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“Strong motion accelerograms properly interpreted are the nearest thing to 

scientific truth in earthquake engineering” [Trifunac 2009] 
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                                                                            Introduction 

 

Strong earthquakes, caused by a sudden release of stress along faults in the earth's crust, are 

among the most damaging and deadly natural phenomena. The energy released by an 

earthquake travels in the form of waves, known as seismic waves. When the seismic waves 

reach the ground surface, the produced shaking induces dynamic effects on structural and 

geotechnical systems that can severely compromise their safety level and stability. The 

induced dynamic action at a given site depends on several factors such as: the strength, and 

duration of shaking and the mechanical properties of the soil layers crossed by the seismic 

waves.  

The knowledge of ground motion attributable to earthquakes is essential for the design of 

earthquake-resistant structures, and the evaluation of the seismic vulnerability of existing 

ones. Among all possible sources of uncertainty stemming from the structural and soil 

material properties, the selection of the earthquake-induced ground motions has the highest 

effect on the variability observed in the response history analysis of structures and 

geotechnical systems.  

The characteristics of the design ground motion, representing the level of shaking for 

which satisfactory performance is expected, are influenced by the characteristics of seismic 

source, the rupture process, the source-site travel path, the local site conditions, and the 

importance of the structure or facility for which the ground motion is to be used. 

When the local, geologic and tectonic conditions of the site of interest is similar to those of 

sites where actual strong motions have previously been detected, the recorded time histories 

can be used directly as input motions in the dynamic analyses. Otherwise, the use of artificial 

accelerograms, having characteristics consistent with those of actual earthquakes, could 

represent a valid alternative. However, the generation of artificial accelerograms might not be 

easy: many motions that appear reasonable in the time domain may not be so when examined 

in the frequency domain, and vice versa. Furthermore, many reasonable-looking time histories 

of acceleration produce, after integration, unreasonable time histories of velocity and/or 

displacement. 
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The main aim of this Ph.D. thesis is to propose two novel procedures for the generation of 

artificial accelerograms having the same time and frequency contents of recorded time 

histories.  

The purpose of the Chapter 1 is to illustrate the basic concepts of seismic engineering that 

may be useful in reading this thesis. Specifically, this Chapter describes the recording 

instruments used to detect strong ground motion and the signals processing techniques by 

which measured motions are corrected. Finally, a brief overview of the main intensity 

measures that can be used to characterize the amplitude, frequency content and duration of 

strong ground motions, is presented. 

Chapter 2 highlights the limitations of the classical Fourier analysis in describing non-

stationary signals whose statistical parameters vary with time. Therefore, an introduction to 

joint time-frequency signal representation through the short time Fourier transform and the 

wavelet transform, is presented. More details will be given about a particular kind of 

harmonic wavelet, called “circular”, and the related theory.  

In Chapter 3, after a brief introduction on stochastic variables and processes, the discrete 

circular wavelet transform is proposed to randomly generate an arbitrary number of records 

with the same non-stationary characteristics of the target accelerogram. The influence of a 

novel correlation structure for the definition of the wavelet random phases and a different 

subdivision of the earthquake record in frequency bands are highlighted and discussed. 

Through the proposed stochastic generation method, an effective trade-off is identified 

between localisation in the frequency domain and in the time domain of the generated signals. 

In Chapter 4, a novel method for generating samples of a fully non-stationary zero-mean 

Gaussian process, having a target acceleration time-history as one of its own samples, is 

described. The evolutionary power spectral density (EPSD) function of the proposed fully 

non-stationary model is evaluated as the sum of uniformly modulated processes. These are 

defined in each time interval, as the product of deterministic modulating functions per 

stationary zero-mean Gaussian sub-processes, whose unimodal power spectral density (PSD) 

functions are filtered by high pass and low pass Butterworth filters. In each time interval the 

parameters of the modulating functions are estimated by least-square fitting the expected 

energy of the proposed model to the energy of the target accelerogram, while the parameters 

of the PSD functions of stationary sub-processes are estimated once both occurrences of peaks 

and zero-level up-crossings of the target accelerogram, in the various intervals, are counted. 
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Chapter 4 concludes with the application of an iterative procedure aimed to obtain the 

compatibility between the mean spectrum of the generated samples and a target one. 

Depending on the aim to be achieved, it is possible to obtain the spectrum-compatibility in 

terms of response spectrum or Fourier spectrum, using two different corrective PSD function 

terms.  

In Chapter 5, a new approach which takes into account the inherent random nature of the 

ground motion acceleration as well as epistemic uncertainties affecting the definition of its 

power spectrum, is presented. Specifically, seismic excitation is modelled as a zero-mean 

stationary Gaussian random process fully characterized by an imprecise PSD function, i.e. 

with interval parameters. The ranges of such interval parameters are determined by analysing 

a large set of accelerograms recorded on rigid soil deposits. To discard outliers, the 

Chauvenet’s Criterion is applied iteratively. The proposed imprecise PSD function may be 

viewed as representative of the actual accelerograms recorded on rigid soil deposits. Due to 

imprecision of the excitation, the fractile of order p of the structural response turn out to have 

an interval nature. The bounds of the fractile order p are here used to define the range of 

structural performance. 

In this Ph.D. thesis, several numerical applications will be done in order to test the 

effectiveness of the proposed procedures. 
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Chapter 1  

 

1                       Characterization of earthquake ground motions 

 

1.1 Introduction 

The analysis of strong ground motions (i.e., motions of sufficient strength to affect people 

and their environment) produced by earthquakes, plays a key role in the field of seismic 

engineering. The ground movement can be completely described by three components of 

translation and three components of rotation. However, in most seismological studies it is 

assumed that the rotational components of earthquake ground motion are small enough to be 

neglected, consequently only the three orthogonal components of translational motion (two 

horizontals and one vertical) are usually measured [Kramer 1996]. 

Detection of ground motion at a particular site requires specialized measurement 

equipment: seismographs are used to measure relatively weak ground motions while 

accelerographs are employed to detect the strong ground motions.  

The first record obtained with an analog strong motion accelerograph dates back to 1933 

and was triggered by the Long Beach, California earthquake. Since that time a considerable 

amount of ground motions has been acquired thanks to the worldwide installation of an ever-

denser accelerograph network. Nowadays, the analog instruments have been surpassed by the 

digital ones that, being technologically superior, allow to obtain an accurate time stamping of 

the ground movements.  

Nonetheless, digitized signals need to be processed because they usually contain “errors” 

and background noises that alter the frequency content of the detected ground motions. The 

noise present in the record is caused by various factors and can be removed by the application 

of different post processing techniques such as the baseline adjustment and frequencies 

filtering.  
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Generally, it is not possible to identify the “ideal” processing for a given record, any 

correction scheme must necessarily be approximate and empirically based. 

Nowadays, the main sources of strong motion data for engineering application are 

organized in databases available online. For many scientific applications, rather than using the 

entire waveform, it is more useful both to describe and to classify the ground motion in terms 

of several parameters that reflect the characteristics of the signals that are of engineering 

significance. For an adequate characterization of a ground motion, it is usually necessary to 

use more than one of these parameters, also called intensity measures. 

This Chapter describes the instruments used to detect strong ground motions (including the 

issues related to devices characteristics) and the techniques by which measured signals are 

corrected. It concludes with a brief description of the main intensity measures that can be 

computed to characterize the amplitude, frequency content and duration of strong ground 

motions.  

 

1.2 A brief historical review of strong motion observation 

The modern Seismic Engineering was born in the early 1930s with the first installation of 

instruments able to detect the ground motions associated with devastating earthquakes.  

The strong motion instrumentation program, started in America in 1931, was a result of the 

personal efforts of John Ripley Freeman (1855–1932) and a few other engineers and 

businessmen who were impressed with the advances in the design of earthquake-resistant 

structures in Japan and who recognized that further progress could not be made without 

recording the destructive earthquake shaking. With the lectures of Kyoji Suyehiro (1877–932) 

providing technical background and ideas, and with Freeman’s vision and persistence, Federal 

aid was enlisted, and United States Congress approved funds for the “US Coast and Geodetic 

Survey” (USC&GS) to start the program [Trifunac 2009]. After the installation of the 

USC&GS instruments in Long Beach, Vernon, El Centro and San Diego, the first detecting 

ground motion having a magnitude of 7.3 occurred in Western Nevada on December 20, 

1932. It was detected by the Long Beach instrument, but because the earthquake was about 

350 miles away from it, the record amplitudes were very small.  

In the history of earthquake engineering, the first strong motion was recorded on March 

10, 1933 during the main event of the Long Beach Earthquake (local Magnitude ML=6.3) by 
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three accelerograph stations at (1) the Long Beach Public Utilities Building, (2) the Vernon 

CMD Building, and (3) the Los Angeles Subway Terminal.  

The strong motion accelerogram recorded at the Long Beach Public Utilities Building is 

shown in Figure 1.1. 

Thanks to the installation of an increasingly dense network of accelerographs around the 

world, a large number of ground movement records is now collected in many databases 

available on-line. 

 

Figure 1.1 First strong motion recording: Long Beach Public Utilities Building. 

 

1.3 Recording seismic signals 

Seismic waves are detected by two types of seismic sensors: seismometers and 

accelerometers. These instruments give out electrical signals proportional to the ground 

motion in terms of velocity and acceleration, respectively. For the analysis and the 

interpretation of the ground motion, the detected seismic signals must be recorded in analog 

or digital form.  

 

1.3.1 Analog recording 

Analog accelerographs are optical-mechanical devices that produce the traces of the signal 

on film or paper. These instruments were in use since the early 1930s to the end of twentieth 

century, although the 2004 Parkfield earthquake was recorded principally on such instruments 

[Pacord and Luzi 2014]. A recording in analog form on paper is called seismogram. All 

analog paper recorders are based on a rotating drum with a pen which moves along an axis 
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parallel to the rotating axis to provide a continuous trace for the whole recording period, 

usually 24 hours [Alguacil and Havskov 2014].  

An example of seismogram representing the earthquake activity during a dome-building of 

Mount St. Helens is shown in Figure 1.2. 

 

Figure 1.2 Example of an analog recording. 

Analog accelerographs have three main drawbacks. First, they operate in “trigger mode” so 

as not to waste any data recording medium. This means that the accelerographs are triggered 

by a specific acceleration threshold and generally employ a very short memory buffer. So, 

these instruments do not preserve the pre- and post-event time series or even in the worst case, 

part of the waveform. Second, the natural frequency of transducers is generally limited to 

about 25 Hz or even less, limiting the usable frequency band. Third, in order to be able to use 

the recording in engineering applications, it is necessary to processing the film and then 

digitize the traces. This process is one of the main sources of errors and noise in the signal. 

[Pacord and Luzi 2014]. 

 

1.3.2 Digital recording 

From the 1980s to nowadays, the most common way of recording ground motion is by 

digital accelerographs. These instruments provide a solution for all three drawbacks of analog 

records: i) they record signals in continuous mode on re-usable digital media (e.g., cassettes or 

solid-state memory) and preserve the pre- and post-event portions of the time series by use of 

memories able to retain wave arrivals, regardless of how weak these are, ii) the transducers 

have a much wider natural frequency range (50–100 Hz or even higher), iii) the digitization 
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process is performed automatically [Boore and Bommer 2005]. The precision of the recorded 

ground motion depends on the instrument settings, such as the digitizer’s dynamic range, 

sampling rate and sensor full scale [Pacord and Luzi 2014].  

A requirement for recording data digitally is to convert a continuous signal from analog to 

digital form. The process of converting a continuous analog signal into a series of numbers 

representing the signal at discrete intervals is called analog-to-digital conversion (ADC). The 

ADC process consists of two steps: first the signal is sampled at discrete time intervals, and 

then each sample is evaluated in terms of a number which then corresponds to the amplitude 

at the time of sampling [Alguacil and Havskov 2014].  

In Figure 1.3 are reported two horizontal acceleration components a(t) of the Aftershock of 

the Umbria-Marche seismic sequence occurred on 1997-10-07 05:09:56 UTC, recorded by 

co-located instruments (NCR-analog and NCR2-digital), installed at the Nocera Umbra 

(Central Italy) station.  

 

Figure 1.3 Acceleration time series of the same event recorded by the analog NCR (top) and the 

digital NCR2 (bottom) instruments, located in the same place. 

 

This example shows that the Primary-waves (P-waves), occurred in the first instants of the 

ground movement, have been detected only by the NCR2 digital instrument (see horizontal 

components #1 and #2 of a(t) in the shaded grey areas). The NCR analog instruments are not 

able to record the P-waves because analog devices are typically triggered by the Secondary-

waves (S-waves). Thus, the use of digital instruments is preferred to also overcome this 

disadvantage. 
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1.4 Strong motion data processing 

Signals obtained from accelerographs are not the exact reproduction of the ground motions 

as they may include background noises from several sources, each of which must be carefully 

evaluated and corrected. Different types of noise of various origins, at both high and low 

frequencies, may be caused from ocean waves, traffic, construction activity, wind (transmitted 

to the ground by vibration of trees), atmospheric pressure changes, etc.  

Another source of error can be associated with the triggering of analog seismographs: if an 

instrument does not start until some triggering level of motion is reached, the entire 

accelerogram is in error by the level of motion at the time of triggering. Errors due to the 

analog recording process and the often hand-made analog-to-digital conversion have been 

overcome by the spread of digital recordings.  

Nowadays, high-dynamic-range, broadband, high-resolution digital recordings of ground 

accelerations from earthquakes have the potential to yield ground displacements over a wide 

range of frequencies, including those so low that the displacements give the residual static 

deformation following an earthquake (also called “residual displacement”) [Boore et al. 

2002]. The long-period information is of interest to seismologists for unravelling the dynamic 

process of fault rupture and may be of interest to engineers for designing large structures with 

very-long-period response [Wang et al. 2003]. Unfortunately, the digital recordings are often 

plagued by the baseline offsets: small steps or distortions in the reference level of motion 

[Iwan et al. 1985, Chiu 1997, Boore 1999, Boore 2001]; these offsets are caused by: 

mechanical or electrical hysteresis in the sensor, static buildup in the Analog/Digital 

converter, ground tilt and rotation due either to elastic deformation close to large ruptures or 

to inelastic deformation from slumping or cracking of the earth beneath the recording site.  

