.39,
1.41, we see that what distinguishes a set of independent spheres from a

true aggregate of spheres is the presence of the elements H(pp′)
αlmα′l′m′ that

describe the multiple scattering processes occurring among the spheres. Of
course, these processes become less and less effective the more the spheres
are separated. By looking to the explicit expression of the H-elements [2],
one sees that their magnitudes actually become smaller and smaller for well
separated spheres. As a result, we can assume that, choosing LM a little
larger than necessary to ensure the convergence of the component spheres
as if they were isolated, we should also get fairly convergent values for the
transition matrix elements. Thus we make the ansatz that we can choose
LM > kνac +mc, where ac is the radius of the smallest sphere including the
entire aggregate. Even in this case mc is an integer that depends on the
refractive index.
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Chapter 2

Theory of optical forces and
optical tweezers

2.1 Historical perspective

Historically, the idea that light exerts a mechanical action on matter has
been known since the explanation of comet tails given by Kepler [15, 33].
In fact, comets generally show two tails while approaching the Sun. A
first tail, more diffused, composed by dust and ice particles formed by the
radiation pressure of the solar light; and a second one composed of ions
and charged particles due to the solar wind. It was only in 1873 that
James C. Maxwell gave the first theoretical explanation of electromagnetic
phenomena[34]. Within his electromagnetic theory the identification of light
momentum associated to the Poynting vector yields that light can exert a
force on matter due to the momentum exchanged between light and matter
upon scattering [35]. The Italian physicist Bartoli independently predicted
the pressure of light on the basis of thermodynamics [36]. Since this mo-
mentum exchange is extremely small, only in 1901 Lebedev [37], Nichols and
Hull [38] provided a first experimental evidence of the radiation pressure due
to an arc or electric lamps on a mirror fixed on a torsion balance. Other
experiments were carried out during the next decades but, because of the
non coherent nature of the light sources, the results were small and hard to
be detected. Only from the 1960s, radiation pressure and its applicability
have been better understood thanks to the invention and availability of laser
sources [39] that, compared to standard lamps, have increased drastically the
intensity of the electromagnetic fields provided. In the early 1970s, Arthur
Ashkin, at Bell laboratories, while trying to reproduce the effects of the solar
wind, demonstrated that the motion of microscopic particles [40] and neutral
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atoms [41] could be altered by laser-induced optical forces. In particular, he
found out an unexpected effect: the micro-spherical particles suspended in
water were attracted perpendicular to the propagation axis and pushed in
the propagation direction [40]. This attraction is due to the gradient force
perpendicular to the propagation axis and it is caused by the focusing of the
laser beam [42]. After the discovery of the optical gradient force component,
Ashkin built a first optical trap made of two focused counter-propagating
laser beams in order to balance the detrimental effects of radiation pressure
and get a stable optical trap [42]. This kind of trap is a static trap since
the two lasers fix, on average, the particle’s position along the propagation
axis, unless the power of one of the two beams is changed. In this situation
the particle can shift along the propagation direction. Soon after, in 1971
Ashkin demonstrated the first levitation trap. In this case the radiation pres-
sure is balanced by gravity and the gradient force keeps the sample trapped
[43]. The restriction of this method is that the maximum radiation pressure
applicable is equal to the gravity. This kind of trap is generally not very
stable and the sample can be moved only along the propagation direction.
A real breakthrough occurred in 1986, when all the problems encountered
before were solved by using a highly focused laser beam [44]. Ashkin and
his collaborators demonstrated that by using a high numerical aperture ob-
jective the focal spot is so tight that it is possible to obtain a gradient force
also along the propagation direction. This force is directed towards the focal
spot and can be used to trap and manipulate dielectric micro-spheres and
atoms, this technique is called Optical Tweezers (OT) [15]. A scheme of a
typical OT setup in shown in Fig. 2.1 The applications of optical forces and
optical tweezers in atomic physics with the development of techniques for
atom trapping and cooling lead to the Nobel prize in Physics in 1997 for
Steven Chu, Claude Cohen-Tannoudji and William D. Phillips [7, 15, 42].
Since its first demonstration, optical tweezers are commonly used tools for
the manipulation of micro- [45, 46] and nanostructures [47–49] and as a force
transducer with resolution at the femtonewton [50]. As shown in Fig. 2.2,
optical tweezers find applications in many fields of physics, biology, chem-
istry and material sciences. They are useful tools to sort and organize cells,
control bacterial motion, measure linear and torsional forces, alter biologi-
cal structures via modification of cellular membranes, cellular fusion, or the
interaction between red blood cells and viruses [51–54] with the possibility
to apply and measure forces with femtonewton sensitivity on micro- and
nanometer-sized particles [50, 55–57].
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Figure 2.1: Sketch of a typical experimental OT setup. Trapping is achieved
by a tightly focused laser beam using a high-numerical-aperture objective
lens (OBJ), which is also used to image the sample on a camera. The beam
produced by the laser source (LS) is enlarged through a telescope lens system
(lenses L1 and L2) to overfill the back aperture of the objective. A dichroic
mirror (DM1) is used to reflect the laser light to the objective and to transmit
the visible light to the camera. The sample is held and moved by a sample
holder (SH). Inset (a) represents the real image of a SiNW optically trapped
and aligned along the propagating axis of the laser beam [57],[58]. When the
laser is switched off the SiNW performs Brownian motion and its alignment
is randomized. Scattered and transmitted lights are collected and overlapped
by a condenser lens (C) and projected on a QPD by a second dichroic mirror
(DM2) and a lens (L4). Signals from the QPD are analyzed by a PC in
order to calculate the calibration factors and to reconstruct the 3D Brownian
motion of the trapped sample. From Ref. [7].
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Figure 2.2: Optical trapping of particles in different regimes. Optical tweez-
ers are able to confine atoms, viruses, small nanostructures, for which a
dipole approximation can often give a reasonable account of optical forces
(Rayleigh regime). In the opposite size regime optical trapping of bacteria,
algae, cells, and microparticles can be studied using geometrical optics. The
intermediate mesoscale is instead the most interesting and complex and a
full electromagnetic theory must be used. From Ref. [47]
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2.2 Introduction to the optical trapping the-

ory

Optical trapping of particles is a consequence of the radiation force that
stems from the conservation of electromagnetic momentum upon scattering
[7, 15]. The theoretical understanding of this physical process can been inves-
tigated through the use of suitable approximations that depend on the size
of the particle x, as discussed in the Sect. 1.2. For homogeneous spherical
particles, accurate evaluation of optical forces can be obtained by Mie theory
[3] (Subsect. 1.5.1). Generally, when we study the optical trapping involving
non-spherical or non-homogeneous particles, we must use a full electromag-
netic theory based on the Maxwell’s equations [4] and the integration of the
Maxwell stress tensor [15]. Since such calculations can be extremely com-
plex, the Transition Matrix approach, treated in the Sect. 1.4, appears quite
suitable [1, 2].

2.2.1 Maxwell stress tensor, radiation force, and torque

As mentioned, particles illuminated by a radiation field experience a ra-
diation force Frad and torque Trad, which contribute to determining their
dynamical behaviour. Since the interaction between radiation and matter is
regulated by conservation laws, it is possible to derive Frad and Trad using the
conservation of linear and angular momentum. So, the time-averaging optical
force exerted by a monochromatic light on a particle is given by [2, 59–61]:

Frad =

∮
S

n̂ · 〈TM〉 dS (2.1)

where the integration is carried out over the surface S surrounding the scat-
tering particle, n̂ is the outward normal unit vector, and 〈TM〉 is the averaged
Maxwell stress tensor which describes the mechanical interaction of light with
matter. The general expression of the Maxwell stress tensor in a medium in
the Minkowski form is:

TM = E ⊗D + H⊗B − 1

2
(E ·D + H ·B) I . (2.2)

where E is the electric field, D is the electric displacement, H is the magnetic
field, B is the magnetic induction, ⊗ represents the dyadic product and I
is the dyadic unit. Since we consider always harmonic fields, at angular
frequency ω in a homogeneous, linear, and non-dispersive medium, we can
simplify this expression by using the complex amplitudes of the fields, E =
E(r) and B = B(r), so that, i.e., the real physical electric field is written as
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E(r, t) = <{E(r)e−iωt} and in the same manner the real physical magnetic
field [15]. Thus, the averaged Maxwell stress tensor simplifies as:

〈TM〉 =
εm

2
<
{

E⊗ E∗ +
c2

n2
m

B⊗B∗ − 1

2

(
|E|2 +

c2

n2
m

|B|2
)
I

}
(2.3)

with εm dielectric permittivity of the medium, the fields E = Ei + Es and
B = Bi + Bs are the total electric and magnetic fields, superposition of the
incident (Ei,Bi) and scattered (Es,Bs) fields.

In a similar way, considering the conservation of the angular momentum,
the time averaged radiation torque is expressed as [2]:

Γrad = −
∮
S

(〈TM〉 × r) · n̂ dS (2.4)

where r is the vector position.

2.2.2 Angular momentum of light

In the previous part of this chapter we mentioned the conservation of
angular momentum which leads to the definition of torque, given by Eq. 2.4.
The total angular momentum J can be split in two contributions [62], in
which Jmech takes into account the mechanical effects on the scatterer while
Jfield is the angular momentum of the field, that is [63]:

Jfield =
n2

m

c2

∫
V

r× S dV, (2.5)

where the term on the right-hand-side represents the flux of angular momen-

tum that enters the surface S and n2
m

c2
S = εmE × B is the Poynting’s vector

that is the energy flux density associated with a propagating wave. Using
the Helmholtz decomposition of the electromagnetic fields and introducing
respectively the scalar and the vector potentials φ and A in the Coulomb
gauge, the Eq. 2.5 can be rewritten as:

Jfield = εm

∫
V

r×
[
E‖ × (∇×A) + E⊥ × (∇×A)

]
dV, (2.6)

in which E‖ is the irrotational component and E⊥ is the rotational one of the
electric field. The first term on the right-hand-side of Eq. 2.6 is related to
the canonical angular momentum and is associated with the source term %
[15]:
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Jfield,canonical = εm

∫
V

r×
[
E‖ × (∇×A)

]
dV = %

∫
V

r×A dV. (2.7)

Therefore, in a source-free space or in the case of radiating fields rapidly
vanishing at infinity, the canonical part of the electromagnetic angular mo-
mentum is negligible. The second term on the right-had-side of Eq. 2.6 is
related to the rotational fields and can be further split into orbital and spin
components:

εm

∫
V

r×[E⊥ × (∇×A)] dV = εm

∫
V

[ ∑
j=x,y,z

E⊥,j(r×∇)Aj

]
−r×(E⊥·∇)A dV .

(2.8)
After other manipulations, the following expressions for the orbital, L,

and spin, s, components of the light angular momentum can be obtained
[62]:

L = εm

∫
V

∑
j=x,y,z

E⊥,j(r×∇)Aj dV , (2.9)

s = εm

∫
V

E⊥ ×A dV . (2.10)

For a monochromatic transverse electromagnetic field, we can use the
complex amplitudes of the field to express the electric field in terms of the
vector potential, i.e., E = E⊥ = iωA. Thus, we can write the orbital, 〈Ld〉 ,
and spin, 〈sd〉, averaged angular momentum densities in a form that is useful
in many practical cases:

〈Ld〉 = i
εm

2ω

∑
j=x,y,z

Ej(r×∇)E∗j (2.11)

〈sd〉 = i
εm

2ω
E× E∗ . (2.12)

2.3 Ray optics regime (x� 1)

We start by considering a particle with refractive index np, immersed in
a medium with refractive index nm < np. When we can use the geometrical
optics, also known as the ray optics regime, the optical field is described
by considering it as a collection of N light rays and employing the tools of

27



geometrical optics [15]. Each ray carries with it an portion of the incident
power Pi so that the total power is P = N

∑
i Pi and a linear momentum per

second nmPi/c. When a ray impinges on a surface with an incident angle θi,
it will be partly reflected and partly transmitted with a transmitted angle
θt, according to the well-known Snell’s law [64]. As a consequence of energy
conservation, the power is split between the reflected and transmitted part of
the ray following Fresnel coefficients [65]. Moreover, at each scattering event,
the ray changes its direction and hence its momentum causing a reaction
force on the center-of-mass of the particle. Thus, the force associated with
the reflection and transmission of a ray ri and power Pi in the direction r̂i is
written as:

Fray,0 =
nmPi

c
r̂i −

nmPr

c
r̂r −

npPt

c
r̂t. (2.13)

where r̂r, Pr and r̂t, Pt are the unit vector and power in the direction of the
reflected and transmitted rays, respectively. Most of the power carried by
the incident ray is delivered to the transmitted ray that travels inside the
particle until it impinges on the opposite surface. Here, it will be reflected
and transmitted again and a large portion of the power will be transmitted
outside the sphere. The process will continue until all light escapes from the
sphere. By considering these reflection and refraction events the optical force
can be calculated directly as [65, 66]:

Fray =
nmPi

c
r̂i −

nmPr

c
r̂(0)

r −
+∞∑
j=1

npP
(j)
t

c
r̂

(j)
t . (2.14)

The optical force Fray has components only in the incidence plane and can
be split in two perpendicular components. The component in the direction
of the incoming ray r̂i represents the scattering force Fray,scat, that pushes the
particle away from the center of the trap. The component perpendicular to
the incoming ray is the gradient force Fray,grad, that pulls the particle towards
the optical axis when nm < np. Instead, if nm > np the particle is pushed
away from the high intensity focal region.

Fray = Fray,scat + Fray,grad (2.15)

It is often useful to define the dimensionless quantities (trapping efficien-
cies) obtained dividing the force components Fray,scat and Fray,grad by nmPi/c,
that quantify how efficiently the momentum is transferred from the ray to
the particle.

For a circularly polarized ray on a sphere Ashkin derived the following
theoretical expression for the scattering and gradient efficiencies [66]:
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Qscat = 1 +R cos 2θi − T 2 cos(2θi − 2θr) +R cos 2θi

1 +R2 + 2R cos 2θr

,

(2.16)

Qgrad = R sin 2θi − T 2 sin(2θi − 2θr) +R sin 2θi

1 +R2 + 2R cos 2θr

where R and T are the (intensity) Fresnel reflection and transmission coeffi-
cients and θi and θr are the incidence and transmission angle relative to the
scattering of the incident beam.

In general, if more than one ray interacts with a particle, the total force
is given by the sum of the forces generated by the reflection and refraction of
each ray. To model an optical trap we need to model a highly focused laser
beam that means a set of many rays that converge at a very large angle in
the focal spot, and hence sum up all contributions from each ray forming the
beam. This means that the total force acting on the particle is the sum of
all the contributions from each ray forming the beam. Considering Eq. 2.13,
the force acting on the centre of mass of the sphere is

FGO =
∑
m

F(m)
ray =

∑
m

[
nmP

(m)
i

c
r̂

(m)
i − nmP

(m)
r

c
r̂

(m)
r,0 −

+∞∑
j=1

npP
(m)
t,j

c
r̂

(m)
t,j

]
.

(2.17)
For a single-beam optical tweezers, the focused rays will generate a restor-

ing force proportional to the particle’s displacement from an equilibrium
point, that is for small displacements optical trapping can be modeled as an
harmonic response. Due to the scattering force, the particle’s is displaced
from the nominal focus to an equilibrium position Ceq = [xeq, yeq, zeq]. Thus,
for small displacements optical trapping forces are modeled as:

Fx ≈ −κx(x− xeq)

Fy ≈ −κy(y − yeq) (2.18)

Fz ≈ −κz(z − zeq)

where κx, κy and κz are the trap stiffnesses or spring constants of the trap.
Calculating or measuring the spring constants, we can obtain a calibration
of the optical trap.

The geometrical optics approach can be also used when we deal with non
spherical particles, such as cylindrical objects. The basic interaction of the
ray with this kind of particles is the same introduced in Eq. 2.13 but now
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two new aspects must be considered: induced torque and transverse radia-
tion force. Induced torque is calculated from the difference of the angular
momentum associated with the incoming and outgoing ray with respect to a
pole [15]. Also in this case, the total torque on the object can be obtained

as the sum of the torque produced by each ray, Γ =
∑

m Γ
(m)
ray . For example,

the effect of the torque due to the rays is to align a cylindrical particle along
the optical axis. The second aspect, the transverse radiation force, yields the
optical lift effect [67]. This component arises from the anisotropic shape of
non-spherical particles and generates a motion transversely to the incident
light propagation direction. We can note that the accuracy of ray optics
approximation increases with the size of the particle, whereas exact electro-
magnetic theories become unpractical due to the increasing computational
complexity. Thus, ray optics has not only a pedagogical value but represents
a key technique for modeling optical trapping of large particles [68].

2.4 Focusing

The easiest and most used configuration of optical tweezers is the single-
beam optical trap as devised by Ashkin in 1986 [44]. This is obtained by a
single highly-focused light beam. In fact, rays originating from diametrically
opposite points of a high numerical aperture (NA) focusing lens produce in
practise a set of rays that converge at very large angle. While the ray optics
view is extremely useful for rapid calculations, it misses out many aspects of
the focusing process that have a crucial importance when performing accurate
modelling. Thus, here we give a brief description on the focusing of a paraxial
optical beam by an ideal aplanatic optical lens [69, 70]. An exemplary figure
is shown in Fig. 2.3.

Using the Abbe’s sine condition, the deflection angle θ at position R (the
intersection point of a ray with the aplanatic lens p2) is:

θ = arcsin

(
ρ

f

)
= arcsin

(
ρ

NA

nmR

)
(2.19)

where ρ is the radial coordinate of the incident wave, R is the radius of the
iris, nm is the index of refraction for the medium beyond p2 and NA is the
numerical aperture of the objective lens:

NA = nm sin(θmax) = nm
R

f
(2.20)

with θmax angle over which the rays are focused and which determines the
trapping characteristics of the focus. The complex focused field Ef(x, y, z)
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Figure 2.3: An optical beam crosses an aperture stop, or iris, with radius R
and then propagates toward the principal plane p1 of the lens and is trans-
ferred to the principal plane p2, which is a spherical surface with centre at
the focal point O and with radius equal to the focal length f . The diffraction
that occurs inside the objective is modelled by propagating the electromag-
netic wave from the aperture stop to the principal plane p1. The aperture
stop is often placed in the back focal plane, i.e., at a distance f from p1,
which results in a telecentric imaging system. At p2, the beam is refracted
and focused towards O. Taken from Ref. [15].

near O is then:

Ef(x, y, z) =
ikmfe

−ikmf

2π

θmax∫
0

sin θ

2π∫
0

Eff,m(θ, ϕ)ei[km,xx+km,yy]eikm,zz dϕ dθ .

