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Abstract. We present an old and regretfully forgotten method by Jacobi which allows one
to find many Lagrangians of simple classical models and also of nonconservative systems. We
underline that the knowledge of Lie symmetries generates Jacobi last multipliers and each of
the latter yields a Lagrangian. Then it is shown that Noether’s theorem can identify among
those Lagrangians the physical Lagrangian(s) that will successfully lead to quantization. The
preservation of the Noether symmetries as Lie symmetries of the corresponding Schrödinger
equation is the key that takes classical mechanics into quantum mechanics. Some examples are
presented.

1. Introduction

The inverse problem of calculus of variation has attracted a lot of interest since in the second half
of the XVIII century Euler [8] and then Lagrange [17] introduced the direct problem, namely
the idea of linking the solution of a differential equation to the maximum/minimum of a func-
tional, the celebrated problem of the brachistochrone being indeed the most famous classical
example. It will take hundred of pages to cite all the papers and books that have been published
since up to date. Most authors mark the birthdate of the inverse problem with the 1887-papers
by either Helmholtz [11] or Volterra [33]. Some other especially among the Russian speaking
researchers pushes the date slightly back to the 1886-paper by Sonin [32]. Very few recognize
the seminal work by Jacobi, namely his 1845-paper [14] and his 1842-1843 Dynamics Lectures
published posthumously in 1884 [15], available in English since 2009 [16], where he links his last
multiplier to the Lagrangian for any even-order ordinary differential equation (ODE). Actually
both Volterra and Sonin recognize the contribution of Jacobi last multiplier in their papers,
Sonin more explicitly than Volterra since he showed that his own method involves the Jacobi
last multiplier (p.10 in [32]).

The method of Jacobi last multiplier was enhanced when Lie determined the link with his
symmetries [18], a link very easy to implement that allows to derive many multipliers and
therefore Lagrangians.

It is known that a single second-order ODE admits different many Lagrangians [34], but so
far there is not a method that can discern the physical Lagrangian among them, although some
were proposed, e.g. [6]. The same is true for systems of second-order ODEs that admit more
that one Lagrangian. It has been shown that some systems of second-order ODEs do not admit
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a Lagrangian [7] although in [27] the Lagrangian of some of those systems were determined
by following Bateman’s statement [2], namely finding a set of equations equal in number to a

given set, compatible with it and derivable from a variational principle without recourse to any
additional set of equations.

We propose that the physical Lagrangian should be the one that admits the highest possible
number of Noether symmetries [26], [23], [24]. It was proven in [10] that the maximal dimension
of the Lie symmetry algebra of a system of n ODEs of second order is n2 + 4n + 3, and the
highest number of corresponding Noether symmetries is (n2 + 3n + 6)/2. In particular for a
single second-order ODE the highest number of Noether symmetries is five [20].

Consequently we conjecture that the passage from a classical system to its quantum analogue
should preserve exactly those Noether symmetries, namely the Noether symmetries of the
physical Lagrangian shall become the Lie symmetries of the corresponding Schrödinger equation
[26], [23], [24].

In this paper after recalling the method of Jacobi last multiplier and its link to Lie
symmetries, we present the simple example of the one-dimensional free particle: ten inequivalent1

Lagrangians are presented, their Noether symmetries identify two Lagrangians that admit the
highest number of Noether symmetry: one independent and one dependent on time. Then the
corresponding Schrödinger equations are obtained. Also the case of the nonlinear second-order
Riccati equation is illustrated and its corresponding Schrödinger equation obtained.

2. Jacobi last multiplier

The method of the Jacobi Last Multiplier [12], [13], [14], [15] provides a means to determine all
the solutions of the partial differential equation

Af =
n

∑

i=1

ai(x1, . . . , xn)
∂f

∂xi
= 0 (1)

or its equivalent associated Lagrange system

dx1

a1

=
dx2

a2

= . . . =
dxn
an

. (2)

In fact, if one knows the Jacobi Last Multiplier and all but one of the solutions, then the last
solution can be obtained by a quadrature. The Jacobi Last Multiplier M is given by

∂(f, ω1, ω2, . . . , ωn−1)

∂(x1, x2, . . . , xn)
= MAf, (3)

where

∂(f, ω1, ω2, . . . , ωn−1)

∂(x1, x2, . . . , xn)
= det























∂f

∂x1

· · ·
∂f

∂xn
∂ω1

∂x1

∂ω1

∂xn
...