The influence of noises and errors in ground motion records are more evident in the 

velocity v(t) and displacement d(t) traces rather than in acceleration a(t) ones. Specifically, 

drifts in velocity and displacement are caused by the accumulation of the random errors in the 

accelerogram resulting from single and double integration of the random noise [Boore et al. 

2002]. Integration of an uncorrected acceleration time history, for example, will produce a 

linear error in velocity and a quadratic error in displacement (see Figure 1.4).  

An acceleration error as small as 0.001 g at the beginning of a 30-sec long accelerogram 

would erroneously predict a permanent displacement of 441 cm at the end of the motion 

[Kramer 1996]. 
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Figure 1.4 Velocity (middle) and displacement (bottom) time histories obtained by successive 

integration of the acceleration trace (top) without the baseline correction [Boore et al. 2002]. 

 

Due to the numerous sources of noises and errors there is no universal correction scheme 

that can be applied blindly to the records, but a degree of subjectivity is always involved 

during the processing of a record. Hence, the need of a processing procedure arises to evaluate 

reliable ground motion and to retrieve the maximum amount of reliable information from the 

analysis of the recorded signals. In order to correct the aforementioned errors and noises two 

correction methods can be applied: baseline adjustment and low frequency filtering.  

 

1.4.1 Baseline correction 

Strong motion recordings contain baseline offsets that need to be removed as they can 

produce unrealistic velocity and displacement time histories.  

After one earthquake, there is slow down on ground motion with time: the acceleration 

decreases becoming small, the velocity tends to zero, and the displacement tends to a steady 

value (zero or permanent displacement value). Therefore, the result of correct baseline should 

satisfy the following: i) the end of amplitude velocity time history value is zero; ii) the 
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displacement time history curve tends to be parallel to the abscissa [Guorui and Tao 2015]. 

The displacement time history curve ending value determine whether there is permanent 

displacement.  

According to Peizhen et al. [2008] and Xiaojun et al. [2008], one way to assess the 

reliability of the baseline correction result consists in the comparison between the final value 

of the displacement time history and the actual ground deformation measured by the Global 

Position System (GPS). However, not all of the station's ground deformations are recorded by 

GPS in real time so this might not be an option for all stations around the world. 

Different baseline correction schemes have been proposed in the literature. The simplest 

way to obtain a zero-value at the end of the velocity time history consists in subtracting from 

the accelerogram its mean value. In case of strong motion records having a pre-event, it’s 

possible to subtract to the whole record, the mean value calculated only on the prior part of 

the event [Zhang et al. 2010, Wang and Zhou 2004]. In their studies, [Boore 1999, Haiying et 

al. 2009, Decai and Xianguo 2001] suggest adopting the baseline initialization subtracting the 

mean values between 0 ~20 s.  

The baseline correction, based on the use of the least square method, was originally 

accomplished by i) determining, through regression analysis the second-order polynomial 

curve (parabola) that best fits the time-acceleration pairs of values and then ii) subtracting 

from the actual acceleration values their corresponding counterparts as obtained with the 

regression-derived equation [Kramer 1996]. Nowadays, polynomials of up to the 3rd degree 

are employed for the baseline correction. The choice of the order curve should be made on an 

individual basis with some level of subjectivity, and this is the drawback of the approach.  

 

1.4.2 Frequency filtering 

Filtering is employed to remove unwanted frequency components from a given signal. 

Lowpass filtering suppresses frequencies that are higher than a defined cut-off frequency; 

highpass filtering allows frequencies that are higher than the cut-off frequency to pass 

through, bandpass filtering allows signals within a given frequency range bandwidth to pass 

through and bandstop filtering suppresses signals within the given frequency range. The 

Butterworth, Chebyshev and Bessel filters are typically used for this operation. 
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1.5 Ground-motion intensity measures 

For different engineering purposes can be convenient to represent the seismic ground 

motion in terms of simple parameters instead of the entire time-history. The ground motion 

parameters can be essential for describing the salient features of the recorded accelerograms 

in compact form. They can be evaluated both in time and frequency domains. 

 

1.5.1 Time-domain parameters 

The most common way of representing a ground motion is through a time history 

expressed in terms of acceleration a(t), velocity v(t), or displacement d(t). Typically, only the 

first of these quantities is measured directly while the others are computed from it by 

integration and/or differentiation [Kramer 1996].  

Acceleration, velocity, and displacement time histories of the two horizontal components 

of the Loma Prieta earthquake recorded in 1989 by the station Gilroy #1 (rock), are shown in 

Figure 1.5. A large amount of information can be extracted by examining a time history. 

 

Figure 1.5 Horizontal components of the Loma Prieta 1989 earthquake (Gilroy #1 station): a), b) 

accelerations, c), d) velocities, e), f) displacements. Left column: 000 component, right column: 090 

component.  
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➢ PGA, PGV, PGD 

The most commonly parameter used for the characterization of ground motion amplitude is 

the peak ground acceleration, PGA = max |a(t)|, which denotes the largest absolute acceleration 

observed on the accelerometric time history. Since the acceleration record undergoes few 

changes after the application of the processing procedure, it is possible to calculate the PGA 

value either from raw or corrected signal. The peak ground velocity PGV= max |v(t)| and the 

peak ground displacement PGD= max |d(t)| are others useful parameter for characterization of 

ground motion amplitude. These two parameters can be estimated only after processing the 

accelerometric record, since the time histories in terms of velocity and displacement are 

strongly influenced by the correction made through the processing procedure. In Figure 1.6 is 

shown a comparison between the peak ground values of acceleration (PGA), velocity (PGV) 

and displacement (PGD) evaluated for both raw and corrected time-histories of the Est-West 

Aquila earthquake occurred on 2016-08-24 at 17:46:09 in Central Italy and recorded at AQV 

station.  

 

Figure 1.6 Est-West component of the 2016 Aquila earthquake (AQV station): a), b) accelerations, c), 

d) velocities, e), f) displacements. Left column: raw signal, right column: processed signal. 
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It can be noticed that: the value of PGA = -0.040 m/s2 is the same for both cases, the PGV 

assumes slightly different values that are equal to -0.0017 m/s and -0.0010 m/s respectively 

while the PGD value differs a lot decreasing from -2.5·10-2 m (uncorrected time-history) to     

-7.3·10-2 m (processed signal). 

The three aforementioned parameters (PGA, PGV and PGD) provide information only on 

the peak amplitudes of single cycles that occur within the ground motion record. In some 

cases, damage may be closely related to peak amplitudes, but in others, it may be associated 

with repeated cycles of high amplitude.  

In Figure 1.7 is shown a comparison between the first horizontal component of the 1972 

Stone Canyon Earthquake recorded by: the Bear Valley #1 and the Stone Canyon Geophys 

Obs stations. The two accelerograms, characterized by the same values of magnitude M=4.81 

and PGA=1.6 m/s2, have completely different features in time. In the first case the maximum 

amplitude of the time history is concentrated around 1.7 s while, in the second case, there are 

several instants in which the acceleration reaches values close to the peak one. Therefore, to 

characterize the earthquake ground motion it is necessary to calculate different seismic 

parameters able to reflect other important waveform features. 

 

Figure 1.7 Acceleration time histories of the 1972 Stone Canyon Earthquake recorded by the Bear 

Valley #1 and the Stone Canyon Geophys Obs stations. 

 

➢ Total intensity and Arias intensity 

Other parameters of fundamental importance in defining the variation in time of the 

accelerogram are the total intensity, I0, and its variation in time, usually referred as cumulative 

total intensity I0(t). The total intensity I0, of a recorded accelerogram a(t) of duration tF, is 

given in the time domain by the area under the time history of squared acceleration [Kramer 

1996].  
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It can be easily recognized that the total intensity is dimensionally proportional to the 

energy of the accelerogram. The cumulative variation in time of total intensity I0(t), is defined 

in the time-domain as:  

 2
0

0

( ) ( )d ; 0 .

t

FI t a t t =    (1.1) 

A parameter related to the total intensity I0 is the Arias intensity IA [Arias, 1970] defined as: 
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being g the gravity acceleration. The Arias intensity, that is a time-integral parameter adopted 

to measure the strength of a ground motion, has the dimension of a velocity.  

The cumulative Arias intensity IA(t) of the seismic signal, normalized with respect to the 

Arias intensity IA, is referred in the literature as Husid function, and can be expressed as: 
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 (1.3) 

It can be used to determine the portion of the accelerogram which is more likely to cause 

damage to the built environment. 

For illustrative purposes, Figure 1.8 shows the time histories of the ground acceleration 

(horizontal components azimuth equal to 0) recorded during the 1989 Loma Prieta 

Earthquake, at Gilroy #1 and Gilroy #6 stations, respectively. 

 

Figure 1.8 Time histories and percentage of Husid function H(t) (%) of the 1989 Loma Prieta 

earthquake (Gilroy #1 and Gilroy #6 stations). 
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➢ A95 parameter 

For a given acceleration record a(t) and for a given acceleration level A, it’s possible to 

determine the area Ex bounded by the curve a(t)2 and the horizontal line at A2 level, as shown 

in Figure 1.9. The acceleration level A which gives the ratio IA/Ex equal to 0.05 is defined as 

the parameter A95, being Ex a fraction of Arias intensity above the acceleration level A. This 

parameter, related to the Arias intensity, is widely used to describe the damage potential of the 

earthquake at a site [Sarma and Yang 1987].  

 

Figure 1.9 Schematic diagram for the definition of Ex [Sarma and Yang 1987]. 

 

➢ Strong motion duration  

The strong motion duration (SMD) of an accelerogram rather than the duration of the 

entire time history is a more useful parameter for identifying the portion of the record where 

the amplitude of ground motion can potentially cause damage to engineering structures. 

Several definitions of the strong motion duration of an acceleration record have been 

proposed in the literature [Bommer and Martinez-Pereira 1999]. The most commonly used 

are the bracketed duration [Ambraseys 1967, Bolt 1973] and the significant duration 

[Trifunac and Brady 1975].  

In 1969, Bolt proposed the bracketed duration, which is the elapsed time between the first 

and the last excursions of a specified level of acceleration (usually 0.05g).  

An example of the definition of bracketed duration for the E-W acceleration components 

of the 1989 Loma Prieta earthquake recorded by a) Gilroy #1 (rock) and b) Gilroy #2 stations, 

are reported in Figure 1.10. 
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Figure 1.10 Bracketed durations of the E-W components of the: a) Gilroy #1 (rock) and b) Gilroy #2 

(soil) ground motions [Kramer 1996]. 

In 1975, Trifunac and Brady defined the significant duration as the interval of time 

over which a percentage of Arias intensity is accumulated. Usually, this range is 

between 5% and 95% (t5-95) or between 5% and 75% (t5-75) of the cumulative normalized 

Aria intensity IA(t), that is coincident with the Husid function. An example of the 

definition of the significant duration is shown in Figure 1.11. 

 

Figure 1.11 Cumulative normalized Arias intensity and strong-motion duration of the El Centro 

earthquake [Xie et al. 2019]. 

a) 

b) 
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1.5.2 Frequency-content Parameters 

The dynamic response of compliant objects, be they buildings, bridges, slopes, or soil 

deposits, is very sensitive to the frequency at which they are loaded. Earthquakes produce 

complicated loading with components of motion that span a broad range of frequencies. The 

analysis of frequency content describes how the amplitude of a ground motion is distributed 

among different frequencies. Since the frequency content of an earthquake motion will 

strongly influence the effects of that motion, characterization of the motion cannot be 

complete without consideration of its frequency content [Kramer 1996]. In the following the 

most common parameters or functions able to characterize the frequency content of the 

accelerograms are briefly described. 

 

➢ PGV/PGA 

A preliminary estimation of the frequency content of the ground motion may be evaluated 

by the PGV/PGA ratio. For a simple harmonic wave of period T, the ratio PGV/PGA=ω. For 

earthquake motion that includes many frequencies, the quantity T=2π/(PGV/PGA) can be 

interpreted as the period of vibration of an equivalent harmonic wave thus, this ratio 

parameter provides an indication of which period of the ground motion is most significant. 

 

➢ Fourier amplitude spectrum and power spectral density function 

The representation of a function of time in the frequency domain can bring up some of 

the signal salient characteristics and can be obtained through the application of the Fourier 

transform  . 

The Fourier transform of an accelerogram a(t) with total duration tF is defined as 

follow: 
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being 𝑖 = √−1 the imaginary unity.  
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Since A(ω) is a complex-values function, it can be expressed as:  

  ( ) Re[ ( )] Im ( )A A i A  = −  (1.5) 

where: 

 ( ) ( )
0 0

Re[ ( )] ( ) cos d ; Im[ ( )] ( )sin d ;
F Ft t

A a t t t A a t t t   = =   (1.6) 

A quantity of particular significance is the Fourier amplitude spectrum FASA (ω) defined 

as: 

 ( )    
2 2

| ( ) | Re ( ) Im ( )AFAS A A A   = = +  (1.7) 

The FASA (ω) shows the harmonic functions present in the original signal while the 

argument spectrum (Fourier phase spectrum) θA (ω) indicates the phase offset of each sine 

wave: 
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The Fourier amplitude spectrum, often called Fourier spectrum, of a ground motion 

portrays the ground motion in the frequency domain and serves to analyse the composition of 

the ground motion in terms of harmonic components. In particular, the Fourier spectrum is 

used to identify the harmonic components of the ground motion that possess the largest 

amplitudes. As these harmonic components are in general identified in terms of their 

frequencies, this type of analysis is referred to as a frequency analysis. By the same token, the 

description of the frequency composition of a ground motion is known as the analysis of its 

frequency content. Fourier spectrum is the quantity most frequently studied by seismologists 

in their investigations of earthquake mechanisms, as the frequency content of a ground motion 

is a function of source mechanism, focal depth, epicentral distance, travel path, site-soil 

conditions, and earthquake magnitude. 