(2.21)
This is the integral representation of the focused field [71] where the plane

wave angular spectrum representation is used such as Eff,m(θ, ϕ) is the far
field.

2.5 Dipole approximation regime (x� 1)

When the particle size parameter is small, x� 1, optical trapping forces
can be calculated exploiting a dipole approximation. When placed in an
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external electric field, the negative electron cloud surrounding the positive
nucleus will be displaced, leading to a separation between the centre-of-mass
of the positive and negative charge distributions. An induced dipole is thus
generated that experiences electrostatic forces arising from its interaction
with the inducing electric field. Consequently, an oscillating electromagnetic
field, such as that of the laser beam used for an optical tweezers, induces an
oscillating dipole, which also experiences forces arising from its interaction
with the inducing electromagnetic field. Furthermore, an oscillating dipole
radiates an electromagnetic field that can produce a mechanical effect on
other induced dipoles leading to, in some cases, optical binding [15, 72].

This picture can be extended to a small particle, so that if the external
field is not too large, the induced dipole moment, p(r, t), can be expressed
in terms of a linear polarisability:

p(r, t) = αpE(r, t) (2.22)

where αp is the complex polarisability of the particle with respect to the
surrounding medium and it is given by [73]:

αp = α0

(
1− ik

3
mα0

6πεm

)−1

(2.23)

α0 being the static Clausius-Mossotti polarisability:

α0 = 3V εm

(
εp − εm

εp + 2εm

)
(2.24)

where V is the particle volume and εp dielectric permittivity of the particle.
Therefore, for an electric dipole of polarisability αp, we can write the cross-
sections in accordance with Poynting’s theorem [15]:

σext,d =
km

εm

={αp} (2.25)

σscat,d =
k4

m

6πε2
m

|αp|2 (2.26)

σabs,d = σext,d − σscat,d =
km

εm

={αp} −
k4

m

6πε2
m

|αp|2 (2.27)

2.5.1 Optical forces

The time-averaged optical force experienced by a small particle when
illuminated by time-varying electromagnetic field can be also expressed in
terms of its polarisability [74]:
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〈F〉DA =
1

2
<

{∑
i

αpEi∇E∗i

}
. (2.28)

where Ei are the electric field components. Starting from this expression,
one can explicitly write the optical force in terms of extinction cross-section
and particle’s polarisability [75–77]:

〈F〉DA =
1

4
<{αp}∇|E|2 +

nm

c
σext〈S〉 −

1

2
cnmσext∇× 〈s〉 (2.29)

where 〈S〉 = 1
2
<{E×H∗} is the time-averaged Poynting vector of the incom-

ing wave and 〈s〉 = i εm
2ω

E×E∗ is the time-averaged spin angular momentum
density [76, 77].

The first term in Eq. 2.29 represents the gradient force and is responsible
for particle confinement in optical tweezers:

FDA,grad(r) =
1

2

nm

cεm

<{αp}∇I(r) (2.30)

where I(r) = 1
2
nmc|E(r)|2 is the intensity of the electric field and rp is the

position of the center of the dipole. The gradient force, arising from the
potential energy of a dipole immersed in the electric field, is conservative
and its work does not depend on the path taken. Particles with refractive
index higher than that of the surrounding medium (np > nm) have a positive
<{αp}, and will be attracted toward the high intensity region of the optical
field [44]. Conversely, when np < nm the polarisability is negative and the
particles are repelled by the high intensity region.

The second term in Eq. 2.29 is the scattering force:

FDA,scat(r) =
nm

c
σext〈S〉 =

nm

c
σextI(r). (2.31)

This term is responsible for the radiation pressure and is non-conservative.
We can note the dependence on the extinction cross-section because momen-
tum transfer from the electromagnetic field to the particle is a result of both
scattering and absorption processes. This force is directed along the propa-
gation direction of the laser beam [40].

The last term in Eq. 2.29 is a spin-dependent force [76]:

FDA,spin(r) = −1

2
cnmσext∇× 〈s〉. (2.32)

This term is also non-conservative and dependent on the extinction cross-
section. It can be generated by polarisation gradients in the electromagnetic
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Figure 2.4: The intensity distribution of a Gaussian beam is (a) Gaussian in
the transverse x, y plane and (b) cylindrically symmetric around the propa-
gation z-axis. (c) As the beam propagates along the z-axis, its phase deviates
(top) with respect to the one of a reference plane wave (bottom) leading to a
phase shift of exactly π as z goes from −∞ to +∞ (Gouy phase shift). The
shades of grey represent the phase of the beam from 0 to 2π. From Ref. [15].

field, but usually does not play a major role in optical trapping because it is
zero or very small compared to the other contributions. However, it may play
a more significant role when considering optical trapping with optical beams
of higher order with inhomogeneous polarization patterns such as cylindrical
vector beams [78, 79] or superpositions of circularly polarized Hermite-Gauss
beams [80].

2.5.2 Gradient force with Gaussian beam

We now consider some examples that show the usefulness of the dipole
approximation. Being a simple analytical approach it permits to obtain quan-
titative information on optical trapping (force components, trap stiffness) of
small particles in many different beam configuration.

The first case is the single-beam trap configuration. We calculate the
gradient force and the related trap stiffness of an incident laser beam with
a typical Gaussian intensity profile which propagates along z axis [15] as in
Fig. 2.4.

The complex electric field of a Gaussian beam EG(ρ, z) is [15]:

EG(ρ, z) = E0
w0

w(z)
e
− ρ2

w(z)2 eiΦ(z) . (2.33)

where ρ is the radial coordinate, E0 is a vector in xy plan specifying the
amplitude, phase and polarisation of the beam, w0 is the waist radius, w(z)

is the beam width such that w(z) = w0

√
1 + z2

z20
, Φ(z) = kmz − ζ(z) +
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kmρ
2/2R(z), R(z) is the wave-front radius R(z) = z

(
1 +

z20
z2

)
, ζ(z) is phase

correction ζ(z) = atan
(
z
z0

)
and z0 is the Rayleigh range which denotes the

distance from the beam waist at z = 0 to where the beam width has increased
by a factor

√
2, z0 =

kmw2
0

2
. In the last equation the coordinate ϕ does not

appear due to the cylindrical symmetry and the paraxial approximation has
been used because the electromagnetic fields of a laser beam propagate mostly
along a certain direction, which in this case along the z axis is assumed,
spreading out only slowly in the transverse direction. Then the wave number
along z axis can be approximate as follows:

km,z = km

√
1−

k2
m,x + k2

m,y

k2
m

≈ km −
k2

m,x + k2
m,y

2km

. (2.34)

Thus, we can write the expression for the intensity of the beam:

IG(ρ, z) =
1

2
cnm|EG(ρ, z)|2

=
1

2
cnm|E0|2

w2
0

w(z)2
e
− 2ρ2

w(z)2

= I0
w2

0

w(z)2
e
− 2ρ2

w(z)2 (2.35)

where I0 = 1
2
cnm|E0|2 is the maximum intensity at the center of the beam.

In the transverse plane (z = 0), for small displacements from axis, we can
approximate the intensity profile:

IG(ρ) ≈ I0

(
1− 2

ρ2

w2
0

)
(2.36)

so that the radial component of the gradient force (Eq. 2.30) can be ap-
proximated by an elastic restoring force proportional and opposite to the
displacement from the origin:

FG
DA,grad,ρ = −κG

ρ ρ (2.37)

in which the trap stiffness is:

κG
ρ = 2

<{αp}
cε0nm

I0

w2
0

. (2.38)

Similarly, we can calculate the force along z axis (ρ = 0). Then for small
displacements in the transverse plane:
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IG(z) ≈ I0

(
1− z2

z2
0

)
(2.39)

so that the z component of the gradient force (Eq. 2.30)

FG
DA,grad,z = −κG

z z (2.40)

has spring constant:

κG
z =

<{αp}
cε0nm

I0

z2
0

. (2.41)

Eqs. 2.38, 2.41 reveals that the spring constants are proportional to the
electric field intensity maximum and the real part of the polarisability. Fur-
thermore, these trap stiffness are inversely proportional to the beam area so,
as may be expected, tighter focusing leads to stronger confinement.

2.5.3 Gradient force with counterpropagating Gaus-
sian beams

A second important example is the situation of two counterpropagating
gaussian beams. This is not only one of the first configuration used by Ashkin
in his pioneering work [42], but a configuration often used in vacuum for the
optical trapping and laser cooling of atoms and particles [81]. In liquid, this
permits the trapping and optical binding of spherical and non-spherical par-
ticles with a wide tunability [82, 83]. Recent experiments in optomechanics
with levitated particles also exploit this counterpropagating configuration
[47, 84, 85]. However, the most important feature of OT in counterpropagat-
ing configuration is that permits a systematic analysis without the scattering
forces contribution which could push away the scatterer for a certain range in
wavelength. The calculation of the gradient force follows the scheme of opti-
cal trap composed by two incident Gaussian beam which travel one opposite
to the other along the z axis and the two waste coincide with the origin of
the laboratory reference system [86]. Moreover, the polarization directions of
the electro-magnetic field for the two beams lie on the xy plane and they are
co-linear. In this manner, taking the expression of the Gaussian electric field
for this counterpropagating configuration, the intensity of the laser beam,
depending by radial ρ and axial z directions, assumes a stationary profile
and [6, 87]:

Ic.p.(ρ, z) = 4I0
w2

0

w(z)2
e
− 2ρ2

w(z)2 cos2 Φ(z). (2.42)
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In Eq. 2.42, the interference between the two Gaussian beams generates
a standing wave with a modulation of intensity along the z-axis that re-
sults in a strong wavelength-dependent modulation of the axial optical force.
Thus, using Eq. 2.29 (without the scattering part) and Eq. 2.42, we get the
expression of the gradient force components [14, 86]:

〈F 〉c.p.DA,ρ(ρ, z) = −4<{α} I0w
2
0ρe

−2ρ2

w2(z)

cε0nmw4(z)

(
cos2 Φ(z) +

z sin 2Φ(z)

kmw2(z)

)

〈F 〉c.p.DA,z(ρ, z) = −4<{α} I0w
2
0e
−2ρ2

w2(z)

cε0nmk2
mw

2(z)

·

[(
1− 2ρ2

w2(z)

)
2z cos2 Φ(z)

w2
0w

2(z)
+

(
k2

m

4
− 1

2w2(z)
− ρ2w

2(z)− 2w2
0

w2
0w

4(z)

)
km sin 2Φ(z)

]
(2.43)

In the transverse plane (z = 0), for small displacements from axis:

Ic.p.(ρ) ≈ 4I0

(
1− 2

ρ2

w2
0

)
(2.44)

so that the radial component of the gradient force of the Eq. 2.43 can be
simplify:

F c.p.
DA,grad,ρ(ρ) = −κc.p.

ρ ρ (2.45)

in which the trap stiffness is:

κc.p.
ρ = 8

<{αp}
cε0nm

I0

w2
0

. (2.46)

We note that this spring constant is four times greater than that asso-
ciated with the Gaussian beam (Eq. 2.38), demonstrating that stationary
setup traps better than one single laser beam. Similarly, we can calculate
the force along z axis (ρ = 0). Then for small displacements in the transverse
plane we have:

Ic.p.(z) ≈ 4I0

[
1−

(
2− 2kmz0 + k2

mz
2
0

) z2

z2
0

]
(2.47)

so that the z component of the gradient force (Eq. 2.43)

F c.p.
DA,grad,z(z) = −κc.p.

z z (2.48)
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with a spring constant:

κc.p.
z = 4

<{αp}
cε0nm

(
2− 2kmz0 + k2

mz
2
0

) I0

z2
0

. (2.49)

This result is more complex than the trap stiffness for a single Gaussian
beam (Eq. 2.41) and it depends also on the wavenumber km. Indeed, the
generation of a stationary wave yield a modulation of intensity along the
z-axis that result in a strong wavelength-dependent modulation of the axial
optical force.

2.6 Radiation force and torque in T-matrix

formalism

In the final section we introduce the optical force and torque using the
asymptotic properties of the vector Helmholtz harmonics and the T-matrix
formalism. In fact, the expressions for the radiative force (Eq. 2.1) and
torque (Eq. 2.4) can be significantly simplified in the far-field region (r →∞)
and using the T-matrix formalism. Here, the incident Ei, scattered Es and
internal Ep fields are expanded in terms of vector spherical harmonics Z∗lm.
Moreover the integration can be performed over a spherical surface of radius
r, large enough so that only transverse fields are taken in the integration
since vanishing terms at infinity are neglected in the integration. A basic
requirement for the correct integration of the Eqs. 2.1, 2.4 is that the particle
has to be contained inside the sphere and it is centered at the origin of the
reference system. Due to the orthogonality between Z∗lm and the radial unit
vector r̂, the integrals of the first and second term of the Eq. 2.3 are identically
zero. Therefore the optical force is due only to the contribution of the integral
of the third term of Maxwell stress tensor. For a non-magnetic medium the
optical force is:

Frad = −εmr
2

4

∫
Ω

[
|Es|2 +

c2

n2
m

|Bs|2 + 2<
{

Ei · E∗s +
c2

n2
m

Bi ·B∗s
}]

r̂ dΩ

(2.50)

where the integration is now carried out over the full solid angle Ω = 4π that
represents the full solid angle describing the spherical surface. In the same
way also the torque can be integrated over a spherical surface of radius r
which contains the particle. Here it is convenient to set the center-of-mass
of the particle as origin of the reference system. Considering the Eq. 2.3, the
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integrals of the last two terms do not give any contribution to the torque,
therefore it is given by:

Γrad = −εmr
3

2
<
{∫

Ω

[
(r̂ · E)(E∗ × r̂) +

c2

n2
m

(r̂ ·B)(B∗ × r̂)

]
dΩ

}
. (2.51)

The latter two expressions are the starting point for the electromagnetic
calculations of optical forces and torque in optical trapping. We recall that
the key point is to solve the scattering problem by calculating the scattered
fields and consequently the Maxwell stress tensor. However, the calcula-
tion of forces an torques in this regime is usually a complicate procedure [2].
Thus, various algorithms have been developed to handle this problem [88, 89].
Among the different approaches, a successful method is based on the calcu-
lation of the transition matrix [2]. This is particularly useful and computa-
tionally effective because it is possible to exploit the rotation and translation
properties of the T-matrix to obtain at once optical forces and torques for
different positions and orientations of the trapped particles [5, 60, 61, 90–95].
For these reasons, we have used this approach to compute the quantities of
interest (forces, cross sections, maps) on the model particles studied in this
thesis.

2.6.1 Optical forces due to a plane wave

An important case is the calculation of the optical force exerted by a
linearly polarized plane wave on a particle. The incoming electric field asso-
ciated to the linear polarized plane wave is expressed by Eq. 1.6. Starting
from Eq. (2.50), after some substitutions and mathematical steps [15], the
force originated from the scattering process of a linear polarized plane wave
by a spherical homogeneous particle is written as [59]:

Frad =
nm

c
I0

[
σscatk̂i −

∫
Ω

dσscat

dΩ
r̂ dΩ

]
(2.52)

where I0 = nmc
2
E2

0 is the intensity of the incident plane wave and dσscat/dΩ =

|f(r̂, k̂i)|2 is the differential scattering cross-section. The right side of this
equation is composed by a first term that represents a force in k̂i direction
and a second term which can present also a force component perpendicular to
k̂i [59]. Therefore the component of the force along the propagation direction
represents the radiation pressure:

F
‖
rad =

nm

c
I0 [σext − giσscat] k̂i (2.53)
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while the transverse component of the force is:

F⊥rad = −nm

c
I0 σscat

[
g1êi + g2(k̂i × êi)

]
(2.54)

where g1 is the asymmetry parameter in the incoming wave direction (Eq. 1.11),
while g1 and g2 are transverse asymmetry parameters (Eqs. 1.12 - 1.13). For
a spherical particle only g1 is different from zero, while for small dipolar par-
ticles all the parameters gi, g1 and g2 are zero. The optical torque exerted by
a linear polarized plane wave on a spherical particle is zero. However, torque
is not zero in presence of elliptically polarized light and when the beads are
made of an absorbing material [96].

On the other hand, when we deal with scatterers more complex than the
single homogeneous sphere, such as radially symmetric non-homogeneous
scatters or cluster, the expression of the radiation force (Eq. 2.50) should be
rewritten in terms of T-matrix formalism. By substituting the expansions of
the incident (Eq. 1.16) and scattered waves (Eq. 1.19) in terms of multipoles
taken in the asymptotic limit (r → ∞) into Eq. 2.50 [15], the expression
for the radiation force along the direction of a unit vector û, i.e., Frad(û) =
Frad · û can be obtained, such as:

Frad(û) = −εmE
2
0

2k2
m

<

{∑
plm

∑
p′l′m′

il−l
′
I

(pp′)
lml′m′(û)

[
A

(p)∗
s,lmA

(p′)
s,l′m′ +W

(p)∗
i,lmA

(p′)
s,l′m′

]}
,

(2.55)

where the amplitudes W
(p)∗
i,lm of the incident field and the amplitudes A

(p)
s,l′m′ of

the scattered field are given by Eq. 1.27 or Eq. 1.42 in terms of the elements
of the T-matrix, depending on if we deal with a single sphere or a cluster.
Furthermore, in this equation,

I
(pp′)
lml′m′(û) =

∮
Ω

(r̂ · û) ip−p
′
Z

(p)∗
lm (r̂) · Z(p′)

l′m′(r̂) dΩ . (2.56)

The integrals I
(pp′)
lml′m′(û) can be expressed in closed form [5] as

I
(pp′)
lml′m′(û) =

4π

3

∑
µ=−1,0,1

Y ∗1µ(û)K
(pp′)
µ;lml′m′ , (2.57)

where the unit vectors are expressed in terms of spherical harmonics through:

K
(pp′)
µ;lml′m′ =

∮
Ω

Y1µ(r̂)ip−p
′
Z

(p)∗
lm (r̂) · Z(p′)

l′m′(r̂) dΩ

=

√
3

4π
C1(l′, l;µ,m− µ)O

(pp′)
ll′ , (2.58)
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in which in turn

O
(pp′)
ll′ =



√
(l − 1)(l + 1)

l(2l + 1)
l′ = l − 1 and p = p′

− 1√
l(l + 1)

l′ = l and p 6= p′

−

√
l(l + 2)

(l + 1)(2l + 1)
l′ = l + 1 and p = p′

0 otherwise

and C1(l′, l;µ,m − µ) are Clebsch-Gordan coefficients. The force expressed
by Eq. 2.55 can be separated into two parts, i.e.,

Frad(û) = −Fscat(û) + Fext(û) , (2.59)

where

Fscat(û) =
εmE

2
0

2k2
m

<

{∑
plm

∑
p′l′m′

A
(p)∗
s,lmA

(p′)
s,l′m′i

l−l′I
(pp′)
lml′m′(û)

}
(2.60)

and

Fext(û) = −εmE
2
0

2k2
m

<

{∑
plm

∑
p′l′m′

W
(p)∗
i,lmA

(p′)
s,l′m′i

l−l′I
(pp′)
lml′m′(û)

}
. (2.61)

Fscat(û) depends on the amplitudes A
(p)
s,lm of the scattered field only, while

Fext(û) depends both on A
(p)
s,lm and on the amplitudes W

(p)
i,lm of the incident

field. This dependence is analogous to that on the scattering and extinction
cross-sections for the force exerted by a plane wave.

