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1. Introduction. In 1968, Magill [8] proved the following theorem.

THEOREM 1.1. For two locally compact Tychonoff spaces X and Y, the Stone-Cech re-
mainders (i.e., the remainders of the Stone-Cech compactifications) BX \ X and BY \Y are
homeomorphic if and only if the posets K (X) and K(Y) of all Hausdor{f compactifications
of X and Y are isomorphic.

In 1973, Rayburn [12] gave the following definition.

DEFINITION 1.2. A Tychonoff space X is called k-absolute if X\ X is a k-space.
It is proved in [12] that a Tychonoff space X is k-absolute if and only if cX\ X is a
k-space for some cX € K(X) and if and only if cX\ X is a k-space for any cX € K(X).

All locally compact Tychonoff spaces are k-absolute because their Stone-Cech remain-
ders are compact. Consequently, the following Rayburn’s theorem generalizes one half
of Theorem 1.1.

THEOREM 1.3. For any pair of k-absolute spaces X, Y, if the posets K(X) and K(Y)
are isomorphic, then the Stone-Cech remainders X\ X and BY \Y are homeomorphic.

We note that the second half of Theorem 1.1 cannot be generalized to k-absolute
spaces (see [12, Example (B)]).

In [2], both Theorems 1.1 and 1.3 are generalized to arbitrary compactifications of
two Tychonoff spaces.

This paper is devoted to an extension of Theorems 1.1 and 1.3 and their generaliza-
tions (given in [2]) to the class of WZ-mappings (in particular, closed mappings) from a
locally compact Tychonoff space or a k-absolute space to a compact Hausdorff space.
Although, even for this rather narrow class of mappings, the formulations of corre-
sponding theorems look rather complicated, the examples presented in Section 4 show
that more simple approaches are not sufficient.
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We note that results concerning the extension of Theorem 1.1 to mappings are also
contained in [5], but they are different from ours (see the remark at the end of this
paper).

2. Preliminaries. Throughout this paper, space will mean a topological space and
mapping will mean a continuous function. Terms and undefined concepts are used as
in [4]. In this section, we recall some definitions and results from [2]. Some additional
notions concerning fibrewise general topology (FGT) can be found in [9, 10].

DEFINITION 2.1. Let X, Y, Z be spaces and A: X - Y, u: X — Z mappings. We say
that A is equivalent to y and we will write A = p if there exists some homeomorphism
h:Y — Z such that y=hoA.

Evidently, the homeomorphism h is unique.
We will identify equivalent mappings, and so we can consider the set 6(X) of all the
continuous maps from a fixed space X onto other spaces.

DEFINITION 2.2. Let A,u € 6(X). We say that A follows u and we will write A > u if
there exists some continuous mapping h:Y — Z such that u = hoA.

It is evident that (6(X),>) is a poset.

DEFINITION 2.3. Let A € 6(X). We say that
(i) A is simple if there exists a unique point ty € A(X) such that |A~'({t;})| > 1 and
IA"L({t})| =1 for every t € A(X) \ {tr};
(i) A is finite simple if there exists a nonempty finite set T C A(X) of points such
that A1 ({t})| > 1 forevery t € T and [A~'({t})| =1 for every t € A(X)\T.

We will suppose from this moment that X is a Hausdorff space and that % (X) denotes
the poset (as a subposet of ¢(X)) of all perfect onto mappings of X. Clearly, A(X) is
Hausdorff for any A € ?(X).

DEFINITION 2.4. A mapping A € ?(X) is called a dual point if it is simple and
AT ({tah)] = 2.

Let @ = 9(X) denote the set of all dual points of ?(X) and F¥(X) = {A € P(X) :
A is finite simple} U {idx}.

DEFINITION 2.5. A family & C % is said to be a 3-vertex family if for any distinct
«, B € F there exists some y € @\ ¥ such that y > inf{«, B}.

DEFINITION 2.6. A 3-vertex family & C 9 is called a point family if it is maximal (i.e.,
if there is no 3-vertex family properly containing %).