The Fourier amplitude spectrum may be narrow or broad. A narrow spectrum implies that 

the motion has dominant frequency (or period), which can produce a smooth, almost 

sinusoidal time history. A broad spectrum corresponds to a motion that contains a variety of 

frequencies that produce a more jagged, irregular time history [Kramer 1996]. 
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Strictly related to the Fourier spectrum is the power spectrum, often improperly referred in 

the literature as power spectral density (PSD) function. For a recorded accelerogram, a(t), of 

duration tF, it is defined as [Kramer 1996]:  
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Notice that by applying the Parseval’s theorem the energy of a signal, also called total 

intensity of an accelerogram, can be evaluated in both time and frequency domain, as: 
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where ωN=π/Δt is the Nyquist frequency [Kramer 1996]. 

 

➢ Cumulative Fourier energy function and strong circular frequency  

The cumulative Fourier energy function EA(ω) gives information about the distribution of 

the frequencies in the Fourier amplitude spectrum FASA. This parameter is very useful in the 

applications concerning the wavelet analysis in which, the way to divide the frequency range 

of interest into many bands represents a fundamental step [Genovese et al. 2021 a]. 

The cumulative Fourier energy function is given by:  

 ( )
0

1
|

π
A AE E FAS



= =  2( ) | dA    (1.11) 

The range between 5% and 95% of the cumulative Fourier energy function can be defined 

as strong (circular) frequency ω5-95 ≡ υ5-95. 

 

➢ Predominant period 

The predominant period Tp is defined as the period of vibration corresponding to the 

maximum value of the Fourier amplitude spectrum. To avoid undue influence of individual 

spikes of the Fourier amplitude spectrum, the predominant period is often obtained from a 

smoothed spectrum. While the predominant period provides some information regarding the 
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frequency content, it is easy to see (Figure 1.12) that motions with radically different 

frequency contents can have the same predominant period [Kramer 1996]. 

 

Figure 1.12 Two hypothetical Fourier amplitude spectra with the same predominant period but very 

different frequency contents. The upper curve describes a wideband motion and the lower a 

narrowband motion [Kramer 1996]. 

 

➢ Bandwidth 

The predominant period can be used to locate the peak of the Fourier amplitude spectrum. 

However, it provides no information on the dispersion of spectral amplitudes about the 

predominant period. The bandwidth of the Fourier amplitude spectrum is the range of 

frequency over which some level of Fourier amplitude is exceeded. Specifically, bandwidth is 

usually measured at the level where the power of the spectrum is half its maximum value; this 

corresponds to a level of 1/√2 times the maximum Fourier amplitude. The irregular shape of 

individual Fourier amplitude spectra often renders bandwidth difficult to evaluate. It is 

determined more easily for smoothed spectra [Kramer 1996]. 

 

➢ Central frequency 

The central frequency Ω [Vanmarke 1976] is a measure of the frequency where the power 

spectral density is concentrated: 
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being λ0 and λ2 respectively the zero-order and second-order spectral moments of a ground 

motion. The i-th spectral moment can be defined as follows: 

 ( )
0

.
N

i
i G d



   =   (1.13) 

 

➢ Shape factor 

 The shape factor [Vanmarcke 1976] indicates the dispersion of the power spectral density 

function about the central frequency:  
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The shape factor always lies between 0 and 1, with higher values corresponding to larger 

bandwidths. 

 

➢  Zero-level up-crossings and peaks 

It is well known that the frequency content of a recorded accelerogram is related to the 

frequency of occurrences of: a) both positive and negative maxima, also called peaks P; b) 

crossings of the time-axis with positive slope, commonly called zero-level up-crossings N0
+. 

The counting of zero-level crossings N of the time axis and peaks P of an accelerogram, 

are widely used to evaluate some spectral parameters or to characterize the power spectral 

density (PSD) function [Muscolino et al. 2021] of a recorded accelerogram.  

Zero-level crossing is a point where the sign of a mathematical function changes from 

positive to negative (zero-level up-crossing N0
+≅ N/2) or from negative to positive (zero-level 

down-crossing N0
-≅ N/2). Peaks are the sum of the positive P+ and negative P

-
 maxima inside 

a function.  

A representation of zero-level crossings N, maxima and minima P (positive and negative) 

of a function are reported in Figure 1.13. An example of the cumulative variation in time of 

zero level up crossing N0
+(t) for the 1989 Loma Prieta earthquake (0 component), recorded by 

the Girloy #6 station, is reported in Figure 1.14. 
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Figure 1.13 Maxima and minima of the function together with the zero-level up-crossing (●) and 

zero-level down-crossing (×) rate of the time axis of the signal a(t). 

 

The relationship between zero-crossings and spectral content of a signal has been 

investigated extensively in the literature [Kedem 1986, Kay and Sudhaker 1986, Sreenivas 

and Niederjohn 1992].  

The counting of zero-level crossings N of the time axis is used to evaluate the 

destructiveness potential factor PD that allows to separate among accelerograms that produce 

real damage from the ones that are only ground vibration without produce damage to 

structures at the site of recording [Saragoni and Díaz 1999]. It is expressed as follows: 
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being υ0=N/tF the intensity of zero crossings (value of the zero crossing per second). 

 

Figure 1.14 Accelerogram, a(t), and cumulative zero-level up crossings, N0
+(t), of the 1989 Loma 

Prieta earthquake. 
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The ratio of the zero-level up-crossings frequency to the peak frequency, the so-called 

irregularity factor IF [Lutes and Sarkani 2004], gives a measure of the bandwidth of the 

process, i.e. how much the examined stochastic process differs from the narrow band one. It is 

defined as: 

 0 0 ; 0 1F F
P

N
I I

P





+ +

=  =  (1.16) 

being υ0
+=N0

+/tF the intensity of zero-level up crossings and υP =P/tF the intensity of peaks. 

Indeed, for ideal very narrow-band zero-mean stationary stochastic processes, the zero-level 

up-crossings frequency and peaks frequency are exactly the same, and the irregularity factor 

is unitary; for wider bandwidths, more than one peak occurs between two zero-level up-

crossings, and the irregularity factor is less than one (see Figure 1.15). 

 

 

 

 

 

 
 

Figure 1.15 Realizations of stationary processes: a) ideal stationary narrowband process IF ≅1; b) 

stationary broadband process IF<1.  

 

The bandwidth parameter can be approximately evaluated by the following alternative 

formula [Solnes 1997]: 

 4 (1 )r r = −  (1.17) 

being r =P
-
/P. 

The evaluation of spectral parameters by analysing the frequency of zero-level up-

crossings and peaks of recorded accelerograms emphasizes the usefulness of the time-history 

also to identify the frequency content of an accelerogram. 
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➢ Response spectra 

For many engineering and scientific applications, response spectra are used extensively to 

represent the seismic action in terms of maxima of relative displacement, relative velocity or 

absolute acceleration at selected frequencies or periods. In particular, the response spectrum is 

defined as the maximum response amplitude of a single degree-of-freedom (SDOF) system, 

subject to an acceleration time history, as a function of the system natural frequency ω (or 

natural period T) and damping ratio ξ (usually assumed equal to 5%).  

The maximum amplitude of the response is obtained by integrating the equation of the 

motion of the SDOF system with unitary mass, the so-called canonical oscillator: 

 
2( ) 2 ( ) ( ) ( )y t y t y t a t  + + =  (1.18) 

where ӱ(t), ẏ(t), y(t) are respectively the relative acceleration, velocity, and displacement of 

the oscillator with respect to the ground while ω=2π/T is the circular frequency of the 

oscillator. When acceleration, velocity or displacement is considered, the following functions 

are introduced: 

displacement response spectrum: 
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velocity response spectrum: 
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acceleration spectrum (absolute): 
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The pseudo-velocity and pseudo-acceleration response spectra are also widely used in 

practice and can be defined as a function of the displacement as follows: 

 

pseudo-acceleration response spectrum: 
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pseudo-velocity response spectrum: 
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The acceleration response spectrum is used extensively in earthquake engineering practice 

for the representation of the maximum force imposed on the structure which can be evaluated 

as the product of the maximum absolute value of the acceleration times the mass m of the 

system. Computed response spectra for the 1989 Loma Prieta earthquake (Girloy #6 station – 

0 component) are illustrated in Figure 1.16. 

 

 

Figure 1.16 Response spectra computed for the 1989 Loma Prieta earthquake in terms of: a) absolute 

acceleration, b) velocity, c) displacement. 

 

1.5.3 Other parameters 

The aforementioned parameters describing the amplitude, the frequency content or the time 

duration of an accelerogram are the main adopted parameters in the framework of seismic 

engineering. However, in the literature, other parameters have been introduced that combine 
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more than one effect. In this paragraph, parameters that reflect important characteristics of 

ground motions, have been summarized. 

A single parameter that includes the effects of the amplitude and frequency content of a 

strong motion record is the root mean square (rms) acceleration, arms, defined as: 
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Similar to arms definition, can be evaluated the rms velocity and displacement: 
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The characteristic intensity Ic is related linearly to an index of structural damage due to 

maximum deformations and absorbed hysteretic energy [Ang 1990]. 

 
1.5

FIc arms t=  (1.26) 

 The cumulative absolute velocity is the area under the absolute accelerogram: 
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while the specific energy density SED is the integral of the square of the velocity time history. 

It is a measure of the overall energy of the record (larger SED, larger energy and expected 

damage). 
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The acceleration spectrum intensity (ASI) is the area under the acceleration response 

spectrum between periods of 0.1 sec and 0.5 sec. 
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, dASI SA T t=   (1.29) 

 Similar to ASI definition, can be evaluated the velocity spectrum intensity (VSI): 



Generation of time and frequency dependent random processes compatible with recorded seismic accelerograms 

37 

 ( )
0.5

0.1

, dVSI SV T t=   (1.30) 

The response spectrum intensity (SI) [Housner 1959] is the area under the pseudovelocity 

response spectrum between periods of 0.1 sec and 2.5 sec. 
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Chapter 2  

 

2                                    Joint time-frequency signal representation 

 

2.1 Introduction 

This Chapter provides a brief overview to some key aspects of Signal Analysis and 

Processing Theory starting from a description of the main methods used for characterizing 

and manipulating signals. 

A signal is a time function, but its frequency domain representation can bring up some of 

its salient features. Signals can be classified into different types depending on their 

characteristics: a signal is called “stationary” if its statistics do not change over time while it 

is defined “non-stationary” if its statistical characteristics change with time. 

The classical Fourier transform is a powerful technique for the spectral analysis of 

stationary time-histories whose characteristics do not change with time. Since the signals 

encountered in earthquake engineering are typically non-stationary thus, the time-averaged 

amplitude spectrum, found by using Fourier transform, is not appropriate to track their 

changes in time of both frequency magnitude and phase. For the spectral analysis of these 

types of signals, having a spectral content that varies over time, there is a need for methods 

implementing a joint analysis in time and frequency domains. 

A technique used for the time-frequency representations of non-stationary signals is the 

windowed Fourier transform, also called Gabor transform or short time Fourier transform 

(STFT), that consists firstly in the subdivision of a temporal signal into pieces with an 

appropriate window function and then in the evaluation of the Fourier spectrum for each 

windowed segment. The STFT assumes local stationarity of signal within short temporal 

windows. The main disadvantage of this method is about the choice of the window size that is 

not so straightforward. A wide window leads to a good frequency resolution with a reduced 
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time localization while, a narrower window leads to a good time resolution but a poor 

localization in frequency. 

The trade-off between time and frequency resolution is related to the “Heisenberg’s 

uncertainty principle” also called “Heisenberg–Gabor limit” which states that “for a given 

signal, one cannot achieve high temporal resolution and frequency resolution at the same 

time”.  

The disadvantages of the traditional STFT can be overcome by the wavelet analysis to 

which the last part of this Chapter is extensively dedicated. 

 

2.2 Harmonic signals representation  

The Harmonic analysis is a branch of mathematics that deals with the representation of a 

function as the superposition of basic waves. 

 The simplest time-varying signal a(t) is the harmonic wave that varies sinusoidally with 

time. It can be expressed using trigonometric notation: 

 M( ) sin( )a t A t = +  (2.1) 

being AM the harmonic Amplitude, ω the circular frequency (rad/sec) and ϕ the angle phase 

(amount of time by which the peaks of the signal are shifted from those of the reference 

sinusoid having ϕ=0).  

The geometric representation of a harmonic signal can be obtained by means of a phasor of 

radius AM that rotates in the counter-clockwise direction at an angular speed of ω rad/sec and a 

ϕ starting angular position respect to the horizontal axis.  

The interval of time taken for the phasor to make one full revolution is called “Period of 

vibration” T which is related to the circular frequency ω by: 

 
angular distance for one revolution 2

angular speed
T




= =  (2.2) 

being T, the time required for one cycle of the motion, its inverse, the frequency  , represents 

the number of cycles per unit time, that is:  

 
1

2πT


 = =  (2.3) 
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2.3 Fourier analysis  

Fourier analysis is the key to frequency analysis of vibration signals and represents a 

useful tool in many branches of science and engineering. It grew from the study of Fourier 

series made by the French mathematician Jean-Baptiste Joseph Fourier (1768-1830), who, in 

the early nineteenth century, showed that any periodic function that meets certain conditions 

can be expressed as the sum of a series of sinusoids of different amplitude, frequency, and 

phase.   

Depending on the type of signal to be represented in frequency domain, three different 

versions of Fourier transform are used. The Fourier series expansion (FSE) is applicable only 

to periodic signals, the Fourier transform (FT), also called Fourier integral transform, can be 

applied to any general signal and the discrete Fourier transform (DFT) is used for discrete 

signals. 

The coefficients deriving from the Fourier analysis can be expressed in terms of their real 

and imaginary parts or in terms of modulus and phase angle. In particular, the latter 

representation completely separates the frequency information which is apparent in the 

coefficients amplitudes and the time information hidden in their phases.  

 

2.3.1 Fourier series  

The Fourier series expansion represents any periodic function f (t) of period T as a sum of 

n sinusoidal harmonic waves 𝑒−𝑖𝜔𝑛𝑡 of frequency ωn =2 π n /T. Since a Fourier series is simply 

a summation of simple harmonic functions, it can be expressed using either trigonometric 

notation or complex notation. The general exponential form of the Fourier series for a 

function f (t) of period T can be expressed as follows: 
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where the asterisk *  indicates complex conjugate quantity. The Fourier coefficients *
nc  can 

be determined as: 
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being 1i = −  the imaginary unit. 