...
∂ωn−1

∂x1

· · ·
∂ωn−1

∂xn























= 0 (4)

and ω1, . . . , ωn−1 are n− 1 solutions of (1) or, equivalently, first integrals of (2) independent of
each other. This means that M is a function of the variables (x1, . . . , xn) and depends on the
chosen n − 1 solutions, in the sense that it varies as they vary. The essential properties of the
Jacobi Last Multiplier are:

1 Namely they do not differ by a total derivative.
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(a) If one selects a different set of n−1 independent solutions η1, . . . , ηn−1 of equation (1), then
the corresponding Last Multiplier N is linked to M by the relationship:

N = M
∂(η1, . . . , ηn−1)

∂(ω1, . . . , ωn−1)
.

(b) Given a non-singular transformation of variables

τ : (x1, x2, . . . , xn) −→ (x′1, x
′

2, . . . , x
′

n),

then the Last Multiplier M ′ of A′F = 0 is given by:

M ′ = M
∂(x1, x2, . . . , xn)

∂(x′
1
, x′

2
, . . . , x′n)

,

where M obviously comes from the n − 1 solutions of AF = 0 which correspond to those
chosen for A′F = 0 through the inverse transformation τ−1.

(c) One can prove that each multiplier M is a solution of the following linear partial differential
equation:

n
∑

i=1

∂(Mai)

∂xi
= 0, (5)

or equivalently:
d

dt
(logM) +

n
∑

i=1

∂ai
∂xi

= 0; (6)

viceversa every solution M of this equation is a Jacobi Last Multiplier.

(d) If one knows two Jacobi Last Multipliers M1 and M2 of equation (1), then their ratio is a
solution ω of (1), or, equivalently, a first integral of (2). Naturally the ratio may be quite
trivial, namely a constant. Viceversa the product of a multiplier M1 times any solution ω
yields another last multiplier M2 = M1ω.

Since the existence of a solution/first integral is consequent upon the existence of symmetry, an
alternate formulation in terms of symmetries was provided by Lie [18], [19]. A clear treatment
of the formulation in terms of solutions/first integrals and symmetries is given by Bianchi [3].
If we know n− 1 symmetries of (1)/(2), say

Γi =
n

∑

j=1

ξij(x1, . . . , xn)∂xj
, i = 1, n− 1, (7)

Jacobi’s last multiplier is given by M = ∆−1, provided that ∆ 6= 0, where

∆ = det











a1 · · · an
ξ1,1 ξ1,n
...

...
ξn−1,1 · · · ξn−1,n











. (8)

There is an obvious corollary to the results of Jacobi mentioned above. In the case that there
exists a constant multiplier, the determinant is a first integral. This result is potentially very
useful in the search for first integrals of systems of ordinary differential equations. In particular,
if each component of the vector field of the equation of motion is missing the variable associated
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with that component, i.e., ∂ai/∂xi = 0, the last multiplier is a constant, and any other Jacobi
Last Multiplier is a first integral.

Another property of the Jacobi Last Multiplier is its (almost forgotten) relationship with the
Lagrangian, L = L(t, q, q̇), for any second-order equation

q̈ = F (t, q, q̇) (9)

i.e. [15] (Lecture 10)2, [34]

M =
∂2L

∂q̇2
(10)

where M = M(t, q, q̇) satisfies the following equation

d

dt
(logM) +

∂F

∂q̇
= 0. (11)

Then equation (9) becomes the Euler-Lagrange equation:

−
d

dt

(

∂L

∂q̇

)

+
∂L

∂q
= 0. (12)

The proof is based on taking the derivative of (12) with respect to q̇ and showing that this
yields (11). If one knows a Jacobi last multiplier, then L can be easily obtained by a double
integration, i.e.:

L =

∫
(

∫

M dq̇

)

dq̇ + f1(t, q)q̇ + f2(t, q), (13)

where f1 and f2 are functions of t and q which have to satisfy a single partial differential equation
related to (9) [25]. As it was shown in [25], f1, f2 are related to the gauge function g = g(t, q).
In fact, we may assume

f1 =
∂g

∂q

f2 =
∂g

∂t
+ f3(t, q) (14)

where f3 has to satisfy the mentioned partial differential equation and g is obviously arbitrary.
We remark the importance of the gauge function in order to apply Noether’s theorem [21]
correctly. Therefore we do not annihilate the gauge function.