2.6.2 Optical forces due to a focused beam

The most important case for the scope of this thesis is the computation
of the radiation forces in a optical trap composed by focused laser beam with
high-NA. In order to calculate the multipole amplitudes W̃

(p)
i,lm of a focused

beam, the expansion of the incoming beam into plane waves and its focusing
can be exploited as described in the Sect. 2.4. The expansion of the focused
beam around the focal point is given by the Eq. 2.21, i.e.,
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Ef(x, y, z) =
iktfe

−iktf

2π

θmax∫
0

sin θ

2π∫
0

Eff,t(θ, ϕ)ei[kt,xx+kt,yy]eikt,zz dϕ dθ ,

where each plane wave transmitted through the objective lens Eff,t(θ, ϕ) can
be expanded into multipoles according to the Eq. 1.16, i.e.,

Eff,t(θ, ϕ) ≡ Ei(r, r̂) = E0

∑
plm

W
(p)
i,lm(k̂i, êi)J

(p)
lm(kmr, r̂) ,

with the amplitudes given by Eqs. 1.18. Therefore, the amplitudes of the
focused field are:

W̃
(p)
i,lm(P) =

iktfe
−iktf

2π

θmax∫
0

sin θ

2π∫
0

Ei(θ, ϕ) W
(p)
i,lm(k̂i, êi) e

ikt·P dϕ dθ, (2.62)

where the centre around which the expansion is performed is considered dis-
placed by P with respect to the focal point O and the amplitudes W(p)

lm (P)
define the focal field and can be numerically calculated once the character-
istics of the optical system are known. The radiation force are calculated
through the knowledge of the scattered amplitudes Ã

(p)
s,lm, e.g., by using the

T-matrix (Eqs. (1.27, 1.42) and:

Frad(û) = − εm

2k2
m

<

{∑
plm

∑
p′l′m′

il−l
′
I

(pp′)
lml′m′(û)

[
Ã

(p)∗
s,lmÃ

(p′)
s,l′m′ + W̃

(p)∗
i,lm Ã

(p′)
s,l′m′

]}
.

(2.63)
In practice, the expression of the force in this equation is obtained from

the correspondent one for the plane wave (Eq. 2.55) mutatis mutandis by

changing E0W
(p)
i,lm → W̃

(p)
i,lm(P) and EiA

(p)
s,lm → Ã

(p)
s,lm [5].

2.7 Size scaling in optical trapping of nanowires

The formalism described in this chapter has crucial applications for the
calculation of optical forces on non-spherical particles. Here, we discuss its
application for the study of the size scaling behaviour of optical trapping
forces on nanowires. Size scaling is crucial in the study of nanoscience [97].
It characterises solid state systems for many applications in the most different
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research fields [98]. Many particularly interesting properties of materials and
interactions change dramatically with size [99]. Much progress has already
been done in the synthesis, assembly, and fabrication of nanomaterials, and,
equally important, toward a wide variety of technological applications [100].
The properties of materials with nanometric dimensions are significantly dif-
ferent from those of atoms or bulk materials, and the appropriate control
of such properties have led to new science as well as new products, devices,
and technologies [97]. The size scaling properties of optical forces help us to
understand the important features of optical trapping in a wide size range
and their comparison with experiments.

Nanowires have attracted considerable interest within the scientific com-
munity as an innovative material with applications in nanotechnology [101].
They are defined as structures with a high aspect ratio, being characterised
by two spatial dimensions in the range of tens of nanometers and the third
one on a much longer scale, typically micrometers. Moreover, due to their
very large surface-to-volume ratio, nanowires can lead to strongly enhanced
surface effects as compared to bulk materials. Their extreme geometry, com-
bined, in the case of semi-conducting nanowires, with important intrinsic
physical properties, leads to a wide range of novel physical applications.
Because of their potential technological importance, the ability to manipu-
late, characterise and integrate nanowires on an individual basis is highly
desirable, and optical trapping provides an ideal platform to achieve these
aims [57, 102]. The possibility of investigating the structural [103], opti-
cal [104, 105], and thermal [106, 107] properties of individual nanowires in
optical tweezers has been investigated in recent years. In this context, the
role of their elongated shape on optical forces [90, 108], and dynamical sta-
bility [109] has been studied. From the experimental point of view, the
dynamics of non-spherical particles in optical traps can be quite complex
[56–58, 78, 88, 110, 110, 111]. For instance, elongated particles align, on
average, with the optical (z-)axis of the trap due to the optical torque and
show small angular thermal fluctuations about their stability axis that can
be measured together with optical aligning torques [56, 57]. Moreover, the
occurrence of transverse optical forces [61, 88] yielding a translation-rotation
coupling in non-spherical particles can result in a regular biased orbital mo-
tion that has been the subject of intense research [58, 112–115]. Thus, it is of
crucial importance to have a better theoretical understanding of the optical
forces and torques acting on these nanosystems in optical tweezers and their
scaling with size.

Here, we consider model nanowires structured as linear chains of homo-
geneous non-absorbing latex nanospheres [90]. Despite their simplicity these
model linear dielectric particles can grasp most of the optical trapping fea-
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Figure 2.5: Trapping efficiencies (Qx, Qy, Qz) for a nanowire composed by
latex (np = 1.57) spheres immersed in water (nm = 1.33) in the transverse,
x - y, and longitudinal z, directions, as function of displacement in the same
directions from the location of the paraxial focus. The considered linear
clusters have half-length L/2: 50 nm (a), 300 nm (b), 600 nm (c), 1400 nm
(d). The focal spot is obtained overfilling an objective lens with NA= 1.30.
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Figure 2.6: Optical trap stiffnesses, κx (a), κy (b), κz (c), for a nanowire
composed of latex (np = 1.57) spheres immersed in water (nm = 1.33) in the
transverse, x (a) - y (b), and longitudinal z (c), directions, as a function of
the half-length L/2 of the linear cluster. The dimension of the considered
aggregate spans in the interval [50 nm - 1500 nm] or, in other words, between
number of spheres N [1− 30].
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Figure 2.7: Comparison of the optical trap stiffness, in logarithmic scale, κz,
between a nanowire, composed by latex (np = 1.57) spheres, and a single
sphere, immersed in water (nm = 1.33), as a function of the dimension, d,
corresponding to the half-length, L/2, for the nanowire and the radius, a,
for the sphere. The dimension spans in the interval [50 nm - 1400 nm]. The
two curves have in common a maximum at about 300 nm, corresponding to
the maximum overlap of particle volume with the diffraction limited laser
spot. The main difference is in the size scaling. In fact, for small size the
stiffness of the sphere scales as d3 while for the nanowire as d. For large size
the stiffness of the sphere scales as d−1, while for the nanowire decreases as
d−3.
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tures related to the shape and geometry of the problem. Moreover, latex
particles are a standard example of polymer particles that are commonly
used in optical tweezers experiments[7, 15, 113]. We focus our attention only
on nanowires aligned along the direction of propagation of the incident field
(z) with the aim to investigate their length scale behaviour. This is justified
by the fact that the optical torque aligns the nanowires along the axial prop-
agation direction [90] as also experimentally observed on average [57, 102].
We model the trapping of a linear particle cluster by a laser beam with fixed
wavelength λ0 = 830 nm and numerical aperture NA= 1.3. We are interested,
once again, in the calculation of the optical forces and in particular on how
the trap stiffnesses scale as a function of the nanowire length, L. Each sphere
composing the linear cluster has refractive index np(λ0 = 830 nm) = 1.57
[116] and is immersed in water (nm = 1.33). The radius of the single sphere
is fixed at 50 nm because the idea is to model a linear structure that grows
along the longitudinal direction, z, up to the microscale and remains fixed
at the nanoscale in the xy transverse plane. The calculation is conducted for
different lengths and, by adding the spheres, we work in a range in which
the half-length of the cluster, L/2, spans from 50 nm (a single sphere) to
1500 nm (corresponding to 30 spheres in the cluster).

Given the complexity of the scatterer, which has only cylindrical sym-
metry with respect to the longitudinal direction of the incident beam, the
T-matrix method performs very well thanks to its high precision and calcu-
lation speed. Thus, the incident and scattered fields are expanded in a series
of vector spherical harmonics with amplitudes W(p)

i,lm and A(p)
s,lm, respectively

given by Eq. 1.42. Then, as seen in Subsect. 1.5.2, the elements of the transi-

tion matrix T
(p′p)
l′m′lm are calculated by the inversion of the matrix of the linear

system, obtained by imposing the boundary conditions to the fields across the
surface of the scatterer (see Eq. 1.42). The incident fields of the scattering
problem are the focal fields calculated in the angular spectrum representa-
tion (Eq. 2.21). Finally, optical forces and trapping properties are obtained
through the Maxwell tensor as described in the Subsect. 2.3. Convergence
has been carefully checked and we adopted a truncation of the multipole
expansion index lM = 8 for nanowire half-lengths L/2 between 50 nm and
500 nm (N = [1 − 10]) while lM = 15 for L/2 between 600 nm and 1.5 µm
(N = [12− 30]).
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2.7.1 Optical force components, trap stiffnesses, and
size scaling

We have computed the (x, y, z) components of the optical force on the
points of a grid employed with specified resolution. These components are
calculated in a micron-sized range, [−1.2 µm, 1.2 µm], around the paraxial
nominal focus of the beam. So, we can plot the force as a function of particle
displacement in each spatial direction, x, y, z. The trapping position of the
particle in the longitudinal (z) direction is typically offset from the centre
of the grid because of the ’pushing’ effect of the optical scattering force. To
calculate the force on the particle at the equilibrium position, the z (longitu-
dinal) coordinate at which the axial force vanishes must first be found. The
force plots in the transverse directions (x, y) can then be calculated. It is
often convenient to calculate the dimensionless force (trapping) efficiencies
along the three Cartesian directions, Qi = cFi/nmP with i = x, y, z [7]. We
present in Fig. 2.5 the results of the computation of the cartesian components
of the optical force efficiencies for nanowires with half-length L/2 = [50 nm,
300 nm, 600 nm, 1400 nm]. Consequently, in Fig. 2.6, we have shown the
optical trap stiffnesses, κx, κy, κz, as a function of the half-length of the
linear cluster.

In Fig. 2.5 we investigate an interval of length spanning from the nano-
to the microscale. We can immediately notice how in Figs. 2.5a, 2.5b, 2.5c,
for short length of the scatterer, the graphs present the typical maximum
and minimum that is maintained at the same positions for the transverse,
x, y, directions, while it moves approximately with the edges of the nanowire
for the axial, z, direction. Consequentially, the linear cluster is trapped at
an equilibrium position in proximity to the nominal focus with a small dissi-
pating scattering force. It is at the ends of the nanowire that a greater trap
efficiency is developed in z and, given the particular cylindrical symmetry
of the aggregate with respect to the direction of incidence of the beam, the
equilibrium point is set at the midpoint of the nanowire. In this regard,
heuristic considerations are reported by Simpson and Hanna [109], while ex-
perimental demonstrations were obtained by Irrera et al. [57]. As can be
expected, when the length of the nanowire grows to such an extent that it
is no longer completely contained in the high intensity region of the laser
spot, the trap efficiencies collapse towards zero showing the flat pattern of
Fig. 2.5d.

Now let us analyze the trap constant size scaling behaviour as the length
of the nanowire varies. We plot these trends in Figs. 2.6a, 2.6b, 2.6c. We ob-
serve two different trends for κx, Fig. 2.6a, and κy, Fig. 2.6b, in the transverse
plane, and κz, Fig. 2.6c, along the longitudinal direction. The transverse stiff-
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nesses show a linear growth at short length that saturates when the length
reaches the axial spot size optimizing the optomechanical interaction when
the nanowire overlaps the laser spot high intensity region in the axial di-
rection. In other words, the contribution to the transverse spring constants
of the spheres composing the linear cluster outside the interaction region,
determined by the diffraction limited laser spot, is negligible.

Instead, the size scaling behaviour of the axial stiffness, κz, can appear
with a similar trend to the one for a single sphere. As we can see in Fig. 2.7,
the two axial graphs have in common the occurrence of the maximum around
300 nm because, as in the case of a single sphere, the linear aggregate at this
particular value has a length comparable with the axial size of the high inten-
sity spot. On the other hand, the main difference between optical trapping of
the two model particles lies in the size scaling. Here we directly compare the
size scaling for the two model systems by plotting the axial spring constants
for the nanowire as a function of the half-length, d = L/2, and for the sphere
as a function of its radius, d = a. The stiffness of the nanowire grows linearly
for short length, κz ∝ d, while for the spheres we recall the cubic growth,
κz ∝ d3. This is justified in dipole approximation by the one-dimensional
geometry of the nanowire growth in contrast to the three-dimensional geom-
etry of the sphere growth. For large length, instead, the axial spring constant
decreases in a hyperbolic cubic manner, κz ∝ d−3, in contrast to the hyper-
bolic scaling for the sphere, κz ∝ d−1. This asymptotic scaling behaviour for
nanowires is in agreement with analytical calculations provided by Simpson
et al. [109], while experimental evidence of the size scaling in the optical
trapping of silicon nanowires has been studied by Irrera et al. [57].

49



50



Chapter 3

Gain-assisted optomechanical
position locking of
metal/dielectric nanoshells in
optical potentials

3.1 Introduction

As just discussed in the Chap. 2, OT [15, 117] are crucial tools for the
manipulation and study of micro- and nanoscopic particles of different na-
ture without mechanical contact [7, 118]. In recent years, a tremendous
effort has been devoted to the optical trapping and optical manipulation of
nanoparticles in liquid, air or vacuum [119, 120]. The difficulties in optical
trapping nano-sized matter are mainly related to the fact that optical forces
decrease with the particle volume for small particles [7], which yields trap-
ping potentials lower than the energy of thermal fluctuations for reasonable
incident laser [119]. Standard OT, i.e., single-beam optical traps, are also
affected by the unavoidable light scattering forces which tend to push the
particle along the light propagation direction, and might have a particularly
destabilizing effect for highly absorbing, resonant or plasmonic nanoparticles
[119, 120]. Morphology [121, 122], material composition [123–125], material
hybridization [126, 127], and resonant opto-plasmonic response [128–130] can
increase optical trapping at the nanoscale. Scattering forces can be balanced
at equilibrium in dual-beam optical traps based on the use of low numeri-
cal aperture lenses in a counterpropagating beam geometry [131]. For laser
beams with the same polarization, a standing wave is formed with an inten-
sity modulation along the beam axis that generate an optical potential with
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many equilibrium position[132–136].

Among the various applications of optical forces at the nanoscale, the
study of optical forces in optically trapped gain-enriched plasmonic nanos-
tructures appears to be of particular interest. In fact, a plethora of re-
markable phenomena occurs in these systems [137, 138] due to the resonant
interplay between plasmonic structures and gain media (e.g. dye molecules
or quantum dots). In particular, the coupling with a gain medium located in
the core of a metallic nanoshell, when excited by means of an external pump,
produces intense changes of the electromagnetic fields around the structure,
thus producing novel features which can be useful for a variety of appli-
cations, such as photothermal therapy, enhanced spectroscopy, and spasing
[139–141].

In this chapter, we present a study of the optical forces acting on a gain-
enriched silver nanoshell in the quasi-static limit. Specifically, we analyze
the optomechanical response of this nanostructure in a counterpropagating
Gaussian beam optical trap, where a systematic analysis can be performed
without any detrimental effect of the scattering force component. In par-
ticular, we study the behaviour of the optical force constants as a function
of wavelength and for different gain levels, which can be achieved by fix-
ing the molecular density of the gain medium and varying the power of the
external pump. We show that optical trapping strongly depends both on
the wavelength and on the gain level. Moreover, we investigate the stable
configurations and particle dynamics in the trap by means of Brownian dy-
namics simulation. Interesting localization effects appear for wavelengths
red-detuned with respect to the gain-enhanced resonance, while for blue-
detuned wavelengths, we observe particle channeling by the standing wave
antinodes due to the reversal of the gradient force.

3.2 Metal/dielectric nanoshells

The system under study (Fig. 3.1) is a metal nanoshell embedding a
gain enriched dielectric core, studied in the quasi-static limit and below the
emission threshold [140] (i.e., when the gain is not enough to completely
overcome the metal losses). In this regime, the nanoshell geometry ensures
that the plasmonic field can be described as dipolar without any approxima-
tion. Thus, we can use a steady state model for the particle polarizability
α:

α =
(εsh − εm)(εh + 2εsh) + f 3(εh − εsh)(εm + 2εsh)

(εh + 2εsh)(εsh + 2εm) + 2f 3(εh − εsh)(εsh − εm)
, (3.1)
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Figure 3.1: In (a), a schematic of the system under study is represented. A
core-shell particle is composed by an external silver shell and a silica core,
doped with rhodamine dye molecules which act like gain material under the
action of a pumped field (purple) considered in a counterpropagating con-
figuration to balance radiation pressure. This system is placed in a double-
beam optical tweezers configured with co-linearly polarized counterpropa-
gating Gaussian beams (green). The double beam configuration ensures the
balance of scattering forces in the trap region. In (b), the scheme of the
energy levels is presented. System pumping inverts the population Ñ of the
dye using a pump frequency higher than the frequency of the nanoshell plas-
monic resonance. In this way, an emission of the dye at the wavelength of
the silver plasmon resonance is induced. In (c), counter-propagating laser
beam intensity is represented and projected on the yz plane. The probe
wavelength is λ = 531.9 nm, its single-beam power is 50 mW, and NA= 0.6.
Nanoparticle trajectories is plotted for G = 0 (blue), G = −0.132 (green),
and G = −0.22 (magenta). Note how the highest gain (magenta) shows the
tightest confinement. Brownian dynamics simulations are performed for all
cases with a time step of ∆t = 10−7 s and a sampling time of tsamp = 0.1 s.
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where εsh(ω) is the complex steady state metal shell permittivity, εh(ω) is
the complex steady state permittivity of the gain enriched core, εm is a
real number representing the permittivity of the external medium (solvent)
hosting the nanoparticle, and f = a0/a1 is the ratio between the internal and
the external radius of the nanoshell (Fig. 3.1a). In all of the calculations and
simulations presented in this work the nanoparticle has an external radius
of a1 = 20 nm and a ratio between the internal and the external radius of
f = 0.8 (meaning that the internal radius is a0 = 16 nm).

