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Abstract. If tn are the heights of the Riemann zeros 1/2 + itn, an old idea, attributed to
Hilbert and Polya [6], stated that the Riemann hypothesis would be proved if the tn could
be shown to be eigenvalues of a self-adjoint operator. In 1986 Berry [1] conjectured that tn
could instead be the eigenvalues of a deterministic quantum system with a chaotic classical
counterpart and in 1999 Berry and Keating [3] proposed the Hamiltonian H = xp, with x and
p the position and momentum of a one-dimensional particle, respectively. This was proven not
to be the correct Hamiltonian since it yields a continuum spectrum [23] and therefore a more
general Hamiltonian H = w(x)(p + ℓ2p/p) was proposed [25], [4], [24] and different expressions
of the function w(x) were considered [25], [24], [16] although none of them yielding exactly tn.
We show that the quantization by means of Lie and Noether symmetries [18], [19], [20], [7]
of the Lagrangian equation corresponding to the Hamiltonian H yields straightforwardly the
Schrödinger equation and clearly explains why either the continuum or the discrete spectrum
is obtained. Therefore we infer that suitable Lie and Noether symmetries of the classical
Lagrangian corresponding to H should be searched in order to alleviate one of Berry’s quantum
obsessions [2].

Keywords: Lagrangian; Jacobi last multiplier; Lie symmetry; Noether symmetry; Classical
quantization.

PACS numbers: 02.30.Xx, 02.20.Sv, 45.20.Jj, 03.65.-w

1. Introduction

In [2] Michael Berry wrote:

Why should a physicist be concerned with the zeros of the Riemann zeta function ζ(s), and in

particular the Riemann hypothesis, according to which all complex zeros of ζ(s) have Res = 1

2
?

Not for the reasons that motivate mathematicians, e.g. fluctuations in the distribution of

primes. Rather, my interest grew from the study of quantum systems whose classical counter-

parts possess chaotic trajectories.

One hundred years ago Polya and Hilbert suggested that in order to prove the Riemann
hypothesis one has to find a self-adjoint operator whose spectrum contains the imaginary
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part of the nontrivial Riemann zeros [6]. Michael Berry suggested the existence of a
classical Hamiltonian whose quantum version would realize the Polya-Hilbert conjecture. This
conjectured Hamiltonian must satisfy the following conditions [25]:

(i) be chaotic, with isolated periodic orbits related to the prime numbers,

(ii) break time reversal symmetry, to agree with the Gaussian unitary ensemble statistics,

(iii) be quasi-one dimensional.

The first classical Hamiltonian proposed by Berry, i.e.

Hcl = xp

was then shown by Berry and Keating [3] not to fulfill the requirement (i).
Sierra and collaborators [25], [24] and also Berry and Keating [4] have proposed different

modifications of the xp Hamiltonian in order to have bounded classical trajectories and a discrete
quantum spectrum. The first such Hamiltonian was [25]

HS = x

(

p+
ℓ2p
p

)

. (1)

Others followed, in particular

HB = cosh
( x

R

)

(

p+
ℓ2p
p

)

. (2)

In the present paper we study the Lagrangian equations that derive from those Hamiltonians. In
particular, we find their Lie point symmetries, their Jacobi last multipliers, various Lagrangians
and the Noether symmetries that they admit. Finally we use those Noether symmetries to
straightforwardly construct the Schrödinger equations [18], [19], [20], [7].
The paper is organized in the following way. In the next section we recall the properties of the
Jacobi last multiplier, its connection with Lagrangians of second-order equations [12], [27], and
the link with Lie symmetries [14], [15], [5]. In section 3 we study the Hamiltonian (1) and in
section 4 the Hamiltonian (48). The last section contains some final remarks.