LEMMA 2.7. If ¥ is a 3-vertex family consisting of more than one element, then the
set Xg = N{A"1({ta}) : A € F} is a single point (which will be denoted by J4(F)).

DEFINITION 2.8. Let $ C ?(X) suchthat F¥(X) c $and x € X. We putKs(x) = {6 €
Bixed T{ts])}.

LEMMA 2.9. If |X|> 2, then Ky(x) is a point family.
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Evidently, for | X| > 2,

Js(Kg(x)) =x foranyx € X, (2.1)
Ky (Js(F)) =F for any point family & C %. (2.2)

In [2], dual points are characterized only by means of the order in . It follows from
this that if, for Hausdorff spaces X, we have #¥(X;) C $; C ?(X;) with j = 1,2 and
i:$1 — ¥, is a poset isomorphism, then i(Ky, (x)) is a point family in $;.

We recall [2] that a one-to-one mapping f : X — Y between Hausdorff spaces is called
a k-homeomorphism if f is continuous on compact subsets of X and its inverse f~! is
continuous on compact subsets of Y. Clearly, a k-homeomorphism between k-spaces
is a homeomorphism.

THEOREM 2.10. Let X; be a Hausdor(f space and ¥ (X;) the set of all perfect onto map-
pings of X; (with j = 1,2). If X, and X» are k-homeomorphic and they are k-spaces, then
P(X1) and P (X») (and so FF(X1) and FF (X3 )) are isomorphic. Let 5 (X;) C $; C P(X;)
for j=1,2.If $1 and $, are poset isomorphic, then X, and X, are k-homeomorphic, and
if, additionally, X, and X, are k-spaces, then they are homeomorphic. More precisely, if
i:91 — 92 is a poset isomorphism and | X, | > 2, then the function h; : X1 — X», such that
hi(x) = Js, (i(Ky, (x))) for any x € Xy, is a k-homeomorphism.

Now, let X be a Tychonoff space and let K(X) denote the poset of all Hausdorff
compactifications of X (see, e.g., [3]).
For any cX,dX € K(X) such that cX < dX, let

Tic = Tacx - dAX — cX (2.3)

be the canonical map (i.e., it is continuous and 14 x = idx).
Then 7'rd‘c1 (cX\X)=dX\X and the mapping

PTae = ¥ aex & 140 1 dX\ X — cXX (2.4)

is perfect and onto, that is, vy, € P?(dX\ X).
Fix eX € K(X) and let

K(eX)={cXeK(X):cX <eX} (2.5)

(in particular, K(BX) = K(X)).
In [2], the function

Oex - K(eX) — P(eX\X) (2.6)

was defined by o,x(cX) = v, and the following lemma was proved.

LEMMA 2.11. 0.x is an isomorphism of the posets K (eX) and

L(eX) ™ gox (K (eX)). 2.7)
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The following two lemmas were also proved in [2].
LEMMA 2.12. F¥(eX\X) C £(eX).

LEMMA 2.13. If X is a locally compact space, then £(eX) = P(eX\ X).

3. On the homeomorphisms of two pairs of spaces

DEFINITION 3.1. A space X and a closed subset A are called a pair of spaces and
denoted by (X,A).

DEFINITION 3.2. Suppose (X,A) and (Y, B) are pairs of spaces, where X, Y are Haus-
dorff. Then a homeomorphism (a k-homeomorphism) h : X — Y is called a homeomor-
phism (a k-homeomorphism) of the pair (X,A) onto the pair (Y,B) if h(A) = B.

Let X be a Hausdorff space and A a closed subset of X.
For any A € P (X), let

resxa(A) =A:A — A(A), 3.1)

that is, resy (A) is the corestriction of A to A.
Evidently, resy, (P (X)) Cc P(A) and resx, : P(X) — P(A) is monotonous.
It is not difficult to prove the following lemma.