For the metal permittivity we used a Drude-Lorentz model in which the
losses due to the interband transitions δεsh(ω) have been added heuristically
by interpolating them from the Johnson and Christie data set [142]:

εsh(ω) = ε∞ + δεsh(ω)−
ω2

pl

ω(ω + 2iΓ)
, (3.2)

where ε∞ is a constant offset for the real part of the dielectric function,
accounting for the high frequency contributions and the vacuum contribution,
ωpl is the plasma frequency and Γ is the ionic collisions friction coefficient. In
all of our calculations we will use ε∞ = 5.3, ~ωpl = 9.6 eV and ~Γ = 0.0228 eV
which are compatible with the complex dielectric function of silver. As one
can see in Fig. 3.1b, the gain elements (e.g., molecule/quantum dot) have
been chosen in order to resonate with the plasmon. Being below the emission
threshold we can model that using a Lorentzian shape:

εh(ω) = εb −
G∆

2(ω − ωg) + i∆
, (3.3)

where εb is the permittivity of the dielectric core in which the gain elements
are embedded, ωg is the emission centerline of the gain elements, ∆ = 2/τ is
the width of the Lorentzian shape where τ is the time constants associated
with energy (spontaneous emission) relaxation processes of the gain element,
and G is a dimensionless parameter equal to the maximum in absolute value
of the imaginary part of εh(ω) and measuring the amount of gain present in
the system; it can be shown to be equal to[140]:

G = =[εh(ωg)] = −nµ
2τ

3~ε0

Ñ , (3.4)

where n is the element density of the gain medium, µ is the amplitude of
the transition dipole moment of the gain element and Ñ represents the pop-
ulation inversion produced through the action of the external pump (e.g.,
when Ñ = 0 all of the gain molecules are in the ground state, when Ñ = 1
they are in the excited state), ~ is the reduced Planck constant and ε0 is the
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vacuum permittivity. For a given gain molecule (where µ, ωg and τ are set),
the molecule density n describes the maximum possible value for G although,
even once the molecule density n of the nanoparticle s core is fixed, G can
be experimentally modulated by means of the external pump power, from
zero (corresponding to Ñ = 0 or pump off) to its maximum value (corre-
sponding to Ñ = 1 which is when the system is completely pumped). In all
of our simulations, G ranged between zero and G = −0.22; this last mini-
mum value, when using conservative estimates for the physical quantities in
Eq. 3.4 (such as a transition dipole moment of µ = 10 D and a relaxation
time τ = 10−14 s) corresponds to a element density of n = 0.35 nm−3. It
is worth noting that this estimation has been done for the minimum value
we used for G (corresponding to the the highest gain), while the effect on
the optical forces begin to appear for much lower gain levels. This means
that, even if we are neglecting efficiency-reducing quenching effects due to
the proximity of the gain element to the metal in the nanoparticle, we are
working in a realistic range of gain elements density.

3.3 Gain-assisted nonlinear optical trapping

We consider a silver nanoshell with an external radius of 20 nm and trap-
ping light with a wavelength in the visible range. Therefore, the particle
size is small enough that optical forces can be calculated within a dipole
approximation [74–76] and expressed in terms of the linear effective com-
plex polarizability, α, as already discussed in the Subsect. 2.5.1. It is worth
noting that the trapping light provides also the probe field exciting the plas-
monic resonance of the nanoshell, meaning that the dipole moment p of the
nanoparticle can be written as the Eq. 2.23. Considering the double-beam
OT in their standing wave configuration, we fix a low numerical aperture ob-
jective that at a typical value [129, 136] of NA= 0.6. In this manner, without
the detrimental scattering contribution, a gradient force unset whose analyt-
ical expression is provided by the Eqs. 2.43.

We start our analysis of the nanoshell trapping behaviour by studying
the spring constants associated to small displacements from the equilibrium
trapping point, where the gradient force can be approximated by a harmonic
force. In particular, the radial component trap stiffness is provided by the
Eq. 2.46 while the axial component trap stiffness is given by the Eq. 2.49.
In Fig. 3.2, we compare the particle polarizability for three different gain
values (G = [0;−0.132;−0.22]) with the wavelength dependence of the trap
constants normalized to the power, κρ/P and κz/P . We can note that ={α}
(red lines in Fig. 3.2a, 3.2d, 3.2g) increases for higher gain around the plasmon
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Figure 3.2: Trap stiffnesses normalized to the beam power in counterpropa-
gating configuration are shown for three different gains. (a-c) G = 0, (d-e)
G = -0.132, and (g-i) G = -0.22. The first column represent the real (black
line) and imaginary (red line) parts of the polarizability normalized by ε0.
The second and third column represent the radial and axial trap stiffnesses,
κρ and κz, normalized by the optical power, respectively.
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(a)

Figure 3.3: In (a), the maximum value of the trapping constants κmax
ρ (black

line) and κmax
z (red line) in the counterpropagating configuration is plotted as

a function of the gain in semi-logarithmic scale. κmax
ρ and κmax

z are intended as
the highest positive values that κρ and κz, respectively, take spanning through
the wavelengths according to the trends pictured in Fig. 3.2. Intensity maps
of the gradient force in yz plane are shown for G = 0 and G = −0.22,
respectively in (b) and (c). The wavelength λ = 531.9 nm is chosen so that
the stiffness obtained in the harmonic approximation assumes the highest
values for each of the two gains. The power of the single Gaussian beam
laser is 50 mW.

resonance, and its profile is mostly peaked and narrow. As the gain increases
the enhanced emission of the pumped dye, which is suitably tuned to the
frequency ωpl, dominates the optical response in intensity with respect to
that of the plasmon mode. Here we have that ={α} (G = −0.22)/={α} (G =
0) ' 50 and the absorption appears increasingly spectrally confined around
the resonance. On the other hand, <{α} changes sign in correspondence to
the plasmonic resonance and for increasing gain shows a sharpening of the
dispersive curve. Thus, from Eqs. 2.46, 2.49, trap stiffnesses have a similar
trend as shown in Figs. 3.2b, 3.2c, 3.2e, 3.2f, 3.2h, 3.2i. In all cases we
have that: i) for wavelengths lower than the resonance, the force constants
are negative, optical forces are repulsive, and the nanoshell is pushed away
from the high intensity region; ii) for wavelengths higher than the resonance,
the force constants are positive, and the nanoshell is attracted to the high
intensity region of the standing wave. As expected for a standing wave
configuration, for a fixed gain, the axial force constants, κz, are greater,
in modulo, than the transverse ones, κρ.

Fig. 3.3a shows the maximum value of the trap stiffness as a function of
gain. The onset of a nonlinear behaviour is clearly visible. Both κmax

ρ (black
line) and κmax

z (red line) increase similarly in the logarithmic scale for in-
creasing gain. While the spring constants give us an idea of the strength
of gradient forces for small displacements around the equilibrium point,
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to understand how the optical force is spatially distributed for the whole
counter-propagating pattern, Eqs. 2.43 must be considered. This is shown in
Figs. 3.3b, 3.3c that represent such distributions in yz plane, respectively at
G = 0 and G = −0.22. The wavelength λ = 531.9 nm has been chosen so that
the force constant calculated for a small displacements (harmonic) approxi-
mation is the highest for each of the two gains we have considered. The stand-
ing wave modulation of the light intensity (Fig. 3.3c) yields the modulated
spatial profile of the force. Since we considered a wavelength on the red-side
of the resonance, a nanoshell will be attracted towards the maximum inten-
sity points, represented with the hottest colors in Fig. 3.3c and corresponding
to the minima, blue regions, of the gradient force in Figs. 3.3b, 3.3c. We note
how the gradient force for G = −0.22 (Fig. 3.3c) is strikingly higher than the
force for G = 0 (Fig. 3.3b), (i.e. 〈F 〉max

DA (G = −0.22)/〈F 〉max
DA (G = 0) ∼ 2 ·103,

meaning that, by diverting energy from the pump, the interplay between the
plasmonic resonance and the gain elements is able to produce a trapping
force about three orders of magnitude stronger than the one found in the
unpumped system.

3.4 Optomechanical gain−assisted position lock-

ing and channeling

To realistically simulate the dynamics of the silver-silica dye-doped nanoshell
in the double-beam OT, we performed Brownian dynamics simulations[143]
in water for different gain values. Interesting behaviours can arise for the
motion of the nanoshells, including optomechanical position locking and
channeling. The Brownian dynamics takes into account the thermal noise
contribution, which tends to jiggle the nanoshell in the optical trap. The
motion of the particle is, therefore, the result of the interplay between this
random motion and the deterministic optical forces. The time scale on which
the gradient force acts is given by the ratio τot = γ/κ, where γ is the par-
ticle friction coefficient in the surrounding fluid, determined by Stokes′ law
[15, 143]. In our case, τot is always significantly greater than the momentum
relaxation time τin = m/γ, so that inertial effects can be safely neglected.
Thus, we can describe the particle Brownian dynamics through three inde-
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pendent overdamped Langevin equations [15, 144]:

dx(t)

dt
=

FDA,x(r, t)

γ
+
√

2DWx(t)

dy(t)

dt
=

FDA,y(r, t)

γ
+
√

2DWy(t)

dz(t)

dt
=

FDA,z(r, t)

γ
+
√

2DWz(t)

(3.5)

where FDA,i, with i = x, y, z, is the i-th Cartesian component of the time
dependent optical force in dipole approximation, D = kBT/γ is the diffusion
coefficient according to fluctuation-dissipation theorem with T the tempera-
ture and kB the Boltzmann’s constant, Wx(t), Wy(t) and Wz(t) are the inde-
pendent white noises related to the thermal fluctuations. Approximating this
ordinary differential equations with finite difference equations [143, 145, 146],
the corresponding system to Eq. 3.5 is:

xn = xn−1 −
〈F 〉DA,x,n

γ
∆t+

√
2D∆t wx,n

yn = yn−1 −
〈F 〉DA,y,n

γ
∆t+

√
2D∆t wy,n

zn = zn−1 −
〈F 〉DA,z,n

γ
∆t+

√
2D∆t wz,n

(3.6)

where [xn,yn,zn] represent the position of the particle at time tn, wn,i are the
independent Gaussian random numbers with zero mean and unitary variance
that emulate the white noise, and n = 1, ..., N is an index where N = 106 is
the number of computation steps. Moreover, 〈F 〉DA,i,n is the i-th component
of the optical force in dipole approximation (Eqs. 2.43) calculated at the
n-th position. In our simulation, we consider T = 300 K and different time
steps, ∆t, depending on the laser power, e.g., in Fig. 3.1c a typical value of
∆t = 10−7 s has been used for P = 50 mW. The sampling time, tsamp, is
chosen so that tsamp � τot. In fact, because of the trap asymmetry we have
two timescales, τot,z and τot,ρ, associated to the axial and radial stiffnesses,
respectively, and, e.g., at P = 50 mW we obtain τott,z(G = 0) ' 4 · 10−6 s
and τot,ρ(G = 0) ' 10−4 s. Thus, both timescales are much smaller than the
sampling time of tsamp = 0.1 s.

With these tools at hand, it is possible to investigate the dynamics of
the dye-doped silver-silica nanoshell. First of all, we consider three different
gain G = 0, G = −0.132 and G = −0.22. The power in each laser beam
is fixed at 50 mW and the trapping wavelength λ is chosen so that the
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Figure 3.4: (a-c) Brownian dynamics simulation of the dye-doped nanoshell
trajectory in water for gains, G = 0 (a), G = −0.132 (b) and G = −0.22 (c)
and laser power 50 mW. (d-f) Histograms of the nanoshell Brownian motion
for the position tracks considered in (a-c). In (g), mean square displacement
(MSD) along the z direction for various gains (solid lines). These trends
are compared respectively with the analytic limit of the MSDz to infinity,
such as MSDz(∞)→ 2kBT/κ

max
z (dashed lines). In (h), the statistical MSDz

computed at infinity vs gain is shown for different power values in solid
lines. These trends are compared respectively with the analytic limit of the
MSDz to infinity, shown in dashed lines. The simulation time is 0.1 s and
the trapping wavelength has been chosen so that optical trapping forces are
maximized for each gain considered.
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trap stiffnesses are at their maxima for each gain. In Figs. 3.4a and 3.4c,
we show the simulation of the particle trajectories along the axial direction
z that are the starting point of the analysis. When G = 0, Fig. 3.4a, the
particle is not trapped, the nanoshell jumps in the standing wave maxima and
therefore its position is never locked in any of the optical potential minima
exploring more than 2 µm within 0.1 s. When G = −0.132, Fig. 3.4b, the
particle trajectory fluctuates around its equilibrium position (z = 0) and
the nanoshell is trapped in the central intensity maximum of the standing
wave. For the highest gain G = −0.22, (Fig. 3.4c), the tracking profile is
tightly locked in the z = 0 position with much smaller fluctuations. We can
further quantify our analysis by calculating the position histograms and the
mean square displacements of these trajectories. Figs. 3.4d and 3.4f show the
position histograms corresponding to the three considered gain. For the case
of G = 0, Fig. 3.4d, the nanoshell interacts very weakly with the trapping
beam and the thermal noise contribution to the dynamics is much larger
than the trapping potential depth. The particle explores several standing
wave intensity maxima that show up in the structure of the histogram as
different peaks with widths of the order of ∼ 200 nm, of the same order of the
standing wave periodicity. Instead, increasing gain (G = −0.132, Fig. 3.4e),
the particle position appears locked to the central intensity maximum of the
double-beam OT. The thermal noise contribution is smaller than the trapping
potential depth and the nanoparticle explores only a 19 nm region around the
central high intensity spot. For the highest gain G = −0.22, (Fig.3.4f), the
position distribution is extremely narrow, and the gain-enhanced gradient
force tightly confines the particle within only 2 nm.

We now consider the behaviour of the particle mean square displace-
ment, MSDz, along axial z direction as a function of gain. This quantity
computes the deviation of the particle position (Eqs. 3.6), zn, from its pre-
ceding position for each time interval ∆t, MSDz(tn) = 〈|zn − zn−m|2〉m =∑n

m=1 |zn − zn−m|2/n. Therefore, in Fig. 3.4g, we have considered the cal-
culated statistical MSDz versus time for increasing the gain (solid lines) and
compared them to the MSD analytically calculated considering the harmonic
approximation for small displacements around z = 0 (dashed lines) where
MSDz can be calculated analytically in terms of trap stiffnesses [7, 15],
MSDz(t) = (2kBT/κ

max
z ) [1− exp (−t/τto)]. Hence, at long times we have

that MSDz(∞)→ 2kBT/κ
max
z . We note that in Fig. 3.4g the value of MSDz

approaches to MSDz(∞) only for the highest gain (G = −0.22). This occurs
when the potential energy barrier is so high that the thermal fluctuations
do not have enough energy to drive the hopping between the different po-
tential wells in the standing wave. Consequently, the small displacements
approximation gives a reliable description of the dynamics and the theo-
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retical trapping constants (Fig. 3.2i) can be safely used to predict the MSD
values. On the other hand, for the lower gains the MSDz from the simulation
is larger than the values predicted by the small displacements approximation
with increasing discrepancies as the gain decreases. At zero gain optical
potential barriers are much lower than the energy of the thermal fluctua-
tions. Thus, the particle hops between several standing wave maxima and
the small displacement approximation does not give a reliable description of
the simulated particle dynamics.

Another parameter of the double-beam OT is the laser beam power that
will crucially determine the optical trapping dynamics of the dye-doped
nanoshell. In Fig. 3.4h (solid lines) we study the MSD at infinity, MSDz(∞),
as a function of gain parameterized for different power P . Since optical
forces increase with laser power strengthening the trap, for each gain value
MSDz(∞) decreases with increasing power and the tightest confinement oc-
curs at high gain values and high power. Also in this case, we compare
the analysis of the Brownian dynamics results with the analytical values of
MSDz(∞) obtained using the harmonic approximation for the standing wave
trapping (dashed lines). For each power, the simulation results tend to over-
lap with the harmonic approximation as gain increases. The trapping of
the nanoshell is so efficient at high gain that the dynamics can be faithfully
studied in the single-trap harmonic approximation.

Finally, we describe simulations of a possible practical situation when
dye-doped nanoshell particles are immersed in a microfluidic flow and laser
light is selectively tuned across the gain-enhanced resonance for position lock-
ing, channeling or sorting in a fashion similar to what has been developed
for cold atoms [147, 148]. We consider nanoshell particles in water with a
high gain G = −0.22 and tune the double-beam OT wavelength within a
fraction of nanometer across the sharp resonance peak (see Fig. 3.2g) so that
the sign of the gradient force is switched (see Figs. 3.2h,i). In the simu-
lations the power of the single Gaussian beam is fixed at 50 mW and the
trajectory is simulated for 0.1 s. In order to emulate a generic particle flux,
we have considered three identical nanoshells whose dynamics evolve from
three different starting positions r01 = (0,−400,−250) nm, r02 = (0,−400, 0)
nm, r03 = (0,−400, 250) nm with constant flow velocity v0 = (0,1,0) mm/s.
The reference system origin is taken in correspondence of the center of the
double-beam OT. First, we simulate the particle motion with a double-beam
OT wavelength of λmax ' 531.9 nm, corresponding to the maximum trap-
ping force. Due to the positive sign of the optical force components, the
flowing nanoshells are high-field seekers and their position evolve towards
specific equilibrium points within the standing wave maxima. Fig. 3.5a show
the trajectories, projected on the yz plane, of the three particles superposed
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Figure 3.5: Nanoparticles trajectory projections on yz plane are plotted for
G = −0.22 both for λ ' 531.9 nm (a), when Re{α}/ε0 ' 5.02 · 106 nm3, and
for λ ' 531.5 nm (b), when Re{α}/ε0 ' −5.88·106 nm3. In (a), the radiation
intensity maxima correspond to the minima of the optical potential. There-
fore, these are attraction points for nanoshells that flow into the standing
wave region from three different points r01 = (0,−400,−250) nm, r02 = (0,-
400,0) nm, r03 = (0,−400, 250) nm with constant flow velocity v0 = (0,1,0)
mm/s. Instead, in (b), the intensity maxima correspond to the maximum of
the optical potential and the gradient force is maximally repulsive. In this
way, the motion of the three nanoshells (with the same initial conditions of
the previous situation) is channeled. Each trajectory is simulated for 0.1 s
and the power of the single Gaussian beam is fixed at 50 mW.
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with the standing wave intensity pattern. Conversely, when the wavelength
is tuned to λmin ' 531.5 nm, the optical force is reversed and the flowing
nanoshells are low-field seekers. Fig. 3.5b shows that the standing wave max-
ima act as repulsive spots and the particles are efficiently channelled through
the standing wave intensity minima. We note that the role of radiation pres-
sure by the pump field has not been considered in our analysis. Although it
can be a source of instability for optical trapping, a double beam configura-
tion can be always applied so that also for the pump field scattering forces
are balanced in the trap region.
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Chapter 4

Spin-dependent optical forces
in optically trapped nanowires

4.1 Introduction

In classical electrodynamics, the linear momentum of light p, related to
the Poynting vector S, is not trivially associated with, not directed par-
allel to, the local wavevector k [149]. In recent years, there has been an
increasing interest in investigating, both theoretically and experimentally,
configurations and effects connected with the transverse (with respect to the
wavevector) components of the Poynting vector, where the interaction of
light with particles can lead to extraordinary spin-dependent optical forces
[77, 80, 150–160].