2. Jacobi last multiplier, Lie symmetries, Lagrangians

The method of the Jacobi Last Multiplier [9]-[12] provides a means to determine all the solutions
of the partial differential equation

Af =

n
∑

i=1

ai(x1, . . . , xn)
∂f

∂xi
= 0 (3)

or its equivalent associated Lagrange’s system

dx1
a1

=
dx2
a2

= . . . =
dxn
an

. (4)

In fact, if one knows the JLM and all but one of the solutions, then the last solution can be
obtained by a quadrature. The JLM M is given by

∂(f, ω1, ω2, . . . , ωn−1)

∂(x1, x2, . . . , xn)
= MAf, (5)
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where

∂(f, ω1, ω2, . . . , ωn−1)

∂(x1, x2, . . . , xn)
= det





















∂f

∂x1
· · · ∂f

∂xn
∂ω1

∂x1

∂ω1

∂xn
...

...
∂ωn−1

∂x1
· · · ∂ωn−1

∂xn





















= 0 (6)

and ω1, . . . , ωn−1 are n− 1 solutions of (3) or, equivalently, first integrals of (4) independent of
each other. This means that M is a function of the variables (x1, . . . , xn) and depends on the
chosen n − 1 solutions, in the sense that it varies as they vary. The essential properties of the
JLM are:

(a) If one selects a different set of n−1 independent solutions η1, . . . , ηn−1 of equation (3), then
the corresponding JLM N is linked to M by the relationship:

N = M
∂(η1, . . . , ηn−1)

∂(ω1, . . . , ωn−1)
.

(b) Given a non-singular transformation of variables

τ : (x1, x2, . . . , xn) −→ (x′1, x
′

2, . . . , x
′

n),

then the JLM M ′ of A′F = 0 is given by:

M ′ = M
∂(x1, x2, . . . , xn)

∂(x′
1
, x′

2
, . . . , x′n)

,

where M obviously comes from the n − 1 solutions of AF = 0 which correspond to those
chosen for A′F = 0 through the inverse transformation τ−1.

(c) One can prove that each JLM M is a solution of the following linear partial differential
equation:

n
∑

i=1

∂(Mai)

∂xi
= 0, (7)

or equivalently:

d

dt
(logM) +

n
∑

i=1

∂ai
∂xi

= 0; (8)

viceversa every solution M of this equation is a JLM.

(d) If one knows two JLMs M1 and M2 of equation (3), then their ratio is a solution ω of
(3), or, equivalently, a first integral of (4). Naturally the ratio may be quite trivial, namely
a constant. Viceversa the product of a multiplier M1 times any solution ω yields another
JLM M2 = M1ω.

Since the existence of a solution/first integral is consequent upon the existence of symmetry, an
alternate formulation in terms of symmetries was provided by Lie [14], [15]. A clear treatment
of the formulation in terms of solutions/first integrals and symmetries is given by Bianchi [5].
If we know n− 1 symmetries of (3)/(4), say

Γi =
n
∑

j=1

ξij(x1, . . . , xn)∂xj
, i = 1, n− 1, (9)
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then a JLM is given by M = ∆−1, provided that ∆ 6= 0, where

∆ = det











a1 · · · an
ξ1,1 ξ1,n
...

...
ξn−1,1 · · · ξn−1,n











. (10)

Another property of the JLM is its (almost forgotten) relationship with the Lagrangian,
L = L(t, q, q̇), for any second-order equation

q̈ = F (t, q, q̇) (11)

i.e. [12] (Lecture 10)1, [27]

M =
∂2L

∂q̇2
(12)

where M = M(t, q, q̇) satisfies the following equation

d

dt
(logM) +

∂F

∂q̇
= 0. (13)

Then equation (11) becomes the Euler-Lagrange equation:

− d

dt

(

∂L

∂q̇

)

+
∂L

∂q
= 0. (14)

The proof is based on taking the derivative of (14) with respect to q̇ and showing that this yields
(13). If one knows a JLM, then L can be easily obtained by a double integration, i.e.:

L =

∫
(
∫

M dq̇

)

dq̇ + f1(t, q)q̇ + f2(t, q), (15)

where f1 and f2 are functions of t and q which have to satisfy a single partial differential equation
related to (11) [21]. As it was shown in [22], f1, f2 are related to the gauge function g = g(t, q).
In fact, we may assume

f1 =
∂g

∂q

f2 =
∂g

∂t
+ f3(t, q) (16)

where f3 has to satisfy the mentioned partial differential equation and g is obviously arbitrary.
In [21] it was shown that if one knows several (at least two) Lie symmetries of the second-order

differential equation (11), i.e.