LEMMA 3.3. resya (P (X)) =P(A),resxs(FL (X)) =FF(A), andresx, (D(X)u{idyx})=
PD(A) U {ida}.
Let F¥(X) C $(X) Cc P(X) and FS(A) C $(A) C P(A). Then, clearly,

resya (Kgox)(x))\{ida} = Kya)(x) Vx € A. (3.2)

THEOREM 3.4. Let X and Y be Hausdor(f spaces, let A be a closed subset of X, and
let B be a closed subset of Y,

min{|X|,|Y|} = 3, min{|Al,|B|} = 2,
FF(X) C $(X) CcP(X), FF(A) C $(A) CP(A), (3.3)
FL(Y) CP(Y) CP(Y), FF(B) C $(B) Cc P(B),

and let
ixy : $(X) — $(Y), iag: $(A) — J(B) (3.4)
be poset isomorphisms such that
iagoreSys =resSygoixy. (3.5)

Then
(i) in the casemin{|Al,|B|} = 3 for k-homeomorphisms hi,, : A — Bandhiy, : X =Y
(see Theorem 2.10),

hi (X)) =hiyy (xX) forevery x € A (3.6)
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(ii) in the case min{|Al,|B|} = 2, there exists a homeomorphism h;,,(x) : A — B such
that (3.6) is also true.
Thus

hiXY (A) C B, hiAB = hixy A — B, (3.7)

and so hiy, is a k-homeomorphism of (X, A) onto (Y,B).
If, additionally, X and Y are k-spaces, then h;,, and h,,, are homeomorphisms, and
80 hiy, is a homeomorphism of (X,A) onto (Y,B).

PROOF. First, let min{|A|,|B|} > 3.
Let x € A. Then, by Theorem 2.10, h;,, and h;,, are k-homeomorphisms and
Ri (X) = Je) (iap(Kga) (X)) (by (3.2))
=Jsm) (iap(resxa (Kyx) (x))\ {ida}))
(by (3.5) and since isp is a poset isomorphism)
= Jy) (resys (ixy (Kyx) (x))) \ {idg })
(by (2.2) and since iyy is a poset isomorphism)
=Jsm) (resys (Ksv) (o) (ixy (Ko (x))))) \ {idg })
(by the definition of hi,, )
=Jsp) (resys (Kgy) (Riyy (X)) \ {idz }) (by (3.2))
=Jss) (Ksp) (hiyy (x)))  (by (2.1))
=Ny (x).

(3.8)

Now, let |A| = 2. Since ip is a poset isomorphism, |$(B)| = |$(A)| = 2 and so |B| = 2.
There is a unique dual point A € $(X) such that A='({ty}) = A. Let A = {x1.x2}.
Evidently, Ky(x)(x1) NKg(x)(x2) = {A}. Then, by (2.2),
Kyy) (Riyy (xi)) = Ksv) (Jor) (ixy (Ksx) (x1))))

. , (3.9)
=ixy(Kgwx)(x;)) fori=1,2.

Hence
ixy ({A}) = ixy (Ksx) (x1) N Kgx) (x2))
= ixy (Ksx) (x1)) Nixy (Ky(x) (x2)) (3.10)
= Ks(v) (Riyy (x1)) N Ks(v) (Rigy (x2)).
Thus, for n = ixy(A), n71({ty}) = {hiyy, (x1), iy, (x1)} = hiyy (A). But, by (3.5), € =
resyg(n) =resyp(ixy(A)) = iap(resxa(A)).Sinceresy, (A) is adual pointin $(A) and isp

is a posetisomorphism, € is also a dual pointin $(B). Thus, B = £! ({te}) = n-! ({ty}) =
Riyy (A). |

4. Extensions of Magill’s and Rayburn’s theorems to mappings

DEFINITION 4.1. For mappings fj: X; — Y of (Hausdorff) spaces X; (with j = 1,2),
a (k-) homeomorphism h : X; — X, is called a (k-) homeomorphism of f; onto f>
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if fi = f>oh. The mappings fj: X; — Y (for j = 1,2) are (k-) homeomorphic if there
exists a (k-) homeomorphism of f) onto f>.