The origin of this extraordinary component can be understood in the
framework of relativistic field theory [161, 162] applied to the free electro-
magnetic field Lagrangian, in vacuum. Nöether’s theorem produces a current
for the canonical non-symmetric gauge dependent energy-momentum tensor
[158, 161–163]. In 1940, Belinfante suggested a symmetrization procedure
starting from the spin tensor, in such manner to make it gauge-invariant
and symmetric [164]. However, the Belinfante spin-correction term has been
usually regarded as ’virtual’ because it does not contribute to the energy-
momentum conservation law, energy transport, and integral momentum of
a localized field [150, 165]. Despite this, recently it has been shown that
simple optical fields offer an opportunity to investigate, simultaneously and
independently, effects connected to the canonical and spin momenta of light
in experiments with optical forces [156, 159]. In particular, Bekshaev et al.
[155] analyzed the interference field formed by two electromagnetic plane
waves (with the same frequency but different wave vectors) and they found
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that such a field reveals a rich and highly non-trivial structure of the local
momentum and spin densities. Antognozzi et al. [158] measured for the first
time the extraordinary optical momentum and transverse spin-dependent
force using a femtoNewton-resolution nano-cantilever immersed in an evanes-
cent optical field above a total internal reflecting glass surface. Similarly, Liu
et al. [166] reported the simultaneous measurement on Mie particle of all
components of the polarization-dependent optical force by using a 3D force
spectroscopy technique with femto-Newton sensitivity. Ginis et al. argue
that the Belinfante momentum transfer to particles in the evanescent field
of waveguides depends locally on the light helicity [167]. In brief, the idea
behind these theoretical configurations and experiments is the use of non-
homogeneous incident fields to bring out measurable mechanical effects of
the ’Belinfante’ contribution.

In this chapter, we present the role of the shape of the scatterer on the
spin-dependent components of the optical force. We first consider a plane
wave illumination, hence we investigate the configuration of focused fields
occurring in optical tweezers [15, 44], where a laser beam is tightly focused
by a high numerical aperture lens. OT has been extensively used in re-
cent years to trap non-spherical particles and to detect forces and torques in
the femtonewton range [47, 58, 110, 168]. Alternatively, a striking range of
non-equilibrium phenomena have been revealed in levitated particles caused
by the transverse spin-dependent forces combined with thermal fluctuations
[169] and birefringence [170]. More specifically, we show the occurrence of
spin-dependent optical forces on an optically trapped tilted zinc oxide (ZnO)
nanowire illuminated by circularly polarized light. In fact, through light scat-
tering calculations in the T-matrix formalism [2, 90], that the non-spherical
shape of the scatterer and its angular tilting yield non-conservative com-
ponents of the optical force perpendicular to the circularly polarized light
propagation direction. We connect these non-conservative components to
the symmetry breaking of local spin density maps and to the occurrence of
an optical force vorticity [9].

4.2 Extraordinary momentum component and

spin density on ZnO nanowires

In our calculations we consider a parameters close to typical system used
in real experiments. In particular, we model the ZnO nanowire by a linear
cluster of N = 10 homogeneous spherical particles, each with a radius of
50 nm, so that the nanowire length is equal to LNW = 1 µm. The particle
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Figure 4.1: (a) The model nanowire has 1 µm length and it is tilted by
an angle θ with respct to the incident light wavevector, ki||z, in the x − z
plane. It is composed by N = 10 spheres of radius a = 50 nm. A circu-
larly polarized plane wave impinging along z on the tilted nanowire yields
a shape-dependent optical force component along x and a spin-dependent
optical force component along y. (b) When placed in a circularly polarized
optical tweezers (NA = 1.3) contributions to the optical force from the extra-
ordinary momentum are enhanced by the elongated shape. The directions of
the canonical momentum Pcan (parallel to the local wavevector k) and the
spin momentum Pspin (along y-direction) are sketched. In (c), the intensity
xy map of the incident circularly polarized focused field square module |Ei|2,
normalized to the field square module entering the objective lens |E0|2, is
shown. Its spin-density maps, s̃z,i, are shown in (d) and (e) for left and right
polarization, respectively.
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refractive index at the exciting wavelength (λ0 = 830 nm) is np = 1.96 and
the surrounding medium is water, nm = 1.33. The nanowire is tilted in the
xz-plane by an angle θ (see geometry in Figs. 4.1a, 4.1b). By irradiating
the nanowire, the time-averaged canonical, spin, and Poynting momentum
densities can be defined. Therefore, for a generic harmonic field in a dielectric
medium, assuming the Coulomb gauge, [150, 160, 171–173]:

Pcan = εm
4ω
=
{

(E∗ · ∇)E + c2

n2
m

(B∗ · ∇)B
}
,

Pspin = εm
8ω
∇×=

{
E∗ × E + c2

n2
m

B∗ ×B
}
, (4.1)

S = Pcan + Pspin = ε0c2

2
<{E∗ ×B} .

Here, E and B are the total electric and magnetic field, obtained sum-
ming the incident and the scattering contributions. The spin momentum in
the Eqs. 4.1 represents a solenoidal edge current, which is generated by the
intrinsic spin angular momentum of the field:

Pspin = 1
2
∇× s,

s = εm
2ω
={E∗ × E} = εm

2ω
|E0|2s̃, (4.2)

where s̃ is the vector of spin-1 matrices and produced by the spin angu-
lar momentum density s of the field in the case of non-magnetic medium
[150, 160, 171, 173, 174]. The canonical momentum in Eqs. 4.2 is indepen-
dent of polarization and referred to as the orbital component of the Poynting
linear momentum. This component is responsible for the scattering force on
a point particle [169]. In contrast to the orbital component, the Belinfante
spin momentum, Pspin, is determined by inhomogeneous circular polariza-
tion and phase inhomogeneity of the field rather than by its wavevector
and it is responsible for the difference between the local propagation and
Poynting-vector directions in structured light [151, 155, 164, 165]. The ori-
gin of this component can be understood in terms of spin momentum loops
[151] that are balanced in homogeneous fields (such as a circularly polar-
ized plane wave), while whose balance is broken when spatial inhomogeneity,
such as intensity gradients, are present. In this latter case, spin-dependent
force components can arise in transverse directions with respect to the field
propagation. For example, for a tightly focused circularly polarized optical
beam (see Figs. 4.1b, 4.1c) propagating along the z-axis, we have that the
averaged scattering force component related to the canonical momentum is
directed along the z direction. While we expect that the transverse com-
ponent of the optical scattering force related to the linear spin momentum
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Figure 4.2: Cartesian components of the radiation force normalized to power,
Fx, Fy, Fz, as a function of the nanowire tilting polar angle θ. In (a), (b),
(c) the incoming field is a plane-wave, in which the flat/top approximation
is used, and in (d), (e), (f) the incoming field is a the focused field where
NA= 1.3. The considered laser power is P = 10 mW.

can be revealed along the y-axis. In Figs. 4.1d, 4.1e, we have also plotted
s̃z,i = ={E∗i × Ei} /|E0|2|z for circularly left- and right-polarized incident
focused field Ei respectively. This is proportional (Eq. 4.2) to the spin den-
sity sz,i. As expected, in both cases the spin-density sign is well defined
with s

σ+
z,i = −s

σ−
z,i , since they correspond to two opposite values of the helic-

ity of the incident radiation. We note that for non-paraxial focusing small
transverse orbital components are produced by spin-orbit coupling [175] that
might contribute to the spin-dependent transverse force. However, even for
the tight focusing of optical tweezers we expect these orbital contributions
to be at least six times smaller than spin-dependent ones [169].
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4.3 Spin-dependent optical force components

A first indication of the occurrence of the spin-dependent force compo-
nents on the tilted nanowire is given by calculating optical forces for plane
wave illumination (Fig. 4.1a) and at the nominal focus of an OT focused
field (Fig. 4.1b). In Fig. 4.2 we show the optical force dependence on the
nanowire tilting polar angle θ and field polarization for plane wave illumi-
nation, Figs. 4.2a, 4.2b, 4.2c, and in the optical tweezers, Figs. 4.2d, 4.2e,
4.2f. Thus, we can appreciate quantitatively how the OT enhances the ef-
fect under study. Concerning the plane wave case, we calculated Fx, Fy, Fz
starting from the Eq. 2.55, and we consider |E0|2 = 2εmI0/c with I0 is the
intensity of the incoming field E0 [15]. We consider a realistic value of inten-
sity I0 = 10 mW/µm2 that can be easily compared to the case of the tightly
focused beam of an optical tweezers. In Figs. 4.2a, 4.2b, 4.2c we represent
the graphs through different coloured lines comparing the forces for linear
x-polarized (blue) and circularly polarized (red and magenta) plane waves.
The first plot (Fig. 4.2a) shows the behaviour of the in-plane transverse
x−component of the radiation force. Both linear and circular polarization
result in a similar trend with tilting angle, showing a negative force pushing
the nanowire opposite to its tilting. Most importantly, both the circular po-
larizations, left and right, yield the same transverse radiation pressure cross
section (shown in red). Hence, the in-plane force x−component is the results
of the non-spherical shape, but it is not dependent on spin. Similar consider-
ations hold for Fig. 4.2c, that represents the longitudinal radiation pressure,
i.e. Fz ∼ σrad. Also in this case, both the x-linear and circular polarizations
yield a similar angular dependence for a positive force, and no dependence
of the force on light helicity. We note that the quantitative differences in the
optical forces for linear and circular polarization shown in Figs. 4.2a, 4.2c
are related to the anisotropic polarizability of the nanowire. This is more
polarizable parallel to its axis than in perpendicular directions. Thus, the
polarization field within the nanowire depends on its orientation relative to
the polarization of the external optical field. In turn, the Lorentz force act-
ing on an infinitesimal element of the nanowire depends on its polarization.
The total force on the wire is the sum of such contributions and depends,
therefore, on the orientation of the wire relative to the polarization of the
external field. Alternatively, optical forces can be considered in terms of the
T-matrix formulation described in Sect. 2.6. The incident Gaussian beam
can be written in terms of a helicity basis of left- and right-hand circularly
polarized beams. In this notation, a linearly polarized beam is a sum of
a right circularly polarized beam and a left circular polarized beam with a
phase shift that determines the direction of linear polarization. Similarly, the
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scattered field contains two components, one associated with each circular
polarization state. In the context of T-matrix theory the force is a quadratic
function of the total (incident plus scattered) field. For a linearly polarized
beam, this quadratic term contains cross terms involving, for example, the
incident right circular polarized beam, and the field scattered by the left
circular polarized beam. These cross terms are completely absent from the
expression for the force produced by a right circular polarized or left circular
polarized beam independently.

Instead, a striking difference occurs for the out-of-plane force component,
Fy, shown in Fig. 4.2b. This is zero for x-linear polarization, while for circular
polarization a non-zero transverse force component occurs as the nanowire
is tilted. Moreover, it changes its sign for opposite circular polarized light.
For left-handed light, σ+, the spin-dependent force onsets from 0 at θ = 0◦,
it becomes negative up to θ = 45◦, then changes sign up to a maximum at
about θ = 70◦, and finally goes back to zero, as expected, when the nanowire
is at θ = 90◦. For right-handed light, σ−, the dependence is opposite. This
already clearly shows that the onset of a spin-component of the optical force is
crucially related to the shape and symmetry of the scatterer. Indeed, optical
force components on a scattering body will generally be non-zero, unless
prohibited by symmetry. For instance, an optical force cannot act normally
to a symmetry plane. Thus the forces shown in Fig. 4.2b are consistent with
symmetry. However, they are unusual in that the y component of the incident
momentum is identically zero. These forces arise due to a compensating
momentum appearing in the total field as a consequence of scattering.

Figures 4.2d, 4.2e, 4.2f show different coloured lines comparing the forces
for linear (blue) and circularly polarized (red and magenta) focused fields. In
this case, the (x, y, z) components of the optical trapping force are computed
on the points of a grid employed with specified resolution (51 points per axis).
These components are calculated over a range of 1 µm around the nominal
focus of the beam. Analytically, we use the Eqs. 2.62, 2.63, in which a laser
power P = 10 mW is considered. Even in this case, Figs. 4.2d, 4.2f show
that for the components x and z of the radiation force F l

x,z 6= F σ
x,z. The two

curves have a minimum in proximity of θ ≈ 50◦, which shows that the mod-
ule of the transverse optical force is maximum when the symmetry breaking
is maximum. We expect this angle to depend on the numerical aperture
of the system because of the geometrical interplay between the focal spot
(axial and transverse) size and the length of the nanowire. For a nanowire
longer than the axial spot size the numerical aperture has an influence in the
shape of the spot. For a focused Gaussian beam, considering the axial to
transverse size ratio, zR/w0 and w0 = 0.5λ/NA being the diffraction limited
transverse size, and by geometrical consideration, we expect a maximum at
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around arctan(zR/w0) that for NA = 1.3 is about θ ≈ 40◦. For a nanowire
much shorter than the transverse spot size, the nanowire is contained within
the high intensity region of the focal spot and we expect a behavior similar
to the plane wave case with differences controlled by the beam polarization
and a shift of the maximum toward longer tilt angles (θ ≈ 55◦). Thus, for
intermediate situations, such as the one considered in Fig. 2, we expect the
angle for which the maximum transverse force occurs to lie between these
two situations, as observed. In analogy with the phenomenon of optical lift
[67, 93], the nanowire behaves like ’a sail in the wind’ that can turn left
or right depending on its orientation. This ’sailing effect’ is also evident in
the longitudinal component, Fz, as visualized in Fig. 4.2f. For both linear
and circular polarization F l,σ

z at 0◦ are small and, by tilting the nanowire,
they increase until a maximum is reached at θ = 90◦ when the nanowire is
perpendicular to the laser beam propagation direction maximizing its cross
section. Both x and z force components are not dependent on the light helic-
ity and the calculations for left-handed σ+ and right-handed σ− yield exactly
the same results. Instead, Fig. 4.2e shows a breaking of chiral symmetry
since F σ+

y is exactly opposite to F σ−
y while for each polar angle F l

y is null.
Thus, the optical force y-component is spin-dependent and occurs only when
the light is circularly polarized. Both circular polarizations show a maximum
modulus of the force at around θ ≈ 45◦, when the symmetry breaking is max-
imum. Comparing the curves in the plane-waves (Figs. 4.2a, 4.2b, 4.2c) and
those in the focused field (Figs. 4.2d, 4.2e, 4.2f), it is evident how, when the
focused laser beams are used, the component of the non-conservative force
Fy is greater than in the case of a plane wave, i.e. |F σ

y,foc.|/|F σ
y,p.w.| ∼ 102.

Moreover, |F σ
y,foc.| has the same order of magnitude with respect to the other

components and, therefore, it is in principle detectable.
The strong dependence between the optical force y-component and the

spin is deducible by analyzing the same spin density behaviour (Eq. 4.2).
Therefore, in Fig. 4.3 we present how the z−component of the total field spin-
density s̃z is distributed in the focal region xy-plane when the nanowire is
tilted at θ = (0◦, 30◦, 45◦, 60◦). In particular, we pay attention only on the sσ+z
because |sσ+z | = |sσ−z |, as we can predict by observing the z-component of the
incident field spin intensity (Figs. 4.3c, 4.3d). Starting from the symmetrical
configuration at θ = 0◦ (Fig. 4.3e), and tilting the nanowire at θ = 30◦

(Figs. 4.3f), 45◦ (Figs. 4.3g), and at θ = 45◦ (Fig. 4.3h), s̃σ+z appears with
an increasing number of hot-spots. In the origin, the spin density is strongly
non-zero just when the cylindrical symmetry is broken. To emphasize the
relation between the nanorod shape and the inhomogeneities of the spin
distribution, we place the nanowire center of mass is at a generic point of
the grid that, for instance, is chosen at (0.1,0,0) µm (Figs. 4.3i, 4.3j, 4.3k,
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Figure 4.3: Maps in the xy-plane near the focus of the total field spin-
density along z-direction in left circular polarization s̃σ+z . The nanowire is
at θ = (0◦, 30◦, 45◦60◦), sketched respectively in (a), (b), (c), (d). In (e),
(f), (g), (h) for these three configurations the nanowire is placed in such a
manner its center of mass is on the reference system center. Instead, in (i),
(j), (k), (l) respectively the nanowire is placed in such a manner its center of
mass is on the on the coordinate point (0.1,0,0)µm.
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4.3l). In addition to the features shown in the case of nanowire with center
of mass placed on the reference system center, the s̃σ+z distributions appears
less and less circular as the tilting angle increases.