In [25] it was shown that if one knows several (at least two) Lie symmetries of the second-order
differential equation (9), i.e.

Γj = Vj(t, q)∂t +Gj(t, q)∂q, j = 1, r, (15)

then many Jacobi Last Multipliers could be derived by means of (8), i.e.

1

Mnm
= ∆nm = det















1 q̇ F (t, q, q̇)

Vn Gn
dGn
dt

− q̇
dVn
dt

Vm Gm
dGm
dt

− q̇
dVm
dt















, (16)

with (n,m = 1, r), and therefore many Lagrangians can be obtained by means of (13).

2 Jacobi’s Lectures on Dynamics are finally available in English [16].
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3. Lagrangians for the free particle

It is well-known since Lie’s seminal work [19] that the equation of a free particle

q̈ = 0 (17)

admits an eight-dimensional Lie symmetry algebra3, sl(3, IR), generated by the following
operators:

X1 = qt∂t + q2∂q, X2 = q∂t, X3 = t2∂t + qt∂q, X4 = q∂q,

X5 = t∂t, X6 = ∂t, X7 = t∂q, X8 = ∂q. (18)

An obvious Jacobi Last multiplier (JLM) of (17) is a constant since q̇ does not appear in its
right-hand side. This also implies that any JLM is a first integral of (17). We can found this
trivial JLM and many others by calculating the inverse of the determinant of the matrix (16)
for all the possible combinations of two different operators in (18). It results that ten different
JLM and consequently as many Lagrangians, by means of (13), can be obtained4, i.e.:

M13 = −
1

(tq̇ − q)3
⇒ L13 = −

1

2t2(tq̇ − q)
+

dg

dt
(t, q)

M15 = −
1

q̇(tq̇ − q)2
⇒ L15 =

q̇

q2
(log(tq̇ − q) − log(q̇)) +

dg

dt
(t, q)

M16 =
1

q̇2(tq̇ − q)
⇒ L16 =

(

tq̇

q2
−

1

q

)

(log(q̇) − log(tq̇ − q)) +
dg

dt
(t, q)

M17 = −
1

(tq̇ − q)2
⇒ L17 = −

1

t2
log(tq̇ − q) +

dg

dt
(t, q)

M18 =
1

q̇(tq̇ − q)
⇒ L18 = −

q̇

q
log(q̇) −

(

1

t
−
q̇

q

)

log(tq̇ − q) +
1

t
(1 + log(q)) +

dg

dt
(t, q)

M26 = −
1

q̇3
⇒ L26 = −

1

2q̇
+

dg

dt
(t, q)

M28 =
1

q̇2
⇒ L28 = − log(q̇) +

dg

dt
(t, q)

M38 =
1

tq̇ − q
⇒ L38 =

(

q̇

t
−
q

t2

)

(log(tq̇ − q) − 1) +
dg

dt
(t, q)

M48 = −
1

q̇
⇒ L48 = q̇(1 − log(q̇)) +

dg

dt
(t, q)

M87 = 1 ⇒ L87 = 1

2
q̇2 +

dg

dt
(t, q) (19)

The ten Lagrangians are NOT linked by the gauge function g = g(t, q). We note that seven of
the matrices (16) have determinant equal to zero, i.e.:

∆12, ∆14, ∆24, ∆35, ∆37, ∆57, ∆68. (20)

3 Also reported in [9].
4 Since Mnm = −Mmn we have arbitrarily chosen the sign as we wished.
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This is in agreement with the application of Jacobi’s method to the linear harmonic oscillator
[25] that yielded fourteen different Lagrangians and three matrices having determinant equal to
zero.
Applying Noether’s theorem yields that both L13 and L87 admit five Noether point symmetries,
the maximum possible [20] in the case of equation (17). The main difference between the
two Lagrangians is that one Lagrangian only is independent on time and is the traditional
Lagrangian, namely the kinetic energy L87. Moreover the two Lagrangians admit different
Noether point symmetries. In fact Lagrangian L13 admits the following five Noether symmetries
and corresponding first integrals of equation (17)