The projection of the signal f (t) on a basis of harmonic functions gives a measure on how a 

signal is similar to a sinusoidal wave of a given frequency. An example of the decomposition 

of a periodic signal into its harmonic wave functions is reported in Figure 2.1 . 

 

Figure 2.1 Decomposition of a signal into its harmonic components. 

 

2.3.2 Fourier transform 

Starting from the complex Fourier series it is possible to derive the Fourier transform, 

which is able to represent non-periodic functions in the frequency domain. It is well known 

that the sufficient condition for a representation of a function to be unique and reversible is 

that it comes from the projection on an orthogonal basis. Since harmonic components 𝑒−𝑖𝜔𝑛𝑡  

constitute an orthonormal basis, the Fourier transform    

 ( ) 2π( ) ( ) e d ( ) ( )e di t i tf t F f t t F f t t  
 

− −

− −

= =  =   (2.6) 

gives a unique representation of the signal in frequency domain. A perfect reconstruction of 

the signal f (t) into time domain is given by the Inverse Fourier transform: 

 
2π1

( ) ( )e d ( ) ( )e d
2π

i t i tf t F f t F    
 

− −

=  =   (2.7) 

Notice that the more regular f (t), the faster the decay of the sinusoidal wave amplitude 

( )F   when frequency   increases [Mallat 1999].  
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Some examples are described below to show how the Fourier transform measures whether 

or not a frequency is present in a given function. In particular, in the first case, the FT is 

evaluated in correspondence of a frequency equal to that of oscillation of the test signal while, 

in the second case, the FT is calculated for a frequency not present into analysed signal. 

Let’s consider the test signal of Figure 2.2, defined as: 

 ( )
2πcos 2π3  e  ( ) ttf t −=  (2.8) 

The function f(t) oscillates at 3 Hz (if t  measures seconds) and tends quickly to 0. The 

second factor of Eq. (2.8) 
2πe t−
 is an envelope function that shapes the continuous sinusoid 

into a short pulse.  

 

Figure 2.2 Test signal ( )
2πcos 2π  ) 3 e( tf t t −= . 

 

The value of the Fourier transform at 3 Hz is evaluated as follow: 

 
( )2 3

(3) ( ) d 0.5 Hz



−

−

=  =
i t

F f t e t  (2.9) 

As shown in Figure 2.3, in this case the function f(t) and the exponential term 
( )2π3i t

e
−

 

oscillate at the same rate consequently, real part of the integrand 
( )2π3

( )
i t

f t e
−

  is almost 

always positive because when f (t) is negative, the real part of 
( )2π3i t

e
−

 is negative as well and 

when f (t) is positive, so is the real part of 
( )2π3i t

e
−

. Real and imaginary parts of integrand 

( )2π3
( )

i t
f t e

−
  for Fourier transform at 3 Hz are reported in Figures 2.4 a) and b) respectively. 
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Figure 2.3 Original function (black line) and real part of the exponential term (grey line) of the 

Fourier transform. 

 

 

 

Figure 2.4 Real a) and imaginary b) parts of integrand for Fourier transform at 3 Hz. 
 

 

The case of the Fourier transform evaluated in correspondence of the frequency of 

5Hz = , not present into the time-domain signal, is investigated below: 

 
( )2 5

(5) ( ) d 0 Hz



−

−

=  
i t

F f t e t  (2.10) 

The original function f (t) and the exponential term 
( )2π5i t

e
−

 of the integrand function of 

the Fourier transform are shown in Figure 2.5.  
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Figure 2.5 Terms of the integrand function of the Fourier transform at 5 Hz: original signal (black 

line), exponential function (grey line). 

 

 

As plotted in Figures 2.6 a) and b) both real and imaginary components of the integrand 

function vary rapidly between positive and negative values, therefore, in this case, the 

integrand oscillates fast enough so that the integral is very small, and the value of the Fourier 

transform for that frequency is nearly zero.  

 

 

Figure 2.6 Real a) and imaginary b) parts of integrand for Fourier transform at 5 Hz. 

 

The magnitude of the Fourier transform of the function f (t) is reported in Figure 2.7. The 

two points refer to the Fourier transform in correspondence of the two analysed cases.  
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Figure 2.7 Magnitude of Fourier transform, with 3 and 5 Hz labelled. 

 

A remarkable property of the Fourier transform is related to the Plancherel theorem (also 

called the Parseval–Plancherel identity [Plancherel and Mittag-Leffler 1910, Cohen-

Tannoudji et al. 1997]). It states that the integral of a function's squared modulus is equal to 

the integral of the squared modulus of its frequency spectrum: 

 
2 2 21

( ) d ( ) d ( ) d
2π

   
  

− − −

= = =  E f t t F F  (2.11) 

which implies that in mapping f (t) in frequency domain, via the Fourier transform, the 

energy E of the time-signal is preserved. The quantity 
2

( )F   plotted versus the frequency 

shows how the energy of the signal f (t) is distributed among the various frequencies.  

The Fourier transform of a sin function in the time domain is a Dirac delta function in 

frequency domain, however since sinusoid is a not-decaying function in time domain, the 

Fourier transform achieves the sharpest possible frequency resolution but has no temporal 

localization capabilities.  

 

2.3.3 Discrete Fourier transform 

In many engineering applications, the time domain functions, representing real data as the 

recorded accelerograms, are sampled into a finite number of points equally spaced in time. It 

follows that the integrals of equations (2.6) and (2.7) must be replaced by a summation. This 

approach is referred in the literature as the discrete Fourier transform (DFT). 
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To show this, let’s consider the discrete, real-valued signal ( )( )f f t f t t= = =   of 

Figure 2.8, with 0, 1, , 2N= , where t t=   is the generic time instant in which the 

continuous time signal f (t) has been sampled over the time interval [0, t2N]; υ0=1/Δt is the 

sampling frequency; and t2N =2NΔt is the time duration of the signal, known at p=2N+1 points.  

 

 

 

Figure 2.8 Sampling continuous function of time f (t) at regular intervals Δt. 

 

Let assume ( )2π / 2 =  = n n N t n , being 22π / Nt =  the discretization step in the 

frequency domain, then from Equation (2.6), the DFT<·> of the discretized signal f  is 

given by: 

 ( ) ( )
2 2

/

0 0

( )e d e e
   


− − −

= =−

= = = =   =   n n

N N
i t i t i n N

n n nDFT f F F f t t t f F t f (2.12) 

where Fn is the DFT value at the nth discrete circular frequency ωn. 

By applying the DFT algorithm, the following relationship can be used to represent the 

discrete signal in the frequency domain: 

    
T T

0 1 2 2 0 1 2 2, , , , , , , , , , , , , =
 n N NF F F F F DFT f f f f f  (2.13) 

where the superscripted T means transpose.  

A quantity of particular significance is the discrete Fourier amplitude spectrum defined as: 

 ( ) ( )| |n n nF F F =   (2.14) 
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2.3.4 Fourier analysis limits 

The Fourier spectrum obtained by the FT or DFT is averaged over the entire time 

consequently, it is not appropriate to track the changes in time of both frequency magnitude 

and phase of non-stationary signals. 

In order to illustrate the main limitations of the Fourier analysis, some examples are 

described below. 

Let’s consider a test signal of Figure 2.9 a), defined as: 

      ( ) 5cos 2π 4cos 2π5 6cos 2π5f t t t t= + +  (2.15) 

having a time duration t2N =2 s and a discretized time step Δt=0.001 s. The modulus of the 

DFT of the discretised signal ( )=f f t  is shown in Figure 2.9 b). 

 

 

      st
 

      
            Hzn  

Figure 2.9 Discretized signal consisting of the superposition of different harmonics a); discrete 

Fourier amplitude spectrum b). 
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In the above example, the DFT provides good frequency and amplitude information (see 

Figure 2.9 b); what it lacks is the time information, i.e., the knowledge of the time in which 

these frequencies occur (see Figure 2.9 a).  

To better appreciate the properties of the  Fourier transform, let’s consider a second test 

signal defined as: 

 

 

 

 

5cos 2π 0 2

( ) 4cos 2π5 2 4

6cos 2π5 4 6

t t

f t t t

t t

  


=  


 

 (2.16) 

having a time duration t2N =6 s and a discretized time step Δt=0.001 s.  

 

 st
 

      
            Hzn  

Figure 2.10 Test signal consisting of three different harmonics arranged one after the other a); discrete 

Fourier amplitude spectrum b). 

 

It can be noticed that the signal of Eq.(2.16) consists of the same harmonics of that of Eq. 

(2.15). Nevertheless the two signals differ in the time domain: in the first case (see Eq. (2.15)) 

the three harmonics are added while in the second one (see Eq.(2.16)) they are located one 
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behind the other. It can be observed that the discrete Fourier amplitude spectrum ( ) nF  of 

the discretized test signal of Eq. (2.16), represented in Figure 2.10 b), is the same as that of 

the signal of Eq.(2.15), shown in Figure 2.9 a). This is due to the fact that the two signals are 

made up of three harmonics having the same frequencies but arranged in a different position. 

Therefore, signal frequency content is hidden in time domain while the frequency domain 

representation hides the temporal localization of the signal features. Time localization and 

frequency content are always present even if hidden, because, since perfect reconstruction of 

the signal is doable, no information is lost. Two signals may possess the same discrete 

Fourier amplitude spectrum, while what distinguishes them is the Fourier phase spectrum.  

 

2.3.5 Windowed Fourier transform 

First attempt to overcome classical Fourier analysis limitations was done by Gabor in 

1946, who applied in signal analysis fundamental concepts developed in quantum mechanics 

a decade earlier [Gabor 1946]. The Gabor transform, also called short time Fourier transform 

(STFT) [Mallat 1999] is a sequence of Fourier transforms of a windowed signal. Unlike the 

standard Fourier transform that provides the frequency information averaged over the entire 

signal time interval, the STFT provides the time-localized frequency information for situations 

in which frequency components of a signal vary over time. 

In order to illustrate the different results obtained by the application of the two 

aforementioned frequency transformations (FT and STFT), the STFT is applied to the same 

non-stationary signal of Eq. (2.16).  

It can be noted that, in Figure 2.11 it’s possible to distinguish the three harmonics of the 

signal: one located in υn=1 and two in υn=5 while in Figure 2.10 b) the contributions related to 

the second and third harmonic of the signal, located in correspondence of υn=5 appear 

superimposed and consequently, not distinguishable. 

Since the time support governed by the window function (in this case rectangular) is equal 

for all the window functions, the STFT exhibit considerable limitations. The main complexity 

of the STFT regards the choice of the shape (i.e. Gaussian, rectangular) and of the size of the 

window function. Window should be narrow enough to ensure that the portion of the signal 

falling within the window is stationary. 
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( ) nf F  

      

                                                                                                              Hzn  

 

( ) nf F  

     

                                                                                                                  Hzn  

 

( ) nf F  

       

                                                                                                  Hzn  

Figure 2.11 Example of short time Fourier transform application: three components of the windowed 

signal in time domain (left column); corresponding amplitude spectra (right column). 
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2.3.6 Uncertainty principle  

Most signals recorded in nature, such as earthquake motions, are non-stationary due to 

their time-varying characteristics. In signal processing, time–frequency analysis encloses 

those methods used to study a signal in both the time and frequency domains simultaneously. 

However, the representation of a signal having jointly the best resolution in both domains 

represents an ideal situation that, according to the well-known Heisenberg uncertainty 

principle [Choen 1995], is not possible to obtain. The meaning of the uncertainty principle 

and its importance for signal analysis have been clearly stated often enough by different 

authors. In particular, in [Skolnik 1980] the author stated that “a narrow waveform yields a 

wide spectrum and a wide waveform yields a narrow spectrum and both the time waveform 

and frequency spectrum cannot be made arbitrarily small simultaneously”; in [Choen 1995], it 

is pointed out that the density in time and in the frequency are related in such that if one 

density is narrow then the other is broad consequently, it is not that both time and frequency 

cannot arbitrarily be made narrow, but that the densities of time and frequency cannot both be 

made narrow. A measure of the resolution in time or frequency domain may be obtained by 

evaluating the average t  and the standard deviation 
2 t  of the density 

2
( )g t  in the 

time domain, that is: 

 
2

( ) dt t g t t


−
=   (2.17) 

 ( )
2 22 ( ) dt t t g t t



−
= −  (2.18) 

The counterparts of Eq. (2.17) and Eq. (2.18) in the frequency domain are: 

 
2

( ) dG    


−
=   (2.19) 

 ( )
222 ( ) dG     



−
= −  (2.20) 

where ( )G   denotes the Fourier transform of g(t) given by the equation: 

 ( ) i1
( ) d

2π

tG g t e t


−

−

=   (2.21) 
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The well-known Heisenberg uncertainty principle is a mathematically proven property and 

states that the values t  and    cannot be independently small. Specifically, for an 

arbitrary window normalized so that: 

 
2 2|| ( ) || | ( ) | d 1g x g x x



−

= =  (2.22)  

can be demonstrated that: 

 
1

2
t     (2.23) 

thus, high resolution in the time domain (small value of t ) may be generally achieved 

only at the expense of a poor resolution (bigger than a minimum value   ) in the 

frequency domain and vice versa. Note that the optimal time – frequency resolution, that is 

1/ 2t   = , may be obtained when the Gaussian window is selected: 

 
2

224

1
( ) exp

42π

t
g t

tt 

 
= −  

 

 (2.24) 

In order to achieve good signal localization of high frequency components, narrow 

windows are required; as a result of that, low-frequency components are poorly represented. 

Thus, a more flexible representation with non-constant windowing is quite desirable to 

enhance the time resolution for short-lived high-frequency phenomena and frequency 

resolution for long-lasting low-frequency phenomena [Spanos et al. 2005]. 