Γj = Vj(t, q)∂t +Gj(t, q)∂q, j = 1, r, (17)

then many Jacobi Last Multipliers could be derived by means of (10), i.e.

1

Mnm
= ∆nm = det













1 q̇ F (t, q, q̇)

Vn Gn
dGn

dt
− q̇

dVn

dt

Vm Gm
dGm

dt
− q̇

dVm

dt













, (18)

with (n,m = 1, r), and therefore many Lagrangians can be obtained by means of (15).

1 Jacobi’s Lectures on Dynamics are finally available in English [13].
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3. The case H = x(p+ ℓ2p/p)
Sierra has proposed the following Hamiltonian [25], [24]:

HS = x

(

p+
ℓ2p
p

)

(19)

This Hamiltonian yields the Lagrangian equation:

ẍ = −4x+ 6ẋ− ẋ2

x
. (20)

This equations admits an eight-dimensional Lie point symmetry algebra sl(3,R) generated by

Γ1 = exp(−2t)x2(∂t + 2x∂x), Γ2 = exp(−4t)x2(∂t + x∂x)

Γ3 = exp(2t)(∂t + 2x∂x), Γ4 = ∂t, Γ5 = exp(−2t)(∂t + x∂x), (21)

Γ6 = x∂x, Γ7 =
exp(4t)

x
∂x, Γ8 =

exp(2t)

x
∂x,

which implies that equation (20) is linearizable by means of a point transformation2 [15]. In
order to find the linearizing transformation we have to look for an abelian intransitive subalgebra
of sl(3,R) and, following Lie’s classification of two-dimensional algebras in the real plane [15],
we have to transform it into the canonical form

∂x̃, t̃∂x̃ (22)

with x̃ and t̃ the new dependent and independent variables, respectively. We have found that
such subalgebra3 is that generated by Γ7 and Γ8. Then it is easy to derive that

x̃ = 1

2
exp(−2t)x2, t̃ = exp(2t) (23)

and equation (20) is transformed into the free-particle equation, i.e.:

d2x̃

dt̃2
= 0. (24)

Several JLM can be obtained by means (18) and two of the eight symmetries (21). Consequently
several Lagrangians can be derived from (15). In particular from Γ7 and Γ8 comes the Lagrangian

L78 = − exp(−6t)

(

1

4
ẋ2x2 − 1

2
x4
)

(25)

that admits the following five Noether symmetries [17]

Γ3, Γ4 +
3

2
Γ6 = ∂t +

3

2
x∂x, Γ5, Γ7, Γ8. (26)

If we quantize by preserving those Noether symmetries then the following Schrödinger equation
is obtained:

4i exp(−2t)x4Φt + 4 exp(4t)x2Φxx −
(

2 exp(−8t)x8 + 4i exp(−2t)x4 + 3 exp(4t)
)

Φ = 0 (27)

2 We prefer to cite the original work by Sophus Lie, although many textbooks/papers on Lie symmetries report
his findings.
3 We may find other such subalgebras but they are obviously related by a point transformation since there exist
only one abelian intransitive subalgebra of sl(3,R) [26]. For example, two other abelian intransitive subalgebras
are those generated by < Γ1,Γ3 >, and < Γ2,Γ5 >, respectively.