X1 =⇒ Int1 = −
q̇

q − tq̇
,

X2 =⇒ Int2 =
q̇2

2(q − tq̇)2
,

X3 =⇒ Int3 = −
1

q − tq̇
,

X4 −X5 =⇒ Int4 = −
q̇

(q − tq̇)2
,

X7 =⇒ Int7 = −
1

2(q − tq̇)2
, (21)

while Lagrangian L87 admits the following five Noether symmetries and corresponding first
integrals of equation (17)

X3 =⇒ In3 = −1

2
(q − tq̇)2,

X4 + 2X5 =⇒ In4 = −q̇(q − tq̇),

X6 =⇒ In6 = 1

2
q̇2,

X7 =⇒ In7 = q − tq̇,

X8 =⇒ In8 = −q̇. (22)

4. Schrödinger equations for the free particle

The Schrödinger equation for the free particle is

2iψt + ψxx = 0. (23)

We show that this equation can be obtained by considering a generic linear parabolic equation

2iψt + f1(x)ψxx + f2(x)ψx + f3(x)ψ = 0 (24)

with fk, (k = 1, 3) functions of x to be determined in such a way that equation (24) admits the
following five Lie symmetries5

X3 ⇒ Ω1 = t2∂t + xt∂x + ω1∂ψ,

X4 + 2X5 ⇒ Ω2 = 2t∂t + x∂x + ω2∂ψ,

X6 ⇒ Ω3 = ∂t + ω3∂ψ,

X7 ⇒ Ω4 = t∂x + ω4∂ψ,

X8 ⇒ Ω5 = ∂x + ω5∂ψ. (25)

5 We have identified q with x.
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where ωi = ωi(t, x, ψ), (i = 1, 5) are functions of t, x, ψ that have to be determined. Equation
(24) also admits the following two symmetries

Ω6 = ψ∂ψ, Ωα = α(t, x)∂ψ (26)

with α any solution of equation (24) itself, since any linear partial differential equation possesses
these two symmetries.

Using the interactive REDUCE programs [22], we obtain that

f1 = 1, f2 = f3 = 0, (27)

and
ω1 = 1

2
(ix2 − t)ψ, ω2 = ω3 = ω5 = 0, ω4 = ixψ. (28)

Therefore the Noether symmetries admitted by the Lagrangian L87, namely the physical
Lagrangian for the free particle, yield the right Schrödinger’s equation (23) and thus the correct
quantization procedure is achieved.

We now show that a quantum-correct Schrödinger equation can be derived even from the five
Noether symmetries admitted by the time-dependent Lagrangian L13. We consider a generic
linear partial differential equation

f11(t, x)ψtt + f12(t, x)ψtx + f22(t, x)ψxx + f1(t, x)ψt + f2(t, x)ψx + f0(t, x)ψ = 0 (29)

with frs, fr, (r, s = 1, 2), f0 functions of t, x to be determined in such a way that equation (29)
admits the following five Lie symmetries6

X1 ⇒ W1 = xt∂t + x2∂x + w1∂ψ,

X2 ⇒ W2 = x∂t + w2∂ψ,

X3 ⇒ W3 = t2∂t + xt∂x + w3∂ψ,

X4 −X5 ⇒ W4 = −t∂t + x∂x + w4∂ψ,

X7 ⇒ W5 = t∂x + w5∂ψ. (30)

where wi = wi(t, x, ψ), (i = 1, 5) are functions of t, x, ψ that have to be determined. Equation
(29) also admits the two symmetries

W6 = ψ∂ψ, Wβ = β(t, x)∂ψ (31)

with β any solution of equation (29) itself.
Using the interactive REDUCE programs [22], we obtain that equation (29) becomes

4t2ψtt + 8txψtx + 4x2ψxx + 12tψt + 12xψx + 3ψ = 0 (32)

with
w1 = −1

2
xψ, w2 = w4 = w5 = 0, w3 = −1

2
tψ. (33)

Equation (32) is parabolic and therefore can be put into its normal form since its characteristic
coordinates are

ξ =
x

t
, x = x, ψ = φ(ξ, x). (34)

6 We have identified q with x.
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Thus equation (32) transforms into

4x2φxx + 12xφx + 3φ = 0 (35)

with solution:
φ(ξ, x) = α1(ξ)x

−1/2 + α2(ξ)x
−3/2, (36)

where α1, α2 are arbitrary functions of ξ. This is obviously in agreement with the quantization
of the free particle.