 

2.4 Wavelet harmonic analysis 

The mainly shortcomings of the Fourier analysis (capable of detecting only the frequency 

components of signals) and the windowed Fourier transform (related to the choice of the type 

and fixed size window function) have been overcome with significant effectiveness and 

efficiency by wavelets-based signal representation. Wavelet analysis reveals the frequency 

components of signals just like the Fourier transform, but it also identifies where a certain 

frequency exists in the temporal or spatial domain. This is possible because, unlike a 
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harmonic wave which is an ever-lasting periodic function, a wavelet is a decaying function, 

and this feature gives to the wavelet analysis a time localisation capability. 

The concept of wavelet transform, introduced first by Goupillaud et al. in 1984, for seismic 

records analysis, consists of projecting a given signal on a convenient set of function, called 

wavelets, which can be generated by scaling and shifting a fixed function called mother 

wavelet [Mallat 1999]. Families of wavelets can be generated in way to form an orthogonal 

basis, so that the wavelet transform is bijective, giving a unique representation for any signal 

[Cecini and Palmeri 2015]. This is the case, for instance, of the harmonic wavelets ѱ(t) 

proposed by Newland [1993], which are complex-valued functions in time domain with a 

rectangular box-shaped in the frequency domain: 

 ( )
1/ 2π for 2π 4π

( )
0 elsewhere

t


  
  

= = 


 (2.25) 

The corresponding complex valued harmonic mother wavelet in time domain is: 

 
4π 2π

( )
2π

i t i te e
t

i t


−
=  (2.26) 

The real and imaginary parts of ѱ(t) are shown in Figure 2.12. It should be noted that Eq. 

(2.25) and Eq. (2.26) refer to the case of signal of unitary time length, i.e. 0 1t   and 

energy content for 2π  . The first scheme proposed by Newland [1993] to generate the 

whole family of orthogonal wavelets from the mother one is called dyadic, and can be derived 

by changing the argument in (2.26) from t to ( )2 j t k− , being j and k integers numbers that 

define the scale (or compression) of the wavelet and its position on the t-axis, respectively. By 

doing this, the shape of the wavelet is not changed but its horizontal scale is compressed by 

the factor 2 j, being j ≥ 0 the level of the wavelet, while its position is translated by k units at 

the news scale: 

 ( ),
ˆ ( ) 2 j

j k t t k = −  (2.27) 

The real part of ,
ˆ ( )j k t , for three different values of j and two fixed values of k, are shown 

in Figure 2.13 (k=0) and Figure 2.14 (k=1), respectively. 

Figure 2.15 shows that, following Newland’s dyadic scheme, the Fourier transform of the 

generic wavelet at jth level occupies the frequency band from 2π2 j to 4π2 j.  
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The scheme proposed by Newland [1994] leads to the generalised harmonic wavelet 

transform by the introduction of the musical wavelet { , }
ˆ ( )m n t . Instead of splitting the 

frequency axis into bands of increasing width B = π 2 j+1, the whole set of band wavelets is 

generated by: 

 

2 π 2 π

{ , }
ˆ ( )

2( )π

i n t i m t

m n

e e
t

i n m t


−
=

−
 (2.28) 

which in the frequency domain corresponds to a real-valued rectangular box function with a 

height of 1/[2 (n-m) π]  over the interval [2 π m, 2 π n]: 

 
( ) ( )

{ , } { , }

sgn 2 π- sgn 2 π-
( ) ( )

4( )π
m n m n

n m
t

n m

 
  

−
= =

−
 (2.29). 

where sgn (·) is the signum function. 

The translation of the wavelet by a time step k / (n-m) is then achieved by: 

 

( )

2 π 2 π

{ , }, { , }
ˆ ˆ( )

2 π

k k
i n t i m t

n m n m

m n k m n

e e k
t t

k n m
i n m t

n m

 

   
− −   

− −   −  
= = − 

−   − − 
− 

 (2.30) 

that in the frequency domain correspond to: 

 { , }, { , }
ˆ ˆ( ) ( )

k
i
n m

m n k m n t e


  

 
− 

− =  (2.31) 

The notation {m,n} denotes a wavelet occupying the band of circular frequencies from 

2πm to 2πn, where n>m, as shown within Figure 2.15 b) [Cecini and Palmeri 2015]. 
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Figure 2.12 Real part (blue line), and imaginary part (orange line) of the harmonic mother wavelet of 

Eq. (2.26). 

 

Figure 2.13 Real part of the harmonic wavelet (Eq.(2.27)) for k=0 and different values of j: 

 j=0 blue line; j=1 red line; j=2 green line. 

 

 

Figure 2.14 Real part of the harmonic wavelet (Eq.(2.27)) for k=1 and different values of j: 

 j=0 blue line; j=1 red line; j=2 green line. 
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Figure 2.15 Representation in the frequency domain: a) dyadic scheme; b) an example of generalised 

scheme for harmonic wavelet base with non-overlapping intervals (nj = mj-1) of arbitrary bandwidth. 

 

2.5 Circular-wavelet-based representation of discretized signals 

For the application of wavelet analysis, the frequency range  0, N  of a given discretized 

signal f , with 0, 1, , 2N= , where t t=  , can be arbitrary portioned in M frequency 

bands ,
j jm j n jm n    =  = 

  , with j ≤ M and 1 M N  ; furthermore, m1=0, nM=M 

and for 1≤ j ≤ M, nj = mj+1, so that jth and (j+1)th frequency bands are adjacent to each other. 

Bandwidth and central circular frequency of the jth band are given by: 

 j jB b =   (2.32) 

 
2

j j
j

m n
 

+ 
=  

 

 (2.33) 

in which j j jb n m= − . 
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Another approach to decompose a real-valued signal into the superposition of complex-

valued wavelets consists in the use of the circular wavelet as mother wavelet. 

The jth complex-valued circular wavelet , ,j k , in the discretized time domain, can be 

defined as: 

 ( )
1

, ,

1
exp π 2 1 ; 0,1, ,2 ; 0,1, , 1

2

j

j

n

j k j
j js m

k
i s N k b

b N b

−

=

  
 = + − = = −  

    
  (2.34) 

where k and  are two time indexed, defining the time instants at which the generic wavelet 

, ,j k , belonging to the bj frequency band, is centered , 2 /j k N jk t b =  and evaluated ( )t , 

respectively.  

Importantly, the larger bj, i.e. the wider the jth frequency band, the larger the number of 

wavelets belonging to it, the more precise the time localisation of the energy that can be 

achieved in that frequency band. 

The expansion of a given discrete signal f , using circular wavelets as the basis functions, 

can be performed by applying the following reconstruction formula: 

 

1

, , ,

1 0

ˆ ˆ2Re
j

M b

j k j k

j k

f f f a

−

= =

 
 = +  

  
   (2.35) 

where Re[·] returns the real part of the complex-valued expression within square brackets and 

f  is the linear-trend value in the time, so defined: 

 2 0
0 ;

2

Nf f
f f

N

−
= +  (2.36) 

while ,ˆ j ka  is the generic complex-valued coefficient associated to the discrete signal f  that 

can be calculated as: 

 ( )
2

*
, , ,

0

ˆ
2

N
j

j k j k

b
a f f

N =

= −   (2.37) 

where the superscripted asterisk * means complex conjugate quantity. 

Because circular wavelets are complex functions, the decomposition of any arbitrary signal 

involves coefficients ,ˆ j ka  which are also complex. Independently of the band-partitioning of 

the frequency domain, ,ˆ j ka  is the number of wavelets contributing to the double summation 

in the right-hand side (rhs) of Eq. (2.35).  
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An alternative reconstruction formula of Eq. (2.35), for the expansion of a given signal in 

terms of complex wavelets, can be expressed as: 

 ( )
1 1

, ,

1 0

1ˆ ˆˆ2 cos π 2 1
2

j j

j

M b n

j k j k
j jj k s m

k
f f a s

b N b


− −

= = =

  
= + + − +  

    
    (2.38) 

where ,ˆ j ka  and ,
ˆ

j k  are respectively the modulus and the phase angle of the generic complex-

valued coefficient ,ˆ j ka  expressed in exponential form: 

 ,
ˆ

, ,ˆ ˆ e j ki

j k j ka a


=  (2.39) 

A special case occurs for M=N, i.e., when there are N frequency bands 1,j j  +
 
  , all with 

the same bandwidth Bj =Δω, i.e., b1= b2=···= bN=1. Accordingly, there is only one wavelet 

,0,ψ j  and one wavelet coefficient ,0ˆ ja  for each frequency band (i.e., no time localisation 

occurs in any of the M frequency band), and Eq. (2.38) can be rewritten as: 

 ,0 ,0

1

ˆ ˆˆ2 cos

N

j j j

j

f f a t 
=

 = + +
   (2.40) 

with ( )1

1

2
j j j   += + , which particularises Eq. (2.33). 

Notice that the , ,j kDFT   will be indicated as , ,ψ j k n  in the following. 

 

2.5.1 Numerical illustration of the circular wavelets 

To better appreciate some of the properties of the circular wavelets and their implications in 

the representation of discrete signals, let’s consider the test signal of Figure 2.16 a) defined as: 

 ( ) ( )3/2 2 3

NLT
AMC

( ) 3 2sin π cos 7πf t t t t t = − + +
   (2.41) 

consisting of a non-linear trend (NLT) superimposed with an amplitude-modulated chirp 

(AMC). The time duration and sampling frequency are respectively t2N=2 s and υ0=100 Hz 

meaning that the discretised signal consists of 2N+1= υ0 t2N +1=201 points. The modulus of 

the DFT of the discretised signal, is reported in Figure 2.16 b). 
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In Table 2-I: are listed the main characteristics of the discretized signal: time duration t2N, 

sampling step Δt, sampling frequency υ0, number of the discrete non-zero frequencies N, 

number of points p, Nyquist frequency ωN and frequency step Δω.  

 

 

[s]t  

 

 

/n N   

                                    

Figure 2.16 Continuous signal f (t) (solid line), discretised signal f  (dots) and trend line f  (dashed 

grey line), in the time domain a); modulus of the DFT function in the frequency domain b). 

 

 

Table 2-I: Main characteristics of the discretized signal. 

t2N 

[s] 

Δt 

[s] 

υ0=1/ Δt 

 [Hz] 

N= t2N / (2Δt) 

[-] 

p=2N+1 

[-] 

ωN =NΔω 

[rad/s] 

Δω = 2π/ t2N 

[rad/s] 

2 0.01 100 100 201 314.16 3.142 
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To demonstrate the wavelet representation of the signal, six alternative partitions of the 

frequency range of interest  0, N  are considered in this section, with division in 

M=1,3,7,10,50,100 frequency bands. In each case, the upper bound of the jth band is defined 

by rounding the corresponding index to the nearest integer, i.e.: 

 roundj

j N
n

M

 
=  

 
 (2.42) 

Since N  is not a multiple of any of the values of M that have been chosen, in all six cases, 

the partition is not perfectly uniform, e.g., for M=7, b2=b6=15 and bj=14 for all the other 

values of j ≤ M. 

The quantities that characterize the frequency bands belonging to the six investigated 

schemes, are summarized in Table 2-II a) for M=1,3,7,10 and b) M=50,100. 

Figure 2.17 shows the moduli of the N  wavelets coefficients ,ˆ j ka  as calculated through 

Eq.(2.37). The coordinates of each point in three-dimensional plots represent the centre 

 , , ,j k j k jC    of the generic wavelet , ,j k  in the orthogonal partition of the time-

frequency plane and the magnitude ,ˆ j ka  of the generic wavelet contribution to the 

reconstruction of discrete signal f . The modulus of the Fourier spectrum of the signal 

( )nF   together with the indication of the central circular frequency 𝜔̅𝑗 of each band j 

(black vertical lines), are also reported in Figure 2.17. 

It can be noted that for: 

• 1M =  there is a high resolution in the time domain ( )0, ,99k =  and a poor 

resolution into frequency domain ( )1j = ;  

• 100M N= =  there is a high resolution in the frequency domain ( )1, ,100j =  and 

a poor resolution into time domain ( )0k = ; 

The comparison of the six plots reveals that increasing the number M of frequency bands 

results in an improved resolution in the frequency domain, i.e. a more detailed representation 

of the frequency content with more line plots parallel to the time axis; however, the larger M, 

the less detailed is the representation of the signal in the time domain, i.e., less points in each 

line plot parallel to the time axis (see vertical grey lines in Figure 2.17). 
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Figure 2.17 Discrete 3D plot of the wavelets coefficients ,ˆ j ka  with increasing resolution in the 

frequency domain (M=1,3,7,10,50,100) together with the amplitude DFT spectrum ( )nF  . 
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Figure 2.17 (Continued). 
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Table 2-II a) Main characteristics of each frequency band belonging to the M th partition: M=1,3,7,10. 

M j mj nj bj  rad/s
jm   rad/s

jn   rad/sj  

 

1 1 0 100 100 0 314.16 157.08 

 

3 

1 0 33 33 0 103.67 51.84 

2 33 67 34 103.67 210.49 157.08 

3 67 100 33 210.49 314.16 262.32 

 

7 

1 0 14 14 0 43.98 21.99 

2 14 29 15 43.98 91.11 67.54 

3 29 43 14 91.11 135.09 113.09 

4 43 57 14 135.09 179.07 157.08 

5 57 71 14 179.07 223.05 201.06 

6 71 86 15 223.05 270.18 246.62 

7 86 100 14 270.18 314.16 292.17 

 

10 

1 0 10 10 0 31.42 15.71 

2 10 20 10 31.42 62.83 47.12 

3 20 30 10 62.83 94.25 78.54 

4 30 40 10 94.25 125.67 109.96 

5 40 50 10 125.67 157.08 141.37 

6 50 60 10 157.08 188.50 172.79 

7 60 70 10 188.50 219.91 204.20 

8 70 80 10 219.91 251.33 235.62 

9 80 90 10 251.33 282.74 267.04 

10 90 100 10 282.74 314.16 298.45 
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Table 2-II b) Main characteristics of each frequency band belonging to the M-th partition: M=50,100. 