It is not difficult to prove the following lemma.

LEMMA 4.2. For mappings f; : X; — Y (with j = 1,2) and for (k-) homeomorphism
h: X, — X, of spaces X, and X», the following conditions are equivalent:
(i) h is a homeomorphism of f1 onto f>;
(i) h(fi'(yh) c fa'Uy}) foreveryy eY;
(i) there is a function hy : fi*({y}) — f5'({y}) such that h, = h: f{'({y}) —
f'({y}) forevery y €Y.

Given a Tychonoff space X and a closed subset A of X, we may define a function
kresya: K(X) — K(A) 4.1)
such that
kresxa(cX) =clcx(A) for every cX € K(X). 4.2)

If eX,cX € K(X) and cX < eX, then Trecx(clox(A)) = clex(A), Teex(A) = A, and
(TrecX A A) = idA.

Consequently, (eA = kresxa(eX)) > (cA = kresxa(cX)) and Trocp = Tecx : €A —
cA. Thus, kresx, is monotone and ¥ TTocq = ¥ TTocx : €A\ A — cA\ A, that is, ¥ TTeca =
resex\x,eA\A (¥ Teex ). It follows from this that (0ea o kresya) (cX) = 0oa(CA) = ¥ TToca =
resex\x,eA\A (¥ Tlecx) = reSex\x,ea\a (Oex (¢ X)).

We have then proven the following lemma.

LEMMA 4.3. IfeX € K(X) and eA = kresx(eX), then
T€Sex\X,eA\A ©Tex = Oea o KT€SxA |K(eX)- (4.3)

Let f: X — Y be a mapping to a Tychonoff space Y and let Bf* : BX — BY be the
(usual) continuous extension of f over the Stone-Céch compactifications X, frX =
(BfT)71(Y), and Bf = Bf* : BfX — Y. Evidently, the mapping Bf is perfect. We note
that X is C*-embedded in ByX because X C BrX C BX. Recall that f is called a WZ-
mapping [6] (resp., a Z-mapping) if (Bf)~'({>}) = clg,x(f~'({v})) for every y €
Y (resp., if f(Z) is closed for any zero-set Z in X). It is clear that (Bf)~'({y}) =
B(f~1({y})) if the space X is normal and f is a WZ-mapping. It is known [6] that
every Z-mapping is a WZ-mapping.

THEOREM 4.4. Let X; be a Tychonoff space, let Y be a compact Hausdorff space,
let fj: X; — Y be a WZ-mapping, let eX; be a Hausdorff compactification of X;, and
letef;:eX; — Y be a continuous extension of f; (thus, ef;j is a compactification of f;)
for j =1,2. Let also Xj, = fj‘l({y}), eXjy = clexj(ij) (ie, eXjy = kresxjxjy(er))
for j = 1,2, and suppose that there exist poset isomorphisms i : K(eX;) — K(eX») and
iy 1 K(eX1y) — K(eXz,) such that

iy okresxlxly = kresxzxzy oi foreveryyeY. (4.4)
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Then the remainders e f;\ f; def efi:eXj\Xj— Y ofef; for j = 1,2 are k-homeomorphic
(more exactly, ifmin{|eX;\ X1, |eX>\ X2|} = 3, then the function hoexzoioagx'l e X\ Xy —
eX» \ Xo is a k-homeomorphism of e f1 \ f1 onto ef> \ f2). If, additionally, X, and X, are
k-absolute spaces, then the remainders ef) \ f1 and ef>\ f> are homeomorphic.
PROOF. Fix y € Y.Let R,j = eX;\X; and Rej, = eXjy, \ Xy for j =1,2.
By Lemmas 2.11 and 2.12, the mappings Oex; 1 K(eXj) — (9; def Oex; (K(eXj))) and

Oex;,, 1K(eXjy) = ($jy def Oex,,, (K(eXjy))) are poset isomorphisms and #(R.;) C ¥},

FS(Rejy) C Iy for j=1,2.