Physics and Mathematics of Nonlinear Phenomena 2013 (PMNP2013) IOP Publishing
Journal of Physics: Conference Series 482 (2014) 012032 doi:10.1088/1742-6596/482/1/012032

5



and its spectrum is obviously a continuum [24]. Indeed equation (27) admits the following five
Lie symmetries

X1 = Γ3 +Φ

(

−2 exp(2t) +
i

2
x4 exp(−4t)

)

∂Φ,

X2 = Γ4 +
3

2
Γ6,

X3 = Γ5 − Φ

(

1

2
exp(−2t) +

i

4
x4 exp(−8t)

)

∂Φ, (28)

X4 = Γ7 +Φ

(

− 1

2x2
exp(4t) + ix2 exp(−2t)

)

∂Φ,

X5 = Γ8 +Φ

(

− 1

2x2
exp(2t) +

i

2
x2 exp(−4t)

)

∂Φ,

and also Φ∂Φ, and φ(t, x)∂Φ with φ any solution of (27).

From Γ1 and Γ3 comes another Lagrangian

L13 =
1

4x(2x− ẋ)
(29)

that admits the following five Noether symmetries [17]

Γ1, Γ2, Γ3, Γ4, Γ7. (30)

If we quantizing by requiring the preservation of the five Noether symmetries (30) then the
following parabolic equation is obtained

Ωtt + 4xΩxt + 4x2Ωxx + 4xΩx − Ω = 0 (31)

Its Lie symmetries are generated by4

X̂1 = Γ1 + x2Ωexp(−2t)∂Ω, X̂2 = Γ2, X̂3 = Γ3 +Ωexp(2t)∂Ω, X̂4 = Γ4, X̂5 = Γ7, (32)

and can be reduced to its canonical form by the change of independent variable x = ζ exp(2t),
i.e.

Ωtt − Ω = 0 (33)

that can be solved to give

Ω(t, ζ) = f1(ζ) exp(t) + f2(ζ) exp(−t), (34)

with f1, f2 arbitrary functions of ζ. Equation (33) is not surprising. Indeed equation (20) can
be transformed into

z̈ = 2(b+ 3)ż − (b+ 2)(b+ 4)z (35)

by means of the transformation
z = x2 exp(bt) (36)

where b is an arbitrary constant. Substituting b = −3 into (35) yields

z̈ = z, (37)

4 Also Ω∂Ω, ω(t, x)∂Ω with ω any solution of (31).
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which corresponds exactly to (33).
The Lagrangian associated with the Hamiltonian (1) is given by5 [24]:

LS = −2ℓp
√

x(x− ẋ) (38)

This Lagrangian admits three Noether symmetries only, i.e.:

Γ4, Γ5, Γ8. (39)

These symmetries generate the following family of equations:

ẍ = −4x+ 6ẋ− ẋ2

x
+A(x− ẋ)

√

x(x− ẋ) (40)

where A is an arbitrary constant. The three symmetries (39) yield three JLM and consequently
three Lagrangians. In particular Γ5 and Γ8 yields the JLM

M58 =

√
x

A(x− ẋ)3/2
(41)

by means of (18), and the Lagrangian

L58 = −2ℓp
√

x(x− ẋ) +
A

4
ℓpx

2, (42)

by means of (15). Lagrangian L58 coincides with LS if A = 0, but in this case M58 does not
exist since in (18) ∆58 is equal to zero. This means that the JLM that yields the Lagrangian LS

does not come from the two symmetries Γ5 and Γ8. If A 6= 0 then L58 admits only two Noether
symmetries, namely Γ4 and Γ5.
If we quantizing by requiring the preservation of the three Noether symmetries (39) then the
following parabolic equation is obtained

4Ψtt + 8xΨxt + 4x2Ψxx − 4Ψt − 3Ψ = 0 (43)

Its Lie symmetries are generated by6

Y1 = Γ4, Y2 = Γ5 −
1

2
exp(2t)Ψ∂Ψ, Y3 = Γ8 (44)

and can be reduced to its canonical form by the change of independent variable x = ξ exp(t),
i.e.