M j mj nj bj  rad/s
jm   rad/s

jn   rad/sj  

 

50 

1 0 2 2 0 6.283 3.141 

2 2 4 2 6.283 12.566 9.424 

       

M/2 48 50 2 150.796 157.08 153.938 

       

M-1 96 98 2 301.593 307.876 304.734 

M 98 100 2 307.876 314.159 311.018 

 

100 

1 0 1 1 0 3.141 1.570 

2 1 2 1 3.142 6.283 4.712 

       

M/2 49 50 1 153.938 157.08 155.509 

       

M-1 98 99 1 307.876 311.018 309.447 

M 99 100 1 311.018 314.159 312.588 

 

 

With reference to six analysed cases, Figure 2.18 shows a three-dimensional plot of the 

complex-valued circular wavelet 
, ,j k , centered at time ( ), 2 /j k N jk t b =  . Real and 

imaginary parts of the wavelet 
, ,j k  are projected on the vertical and horizontal planes, 

respectively. The phase angle ,
ˆ

j k  of the associated wavelet coefficient 
,ˆ j ka , determines a 

rigid rotation on the wavelet plot around the longitudinal, time-proportional axis. According 

to Eqs. (2.35) and (2.38), only the real part of the rotated wavelet contributes to the 

reconstruction of the discrete signal f , proportionally to the modulus ,ˆ j ka .  

The parameters of the wavelets represented in Figure 2.18 are summarised into Table 2-III. 
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Figure 2.18 Three-dimensional plot (coloured solid line) of the circular wavelet together with the 

projections of the real part (grey line in vertical plane), and imaginary part (grey line in horizontal 

plane) with increasing resolution in the frequency domain: M=1,3,7,10,50,100. 
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Figure 2.18 (Continued). 
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For the cases of M=3 and M=10, the representation of the signal (black line) obtained by Eq. 

(2.38) broken down into its components (grey lines) belonging to the generic jth band is 

shown in Figure 2.19. 

 

 

 

     

Figure 2.19 Representation of the signal (black line), and its components (grey lines): M =1 and M =3. 
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Table 2-III Parameters of the wavelets represented in Figure 2.18.  

M j k bj=nj - mj τ1,4 = (k t2N)/ bj   [s] 

1 1 30 100 0.6 

3 1 10 33 0.6 

7 2 4 15 0.53 

10 3 3 10 0.6 

50 12 1 2 1 

100 25 0 1 0 

 

2.5.2 Effect of the bandwidth parameter 

In this subsection, the effect of the bandwidth parameter bj on the generic circular wavelet 

, ,j k , is investigated.  

For M=1 there is only one frequency band ( )1jb b N= =  and the real part of the resulting 

wavelets can be expresses as: 

 , , 1, , ,2

0 if 2 ;
Re Re δ

1 if 2 ,
j k k k

k

k


    =  = =    =

 (2.43) 

meaning that: 

1) a perfect localisation is achieved in the time domain (see Figures 2.18 and 2.20 a) 

where k=30 and the wavelet is centered at time 

( ) ( )1,30 2 1/ 30 2 /100 0.6s )Nk t b =  =  = ; 

2) no localization is possible in the frequency domain, where the energy of the wavelet is 

spread nearly uniformly over the frequency range  0, N  (see the nearly flat plot in 

Figure. 2.20 b) for N≤ n ≤2N). 

The opposite situation occurs for M N= : in this case bj=1 and the frequency content of the 

wavelet is concentrated around a single discrete frequency 
j , as shown by the red, dashed 

line in the frequency-domain plot in Figure 2.20. 

In the numerical example used in this plot, j=25 and ( )0.5 77 rad/sj j = −  = . 

Interestingly: i) due to the “circularity” of the wavelet, energy “bleeds” outside the nominal 
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bandwidth  ; ii) no localisation is possible in the time domain as only one wavelet is 

associated with the discrete frequency 
j .  

The blue, thin solid line in Figures 2.20 a) and b) are representative of an intermediate 

situation between those considered before. In this case, for bj=N/10, the circular wavelets 

simultaneously provide some localisation in both time and frequency, around , 0.6 sj k =  and 

78.6 rad/s,j =  respectively.  

 

 

 

    

 

 

                   , ,j k n  

 

        

 

 

 

 

Figure 2.20: Circular wavelets with different bandwidth in the time a) and frequency b) domain:  

M=1, bj=100=N and {j,k}={1,30}, black, dot-dashed line; M=10, bj=10=N/10 and 

{j,k}={3,3}, blue, solid line; M=100, bj=1 and {j,k}={25,0}, red , dashed line. 
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Chapter 3  

 

3        Wavelet-based generation of non-stationary accelerograms 

 

3.1 Introduction 

The worldwide increasing availability of strong motion records makes the use of natural 

accelerograms an attractive option to properly define the input motions for dynamic analysis 

of both structural and geotechnical systems [Bommer and Acevedo 2004, Katsanos et al. 

2010]. In nature there are no two identical recorded ground motions, consequently it’s almost 

sure that the coming earthquake will be different from the ones used as input motions in the 

structural design.  

Due to the uncertain nature of earthquakes, the rational way to assess the performance of 

earthquake-resistant structures consists in the use of the stochastic approach for modelling the 

dynamic action. The stochastic approach needs gaining a sufficient level of abstraction from 

the expected seismic event in a way that the generated records are considered realization of a 

stochastic process. Due to their non-stationary characteristics, the seismic ground motions are 

not suitable to be represented by a stationary process.  

Joint time-frequency signal representation can be considered as a powerful strategy to 

analyse the time-varying amplitude and the evolutionary frequency content of accelerograms. 

Since the wavelets possess joint time-frequency localisation capabilities, wavelets analysis 

has been successfully exploited for different applications involving: simulation of earthquake 

ground motions [Iyama and Kuwamura 1999], analysis of dynamic systems with time-varying 

characteristics [Newland 1994, Carmona et al. 1998], analysis of linear structural responses to 

seismic excitations [Basu and Gupta 1997, 1998, 2000], modelling non-stationary dynamic 

loads for structural analysis and design [Spanos and Failla 2005, Cecini and Palmeri 2015], 

etc. In particular, Iyama and Kuwamura [1999], proposed a technique for simulating artificial 
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accelerograms based on the inverse wavelet transform of a random sequence of wavelet 

coefficients satisfying some constrains in terms of instantaneous energy for each frequency 

component. Then years later, Giaralis and Spanos [2009] proposed a stochastic approach for 

simulating non-stationary strong ground motion records compatible with a given design 

displacement spectrum in combination with a harmonic wavelet-based iterative procedure. 

Cecini and Palmeri [2015] proposed a deterministic modification method based on the 

harmonic wavelet transform, aimed matching the elastic response spectrum of a given 

accelerogram to a target elastic response spectrum; Basu and Gupta [1997, 1998] derived in 

explicit closed form solutions for the stochastic response of linear structural systems subjected 

to a non-stationary ground shaking, whose time dependent amplitude and frequency content 

are modelled through a generalisation of the Littlewood-Paly (L-P) basis of orthogonal 

wavelets.  

Whitin the theoretical framework of Priestley’s non stationary random processes [Priestly 

1981], Spanos and co-workers have used different families of wavelets (including Newland’s 

harmonic wavelet [Newland 1993, Newland 1994]) to compute the evolutionary power 

spectral density (PSD) function of stochastic signals [Spanos and Failla 2004, Spanos et al. 

2005], and to determine the response statistics of linear and non-linear oscillators driven by 

non-stationary excitations [Spanos 2012]. These researches clearly show the great potential of 

wavelet-based approaches when non-stationary plays a key role in in the dynamic analysis of 

structural and geotechnical systems.  

In the first part of this Chapter, the basic concept of random variables and random 

stationary and non-stationary processes are introduced. In the last part of the present Chapter, 

a novel stochastic model is presented, and numerically validated to generate an arbitrary 

number of seismic records having the same characteristics of the target accelerogram. The 

stochastic generation of artificial accelerograms is pursed through the Circular wavelets, 

deriving to the harmonic ones, whose key concepts and fundamental equations can be found 

in [Newland 1993]. The introduction of a new correlation structure for the random phases 

allows an arbitrary translation and rotation of the complex-valued wavelets that leads to the 

generation of samples having different variability with respect to a target accelerogram. The 

choice of the amplitude and of the number of bands in which is partitioned the frequency 

domain, is a key source of variability to consider for the generation of samples with the 

desired time-varying amplitude and frequency content [Genovese et al. 2021 a]. 
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3.2 Basic definitions of stochastic variables and processes 

A random or stochastic variable X is a variable whose value depends on outcomes of a 

random phenomenon. A random variable mathematically describes the results of experiments 

associated to a given event, whose domain is a numeric ensemble. If x1 and x2 are the bounds 

of this domain, any random variable X takes values: x1 ≤ X ≤ x2. The probability of occurring 

is denoted in the following by 
1 2Pr x X x  .  

The Cumulative Distribution Function (CDF) and the Probability Density Function (PDF) 

of a random variable X are defined, respectively, by the following expressions: 

 ( ) ( ) ( )
d

Pr ; .
d

X X XL x X x p x L x
x

=  =  (3.1) 

A stochastic or random process X(t) is defined as a family of n random variables related to 

a phenomenon, which are functions of one or more independent variables, like the time.  

In order to obtain a complete probabilistic description of a stochastic process X(t), it’s 

necessary the knowledge of the probability distribution or alternatively the knowledge of the 

moment functions of every order, which are defined as: 

 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1

1 2

1 1 1 1

1 2 1 2 1 2 1 2

E d

E d d

X t

X t X t

X t x p x x

X t X t x x p x p x x x

+

−

+ +

− −

=

=



 

 (3.2) 

where the operator E<·> represents the stochastic average. 

In particular, the first-order moment of the random process X(t) coincides with its mean 

value (also called expected value) ( )X t , defined as: 

 ( ) ( ) ( ) ( )=E d .X X tt X t x p x x
+

−

=   (3.3) 

The autocorrelation function represents a measure of correlation of the process with itself 

at two different times: X(t1) and X(t2). It can be defined as: 

 ( ) ( ) ( ) ( ) ( )1 2 1 2 1 2, =E E E .XR t t X t X t X t X t−  (3.4) 

The second-order moment of the random process X(t) is represented by the variance 

function, σ2
X(t) that depends on the mean value function ( )X t  and on the mean square 

value function ( )2

X t : 
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 ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2, = d .X X X X XX t
t R t t t t x p x x t   

+

−

 − = −  (3.5) 

A random process X (t) is said to be stationary or strict-sense stationary if the PDF of any 

set of samples does not vary with time. Thus, in this case, the joint PDF or CDF of 

( ) ( ) ( ) ( ) 1 2 3, , , , nX t X t X t X t  is identical to the joint distribution of the same variables 

displaced an arbitrary amount of time τ: ( ) ( ) ( ) ( ) 1 2 3, , , , nX t X t X t X t   + + + + . 

A process is defined weakly stationary (or stationary in wide sense) if the mean and the 

variance of the process are constant (i.e., independent of time), and its autocorrelation 

function depends only on the time difference τ = t2 - t1 and not on t1 and t2 individually: 

 

( )

( )

( ) ( ) ( ) ( ) ( )

2 2

2

1 2

,

,

, , E .

X X

X X

X X X X

t

t

R t t R t t R X t X t

 

 

   

=

=

= +  = + −

 (3.6) 

In other words, in a wide-sense stationary process, the mean and autocorrelation functions 

do not depend on the choice of the time origin. A non-stationary process is characterized by a 

joint PDF or CDF that depends on time instants  1 2 3, , , , nt t t t . In the theory of probability, a 

Gaussian process is a stochastic process such that every finite collection of the random 

variables ( ) ( ) ( ) ( ) 1 2 3, , , , nX t X t X t X t  has a multivariate normal distribution, i.e. every 

finite linear combination of them is normally distributed. A stationary Gaussian process is 

completely characterized by the knowledge of its mean function μX and its autocorrelation 

function ( )XR   in the time domain; or its mean function μX and its Power Spectral Density 

(PSD) function SX (ω) in the frequency domain. The PSD function of the stationary Gaussian 

random process is defined analytically by the Fourier Transform of the autocorrelation 

function: 

 ( ) ( )
1

e d
2

i

X XS R   


+

−

−

=   (3.7) 

where 𝑖 = √−1 is the imaginary unity. The inverse Fourier transform of the PSD function 

gives the autocorrelation function: 

 ( ) ( )e d .i

X XR S   
+

−

=   (3.8) 
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The Eqs. (3.7) and  (3.8) are the Wiener-Khinchine relations, that play a fundamental role 

in the random vibration analysis. The PSD function is not able to give the distribution of 

frequency content in time domain, but only in the frequency domain. To take into account 

both the frequency and time variations two approaches (Wigner-Ville method and the 

evolutionary spectral analysis) could be used. By applying the Wigner-Ville method 

[Newland 1975], the instantaneous PSD function is a time dependent function defined as: 

 ( ) ( )
1

, , e d  
2π

i

X XS t R t   


−

=   (3.9) 

where SX (ω,,t)  is a measure of the frequency content of non-stationary random process X (t) 

at time t. 

The evolutionary spectral analysis was introduced by Priestley in 1987. Priestley 

considered a class of non-stationary processes defined by means of the following Fourier-

Stieltjes integral: 

 ( )i( ) e ( , )dtX t a t N  


−

=   (3.10) 

where a (ω,,t) is a slowly varying complex deterministic time-frequency modulating function, 

which has to satisfy the conditions: a (ω,,t) ≡ a* (-ω,,t), with Re{a (ω,,t)} ≥ 0; N(ω) is a zero-

mean process with orthogonal increments satisfying the condition: 

 ( ) ( ) ( ) ( )*

1 2 1 2 0 1 1 2

1
E d d δ d d  

2
N N S      = −  (3.11) 

where δ (·) is the Dirac delta, and S0 (ω) is the PSD function of the so-called embedded 

stationary counterpart process ( )N t  [Michealov et al 1999]. The Priestley evolutionary 

process X (t) possesses autocorrelation function: 

 ( ) ( )1 2i

1 2 1 2, e ( , , )d  .
t t

X XR t t S t t


 


−

−

=   (3.12) 

where: 

 
*

1 2 1 2 0( , , ) ( , ) ( , ) ( )XS t t a t a t S   =  (3.13) 

In the Priestley evolutionary process model, the function: 

 
2

0( , ) ( , ) ( )XS t a t S  =  (3.14) 

is referred as the Evolutionary PSD (EPSD) function of the non-stationary process X (t). In 

the previous equation the symbol |·| denotes the modulus of the function in brackets. The 
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processes characterized by the EPSD function, SX (ω,t), given in Eq.(3.14), are called fully 

non-stationary random processes, since both time and frequency content change. If the 

modulating function is a real time-dependent function, a(ω,,t) ≡ a(t), the non-stationary 

process is called quasi-stationary (or uniformly modulated) random process. In this case the 

EPSD function assumes the expression:
2

0( , ) ( ) ( )XS t a t S = .  