4.4 Non-conservative force components and

optical force vorticity

To better appreciate how the left and right-handed circular polarization
forces behave in the focal region, in Fig. 4.4 we highlight the differences
between the in-plane non-conservative components of force. In particular, we
plot the local difference F

σ+
i −F

σ−
i , with i = (x, y), for four different nanowire

orientations, θ = (0◦, 30◦, 45◦, 60◦), to also evidence any chiral effect. In
Figs. 4.4a, 4.4b we have this comparison for θ = 0. In this configuration, the
transverse components, zero at the origin, are weakly non-zero and opposite
in sign away from the optical axis. Figs. 4.4c, 4.4d, 4.4e, 4.4f, 4.4g, 4.4h
show the differential maps for θ = 30◦, θ = 45◦, and θ = 60◦, respectively.
Here, the symmetry of the differential maps is fully broken. In particular,
for the spin-dependent component, Fy, the map shows three quasi-oblate
regions standing out: one around the origin (red) where there is a maximum,
and the other two (blue), on the opposite sides of the origin where there is
a minimum. This shows clearly as the transverse optical force depends on
the helicity of the incident radiation, that, in turn, transfers its own chiral
behaviour to the nanowire dynamics. Concerning Fx, the difference is much
smaller because this component is less dependent on the light helicity and it
is not zero only when the nanowire is shifted away from the origin.

To highlight the effects of the transverse force on the nanorod dynamics,
we show in Fig. 4.5 the vectorial force distribution Fσ

ρ ≡ F σ
x x̂+F σ

y ŷ calculated
in the xy focal plane. We notice that in the focal region the interaction
between the incident radiation and the nanowire causes the trapping to take
place so to brings the nanostructure to its maximum stability configuration,
that is when the wire is aligned with the optical axes (θ = 0◦).

According to what we have just shown, it is evident how the chiral ef-
fects are significant in the tilted configuration. In fact, in this case the
force distribution has appeared cylindrically unsymmetrical. Therefore, we
have analyzed the trend of the force curl calculating the quantity Ωc ≡
(∇×Fσ+

ρ )|z−(∇×Fσ−
ρ )|z. We refer it as optical force vorticity being the local

difference between the z-component of the force curl for the two different he-
licities. In fact, the force curl z-component is related to the non-conservative
y-component of radiation force. In Figs. 4.6a, we have the vorticity for θ = 0.

74



(f)

(a)

(d)(c)

(b)

(e)

θ = 0°

θ = 45°

θ = 30°

(h)(g)

θ = 60°

Figure 4.4: Maps in the xy-plane near the focus of the difference between
radiation forces in left circular polarization and right one. The nanowire is
presented in three configurations: when it is at polar angle θ = 0◦, the local
differences F σ+

x −F σ−
x and F σ+

y −F σ−
y are respectively shown in (a) and (b),

when it is at polar angle θ = 30◦, F σ+
x −F σ−

x and F σ+
y −F σ−

y are respectively
shown in (c) and (d), for θ = 45◦ they are, respectively, shown in (e) and
(f); and, when it is at polar angle θ = 60◦, F σ+

x − F σ−
x and F σ+

y − F σ−
y are

respectively shown in (g) and (h). The considered laser power is P = 10
mW.
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Figure 4.5: Maps in the xy-plane strongly near the focus of radiation force
vector in left circular polarization and right one. The nanowire is presented
in three configurations. When it is at polar angle θ = 0◦, Fσ+

ρ and Fσ−
ρ are

respectively shown in (a) and (b), when it is at polar angle θ = 30◦, Fσ+
ρ and

Fσ−
ρ are respectively shown in (c) and (d), for θ = 45◦ they are, respectively,

shown in (e) and (f); and, when it is at polar angle θ = 60◦, Fσ+
ρ and Fσ−

ρ

are respectively shown in (g) and (h). The considered laser power is P = 10
mW.
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Figure 4.6: Maps in the xy-plane near the focus of the ’Vorticity’ Ωc, under-
stood as the difference between the curl of the radiation force in left circular
polarization and right one. The nanowire is presented in the four configura-
tions when it is at polar angle θ = (0◦, 30◦, 45◦, 60◦). For each angle, Ωc are
respectively shown in (a), (b), (c), (d). The considered laser power is P = 10
mW.
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In this configuration, as the local distributions Fσ+
ρ and Fσ−

ρ are similar, the
map shows a circular symmetry around z-axis. Figs. 4.6b, 4.6c, and 4.6d
show the differential maps for θ = 30◦, θ = 45◦ and θ = 60◦, respectively.
Here, the symmetry of the differential maps is fully broken, not only because
of the different orientation of the nanostructure, but also because of the dif-
ferent helicity transferred from the incident field to the non-conservative force
components.
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Chapter 5

Spectropolarimetric constraints
on interstellar dust modelling

5.1 A dusty universe

We live in a dusty galaxy, one of billions of galaxies in the Universe.
Almost all of them are dusty. Up to the mid-20th century, this dust was
considered only as an unfortunate impediment to precise observations of
stars and galaxies, regarded as the most important items in the Universe.
The modern view of dust as a cosmic component has completely reversed the
earlier view. We now know that many aspects of the formation of planets,
stars, and galaxies are influenced in some way by interstellar dust [176].
The involvement of dust grains in providing molecules important for the
origin of life, and in the safe transmission of those species to newly-forming
planets orbiting Sun-like stars [177], has been one of the greatest surprises of
all. Therefore, it is no wonder that considerable efforts are currently placed
in trying to understand nature, composition, and evolution of dust in the
interstellar medium.

There is now a robust evidence that dust grains condense in circumstellar
environments, mainly AGB (Asymptotic Giant Branch) stars [178] and su-
pernovae [179, 180], from which they are ejected in the interstellar medium.
There, dust is tightly mixed with the gas, with the dust representing only
a minor fraction of the total mass. The gas-to-dust mass ratio locally as-
sumes the fairly constant value of 100 [181]. The dependence of this ratio
on the metal content among galaxies and within a galaxy is an important
issue from a cosmic perspective for a number of reasons [182], including the
appearance of the first solids in the early Universe [183]. In late-type galax-
ies, like our own, this ratio scales with the metallicity, decreasing with the
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galactocentric radius, a clear indication that dust growth in the interstel-
lar medium dominates over destruction [184]. As a consequence, stardust,
literally dust formed around stars, is not the same as interstellar dust, and
must be regarded as the raw material from which true interstellar grains are
formed. Such a material is modified and destructured by violent interstellar
processes [185], before being reformed and reassembled in denser interstellar
regions [186].

Modifying processes continue to act throughout the lifetime of a grain,
some hundreds of millions of years in the Milky Way. In some cases, such
modifications may be catastrophic, as during the formation of a planetary
system. In the Solar System, the patterns of isotopic abundances that are
found in survived presolar grains identify their origins in the cool envelopes
of evolved low mass stars and in supernovae ejecta. These particles have
passed through many destruction processes, including their ejection from the
stellar envelopes, their passage through the interstellar medium where they
have been subjected to intense radiation fields and dynamical shocks, their
incorporation into the molecular cloud that formed the Solar System, and
through all the violent processes involved in the formation of the Sun and its
planets. Near-stellar dust is modified in the interstellar medium and becomes
interstellar dust which, in turn, may be severely modified or destroyed when
it is incorporated in the gas that forms newly-born planetary systems.

5.1.1 Interstellar dust

Most of the information that we have about interstellar dust is obtained
remotely, by the influence of dust on various kinds of astronomical observa-
tions. These observations may be carried out at a very wide range of wave-
lengths, from X-rays to radio waves, but traditionally the most important and
defining data have come from the infrared, visible, and ultraviolet parts of
the spectrum, summarized through a wavelength-dependent extinction curve
along the lines of sight to individual stars [12]. There are detailed extinction
measurements along hundreds of lines of sight that present similarities in their
shapes. The extinction typically increases from low values in the infrared to
high values in the far ultraviolet, a near-linear portion in the optical region,
a pronounced and broad ”bump” near 217.5 nm, and a final rise of varying
slope into the far ultraviolet. Both the general aspect of the extinction and
the details of specific curves along particular lines of sight provide useful in-
formation, and generally indicate that grains of a wide range of sizes (roughly
nanometers to micrometers) are required [187]. The dominant feature in the
extinction curve is the prominent bump in the near ultraviolet. Its central
position is fixed, although the width of the feature can vary significantly from
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one line of sight to another. It is widely attributed to π? ← π transitions
in aromatic carbon solids [188] or polycyclic aromatic hydrocarbons [189].
The far-ultraviolet rise may be decomposed in a linear contribution, due to
nano-sized particles, and a non-linear component belonging to the partially
invisible (because located beyond the Lyman continuum) σ? ← σ resonance
in aromatic carbon. In the near-infrared, there is a weak absorption feature
at a wavelength of 3.4 µm, detectable on long paths through diffuse gas.
It is characteristic of absorption in the sp3 (aliphatic) C-H stretching bond
[190]. Further into the infrared are two stronger absorption features, at 9.7
and 18 µm, ascribable to silicate materials, from Si-O stretching and O-Si-O
bending modes, respectively. Taken together, these features strongly support
the presence of some form of carbon/hydrocarbon and silicate in the dust.
X-ray scattering and absorption edges provide constraints on grain size and
composition, specifically O, Mg, Si, Fe, and C atoms [191]. There is also a
set of detected infrared emission features occurring at 3.3, 6.2, 7.7, 8.6, and
11.3 µm, indicative of aromatic CH groups. The mechanism responsible for
the excitation of such infrared emission may involve non-equilibrium emission
from polycyclic aromatic hydrocarbons stochastically heated to high temper-
atures by the absorption of individual photons from the interstellar radiation
field [192]. However, the requirement of microscopic sizes can be relaxed if
the emitters of the 3.3 µm and other infrared bands are heated by the chem-
ical energy released from reactions within larger carbon interstellar grains
of mixed sp2/sp3 carbon composition [193]. Such structures have been in
fact observed in some extragalactic objects [194]. Exploiting a ternary phase
diagram where the hydrogen content and the two main bonding types (sp2

and sp3) for carbon constitute the poles, Dartois et al. (2007) [194] were able
to identify the carrier of the spectral features as an interstellar hydrocarbon
belonging to the class of polymeric-like hydrogenated amorphous carbon (a-
C:H), dominated by an aliphatic/olefinic backbone structure. The change
from aliphatic to aromatic structures may occur in environments that se-
lectively dehydrogenate the a-C:H, providing an opportunity for aromatic
molecules to form. These observations, together with observations of very
evolved stars (protoplanetary and planetary nebulae), suggest an evolution
in which aliphatics are converted into aromatic structures [195, 196].

The interpretation of dust observations must take also account of the
available abundances along the line of sight. Astronomical dust is likely
to be an amalgam of a number of different materials, very chaotic in com-
position and structure, with different individual substances dominating at
different wavelengths. These materials are thus fundamentally different from
terrestrial materials. Nuth & Hecht (1990) introduced the concept of chaotic
silicates in which the level of disorder is even greater than for glasses, that
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are characterized by the absence of long-range order in the atomic arrange-
ment beyond nearest neighbours [197]. Since materials may be assembled in
the agglomerate, an astronomical silicate cannot be considered a solid with
a definite stoichiometric composition. They may also occur in groups that
recall solid solutions, in which one or more types of atoms or molecules of the
solid may be partly substituted for the original atoms and molecules without
changing the structure. Olivine and enstatite are excellent examples of solid
solutions. Forsterite, Mg2SiO4, and fayalite, Fe2SiO4, have identical struc-
tures because the ions Mg2+ and Fe2+ are very nearly the same size and are
chemically similar. Very frequently amorphous silicates in space are mislead-
ingly described in terms of the optical properties of these materials. Indeed,
as pointed out by Rietmeijer and Nuth (2013) [198], there are no amorphous
silicates, as the word ”silicate” already implies that the material is crystalline
and could be a mineral. Moreover, astronomical solids may be porous and
therefore of much lower density than a glass. Ultimately, the nature of an
astronomical silicate is rather loosely constrained, to same extent just lim-
ited to a material whose infrared spectrum is dominated by Si-O stretching
and bending vibrations. Thermal annealing (e.g. in shocks) or intense X-ray
irradiation [199] of precursor materials, that were probably amorphous, may
explain the presence of crystalline silicates (see however Ritmejer and Nuth
2013 [198]) in circumstellar regions and protoplanetary disks [200].

Even carbonaceous materials in space are difficult to constrain. A strik-
ing example is given by the nature of the carrier of the interstellar ultraviolet
extinction bump at 217.5 nm, that was originally attributed to small crys-
talline graphite particles [201], followed by a plethora of proposals including
mixture of spheres composed of graphite, amorphous carbon, and silicate
[202], irregular or fractal arrangement of graphite and amorphous carbon
[203], polycyclic aromatic hydrocarbons [204], natural coal [205], and even
electronic transitions of OH− ions in sites of low coordination in silicates
[206]. In general, carbonaceous materials contain greater or lesser hydrogen
fractions, varying proportions of different chemical bonding, and different
degrees of long-range order. All these forms of carbon can, under suitable
conditions, be readily converted from one to another. The manifold of pos-
sible bonding arrangements produces several allotropes of carbon. The best
known are graphite, diamond and amorphous carbon. The physical proper-
ties of carbon vary widely with the allotropic form. Amorphous carbonaceous
materials cover a wide range of compositions, from wide band gap, H-rich,
aliphatic-rich a-C:H to narrow band gap, H-poor, aromatic-rich a-C materi-
als. The properties of a-C:H materials are determined by the sp3/sp2 ratio
for the carbon atoms and the hydrogen concentration. A C-H bond con-
tributes to the formation of sp3 bonding and the reduction of the defects
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in the amorphous carbon network. In general, it is found that the optical
energy gap increases with hydrogen concentration [207].

5.1.2 Core-mantle model and spectropolarimetric con-
straints

Despite the good amount of reliable information regarding interstellar
dust, its nature, morphology, and composition are still much debated and
there are still many open questions. There is not a unique model capable
of justifying the observational evidences described in Subsect. 5.1.1. In this
context, the spectropolarimetric investigation has been used to distinguish
between dust models and gather more information on the grain structure
and composition [208]. In 1949 Hall and Hiltner were the first to realize that
starlight is often slightly linearly polarized, at a level of a few percent [209].
The interpretation was that the interstellar material exhibits differential ex-
tinction, that favours the extinction of starlight in one plane of polarization
over another. Evidently, non-spherical dust grains are aligned. The knowl-
edge of the polarization state of radiation provides far more astrophysical
information than intensity alone, including clues on the optical properties
of grains [210], the conditions under which grains can be aligned [211], and
their morphology [212].

Basically, the carbon and the silicate components play the main role in
current dust models, although they appear in different forms. Draine & Lee
consider that graphite is the major grain carbon sink and that the silicate
and graphite components are bare and physically separated in dust [213].
Mathis & Whiffen assume the dust to be low-density aggregates of small
silicates and carbonaceous particles [214]. Jones, Duley & Williams assume
that silicate grains are coated with a carbonaceous mantle made of either
HAC or organic refractory [215]. Such model has proven to be successful
in reproducing the interstellar extinction curve also respecting the element
abundance constraints [215–217]. In this model carbon from the gas phase
is deposited on silicate grain cores as H-rich sp3 carbon, then processed by
the ultraviolet field and aromatized, progressively becoming sp2 carbon, and
ultimately removed in shocks [195, 217]. The process can be conversed under
the grain exposure to hot H atoms. Within this picture, we have a silicate core
covered by two distinct carbon mantles, an inner ’old’ processed sp2 carbon
mantle and an outer ’young’ mantle of freshly deposited sp3 carbon. So, we
have two competitive processes characterized by two different timescales, the
rate of carbon deposition from the gas phase and the photodarkening rate,
giving the conversion rate from sp3 to sp2 carbon [195, 217].
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The core-mantle model has been seriously challenged by the spectropo-
larimetric observations of the carbon 3.4 µm feature [212]. Such absorption
feature, observed in the diffuse interstellar medium, is commonly attributed
to the C-H stretching mode in aliphatic hydrocarbons residing in some com-
ponents of interstellar dust. Chiar et al. found that this feature is negligibly
polarized for a line of sight toward the Galactic Center [208]. Such evidence,
together with the observation of a strong polarization in the silicate feature
at 9.7 µm along the same sightline, suggests that carbon and silicate grains
are separate components. In this picture the silicate grains appear to be
non-spherical and aligned so as to originate the observed strong polarization
feature at 9.7 µm, while the carbon grains should not be aligned to explain
the non-detection of polarization in the 3.4 µm feature [212].

5.2 Polarization results

Interstellar polarization is caused by the differential extinction of the two
perpendicular electric vectors of starlight by aligned, non-spherical grains.
A lower polarization degree of the 3.4 µm feature substantially corresponds
to a lower elongation of the 3.4 µm carrier. Chiar et al. places an upper
observational limit on the 3.4 µm relative polarization of the Galactic Centre
quintuplet object GCS 3-II [208]:

P3.4/A3.4

P9.7/A9.7

≈ 0.13 (5.1)

where P3.4 and P9.7 are the ’excess’ polarization referred respectively to the
3.4 µm and 9.7 µm features, while A3.4 and A9.7 are the excess average
extinctions referred respectively to the 3.4 µm and 9.7 µm features. By
’excess’, we mean the extinction and the absorption feature polarization in
excess of the continuum extinction and polarization underneath the feature.
To alleviate the challenge on the core-mantle model, Li et al. considered
an extreme case, proposing a model made by elongated (spheroidal) silicate
cores coated with spherical layers of aliphatic hydrocarbons [212]. The basic
idea behind this model is that, since the carbon mantle is much less elongated
than the silicate core, the 3.4 µm feature would result polarized to a much
smaller degree than the 9.7 µm silicate feature. However, the computed 3.4
µm feature polarization still exceeds the observational upper limit placed by
Chiar [212].

We follow a different approach and try to understand if the challenge may
be alleviated modeling the dust as aggregates of core-shell grains. To this
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aim, we consider many different cluster models and calculate the resulting
extinction and polarization through the T-Matrix method (Subsect. 1.5.2).

5.2.1 Results for core-mantle grain aggregates and com-
posite dust models

In our numerical investigation, first we present the extinction and po-
larization results for some cluster configurations inspired by the core-mantle
model provided by Jones et. al [215, 217]. In agreement with the abundance
constraints and with the evidence that interstellar dust grains are rather elon-
gated, we have generated aggregates whose related inertia ellipsoid has an
eccentricity lower than unity. Each structure presents nine spheric monomers
which have different radii. In Figs. 5.1a, 5.1b, 5.1c three aggregates of sil-
icate core-carbon mantle spheres are shown. The silicate core is made of
olivine (Fe,Mg)2SiO4 while the outer shell is sp3 amorphous carbon [195].
The olivine refractive index is provided by Draine & Li while the carbon op-
tical constants are given by Ashok et al. [213, 218]. The three models have
different morphologies, going from the most elongated structure in Fig. 5.1a
(very fluffy aggregate) to the most compact one in Fig. 5.1c. The major semi-
axis of the equivalent inertia ellipsoid is respectively r = 0.2 µm (Fig. 5.1a),
r = 0.16 µm (Fig. 5.1b), r = 0.11 µm (Fig. 5.1c). The polarization to ex-
tinction ratio corresponding to these three structures is shown in Fig. 5.1h as
a function of the carbon-silicate volume fraction (dashed line: fluffy cluster,
dotted line: very fluffy, and dash-dotted line: compact cluster).