Hence, i12 = Oex, 0i00,x, 1 91 — $2 and iyoy = Texyy oy °Ue_x11y : 91, — 2, are poset
isomorphisms too.

We consider the following diagram:

K(eXy) K(eX2)
-1
Texy TeXp
i12
$ —m9»
krelexly TeSR,1 Re1 L LresRezRgzy kresxzxzy (4_5)
1y ————= Foy
112y
A k

K(ele) - K(eX2y).

ly

By (4.4), the external part of it is commutative. We prove that its internal part is
commutative too, that is, that

I'ESRQReZy 0i12 = ilzy OresRe1Re1y . (46)
By (4.3), for j = 1,2, we have (see the diagram)

TeSR, R,y °Ocx; = Oex;, o Kresxx;, |k(ex;)- 4.7)

Thus, since o,.x ;» Oex;,, are isomorphisms,

-1 _ -l
kresx;x;, [kex;) © Oex; = Ocx,, °T€SR, R,y

TeSR, R,y ($5) C Iy

(4.8)
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Hence,

. . -1
TE€SRe2Re2y ©112 = TESR,HR,e0y ©Tex, 010 Upx,
: -1
= Uex,, okresxzxzy °io Oy,
; -1
= Oexy, °ly okresxlxly °0ex, (4.9)

; -1
= O-eXZy olyo O-eXIy OreSRelRely

112y O T€SR,  Ry1 y -

By Theorem 3.4, in the case min{|Re1/,[Re2l,[Re1y |, [Re2y |} = 3, the homeomorphisms
hi;, 1 Re1 — Re2 and hilZy :Re1y — Re2y are such that

iy, = Niy, 1 Re1y — Reay, (4.10)

and in the case min{|Re1 |, [Re2|} = 3, min{|Re11,|Re2y |} = 2, there exists a homeomor-
phism hilz_'y :Re1y — Re2y such that (4.10) is also true.

Finally, in the case min{|R.1l,|Re2|} = 3, min{|Re11,|Re2y |} < 1, the existence of a
homeomorphism hilzy :Re1y — Re2y such that (4.10) holds is evident.

Thus, in the case min{|R.1|,|R.2|} > 3, (4.10) holds for every y € Y.

In the case min{|R.1l,|Re2|} < 2, the existence of homeomorphisms hi,, : Re1 — Re2
and hilzy :Re1y — Re2y such that (4.10) holds is evident.

Since f; is a WZ-mapping, R.jy = (ef)) L ({y D\ fi~t({»}) for j =1,2, and so

Risyy =hiy  (ef1) (YDA (D) — (ef2) T (LyD\ 27 (Iy}) forevery y €Y.
4.11)

By Lemma 4.2, h;,, is a k-homeomorphism of e fi\ f1 onto ef>\ fo. O

COROLLARY 4.5 [2]. Let Xy, X» be Tychonoff spaces and let e Xy, eX» be their Hausdorff
compactifications. IfK (eX,) and K (eX>) are poset isomorphic, then the remainders eX; \
X and eX, \ X, are k-homeomorphic, and they are homeomorphic if, additionally, X;,
X, are k-absolute spaces.

PROOF. It is sufficient to apply Theorem 4.4 to (the simplest) mappings f; of X; to
the single point space Y for j = 1,2. |

In particular, in Corollary 4.5, for eX; = BX; (j = 1,2), we have Rayburn’s Theorem
1.3. Thus, Theorem 4.4 is a generalization of this theorem to mappings.

THEOREM 4.6. Let X; be a locally compact Tychonoff space, let Y be a compact
Hausdorff space, let fj: X; — Y be a WZ-mapping, let eX; be a Hausdorff compactifi-
cation of Xj, and let efj: eX; — Y be a continuous extension of f; for j = 1,2. Let also
Xjy = fj’l({y}), eXjy = cler (Xjy) (ie., eXjy = kresxjxjy(er)) (for j = 1,2). Then the
remaindersefi\ fj =efj:eX;\Xj — Y of ef;j for j = 1,2 are homeomorphic if and only
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if there exist poset isomorphisms i: K (eX;) — K(eX») and i, : K(eX1,) — K(eX>2,) such
that (4.4) holds.