4Ψtt − 4Ψt − 3Ψ = 0 (45)

that can be solved to give

Ψ(t, ξ) = F1(ξ) exp(3t/2) + F2(ξ) exp(−t/2), (46)

with F1, F2 arbitrary functions of ξ. Equation (45) is also not surprising. Substituting b = −5/2
into (35) yields

z̈ = ż +
3

4
z, (47)

which corresponds exactly to (45).

5 The reality of LS implies that ẋ < x.
6 Also Ψ∂Ψ, ψ(t, x)∂Ψ with ψ any solution of (43).
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4. The case H = cosh
(

x
R

)

(

p+
ℓ2p
p

)

Another classical Hamiltonian proposed by Sierra in [24] is

HB = cosh
( x

R

)

(

p+
ℓ2p
p

)

(48)

This Hamiltonian yields the Lagrangian equation:

ẍ =
1

R
tanh

( x

R

)(

−4 cosh2
( x

R

)

+ 6ẋ cosh
( x

R

)

− ẋ2
)

(49)

Since this equation admits an eight-dimensional Lie symmetry algebra then it is linearizable by
means of an abelian intransitive subalgebra and we found that the linearizing transformation is

t̃ = − tan

(

2

R

(

−t+R arctan
(

ex/R
))

)

,

x̃ =
1− e2x/R

4 cos(2t/R)(1− e2x/R) + 8 sin(2t/R)ex/R
(50)

that yields the free-particle equation (24). The Lagrangian that derives from the JLM obtained
by means of the abelian intransitive subalgebra is

L =
1

2R cosh
(

x
R

) (

2 cosh
(

x
R

)

− ẋ
) (51)

and admits five Noether symmetries, while the Lagrangian LB corresponding to the Hamiltonian
HB (48), i.e.

LB = −2ℓp

√

cosh
( x

R

)2

− ẋ cosh
( x

R

)

(52)

admits just three Noether symmetries that actually generate the following family of equations
of second order

ẍ = A

√

cosh
( x

R

)(

ẋ− cosh
( x

R

))(

ẋ− cosh
( x

R

))

+
1

R
tanh

( x

R

)(

−4 cosh2
( x

R

)

+ 6ẋ cosh
( x

R

)

− ẋ2
)

(53)

with A an arbitary constant. Here we do not pursue this case any further since the discussion
is analogous to that of the previous section but the formula are quite lenghtier. We observe
that the linearizing transformation (50) is singular and resembles somehow the transformation
between the free-particle and the linear harmonic oscillator: a similar instance recurs also in the
case of a Liénard-type nonlinear oscillator [7]. We will address this issue in future work.

5. Final Remarks

We have shown that Lie symmetries may explain what goes wrong/right if one takes a classical
(even non-physical) problem into the realm of quantum mechanics.
In fact, the application of Lie symmetries yield that:

• the Lagrangian equation (20) admits an eight dimensional Lie symmetry algebra, therefore is
linearizable and can be transformed to either a free-particle by a t-dependent transformation
(23) or a variety of linear equations (35);
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• there exist many Lagrangians for equation (20) but only one, up to a representation of the
two-dimensional abelian intransitive (Type II) subalgebra, admits the maximum number
(five) of Noether symmetries;

• those five symmetries lead to the derivation of a time-dependent Schrödinger equation (27)
with a continuum spectrum;

• the Hamiltonian (1) introduced by Sierra corresponds to a t-independent Lagrangian (38)
which admits three Noether symmetries Γ4,Γ5,Γ8: those three symmetries generate the
complete symmetry group of the family of equations (40);

• those three symmetries are not admitted by the Lagrangian (42) of equation (40) unless
A = 0: the Lagrangian (42) can be obtained through the JLM coming from the two
symmetries Γ5 and Γ8 but not if A = 0

• those three symmetries lead to the Schrödinger equation (43) that admits a continuum
spectrum.

Indeed we may have transformed one of Berry’s quantum obsessions [2] into a Lie symmetry
obsession.
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