In Fig. 5.1d, we model a composite interstellar grain (mixed aggregate)
made by six stratified spheres, with a silicate core and a sp2/sp3 carbon coat-
ing, and three homogeneous spheres of amorphous carbon. The geometric
configuration of the cluster is the same as in Fig. 5.1b. In the numerical
simulations we increased gradually the percentage composition of sp2 carbon
in the mantle, going from zero (corresponding to a completely sp3 carbon
mantle) to a completely sp2 carbon mantle (see Fig. 5.1h) corresponding
to a situation where all the carbon mantle has been processed by the ul-
traviolet radiation. In Fig. 5.1h the polarization to extinction ratios are
shown corresponding to the different carbon mantle composition and assum-
ing VCarb/VSil = 1.

In Fig. 5.1e (big fluffy model) we show again a core-mantle cluster model,
with dimensions ten times larger than the cluster in Fig. 5.1b. The aim is to
explore the same configuration but on a larger scale. In Fig. 5.1f we model
a composite aggregate, following the Mathis model [214], made by homoge-
neous spheres. Specifically, we have four silicate spheres and five amorphous
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Figure 5.1: Polarization to extinction ratios for different dust grain struc-
tures. (a), (b), (c) Aggregates of core-mantle grains with a silicate core
and a carbon shell. (d) Composite core-shell and carbon sphere cluster. Six
stratified spheres present a silicate core and a sp2/sp3 carbon external coating
while three spheres are entirely composed of amorphous carbon. (e) Aggre-
gate of core-mantle grains, with dimensions ten times larger than the cluster
in (b). (f) Composite model made by four homogeneous silicate spheres and
five homogeneous amorphous carbon spheres. (g) Stratified cluster models
like the cluster in (b) with the addition of an ice external shell. (h) 3.4 µm
polarization to extinction ratios for the different models.
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0 0.728 0.26 0.35 0.564 0.21 0.37 0.312 0.12 0.38

5
0 0.882 0.32 0.37 0.696 0.27 0.38 0.256 0.10 0.40

7
5 1.039 0.39 0.37 0.871 0.34 0.39 0.211 0.09 0.41

9
5 1.242 0.47 0.37 1.173 0.47 0.40 0.071 0.03 0.42

head

tail

Table 5.1: Polarization to extinction ratios for different configurations of
the head-tail model. The head and the tail are characterized by different
percentages fsp2 of processed carbon in the shells. The cluster major axis is
oriented perpendicularly to the incident field direction.

carbon spheres. In this way, we completely separate the silicate components
from the carbon ones, making in principle the polarization of the 3.4 µm
feature independent from that of the silicate feature at 9.7 µm. Finally, in
Fig. 5.1g we show a core-mantle cluster model, similar to the one in Fig. 5.1b,
with the addition of an ice external shell. As can be seen from Fig. 5.1h,
none of the aforementioned models presents satisfactory polarimetric results.
All the results are above the threshold value of 0.13 (solid line) indicated by
Chiar et al. [208]. These results show that all the explored models so far
do not respect the polarimetric observational constraints and seem to push
towards the failure of the core-mantle model.

5.2.2 Head-tail cluster model

We try to alleviate the polarization challenge exploring different grain
structures. We model the core-mantle grain aggregate with a head-tail con-
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ቚൗ𝒓 𝑹 𝐡𝐞𝐚𝐝
< ቚൗ𝒓 𝑹 𝐭𝐚𝐢𝐥

ቚൗ𝒓 𝑹 𝐡𝐞𝐚𝐝
= ቚൗ𝒓 𝑹 𝐭𝐚𝐢𝐥

ቚൗ𝒓 𝑹 𝐡𝐞𝐚𝐝
> ቚൗ𝒓 𝑹 𝐭𝐚𝐢𝐥

Τ𝑷𝟑,𝟒 𝑨𝟑,𝟒

Τ𝑷𝟗,𝟕 𝑨𝟗,𝟕

Τ𝑷𝟑,𝟒 𝑨𝟑,𝟒 Τ𝑷𝟗,𝟕 𝑨𝟗,𝟕 Τ𝑷𝟑,𝟒 𝑨𝟑,𝟒

Τ𝑷𝟗,𝟕 𝑨𝟗,𝟕

Τ𝑷𝟑,𝟒 𝑨𝟑,𝟒 Τ𝑷𝟗,𝟕 𝑨𝟗,𝟕 Τ𝑷𝟑,𝟒 𝑨𝟑,𝟒

Τ𝑷𝟗,𝟕 𝑨𝟗,𝟕

Τ𝑷𝟑,𝟒 𝑨𝟑,𝟒 Τ𝑷𝟗,𝟕 𝑨𝟗,𝟕

1
.2

5 0.105 0.05 0.47 0.194 0.08 0.4 0.948 0.33 0.34

1

0.071

0.03 0.419

0.236 0.09 0.37 0.893 0.3 0.33

0
.7

5 0.019 0.008 0.39 0.274 0.01 0.35 1.6 0.5 0.31

Table 5.2: Polarization to extinction ratios corresponding to different volume
fractions of the silicate and carbon components in the core-mantle spherical
sub-units. Also the ratio between the core radius (r) and the external radius
(R) in the core-mantle units is changed independently in the head and in the
tail. The cluster major axis is oriented perpendicularly to the incident field
direction. fsp2 is 95% for the head and 100% for the tail.

figuration, kind of a ’mouse’ like configuration (see the top of Tab. 5.1 for
the model). This new structure is made by a compact ’head’ and a quite
elongated ’tail’, both made by core-mantle spherical grains. The calculations
are performed by independently varying the percentage of processed carbon
fsp2 for the tail and the head, and assuming different sizes for the spherical
sub-units. The cluster is oriented so that the major axis is perpendicular
to the direction of the incident radiation. As we can see from Tab. 5.1, the
polarization to extinction ratio settles above the upper observational limit of
0.13 in most of the cases under investigation. However, when the carbon is
highly aromatized (95%) in the head and completely aromatized (100%) in
the tail, the computed polarization to extinction ratio finally goes below the
observational limit, giving a value of 0.071.
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Τ𝑷𝟑,𝟒 𝑨𝟑,𝟒
Τ𝑷𝟗,𝟕 𝑨𝟗,𝟕

Τ𝑷𝟑,𝟒 𝑨𝟑,𝟒 Τ𝑷𝟗,𝟕 𝑨𝟗,𝟕 Τ𝑷𝟑,𝟒 𝑨𝟑,𝟒
Τ𝑷𝟗,𝟕 𝑨𝟗,𝟕

Τ𝑷𝟑,𝟒 𝑨𝟑,𝟒 Τ𝑷𝟗,𝟕 𝑨𝟗,𝟕 Τ𝑷𝟑,𝟒 𝑨𝟑,𝟒
Τ𝑷𝟗,𝟕 𝑨𝟗,𝟕

Τ𝑷𝟑,𝟒 𝑨𝟑,𝟒 Τ𝑷𝟗,𝟕 𝑨𝟗,𝟕

X

0.587 0.189 0.321 2.815 0.433 0.154 0.213 0.09 0.424

Y

0.071 0.03 0.419 0.887 0.186 0.21 0.457 0.24 0.524

Z

2.222 0.218 0.01 4.39 0.247 0.056 3.299 0.33 0.1

(a) (b) (c)

Table 5.3: Polarization to extinction ratios for different configurations of
the head-tail model (a) principal, (b) compact, (c) stretched. The results
are shown changing the main axis orientation of the corresponding rotation
ellipsoid. VCarb./VSil. = 1. fsp2 for the head is 95% while fsp2 for the tail is
100% for all the models.

So, choosing this particular configuration, we run the T-matrix compu-
tations using as free parameters in the model:

• the ratio between the overall carbon volume and the silicate volume,

• the ratio between the internal spherical core radius r and the radius of
the external sphere R, both for the core-mantle spherical particles in
the head ( r

R
|head) and for those in the tail ( r

R
|tail). We consider three

cases: r
R
|head <

r
R
|tail,

r
R
|head = r

R
|tail, and r

R
|head >

r
R
|tail.

As Tab. 5.2 shows, the results are in agreement with the observational
limit only when r

R
|head <

r
R
|tail. In such case, the polarization to extinction

ratio is below 0.13 for all the considered carbon/silicate volume fractions.
Then, we change the cluster structures. In particular, setting the car-

bon/silicate volume ratio at unity, we consider different orientations for the
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aggregates and three different configurations. In Tab. 5.2 the three cluster
models are shown: the ’Principal’ cluster (a) is the same used for the previ-
ous computations, the ’Compact’ (b) and the ’Stretched’ (c). Analyzing the
results in Tab. 5.2, the ’principal’ model is the only one giving values below
the upper observational limit. Moreover, this works well only for a specific
(i.e. y-axis) cluster orientation. All the models give the worst results (that
is the highest values compared with the observational limit) when oriented
along the z-axis, that is along the direction of propagation of the incident
field.

5.3 An evolutionary scenario

Analyzing the results of our computations, we observe that the silicate
core-carbon mantle dust grains meet the polarization constraints only in few
of the cases under investigation. From an evolutionary point of view, we
find that the best configuration corresponds to aggregates of core-mantle
particles made by a compact head, with traces of aliphatic carbon, and an
old carbon elongated tail where carbon is totally processed and aromatized
showing a 100% sp2 composition. Moreover, the structure and orientation of
the cluster strongly affects the results. These observations pose reasonable
doubts on the validity of the core-mantle model due to the limited range
of structures satisfying the polarization constraints. However, there is an
interesting point that still deserves to be discussed and that could open new
perspectives. The demand for fully aromatized carbon mantles, emerging
from our investigation, is actually reasonable in an evolutionary scenario
related to the carbon cycle in the interstellar medium [219]. It is known that
the interstellar radiation field progressively processes the sp3 hydrogenated
amorphous carbon in the grain mantles into an H-poor sp2 carbon on a
relatively short timescale of the order of a million years [220]. Therefore, it is
to be expected that small grains and thin mantles of amorphous hydrocarbon
material should be maximally aromatized in the diffuse ISM. The outer layers
of freshly deposited, still unprocessed, aliphatic carbon would be very thin
and negligible [219]. Within this evolutionary history picture, the carbon
mantle would not be responsible for the 3.4 µm feature that would be rather
due to small, non aligned, aliphatic hydrocarbon grains. Then, silicate and
carbon could still co-exist in a core-mantle structure without being in conflict
with the polarization constraints.
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Chapter 6

Modeling optical forces for
space tweezers applications

6.1 Space tweezers

Optical trapping and optical manipulation methods have seen a tremen-
dous advances in many research fields from physics to chemistry and biology.
However, their application to planetary exploration is still to be developed,
even though already conceived by, e.g., NASA [221]. The development of the
optical trapping technique to collect and analyze in situ or return to Earth
a variety of extraterrestrial particles will open doors to information on space
materials that is currently unreachable, e.g., the dust volatile component not
detectable in situ by the Rosetta/ESA dust instruments (GIADA, MIDAS,
COSIMA) and not retrievable by samples return missions, or have biases due
to collection media contamination, e.g. cometary dust samples trapped in
aerogel and returned by the Stardust/NASA space probe [222, 223]. In this
context, the project Space Tweezers (https://www.spacetweezers.org/home)
has taken shape and its purpose is to develop methods for using OT to trap
and spectroscopically characterize (Raman Tweezers) extraterrestrial dust
particles and/or their analogs. This study would provide solid ground for
the application of OT techniques in the near future to solar system study,
e.g., cometary particles analyses including the volatile component, dust par-
ticles in the Martian atmosphere and/or on the Martian, Lunar surfaces.
Such application will also be strategic for the ”clean” handling/preliminary
characterization of restricted and unrestricted samples of planetary bodies
returned from space missions in curatorial facilities.

Therefore, in this chapter we show the first theoretical results that serve
as a starting point for space tweezers applications [12]. After a review on the
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role of dust in the solar system and in the extra-planetary environment, we
describe the models and methods we use to calculate light pressure and op-
tical trapping properties on a variety of realistic dust particle models. Then,
we show results on solar radiation pressure calculations that can help to a
greater understanding of micro-particle dynamics as well as to estimate its
detrimental role in optical trapping in space. Finally, we consider and com-
pare results of calculations for optical trapping of dust particles in standard
OT in water (typical laboratory conditions) with those calculated for OT in
air or in space.

6.2 The Solar System dust complex

The interplanetary space of the solar system is very dusty. This con-
spicuous feature of the solar system is actually appreciable to the naked eye
through the faint solar colour cone of light above the western horizon after
sunset, or above the eastern horizon just before sunrise, called the Zodia-
cal Light [12]. Just like the Milky Way reveals the billions of stars forming
our galaxy, so the Zodiacal Light reveals the presence of a huge amount of
fine dust particles that scatter solar radiation in the interplanetary space of
the solar system. The brightness of the Zodiacal Light provides information
on the overall space density of the dust known as the interplanetary dust
complex. The interplanetary dust complex consists of microscopic (mainly
rocky) particles, typically less than a few millimetres in size, called microm-
eteoroids, moving in the interplanetary space of the solar system [228]. Dust
is produced by collisions among solid bodies, by disruptions of icy bodies
[229, 230] and by cometary activity [231, 232]. As such the interplanetary
dust complex is an inventory of the constituent materials of a large variety
of solid bodies in the solar system. Most of the compositional properties
of the interplanetary dust complex derives from the cosmochemical analyses
of samples recovered from the Earth’s: 1) surface, e.g., micrometeorites col-
lected in Antarctica [233–235]; 2) stratosphere, by balloon born instruments
as, e.g., DUSTER, designed for non-destructive and uncontaminated collec-
tion of solid particles from tens of microns down to 200 nm in size [236] and
by stratospheric NASA/aircraft passive sticking on silicon oil coated plates
[237]. A critical contribution is also given by laboratory analyses of samples,
i.e., collected, and brought back to Earth, from asteroid surfaces [238] and
in a cometary coma [222, 223]. In addition, cometary dust was studied in
situ from the onset of cometary activity to its cessation after perihelion by
the Rosetta/ESA space mission [239–241].
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Figure 6.1: Scattering models with shape and composition inspired by in-
terstellar, interplanetary (DUSTER mission [224]), and planetary [225] par-
ticles. On the top, the models emulate hypothetical interstellar dust grains
whose constituents are olivine and aliphatic carbon. In (a) and (b), the con-
stituents refractive indexes are mixed according to the Bruggeman criterion.
Instead, in (c) and (d), the olivine is considered covered by a carbon layer. In
(e), the model of a silica particle arranged in quenched melt spheres shown in
the TEM image [224] (f). In (g), the model of condensed Ca[O] nanograins
that are accreted onto a larger melted aggregate of tiny carbonate grains
shown in the TEM image [224] (h). The larger sphere is calcite and the other
spheres are CaO. In (i), a spherical model of the particle Fe,Mg-rich ’TP2’
[223], in which we consider an effective refractive index constructed mixing
iron (67%) and magnesium (33%), according to the Bruggeman criterion. In
(j), a spherical model of Martian hematite [225]. In (k), a spherical model of
Lunar regolith [226]. In (l), a model of an ellipsoidal fassaite shown in the
TEM image (m). Here, we consider an effective refractive index constructed
mixing silica (53%), CaO (27%), FeO (10%), Al2O3 (10%), according to the
Bruggeman criterion [227].
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Figure 6.2: Optical forces distributions exerted by the Sun on dust particles
modeled as shown in Fig. 6.1. The optical force parallel, f‖(λ) (blue line), and
perpendicular, f⊥(λ) (red line), are intended respect to the light propagation
direction k̂. In (a-d) we show calculations on olivine-aliphatic carbon struc-
tures. In (a) and (b), the constituents refractive indexes are mixed according
to the Bruggeman criterion [227]. While in (c) and (d) the olivine and the
carbon are distributed in a core-shell structure. In (e) we show results for the
quenched melt silica particle, in (f) for the bunch-of-grape carbon Ca-rich,
in (g) for the ’TP2’ sphere, in (h) for the martian hematite sphere, and in
(i) for the fassaite ellipsoid.
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Planetary dust. Many terrestrial planets and satellites of both terrestrial
and giant planets in our Solar System show dusty environmental conditions.
In particular, the mostly explored dusty bodies are the Moon and Mars.

The Moon is the only Earth’s natural satellite. Since the Moon has nei-
ther a magnetic field nor a significant atmosphere, the lunar regolith and the
near-surface environment are mainly affected by space weathering processes
such as meteoroid impacts, solar ultraviolet radiation, solar wind, galactic
cosmic rays and plasma processes in the tail of the Earth’s magnetosphere.
On the Moon, all the locations explored so far have cratered surfaces covered
with loose regolith of several meters. We can therefore assume that the entire
surface is covered by regolith although the thickness may vary. The optical
parameters of the dust particles depend on the composition and can vary
significantly, not only over a wide region, but even locally in a microscopic
scale. For the glassy component, the real part values range from 1.570 to
1.749 and they vary directly with the total Fe and Ti contents and inversely
with the Al content [242]. The imaginary part of the complex refractive in-
dex is more variable and can span from 0.0005 up to 0.15 according to the
composition and wavelength of interest.