PROOF. One half of the theorem follows from Theorem 4.4.

Let R,; = eX;\ X; and R,j, = eXj, \ Xj, for all y € Y and j = 1,2. Now, sup-
pose that the remainders ef; \ f1 and ef> \ f> are homeomorphic. Then there exists
a homeomorphism h : R,» — R, such that ef>\ f> = (ef1\ f1) o h. Hence, the mappings
hy, = h: R, — Re1,, are homeomorphisms for all )y € Y. Since f; is a WZ-mapping,
(efi)~'({y}) is a compactification of fj‘l({y}), and so eXj, = (ef;)~'({y}) for all
¥y €Y and j=1,2. Evidently, i12 : ?(Re1) — P(Re2) and 12, : P(Reiy) — P(Re2y), such
that i12(A) =Aoh for A € ?(X;) and i12,(A) = Aoh, for A € ?(X;,) and all y € Y, are
poset isomorphisms.

We prove that (4.4) holds for all y € Y.

Indeed, for every A € ?(R,;) and y € Y, we have

112y OT€SR, Ry, (A) = 112y (AlR,yy ) = AlRyy, 0 Ry
= (Ao h) IR,y = (112(A) Ry, (4.12)

=T€SR,yR,0, °112(A).

By Lemmas 2.11 and 2.13, Oex; 1 K(eX;) — P(R.j) and Oex;, :K(eXjy) = P(Rejy), for
j=1,2and y €Y, are poset isomorphisms. Hence, i = Ue‘)}z oijpo0ex, and i, = O'e_Xlzy °
i12y © Oex,, are poset isomorphisms foryeYandj=1,2.

We consider the diagram obtained from the previous one by replacing $; and $;,
by P(Rej) and P(R.jy) for j = 1,2 and 0,y , U;XIU, Texyr Texyy DY Ooxys Oexyys Toxty
o-e}lzy, respectively. By (4.12), its internal part is commutative. As above, in the proof of
Theorem 4.4, we can prove that its external part is commutative too, that is, that (4.4)
holds. |

COROLLARY 4.7 [2]. Let X1, X» be locally compact Tychonoff spaces and let eX, eX>
be Hausdorff compactifications of X, and X», respectively. Then the remainders eX; \ X;
and eX; \ X, are homeomorphic if and only if K(eX:) and K (eX>) are poset isomorphic.

PROOF. It is sufficient to apply Theorem 4.6 to the simplest mappings f; of X; and
ef; of eX; to the single point space Y for j = 1,2. |

In particular, when in Corollary 4.7, eX; = X, for j = 1,2, we have Magill’s theorem
from [8]. Thus, Theorem 4.6 is a generalization of this theorem to mappings.

5. Reformulations of results obtained above and some examples. Some readers
may find that Theorems 4.4 and 4.6 do not sound very natural. The reformulations, in
the framework of FGT, sound better to us.

We will start with some definitions and results of FGT.

A mapping is called compact if it is perfect.

The following is evident.
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LEMMA 5.1. For a compact Hausdor({f space Y, a mapping f : X — Y is compact if and
only if X is compact.

DEFINITION 5.2. A mapping f : X — Y is said to be T [11] if for every x,x’ € X such
that x # x’ and f(x) = f(x’), there exists a neighbourhood of x in X which does not
contain x’ or a neighbourhood of x’ in X not containing x.

DEFINITION 5.3. A mapping f : X — Y is said to be completely regular [11] if for
every closed set F of X and x € X\ F, there exist a neighbourhood O of f(x) inY and a
continuous function @ : f~1(0) — [0,1] such that @ (x) =0 and @ (Fn f~1(0)) < {1}.
A completely regular Typ-mapping is called Tychonoff (or T3(1,2))-

It is not difficult to prove the following lemma.