In Figure 3.1 are shown samples of stationary a), quasi stationary b) and non-stationary c) 

processes. In the Figure 3.1, the red line represents the modulating function a(t). 

   
 

 

 

Figure 3.1 Samples of stationary a), quasi stationary b) and non-stationary c) processes. The red line 

represents the modulating function a(t). 
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3.3 Proposed randomisation procedure 

When the generation of random time histories is required for the analysis and design of 

structures subjected to dynamic loads, a typical approach requires the following steps: i) to 

define a function of time t and circular frequency ω capable of describing the features of 

interest about the phenomenon being simulated (e.g. ground acceleration, wind velocity, 

etcetera), in terms of time evolving frequency content and amplitude [Spanos and Failla 2004, 

Spanos et al. 2005]; ii) to use a generation procedure to obtain the needed samples [Liang et 

al. 2007, Shinozuka and Deodatis 1988, Shinozuka and Deodatis 1991].  

Let f (t) be a zero-mean, stationary Gaussian process, fully defined in the frequency domain 

by the power spectral density (PSD) function ( )FS  . A popular method for generating the 

generic realisation of the rando process f (r)
 (t) consists in the use of the so-called Shinozuka’s 

formula, which requires the following steps: 

1) choose a “cut-off” frequency ωN such that (for the purposes of the analyses being 

carried out) the energy of the random process can be neglected for ω>ωN; 

2) divide the frequency range of interest [0, ωN ] into a “large number” N of intervals of 

equal width Δω= ωN /N; 

3) calculate the value of the PSD function at the central frequency of each interval Δω, 

that is ( )j F jS S = , with 
1

2
j j 

 
= −  

 
  and j =1, 2, ···, N; 

4) generate a set of N statistically independent random variables,  ( ) ( ) ( )
1 2, , ,r r r

N   , 

uniformly distributed over the range [-π, π]; 

5) generate the rth sample of the random process through a superposition of N harmonic 

functions with random phases: 

 ( ) ( )( ) ( ) ( )

1

2 cos
N

r r r
j j j

j

f f t S t  
=

= =  +  (3.15) 

where t  is the generic time instant at which the sample is evaluated; 

6) repeat step 4 and 5 until enough samples of the random process have been obtained. 

It should be noted that using Euler’s formula, Eq. (3.15) is equivalent to: 
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 ( ) ( )( ) ( )
,

1

2Re exp
N

r r
j j

j

f t C i
=

=   (3.16) 

where the complex-valued coefficients ( ), expj j jC S i t =   are sample independent, so 

they need to be calculated only once, while the sample-to-sample variability is achieved 

through the generation of the random phases ( )r
j . 

Shinozuka’s formula of Eq. (3.15) is remarkably similar to Eq. (2.40) which particularises 

the wavelet-based reconstruction of a discrete signal when the number of frequency bands M 

is the same as the number of points in the frequency-domain representation of the discrete 

signal N. This suggests the possibility of using random phases to randomise the contributions 

of the harmonic functions appearing in the circular wavelets used to reconstruct a discrete 

signal. Accordingly, Eq. (2.38), can be randomised as: 

 ( ) ( )
1 1

( ) ( ) ( )
, , ,

1 0

1 ˆˆ2 cos π 2 1
2

j j

j

b nM
r r r

j k j k j k
j jj k s m

k
f f t f a s

b N b
 

− −

= = =

  
= = + + − + +  

    
    (3.17) 

in which  
1

T
( ) ( ) ( ) ( )

1,0 , ,
, , , ,

M

r r r r
j k M b

  
−

= is the N − dimensional array collecting the thr  

realisation of random phases uniformly distributed over the range  π, π− . Notice that for a 

zero-mean process 0f = . 

Noteworthily: i) if all the random phases are set to zero, i.e., if  
T( ) 0, ,0, ,0r = , the 

rth realisation of the random signal 
( )rf  of Eq. (3.17) coincides with the discrete signal f̂ , 

deterministically reconstructed via Eq. (2.38); the generic element ( )
,
r

j k  of the random vector 

( )r  represents the random rotation of the circular wavelets , ,j k  of Eq. (2.34), whose real 

part is the ( ), thj k  contribution to the random realisation 
( )rf . It follows that the generation 

formula of Eq. (3.17) can be expressed in the equivalent form: 

 ( )
1

( ) ( )
, , ,

1 0

ˆ2Re exp
jbM

r r
j k j k

j k

f f C i

−

= =

 
= +  

  
   (3.18) 

in which the generic coefficient Ĉj,k,l  is sample-independent and defined as: 
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 ( )
1

, ' ' '
, , , , , , , , ,

ˆ
ˆ ˆ ˆˆ ψ exp  π 2 1

2

j

j

n
j k

j k j k j k j k j k
j js m

a k
C a i s C iC

b N b

−

=

  
= = + − = +  

    
  (3.19) 

where Ĉʹj,k,l = Re |Ĉj,k,l | and Ĉʹʹj,k,l = Im |Ĉj,k,l | are its real and imaginary part respectively. The 

comparison of Eq. (3.16) and (3.18) reveals that the proposed wavelet-based generation 

formula coincides with the conventional Shinozuka’s formula in the special case of M=N 

(therefore, b1=b2=···=bM=1), and the sample independent coefficients are given by: 

 
( )

,0, ,

2 1ˆ ˆ exp .
2

j j j

j
C C S i

N
 

− 
= =   

 

 (3.20) 

The application of the expectation operator E<·> to both sides of the proposed generation 

formula of Eqs. (3.18) yields: 

 ( ) ( )
1

' ' '
, , , , , ,

1 0

ˆ ˆ=E 2 E cos sin 0
jbM

f j k j k j k j k

j k

f C C  

−

= =

 = − =
    (3.21) 

as ( ),E cos 0j k =  and ( ),E sin 0.j k =  It follows that, similarly to Shinozuka’s formula 

the generated random process ( )F F t=  has zero mean. 

Importantly, in the Shinozuka’s formula, the random phases ϕj are assumed to be 

statistically independent; that is, for j ≠ J and any pair of exponents a and b: 

 E E Ea b a b
j J j J   =  (3.22) 

on the contrary, in the proposed randomization formula of Eq. (3.18) an arbitrary correlation 

structure can be adopted for the random phases ϕj,k.  

 

3.3.1 Proposed correlation structure 

The generated samples by Eq.(3.17) can achieve a different statistical similarity with the 

target signal f  at time t . Since the random phases are the only non-deterministic quantities 

in the proposed generation formula of Eq.(3.17), a different variability of the generated 

samples can be obtained by the introduction of a linear correlation coefficient ρ for the 

random phases ϕj,k  and ϕJ,K .  The proposed correlation structure can be expressed as:  
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( ) ( ) ( )

( ) ( ) ( ) ( )

, ,

, , , , ,
, ,

2 2

E

/ /
exp

2

j j J J

j k J K

j k J K j k J K
j k J K

m n m n j Jk b K b

  

 

 
 

 

   

 

= = =

 
   + − + − 
   = − + 
         

 (3.23) 

where the generic random phases (ϕj,k and ϕJ,K) are uniformly distributed in the interval 

 π, π− , such that the standard deviations of the random phases are equal to: 

( ) ( ), , 3i k J K   = = . In Eq. (3.23) λω and λτ are correlation measures in the frequency 

domain and in the time domain, respectively. These two quantities can be related to seismic 

parameters of the target signal: for instance, λτ can be associated to the strong motion duration 

t5-95 and λω to the strong frequency interval ω5-95 of the target signal f (t). Notice that it is 

useful to set λτ and λω in terms of seismic ground motion parameters instead of the values 

associated to the entire waveform (i.e. the total duration of the signal t2N could take very large 

values if the zeros-padding of the recorded signal have not been appropriately removed in the 

signal post-processing phase). 

The limiting condition λω→0 and λτ →0 corresponds to the case where all the random 

phases are statistically independent or “uncorrelated” (UC); conversely, the case of fully 

correlated (FC) phases occurs when simultaneously λω→+∞ and λτ →+∞. In the intermediate 

configurations between the two limit conditions, the correlation structure is called “partially 

correlated” (PC).  

 

3.3.2 Generation of random phases 

The evaluation of correlated random phases requires the following steps: 

1) define a vector colleting the random phases, through the following transformation of 

variables: 

  =  u  (3.24) 

where  
T

1, , , ,i Nu u u=u  is a N − dimensional vector of zero-mean, Gaussian 

variables with unitary variance, i.e. 2E 1
iu iu = = . In this case, the Gaussian 
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distribution in the variate ui is known as “standard normal distribution” having a 

probability density function PDF and a cumulative distribution function CDF given by:  

 ( )
21

exp
22πiu

u
PDF u

 
= −  

 
 (3.25) 

 ( )
21 1

exp d 1 erf
2 22π 2i

u

u

x u
CDF u x

−

    
= − = + −         

  (3.26) 

in which erf(·) is the error function:  

 ( ) ( )2

0

2
erf exp d

π

u

u u u= −  (3.27) 

The transformation function   is assumed as: 

 ( ) ( )( )2π ( ) 0.5 πerf
2

u i

u
u CDF u

 
 = − =  

 
 (3.28) 

2) define a symmetric and defined positive correlation structure ( ), , ,j k J K  of dimension 

N N  for the random phases in the N − dimensional vector ϕ; 

3) evaluate the auxiliary correlation coefficient ( , , , )uu j k J K  that is a function of the linear 

correlation coefficient between the corresponding random phases ( ), , ,j k J K ; 

 ( )( , , , ) , , ,

π
2sin

6
uu j k J K j k J K 

 
=  

 
 (3.29) 

4) generate random variates of the multinormal distribution having a N − dimensional 

mean vector  
T

0, ,0, ,0 =  and a covariance matrix ( ), , ,j k J K =  of the random 

phases; 

5) evaluate the elements of the random variables, through the application of the 

transformation function, defined in Eq. (3.28), to the multinormal distribution. 
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3.4 Numerical applications to seismic signals 

In order to validate the formulae derived in the previous section, the “090” component of 

the ground motion recorded at Vasquez Rocks Park during the 1994 Northridge earthquake 

has been used in the following as target accelerogram f (t). 

The selected ground motion, downloaded from the Peer database [Ancheta et al. 2013], 

having a moment magnitude MW = 6.7 and a site-source distance RJB=23.1 km [Joyner and 

Boore 1981], has been recorded with a sampling time Δt=0.02 s at a station having an average 

shear wave velocity in the upper 30 m equal to Vs,30=996 m/s (EC8 2004, soil class “A”). The 

total intensity of the target accelerogram, having an overall duration t2N =39.98 s, is equal to 

2 3

0 1.99 m /sI = .  

In Figure 3.2 are reported: a) the acceleration time-history f (t), b) the cumulative energy 

function I0 (t) and c) the cumulative zero-level up-crossing function 0 ( )N t+
 of the target 

accelerogram. The shaded grey areas, delimited by the dashed black lines, indicate the strong 

motion duration t5-95 of the target signal. The corresponding acceleration response spectrum 

SA(T, ξ), for a damping ratio equal to ξ =5%, is shown in Figure 3.3.  

Figure 3.4 show: a) the modulus of the Fourier spectrum ( )f t  and b) the cumulative 

Fourier energy function EA(ω); the shaded grey areas, delimited by the dashed black lines, 

indicate the strong circular frequency ω5-95 of the target signal. 

In Table 3-I: are listed the main characteristics of 1994 Northridge earthquake: time duration 

t2N, sampling step t , sampling frequency υ0, number of the discrete non-zero frequencies N, 

number of points p, Nyquist frequency ωN and frequency step Δω.  

For the target signal, the values of the main seismic parameters detailed in the Chapter 1, 

are summarised in Table 3-II.  
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Figure 3.2 Time history a); cumulative energy function b); zero-level up-crossing function c), of the 

target 1994 Northridge earthquake accelerogram (solid line) together with the indication of the strong 

motion duration (grey shaded area) delimited by the two vertical dashed black lines. 
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Figure 3.3 Acceleration response spectrum of the target 1994 Northridge earthquake accelerogram, 

for a damping ratio equal to 5%. 

 

 

Figure 3.4 Modulus of the Fourier spectrum a) and cumulative Fourier energy function b) of the 

target 1994 Northridge earthquake accelerogram (solid line) together with the indication of the strong 

circular frequency (grey shaded area) delimited by the two vertical dashed black lines. 
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Table 3-I Main characteristics of the 1994 Northridge earthquake. 

t2N 

[s] 

Δt 

[s] 

υ0 = 1/ Δt 
[Hz]  

N = t2N / (2Δt) 

[-] 

P=2N+1 

[-] 

ωN = N Δω 

[rad/s] 

Δω=2π/ t2N 

[rad/s] 

39.98 0.02 50 1000 2001 157.158 0.157 

 

Table 3-II Seismic parameters of the 1994 Northridge earthquake. 

PGA 

[m/s2] 

PGV 

[m/s] 

PGD 

[m] 

PGV/ PGA 

[s] 

I0 

[m2/s3] 

IA 

[m/s] 

N0
+ 

[-] 

P 

[-] 

IF 

[-] 

t5-95 

[s] 

1.364 0.112 0.028 0.0821 1.98 0.318 209 228 0.916 7.32 

 

 

3.5 Partition of the frequency domain  

To validate the formulae derived in the previous section, a set of one hundred 

accelerograms have been generated by Eq.(3.17).  

Three alternative partitions of the frequency range of interest [0,ωN] are considered, with a 

subdivision in M =1, 100, 1000 frequency bands, respectively. 