We remark that there is some freedom when imposing equation (29) to admit the Lie
symmetries (30) but in any possible cases a parabolic equation with characteristic coordinates
(34) is always obtained. For example another possibility is

4t4ψtt + 8t2xψtx + 4t2x2ψxx + 4t2(3t+ x)ψt + 4tx(3t+ x)ψx + (3t2 + 4tx+ x2)ψ = 0 (37)

with

w1 = −1

2

(

1 +
x

t

)

xψ, w2 =
x2

2t2
log(t)ψ, w3 = −1

2
(t+ x)ψ,

w4 =
x

t
log(t)ψ, w5 = −1

2
log(t)ψ. (38)

The normal form of equation (37) is

4x2φxx + (12 + 4ξ)xφx + (3 + 4ξ + ξ2)φ = 0 (39)

with solution:
φ(ξ, x) = α1(ξ)x

−3/2−ξ/2 + α2(ξ)x
−1/2−ξ/2, (40)

also in agreement with the quantization of the free particle.

5. Schrödinger equation for the second-order Riccati equation

In [28] it was shown that the linearizable second-order Riccati equation, a member of the Riccati-
chain [1], i.e.

ẍ+ 3xẋ+ x3 = 0 (41)

possesses many JLM and therefore Lagrangians. In particular the following time-independent
Lagrangian7

Lagr = −
1

2(ẋ+ x2)
(42)

was shown to admit five Noether point symmetries, i.e.

Γ2 − Γ8, Γ3 −
2

3
Γ7, Γ4, Γ5, Γ6 (43)

among the following eight Lie symmetries admitted by equation (41):

Γ1 = t3(tx− 2)∂t − t(xt− 2)(x2t2 + 2 − 2xt)∂x

Γ2 = xt3∂t − (xt− 1)(x2t2 + 4 − 2xt)∂x

Γ3 = xt2∂t − x(x2t2 + 2 − 2xt)∂x

Γ4 = xt∂t − x2(xt− 1)∂x

Γ5 = x∂t − x3∂x (44)

Γ6 = ∂t

Γ7 = t∂t − x∂x

Γ8 = t2∂t − 2(xt− 1)∂x.

7 This Lagrangian has also been studied in [5].
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Lagrangian (42) was obtained from the inverse of the determinant of the matrix (16) with the
two symmetries Γ5 and Γ6 and the application of formula (13).

It interesting to show that equation (41) is linked to the following cubic-power dissipative
equation

d2x̃

dt̃2
+

(

dx̃

dt̃

)3

= 0 (45)

by means of the canonical form of the two-dimensional Lie algebra generated by Γ5 and Γ6. In
fact this Lie algebra corresponds to Type I in Lie’s classification of the real two-dimensional Lie
algebras in the plane [19], [3], namely it is abelian and transitive8 and therefore its canonical
coordinates are

∂t̃, ∂x̃. (46)

Therefore the following identification

Γ5 = ∂t̃, Γ6 = ∂x̃ (47)

yields the transformation

t̃ =
1

2x2
, x̃ =

tx− 1

x
(48)

that takes (41) into (45).
Equation (45) is also linearizable and admits an eight-dimensional Lie symmetry algebra.

Work is in progress to quantize n-power dissipative equations with the method illustrated here
and to compare it to other proposed method, e.g. [29], [30], [31].

We now quantize the second-order Riccati equation (41) by imposing equation (29) to admit
the following five Lie symmetries

Γ2 − Γ8 ⇒ Λ1 = (xt− 1)t2∂t − (xt− 1)(x2t2 − 2 − 2xt)∂x + λ1∂ψ,

Γ3 −
2

3
Γ7 ⇒ Λ2 =

(

xt−
2

3

)

t∂t − x

(

x2t2 +
4

3
− 2xt

)

∂x + λ2∂ψ,

Γ4 ⇒ Λ3 = xt∂t − x2(xt− 1)∂x + λ3∂ψ,

Γ5 ⇒ Λ4 = x∂t − x3∂x + λ4∂ψ,

Γ6 ⇒ Λ5 = ∂t + λ5∂ψ. (49)

where λi = λi(t, x, ψ), (i = 1, 5) are functions of t, x, ψ that have to be determined. We remind
that equation (29) also admits the two symmetries (31).