LEMMA 5.4 [11]. For a Tychonoff space Y, a mapping f : X — Y is Tychonoff if and
only if X is Tychonoff.

DEFINITION 5.5. A compact Tychonoff mapping ef :esX — Y is called a Tychonoff
compactification of a Tychonoff mapping f: X — Y if X C efX, X is dense in efX, and
erX|x = f (more precisely, if some embedding e : X — e¢X is fixed so that e(X) is dense
inesX and f = ef oe, but usually, X and e(X) are identified by means of e).

Throughout the rest of the paper, we fix a space Y and we will consider only Tychonoff
mappings to Y and their Tychonoff compactifications.

DEFINITION 5.6. A mapping A : d¢X — cyX between two compactifications cf :
cfX - Yand df :d¢X — Y is called canonical if df = cf oA and A|x = idx. In this
case, one says that we have a canonical morphism A : df — cf (and we write that

af > cf).

It is not difficult to prove that d f and cf are homeomorphic if and only if df > c f
and cf > df (see, e.g., [1]).

It is proved in [11] (see also [1]) that all compactifications of a mapping to Y form
a set up to canonical homeomorphisms. This set will be denoted by TK (f). Evidently,
with respect to the just defined relation >, TK(f) is a poset.

In[11],itis also proved that there exists the maximal element Sf: f7X — Y in TK(f)
and that, if Y is Tychonoff, Bf may be obtained in the following way.

By Lemma 5.4, X is Tychonoff. Hence, there exists the unique continuous extension
Bf*:BX ~ BY of f. Then f;X = (Bf*)"1(Y) and Bf = Bf* : BsX — Y.

For a compactification ef : e, X — Y of a mapping f: X — Y, the mapping ef \ f =
ef:erX\X —Y is called the remainder of ef.

A mapping f: X — Y is called locally compact [7] if for any point x € X, there exists
a neighbourhood O of x in X such that f|c () : clx(O) — Y is compact.

It is not difficult to prove that

(i) for alocally compact Tychonoff space Y, a mapping f : X — Y is locally compact
if and only if X is locally compact;
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(ii) a mapping f : X — Y is locally compact if and only if X is open in SsX or,
equivalently, if X is open in ey X for any compactification ef :efX — Y of f.
Now, Theorem 4.4 can be reformulated in the following way.

THEOREM 5.7. LetY be a compact Hausdorff space and ef : erXj—Ya Tychonoff
compactification of a locally compact Tychonoff WZ-mapping fj: X; — Y (for j = 1,2).
Letalso X, = fj’l({y}),ery = clexj (Xjy) for j =1,2. Then the remaindersefi \ fi and
ef>\ f> are homeomorphic if and only if there exist poset isomorphisms i: K(ey X;) —
K(er, X3) and iy : K(eX1y) — K(eXoy) such that (4.4) holds.

Theorem 3.4 may be reformulated analogously. But, even in the style of Theorem 5.7,
the formulation of Theorem 4.4 (and Theorem 3.4) seems too complicated, but this
complexity may not be avoided. In order to explain why, for any fixed space Y, consider
the category Topy, where

Ob (Topy) = {f € C(X,Y): X € Ob(Top)} (5.1)
is the class of the objects and, for every pair f: X - Y, g: Z — Y of objects,
M(f,9)={AeC(X,2): goA=f} (5.2)

is the class of the morphisms from f to g, whose generic representation is denoted in
shortby A: f — g.

So, the question is: may the passage from the category Top to the category Topy
allow us to give simpler variants of Theorems 4.4 and 4.6 which can generalize Magill’s
and Rayburn’s theorems?

In this connection, we will give two examples which demonstrate that in the frame-
work of Topy, such generalizations are impossible.