Mars, the fourth planet of our Solar System, has many features in common
with the Earth. Much of the Martian surface is covered by unconsolidated
soils (dust) derived from impact, aeolian and other sedimentary processes.
Such dust is likely produced by impacts early in Mars’ history and subse-
quently recycled at its surface. Sometimes the wind in Mars’ thin atmosphere
blows the dust on the surface into dust storms, carrying dust particles up to
altitudes of about 50 km. The composition of the Martian dust grains was
obtained from several space missions, starting from the mission Mariner 9 in
1971 [243]. Data from recent rovers (e.g. MSL Curiosity at Rocknest, Oct
2012) and orbital spacecraft show that Martian surface is dominated by a
soil (dust grain dimension less than 150 µm) of basaltic composition with pri-
marily pyroxene, plagioclase feldspar, and olivine, as well as minor amounts
of Fe and Ti oxides (e.g., magnetite, ilmenite, and hematite) and alteration
minerals (e.g., sulfates, phyllosilicates, and carbonates) [244–247]. In gen-
eral, dust particle sizes range from 1.2 to about 4.1 µm with a mean dust
radius of about 1.6-1.8 µm [248, 249] and a positive correlation between dust
opacity and particle sizes. Phase function results show asymmetry parame-
ter values of g = 0.601 ± 0.108 for high atmospheric dust loading scenarios
and g = 0.710 ± 0.065 for non-dusty periods. Regarding the shape of the
particles, considering a modified log-normal aspect ratio distribution for a
mixture of spheroids, data suggest more elongated particles are present dur-
ing dust storms, with aspect ratios of 2.8 ± 0.9 for high-opacity days, in
contrast to values of 1.8 measured during post-storm period. The particles
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single scattering albedo is found ranging in the solar band between 0.89-0.90
(dark regions) and 0.92-0.94 (bright regions) [250].

6.3 Solar radiation pressure and optical trap-

ping of dust particles

6.3.1 Models

The diversity of dust particles in an astrophysical context implies a rich-
ness of models that we need to build in order to calculate realistic optical
forces for space tweezers applications. Here, we consider several models of
extra-planetary dusts with shape and composition inspired by interstellar,
interplanetary, and planetary particles. Some of them have been collected
in the DUSTER mission [224, 251], others are inspired by the particles that
could be collected on the Moon or on Mars. We show these models in Fig. 6.1.
On the top row, the homogeneous and stratified single/aggregated spheres
emulate hypothetical interstellar dust grains whose constituents are olivine
and aliphatic carbon [195]. The olivine refractive index is provided by Draine
& Li while the carbon one by Ashok et al. [213, 218]. In Figs. 6.1a, 6.1b, the
constituents refractive indexes are mixed in such a way as to treat the par-
ticle homogeneously with a single effective refractive index according to the
Bruggeman criterion [227]. On the other hand, in Figs. 6.1c, 6.1d, an olivine
core is considered covered by a carbon layer [195]. The spheres radius of
Figs. 6.1a, 6.1c is r = 0.15 µm. On the other hand, the clusters of Figs. 6.1b,
6.1d are composed by 9 spheres of different sizes with the major semi-axis
r = 0.16 µm. In Fig. 6.1e, we present a model according to a Field Emission
Scanning Electron Microscope (FESEM) image of a silica particle cluster-
ing arranged in quenched melt spheres, shown in Fig. 6.1f, and collected in
the DUSTER mission [224]. The refractive index is provided by Malitson
[252]. The model is composed by 4 spheres of different radius with the major
semi-axis r = 0.23 µm. Fig. 6.1g represents the model of condensed Ca[O]
nanograins that are accreted onto a larger melted aggregate of tiny carbonate
grains, shown in the TEM image of Fig. 6.1h, and collected in the DUSTER
mission [224, 251]. The larger sphere is calcite and the other spheres are CaO.
The cluster model is composed by 30 spheres with the calcite refractive index
provided by Ghosh while the calcium oxide one is provided by Liu & Sieck-
mann [253, 254]. Moreover, its major semi-axis has r = 0.25 µm. In Fig. 6.1i,
a spherical model (r = 1.25 µm) of the particle Fe,Mg-rich TP2, collected
during DUSTER mission, is shown [223]. We consider an effective refractive
index obtained mixing iron (67 %) and magnesium (33 %), according to the
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(NA = 1.3)
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Figure 6.3: Extinction cross-sections, 〈σext〉, and optical trapping force, F ,
components along x (blue line), y (red line), and z (yellow dots) when the
particle is trapped in water (center column) or in air (right column). Results
in (a-c) are related to the olivine-aliphatic carbon core-shell sphere. (d-
f) show calculations for the olivine-aliphatic carbon core-shell cluster. (g-i)
concern the quenched melt silica. (j-l) show the results for the bunch-of-grape
carbon Ca-rich. (m-o) are the results for the ’TP2’ sphere. For the optical
trapping calculations the laser power is fixed at 50 mW and the wavelength
at 0.83 µm.

97



Bruggeman criterion whose the two refractive indexes are respectively pro-
vided by Johnson & Christy and Hagemann [142, 227, 255]. In Fig. 6.1j, a
spherical model of Martian hematite (r = 1 µm) [225]. In Fig. 6.1k, a spher-
ical model of Lunar regolith (r = 1 µm) [226]. Fig. 6.1l shows the model of a
microscale fassaite ellipsoidal, collected during DUSTER mission, and shown
in a TEM image of Fig. 6.1m [224]. We consider an effective refractive index
constructed mixing silica (65 %), and CaO (35 %) according to the Brugge-
man criterion [227], the major semi-axis is 2 µm. All non-spherical models
are oriented in such a way that their major axis is aligned with the incident
light propagation direction.

The calculation of the solar radiation pressure and optical trapping forces
on model particles of Figs. 6.1a - 6.1k is carried out with the T-matrix formal-
ism because their size parameters fall within the range x ≈ [0.1− 6]. On the
other hand, when the particle size parameter is too high (e.g. x ≥ 10) such
as in the fassaite micro ellipsoid of Fig. 6.1l, the calculation is carried out
in the ray optics approximation. For this case we exploited the optimized
computational MATLAB codes for dielectric particles provided by Calle-
gari et al. [65] (http://opticaltweezers.org/software/otgo-optical-tweezers-
geometrical-optics/).

6.3.2 Results

Solar radiation pressure calculations are important to understand its rel-
evance in optical trapping applications in space. In general external forces,
such as solar radiation pressure, can have detrimental effects on optical trap-
ping of particles in space or the high atmosphere. Here we aim to show that
T-matrix methods can be used to give accurate estimates of these effects on
individual dust particles. The total radiation force, F̄, and force spectrum,
fs(λ), that the Sun exerts on particles are calculated as:

F̄s =

∫
λ

dλ fs(λ) , (6.1)

fs(λ) =
i�(λ)

I�
Frad,s(λ) , (6.2)

where the index s = (‖,⊥) specifies respectively the parallel and the orthog-
onal component of Frad,s(λ) respect to the radiation incident direction, k̂.
The expressions of Frad,s(λ) are the wavelength dependent optical forces cal-
culated in the ray optics approximation [15] or in the T-matrix approach [2]
according to the different models under investigation. The term fs(λ) speci-
fies the spectral force distribution obtained scaling the computation outputs
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MODELS

r 𝝈𝐠𝐞𝐨𝐦 ഥ𝑭∥ ഥ𝑭⊥ 𝝈𝐞𝐱𝐭 n k 𝜿𝒛 ෥𝜿 𝜿𝒛 ෥𝜿

(µm) (µm2) (pN)

λ=0.83 

µm λ=0.83 µm
WATER

AIR/VACU

UM

(µm2) (pN·µm-1)

0.15 7.06·10-2 55.45 0 3.79·10-2

2.59 4.73·10-2

No trapping

0.16 1.98·10-2 0.93 3.09·10-3 2.4·10-4 6 25 2 14.5

0.15 7.06·10-2 60.74 0 4.11·10-2

CORE

No trapping

2.94 0.1

0.16 1.98·10-2 0.95 3.08·10-3 2.42·10-4

SHELL

5.5 24.5 2 14.5

2.28 8.83·10-5

0.23 7.85·10-2 15.78 0.2 7.96·10-3 2.11 0 42.5 185.5 25.5 158.5

0.25 1.77·10-1 18.2 1.46 1.15·10-2

CaCO3

63 248.5 31 171
2.72 0

CaO

1.94 0

1.25 4.91 7.61·103 0 12.17

- 35 20.9

No trapping

0.05 7.85·10-3 18.06 0 4.74·10-3 27 62 2 13.5

1 3.14 5.31·103 0 6.84

8.03 0.14

No trapping

0.1 3.14·10-2 70.66 0 2.19·10-2 148.5 433.5 33 151

1 3.14 2,49 0 10.85

1.68 6.73·10-2

No trapping

0.1 3.14·10-2 2.49·103 0 2.2·10-3 19 89 9 57

2 12.57 2.56·103 0 ̶̶̶̶̶̶̶̶̶ 2.42 0.11 No trapping

Table 6.1: Summary table of radiation pressure and optical trapping prop-
erties. For each model particle we show: the radius, r, or the radius of the
smallest sphere enclosing the cluster; the geometric cross-section, σgeom; the
integrated optical force on the solar intensity spectrum along the parallel,
F̄‖, and perpendicular direction, F̄⊥, with respect to the light propagation;
the extinction cross-section σext at the trapping wavelength λ = 0.83 µm;
the real, n, and the imaginary part, k, of the refractive index at the trapping
wavelength λ = 0.83 µm; and the optical trap stiffnesses along the optical
axis, κz, and perpendicular to it, κ̃, in water and in air.
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Frad,s(λ) upon the solar radiation intensity distribution i�(λ) normalized at
the solar irradiance I�, i.e., I� =

∫
λ

dλ i�(λ) = 1.34 kW/m2 [256]. There-
fore, the considered spectrum is chosen in the range λ = [0.28− 2] µm that
is when the light emission by the Sun has the maximum intensity.

In the Fig. 6.2, we plot the solar radiation force distributions fs(λ) (Eq. 6.2)
for all the models presented in Fig. 6.1. In particular, we show the force,
f‖(λ), parallel to the propagation direction as a red line, and the perpen-
dicular one, f⊥(λ), as a blue line. Figs. 6.2a - 6.2d concern the calculation
on different models for the olivine-aliphatic carbon structures. Fig. 6.2e is
referred to the quenched melt silica, Fig. 6.2f the bunch-of-grape carbon Ca-
rich, Fig. 6.2g the ’TP2’ sphere, and Fig. 6.2h the martian hematite sphere.
Finally, Fig. 6.2i shows the fassaite ellipsoid for which the radiation force is
calculated with ray optics. We note how the parallel component, f‖, is much
larger than the perpendicular one, f⊥. In fact, the parallel component is
proportional to the particle extinction cross section, while the transverse one
is related to the asymmetry parameters, gi, quantifying the non-sphericity of
the scatterer [2, 59, 61] (Eq. 1.11). Thus, for cylindrically symmetric parti-
cles the component f⊥ is zero (Figs. 6.2a, 6.2c, 6.2g, 6.2h, 6.2i). Figs. 6.2b,
6.2d, 6.2e show results for elongated nanoscale clusters that generally align
with the incident electric field direction [90] yielding a low value of f⊥. In
Fig. 6.2f we report the highly non-symmetrical model of the bunch-of-grape
carbon Ca-rich for which f⊥ is quite strong and F̄⊥ ' 1.46 pN, a value com-
parable to F̄‖ ' 18.2 pN (Tab. 6.1). In summary, the parallel component
of the solar radiation pressure, f‖, describes an optomechanical interaction
of the solar radiation pressure with the extra-planetary dust models in the
tens of piconewton range. On the other hand, for non-spherical particles
the perpendicular component of the solar radiation pressure can drive more
complex transverse or rotational dynamics [257].

We now focus on the systematic characterization of optical trapping forces
in OT, i.e, a single Gaussian beam focused by a high-NA objective. In our
calculations we fix the laser wavelength at 0.83 µm, that is a typical wave-
length for OT experiments in the near-infrared, and the power P = 50 mW.
In Fig. 6.3, we show the three Cartesian components of the trapping force in
the neighborhood of the OT paraxial nominal focus placed at the origin of
the coordinate system (x = y = z = 0). The trapping position of the particle
in the axial z-direction does not typically coincide with the origin because
of the ’pushing’ effect of the optical scattering force. To calculate the force
on the particle at the equilibrium position Ceq = (xeq, yeq, zeq), the z axial
coordinate at which the axial force vanishes must firstly be found. Hence,
the force plots in the transverse directions (x, y) can then be calculated. In
the left column of the Fig. 6.3, we present the extinction cross-sections σext
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for the visible and near-infrared wavelength spectrum. The extinction cross
section, σext, takes into account the rate at which the energy is removed from
the electromagnetic wave through scattering and the absorption, allowing us
to understand how effectively trapping takes place [15]. The trapping arises
when the focused incoming field generates a restoring force proportional to
the particle’s displacement from an equilibrium point, and that, for small dis-
placements, behaves harmonically [7]. Therefore, trap stiffnesses are defined
as:

κi ≡
dFi
dxi

∣∣∣∣
xeq,i

. (6.3)

We calculate optical trapping in water (nm = 1.33) with an objective NA
= 1.3 (middle column of Fig. 6.3) and in air or vacuum (nm = 1) with NA
= 0.9 (right column of Fig. 6.3). We note that here we focus only on electro-
magnetic calculations, neglecting thermal fluctuations and hydrodynamics
effects due to the surrounding medium [143]. Generally, for a given particle,
optical trapping in water is stabilized by the overdamped viscous dynam-
ics in the fluid, while in air or vacuum the underdamped dynamics might
be more critical for stable optical trapping [169]. Moreover, the higher NA
in water causes the equilibrium point Ceq to be closer to the nominal focus
than in air. This is confirmed by comparing the graphs in Fig. 6.3, central
column (in water), with those of the right column (in air). The dielectric
particles, such as the quenched melt silica (Figs. 6.3h, 6.3i), and carbonate
cluster (Figs. 6.3k, 6.3l) exhibit fairly stable trapping. Even the interstellar
dust model of a sphere aggregate can be trapped thanks to the relatively low
extinction (Figs. 6.3e, 6.3f). Indeed, for these model particles we are able to
extrapolate the trapping constants along the axial direction, κz, and along
the perpendicular direction, κ̃ ≡ (κx + κy)/2 (Tab. 6.1). On the other hand,
model particles, like the interstellar dust sphere (Figs. 6.3b, 6.3c), or the Fe-
Mg sphere (Figs. 6.3n, 6.3o), can not be trapped neither in water nor in air.
A similar behavior is also exhibited by the hematite sphere, regolith sphere,
and the ellipsoidal fassaite as shown in Tab. 6.1 by observing the correspond-
ing trapping constants. The reason is to be found in their large size (Fe-Mg
sphere, hematite, regolith, and fassaite) and on their strong absorption (in-
terstellar dust, Fe-Mg sphere, hematite, regolith and fassaite). To further
confirm, we have calculated the trapping properties of the Fe-Mg, hematite
spheres by reducing their size such that rFe−Mg = 0.05 µm and rhem = 0.1
µm. In this way, the trap stiffnesses can be extrapolated (Tab. 6.1) and
a quantitative indication of σext is provided in Tab. 6.1. This behaviour is
similar to the optical trapping of metal nanoparticles that can be efficiently
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trapped at small size where absorption and extinction cross sections are still
small in the near-infrared [13].
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Conclusions

In this thesis, different applications of electromagnetic scattering have
been studied both in the transition matrix formalism and with appropriate
approximations depending on the performed studies. Several systems have
been analyzed ranging from optical trapping modeling, going to some specific
plasmonic investigations, through fundamental physics problems to space
applications. After describing in details the light scattering theory in the T-
matrix approach and optical tweezers, we analyzed four specific applications.

First, we studied optical trapping of hybrid core-shell nanoparticles with
gain in a counter-propagating Gaussian beam configuration, highlighting the
non-linear optical scaling of optical forces. We performed Brownian motion
simulations in water, where we directly observed how the particle dynamics
is more confined for increasing gain. We showed that by changing the light
wavelength with respect to the nanoshell resonance it is possible to switch
the sign of the optical forces and use the dual-beam configuration for posi-
tion locking (red detuning) or channelling (blue detuning) of particles in a
microfluidic flow.

Secondly, we investigated the onset of spin-dependent optical forces re-
lated to the Belinfante’s linear spin momentum. In particular, we studied the
role of shape in the occurrence of transverse spin-dependent optical force com-
ponents in tilted ZnO nanowires illuminated by either a circularly polarized
plane wave or a focused laser beam. In fact, because of the breaking of the
cylindrical symmetry with respect to the optical axis z, a non-conservative
spin-dependent component occurs when circularly polarized light is incident
on the tilted nanowire. The strong connection between the non-local trans-
verse y-component and the spin density has been demonstrated by analyzing
the behavior of the spin distribution considering configurations in which the
cylindrical symmetry is increasingly broken.

In the last part of the thesis, some applications of light scattering theory
are exploited in an astrophysical context. More specifically, we focused on
the modeling of interstellar dust properties by studying the polarization of
the 3.4 µm carbon absorption feature in the diffuse interstellar medium. The
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non-detection of polarization in this feature, together with the observation of
a strong polarization in the 9.7 µm silicate feature, has seriously challenged
the silicate core-carbon mantle dust model. We investigated the problem,
trying to relax the core-mantle model crisis. Only for a particular model of
aggregated core-mantle grains, which we have called the ’Head-tail cluster’
model, the polarimetric results satisfy the observational constraints. Despite
our results seem to confirm the doubts on the validity of the core-mantle
model, there is an interesting point that still deserves to be discussed and
that could open new perspectives. In fact, within an evolutionary history
picture connected with the carbon cycle in the interstellar medium, the car-
bon mantle in stratified dust grains would not be responsible for the 3.4 µm
feature that would be rather due to small, non aligned, aliphatic hydrocar-
bon grains. Then, silicate and carbon could still co-exist in a core-mantle
structure without being in conflict with the observational polarization con-
straints.

Finally, we studied computationally the solar radiation force and optical
trapping properties for different cosmic dust particles. We showed that the
radiation force exerted by the Sun is not trivially negligible and it can actively
influence the dynamics of model dust particles at the nano- and microscale
when compared to, e.g., optical trapping forces. Furthermore, we calculated
single-beam optical trapping properties for cosmic dust model particles both
in water and in air with parameters close to typical optical tweezers experi-
ments in the near-infrared. We found that weakly absorbing and nanoscale
particles can be captured, while particles with stronger absorption show a
scattering component of the optical force that prevents optical trapping in
a standard single-beam optical tweezers. This detrimental effects can be
overcome through dual-beam traps made by stationary counter-propagating
laser beams. This study opens perspectives for the application of optical
tweezers techniques to solar system study, e.g., cometary particles analyses
including the volatile component, dust particles in the Martian atmosphere
and/or on the Martian and Lunar surfaces. Such applications will also be
strategic for the ”clean” handling/preliminary characterization of planetary
particulate matter in curation facilities and can pave the way for future space
applications and in situ analysis of planetary bodies.
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[6] P. H. Jones, O. M. Maragò, and G. Volpe. Optical Tweezers: Principles
and Applications. Cambridge University Press, Cambridge, UK, 2015.
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