Using the interactive REDUCE programs [22], we obtain that equation (29) becomes

4ψtt − 8x2ψtx + 4x4ψxx + 8x3ψx − 3x2ψ = 0 (50)

with

λ1 = −
(tx− 1)3

2x
ψ, λ2 = −1

2
(tx− 1)2ψ, λ3 = −1

2
(tx− 1)xψ

λ4 = −1

2
x2ψ, λ5 = −

tx− 1

x
ψ. (51)

8 In [28] a missprint led to the erroneously statement that Γ5 and Γ6 generate an intransitive Lie algebra.
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Equation (50) is parabolic and therefore can be put into its normal form since its characteristic
coordinates are

̺ = t−
1

x
, x = x, ψ = φ(̺, x). (52)

Thus equation (50) transforms into

4x2φxx + 8xφx − 3φ = 0 (53)

with solution:
φ(̺, x) = β1(̺)x

1/2 + β2(̺)x
−3/2, (54)

where β1, β2 are arbitrary functions of ̺. Is this the correct quantization of equation (41)? It
seems so but further insight is needed especially from the experimentalists.

6. Final remarks

In [23] a method was proposed to overcome the deadlock of nonlinear canonical transformations
when quantizing with the known procedures [26]. It consists of the following steps to be applied
to a classical Lagrangian equation9:

• Find the Lie symmetries of the Lagrangian equation

Υ = W0(t, x)∂t +W1(t, x)∂x

• Among the Lie symmetries find the Noether symmetries admitted by the given Lagrangian

Γ = V0(t, x)∂t + V1(t, x)∂x, Γ ⊂ Υ

• Construct the Schrödinger equation admitting these Noether symmetries as Lie symmetries

2iψt + f1(x)ψxx + f2(x)ψx + f3(x)ψ = 0

Ω = V0(t, x)∂t + V1(t, x)∂x +G(t, x, ψ)∂ψ

• Summarizing: quantize preserving the Noether symmetries

In [24] this method has been applied to classical Lagrangian systems. In particular it led to the
Schrödinger equation of a known completely integrable and solvable many-body problem, the
so-called ‘goldfish’ [4]. In the case of Lagrangian systems the method consists of the following
steps10:

• Find the Lie symmetries of the Lagrangian system

Υ = W (t, x)∂t +
N

∑

k=1

Wk(t, x)∂xk

• Among the Lie symmetries find the Noether symmetries admitted by the given Lagrangian

Γ = V (t, x)∂t +
N

∑

k=1

Vk(t, x)∂xk
, Γ ⊂ Υ

9 The physical Lagrangian turns out to admit the highest number of Noether point symmetries.
10 The physical Lagrangian turns out to admit the highest number of Noether point symmetries.
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• Construct the Schrödinger equation admitting these Noether symmetries as Lie symmetries

2iψt +
N

∑

k,j=1

fkj(x)ψxjxk
+

N
∑

k=1

hk(x)ψxk
+ f3(x)ψ = 0

Ω = V (t, x)∂t +
N

∑

k=1

Vk(t, x)∂xk
+G(t, x, ψ)∂ψ

• Summarizing: quantize preserving the Noether symmetries

In this paper we have proposed a method that takes classical equations into the quantum
realm by means of the Schrödinger equation regardless of the number of Lagrangians that may
classically exist. The method consists of the following steps:

• Find the Lie symmetries of the given equation

Υ = W0(t, x)∂t +W1(t, x)∂x

• Among many Lagrangians identify the one11 that admits the highest number of Noether
symmetries among the Lie symmetries

Γ = V0(t, x)∂t + V1(t, x)∂x, Γ ⊂ Υ

• Construct a linear partial differential equation admitting these Noether symmetries as Lie
symmetries
f11(t, x)ψtt + f12(t, x)ψtx + f22(t, x)ψxx + f1(t, x)ψt + f2(t, x)ψx + f0(t, x)ψ = 0

Ω = V0(t, x)∂t + V1(t, x)∂x +G(t, x, ψ)∂ψ

• Since this equation is parabolic, determine its canonical coordinates in order to transform
it into its normal form, namely the Schrödinger equation

• Summarizing: quantize preserving the Noether symmetries.
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