EXAMPLE 5.8. Let Y =[0,2], X; = X» =N, and fj:X; — Y be such that f;(X;) = {j}
for j = 1,2. Then Bf,X; = BN, BSf;(Br, X)) = Ljt, Bfi\ fi = Bfj < By, X;\ X; — Y, and
so Bfi\fi = Bfi: BN\N =Y, with (Bf;\ f;))(BN\N) = {j} for j = 1,2. Thus, the
remainders Bf1 \ f1 and Bf> \ f> are not homeomorphic, but TK(f,) and TK(f>) are
poset isomorphic because they, in fact, coincide with K(N).

This example shows that an extension of Magill’s Theorem to the category Topy must
take into consideration fibres of objects of Topy.

EXAMPLE 5.9. Let ] = {(x,0) €R?:0<x<1},L={(0,y) eR?>: -1 <y <1}, J=
{(x,1)eR2:0=<x<1},Y=I,8 =IUL, and S» = JUL. Let j = 1,2. Put prj(x,y) =x
for any (x,y) € S;. Let w; be the space of all finite and countable ordinal numbers.
Then fw; = w1 +1.Put X; = S; X w; and let 11; be the projection of the product X; onto
its factor S;. Take f; = prjo ;. Evidently, f; is either closed or open and all its fibres
are countable compact. Then BX; = Sjx (w1 +1) and R; = BX;\ X; is homeomorphic
to Sj. Let p; be the projection of the product fX; onto its factor S;. Then Bf; = prjop;
and Bfj\ fj = Bfj:R; = Y is homeomorphic to p7;.

Thus, the remainders Bf1\ f1 and Bf: \ fo are not homeomorphic.
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For any t = (x,0) € Y, (Bf;) ' ({t}) = B(f; ' ({t})), and, for any t = (x,0) € Y with
x > 0, the remainders Rj; = (Bf;) "1 ({t) \ f 1 ({t}) = B(F 1 ({t}) \ f; 1 ({t}) are sin-
gle points. Hence, K(f;71({t})) consists of only one element for t = (x,0) € Y with
x > 0. For t = (0,0), the remainder R;; is homeomorphic to L. Evidently, TK(f;) and
K(fj‘l({(0,0)})) are poset isomorphic to P(L).

Now, it is evident that there exist poset isomorphisms i : TK(f1) — TK(f>), i; :
K(fi7t({t}) — K(fo71({t})) for t € Y and monotone functions mj : TK(f;) —
K(f; ' ({t})) for t €Y and j = 1,2 such that

() for any cfj:cpX; — Y with cf; € TK(f), mej(cf)) = (cfi)~1({t}), that is,
myj(cfj) is the closure of fj‘l({t}) incgXj;

(i) myppoi=iromy foreverytey.

Example 5.9 shows that the use of the posets K(eX;) and K (eX>) (in particular K (X7)
and K (X)) instead of TK(f;) and TK(f>) is justified.

REMARK 5.10. Let f : X — Y be a mapping between Tychonoff spaces M(f) =
{y € Y : fisnotclosed at y or f~'({y}) is not compact} and M;(f) = {y € Y :
[BA LUy \ fHH{y D] = 13. Evidently, M1 (f) ¢ M(f) and Bf(BsX \ X) = M(f).

The following proposition is proved in [5].

PROPOSITION 5.11. Let f: X — Y and g: Z — T be locally compact mappings be-
tween Tychonoff spaces and |M;(f)| = |[M1(g)| =1 . Then there exists a one-to-one cor-
respondence ¥ : M(f) — M(g) such that (Bf\ f) '({y}) and (Bg\g) ' ({¥(y)}) are
homeomorphic for any vy € Y. If, additionally, M (f) and M(g) are discrete, then Bf \ f
and Bg \ g are homeomorphic in the sense of [5], that is, there exist homeomorphisms
Q:BrX\X = BgZ\Z and ¢ : M(f) — M(g) such that @ o (Bf\ f) = (Bg\g) o if and
only if TK(f) and TK(g) are poset isomorphic.
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