In order to investigate the effect of the correlation structure ρϕϕ(j,k,J,K) of Eq.(3.23) on the 

characteristics of the samples, generated by the proposed randomization procedure, three 

different cases have been analysed for each of the three M partition of the frequency domain. 

In the first case, called “uncorrelated” (UC), the random phases ϕj,k  and ϕJ,K  are assumed 

different from each other consequently ρϕϕ(j,k,J,K)=1 only for {j,k}={J,K} and ρϕϕ(j,k,J,K)=0  for 

all the other cases {j,k}≠{J,K}. This condition is obtained by setting equal to zero the values 

of the correlation measures of Eq.(3.23), in both time and frequency domain; that is: 

λω=λτ=0. 

In the second case, called “partially correlated” (PC) an intermediary condition is 

investigated, relating the correlation measures to the seismic parameters of the signal. 

Specifically: λω=ω5-95 and λτ=t5-95 are considered, being ω5-95 and t5-95 the strong circular 

frequency and the strong motion duration of the target signal, respectively. 
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In the third case, called “fully correlated” (FC), ρϕϕ(j,k,J,K)=1 for any pair of random phases 

ϕj,k  and ϕJ,K  , therefore their rth realizations coincide to each other, i.e. ( ) ( )
,,

r r
J Kj k =  . 

In Figures 3.5-7 are reported the results obtained through the subdivision of the frequency 

range of interest [0,ωN]  in M =1,100,1000 parts, respectively.  

Specifically in Figures 3.5-7 are shown: a) three generic samples (coloured lines) together 

with the target accelerogram (black line); b) three mean Fourier spectra moduli (coloured 

lines) together with the target Fourier spectrum modulus (black line), for UC, PC and FC 

random phases and considering a partition of the frequency domain in M=1,100,1000 parts, 

respectively. 

Figures 3.5-7 show a comparison among the: c) acceleration response spectrum; d) 

cumulative energy function; e) cumulative zero level up crossing function of the target 

accelerogram (red solid line) with statistics of the artificial ones: mean value function (black 

line); mean value plus/minus standard deviation functions (black dashed lines); envelope of 

the maximum and minimum values of all samples (shaded area), considering M =1,100,1000, 

respectively. The aforementioned functions have been evaluated considering UC, PC and FC 

random phases in the correlation structure. 

It can be noticed that: 

1)  in Figure 3.5 a) (M=1) the variation in amplitude of the generated signals appears to be 

preserved for all three random phases correlations adopted; 

2) in Figure 3.6 a) (M=100) the variation in amplitude of the generated samples appears to 

be preserved only for the fully correlated (FC) case. Indeed, a particular situation 

happens for the uncorrelated (UC) and partially correlated cases (PC) where the 

generated samples tend to have a periodic behaviour and they appear as “slowly 

modulated” signals (Figure 3.6 a);  

3) in Figure 3.7 a) (M=N=1000), for the case UC, the generated samples tend to lose the 

fidelity in terms of non-stationary characteristics, until they become realizations of a 

stationary random process while, for the PC and FC cases the variation in amplitude of 

the generated signals appears to be preserved; 

4) the mean amplitude Fourier spectrum and the zero-level up crossing function of the 

generated samples are very close to the target one in all the analysed situations except 

for the uncorrelated case (UC) in correspondence of a subdivision of the frequency 

range into only one part M=1 (see Figures 3.5-7 b, e).  
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5) for the uncorrelated case (UC) of the M=1 and M=1000 frequency partitions (see 

Figure 3.5 c) and Figure 3.7 c)), the mean acceleration response spectrum of the 

generated samples (black line) is very far to that of the target one (red line). In all the 

other investigated configurations the mean acceleration response spectrum is in a good 

agreement with the trend of the target one.  

6) the mean cumulative energy function of the generated samples is in a good agreement 

with the target one in all the analysed situations except for the UC case in 

correspondence of a subdivision of the frequency range into M=N=1000 parts (see 

Figures 3.5-7 d).  

From the analysis of the results obtained it is clear that by varying the parameters present 

in the correlation structure, it is possible to generate samples having the desired 

characteristics. 
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M=1 

 

 

 

 

 

Figure 3.5 Result of the circular wavelet transform method, considering a subdivision of the 

frequency domain into M=1 part, for random phases: “uncorrelated” (UC), “partially correlated” (PC) 

and “fully correlated” (FC). Comparison among the: a) target accelerogram (black line) and the ith 

generated sample (coloured line); b) mean Fourier spectrum modulus of the generated samples 

(coloured line) and the target one (black line); c-e) response spectrum c),  cumulative total intensity d), 

and cumulative zero level up crossings e) functions associated to the target accelerogram (red solid 

line) with statistics of the artificial ones: mean value function (black line); mean value plus/minus 

standard deviation functions (black dashed lines); envelope of the maximum and minimum values of 

all samples (shaded area); 
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M=1 

 

 

 

 

 

 

 

 

Figure 3.5 (Continued). 
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M=100 

 

 

 

 

 

Figure 3.6 Result of the circular wavelet transform method, considering a subdivision of the 

frequency domain into M=100 parts, for random phases: “uncorrelated” (UC), “partially correlated” 

(PC) and “fully correlated” (FC). Comparison among the: a) target accelerogram (black line) and the 

ith generated sample (coloured line); b) mean Fourier spectrum modulus of the generated samples 

(coloured line) and the target one (black line); c-e) response spectrum c), cumulative total intensity d), 

and cumulative zero level up crossings e) functions associated to the target accelerogram (red solid 

line) with statistics of the artificial ones: mean value function (black line); mean value plus/minus 

standard deviation functions (black dashed lines); envelope of the maximum and minimum values of 

all samples (shaded area); 
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M=100 

 

 

 

 

Figure 3.6 (Continued). 

 

 



Generation of time and frequency dependent random processes compatible with recorded seismic accelerograms 

92 

M=1000 

 

 

 

Figure 3.7 Result of the circular wavelet transform method, considering a subdivision of the 

frequency domain into M=1000 parts, for random phases: “uncorrelated” (UC), “partially correlated” 

(PC) and “fully correlated” (FC). Comparison among the: a) target accelerogram (black line) and the 

ith generated sample (coloured line); b) mean Fourier spectrum modulus of the generated samples 

(coloured line) and the target one (black line); c-e) response spectrum c),  cumulative total intensity d), 

and cumulative zero level up crossings e) functions associated to the target accelerogram (red solid 

line) with statistics of the artificial ones: mean value function (black line); mean value plus/minus 

standard deviation functions (black dashed lines); envelope of the maximum and minimum values of 

all samples (shaded area); 
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M=1000 

 

 

 

 

Figure 3.7 (Continued). 
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Table 3-III Main characteristics of each frequency band belonging to the Mth partition: 

M=1,100,1000. 

M j mj nj bj 
jm jm =   

jn jn =   
2

j j

j

m n
 

+ 
=  

 

 

     [rad/s] [rad/s] [rad/s] 

 

1 1 0 1000 1000 0 157.158 78.5791 

 

100 

1 0 10 10 0 1.572 0.786 

2 10 20 10 1.572 3.143 2.357 

       

M/2 490 500 10 77.008 78.579 77.793 

       

M-1 980 990 10 154.015 155.587 154.801 

M 990 1000 10 155.587 157.158 156.372 

 

1000 

1 0 1 1 0 0.157 0.078 

2 1 2 1 0.157 0.314 0.236 

       

M/2 499 500 1 78.421 78.579 78.500 

       

M-1 998 999 1 156.844 157.001 156.922 

M 999 1000 1 157.001 157.158 157.08 
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Chapter 4  

 

4 Generation of fully non-stationary random processes consistent 

with target seismic accelerograms 

 

4.1 Introduction 

Strong motion earthquakes are certainly the main critical actions for most Structural and 

Geotechnical (S&G) systems located in seismically active regions. The analysis of recorded 

accelerograms after earthquakes evidences that different earthquakes produce ground motions 

with different characteristics; that is with different intensity, duration, dominant periods and 

frequency content. It follows that, in order to guarantee a good performance of S&G systems 

in seismic areas, it needs to adequately characterise the ground motion acceleration 

[Villaverde 2009].  

According to most seismic codes, the selection of proper sets of input motions for these 

kinds of analyses is generally carried out defining a target motion through a design elastic 

pseudo-acceleration response spectrum [Barone et al. 2019].  

The characteristics of the expected ground movement at a given site are strongly affected 

by the possible coupling between the frequency content of the input motion and the 

frequencies of vibration of the soil deposit which, in turn, depend on the non-linear behaviour 

exhibited by soils when subjected to cyclic and dynamic loadings. About that, several recent 

studies have clearly pointed out the crucial role of the geotechnical properties of soils at the 

site of interest and the need of defining proper target energy and frequency contents instead 

of, or together with, target elastic response spectra [Genovese et al. 2021 b, Cascone et al. 

2021, Genovese et al. 2019 a ]. Therefore, soil mechanical properties considerably influence 

the site response to the motion imposed by an earthquake at the bedrock level and, thus, 
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should be properly accounted for in the selection of actual accelerograms [Genovese et al. 

2020 a]. 

Different procedures for the selection of sets of recorded accelerograms have been 

proposed in the literature [e.g. Genovese et al. 2019 b, Cecini and Palmeri 2015, Iervolino et 

al 2010, Katsanos et al 2010, Pagliaroli and Lanzo 2008]. 

However, depending on the characteristics of the target ground motion and on the adopted 

compatibility criterion, it may be impossible to select an adequate number of compatible 

accelerograms i) actually reflecting the influence of the expected focal mechanism, ii) reliable 

compatible with the magnitude and site-to-source distance that dominate seismic hazard at the 

site of interest and, finally iii) without applying large acceleration scale factors which distort 

the actual characteristics of the un-scaled records leading to unrealistic input motions. In these 

situations, the use of artificial accelerograms represents a suitable alternative to realistically 

define the expected ground motion.  

In this Chapter, after a brief overview of different numerical procedures capable to 

generate artificial accelerograms with energy and frequency content consistent with those of 

actual acceleration records proposed in the literature, a novel method for generating samples 

of a fully non-stationary zero-mean Gaussian process, in such way that a target accelerogram 

can be considered as one of its own samples, is presented. To this, the time duration of the 

selected accelerogram is divided in some contiguous time intervals in which zero-mean 

Gaussian uniformly modulated stochastic processes are adopted. Each uniformly modulated 

random process consists of the product of a positive deterministic modulating function, and a 

stationary zero-mean Gaussian sub-process, whose power spectral density (PSD) function is 

filtered by one high pass and one low pass Butterworth filters. It follows that the Priestley’s 

evolutionary power spectral density (EPSD) function [Priestley 1965, Priestley 1967] is 

evaluated by adding the contributions of all zero-mean Gaussian uniformly modulated 

stochastic processes. In the various time intervals, a polynomial or an exponential decaying 

form of the modulating function is assumed. The order of the polynomial and their 

coefficients are estimated by least-square fitting, in the various time intervals, the expected 

energy of the proposed model of the fully non-stationary process to the energy of the target 

accelerogram. Then, in each intervals the parameters of the PSD function of the stationary 

sub-process are estimated once the occurrences of maxima and the occurrences of crossings of 
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the time-axis with positive slope of the target accelerograms are counted. Finally, the 

parameters of Butterworth filter are opportunely chosen.  

The analytical form of the modulating function has been chosen with the purpose to obtain 

functions that permit to evaluate closed form solutions of the EPSD function of the response 

of S&G systems in seismic areas [see e.g. Muscolino and Alderucci 2015]. This goal cannot 

be achieved by adopting the modulating function used in many models including the one 

proposed by Saragoni and Hart [1973]. 

In the last part of this Chapter, the proposed evolutionary model, has been modified to 

obtain the compatibility between the generated set of fully non-stationary artificial 

accelerograms and a target action. Depending on the aim to be achieved, it is possible to 

obtain the spectrum-compatibility in terms of response spectrum or Fourier spectrum, using 

two different corrective PSD function terms.  

A numerical application shows the validity of the spectrum-compatible generation 

procedure and the accuracy of the proposed model in reproducing realizations with 

characteristics similar to those of the target motion both in time and frequency domain.  

 

4.2 Stochastic ground motion generation procedures 

To account for the uncertainties characterizing earthquake ground-motion time histories, 

several kinds of stochastic ground-motion models have been developed and applied over the 

years.  

The generation of artificial accelerograms was first based upon a stationary stochastic zero-

mean Gaussian process assumption. In this case, the mean value of both amplitude and 

frequency content of the stochastic process are time invariant. In particular, stationary white-

noise ground-motion models were proposed by Housner [1947] and Bycroft [1960]. 

Successively, to account for the frequency content of earthquake ground motion, Gaussian 

filtered white noise with Kanai-Tajimi [Kanai 1957, Tajimi 1960] or Clough-Penzien [1975] 

spectra are frequently used in analytical random vibration analyses. 

Housner and Jennings [1964] developed a method for generating filtered stationary 

Gaussian random processes with power spectral density (PSD) functions derived from the 

average of the undamped velocity spectra of recorded ground accelerations. These stationary 

models account for the site properties as well as for the dominant frequency in ground motion. 
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However, they fail since are not able to reliable reproduce the changes in amplitude and 

frequency content, which are observed in actual seismic records.  

Moreover, it has been recognized that artificial accelerograms generated by applying 

stationary models have an excessive number of cycles of strong motion and consequently they 

possess unreasonably much higher energy content with respect to real ones [Bommer and 

Acevedo 2004].  

It is well known that earthquake ground motions are non-stationary in both time and 

frequency domains. Temporal non-stationarity refers to the variation in the intensity of the 

ground motion in time, whereas the spectral non-stationarity refers to the time variation of the 

frequency content [Rezaeian and Der Kireghian 2008]. To capture variation in the intensity of 

accelerograms, non-stationary processes have been introduced as the product of the stationary 

zero-mean Gaussian random process by a suitable deterministic time-dependent function, the 

so-called modulating function [Shinozuka and Sato 1967, Amin and Ang 1968, Iyengar and 

Iyengar 1969, Jennings et al. 1968, Hsu and Bernard 1978, Iwan and Hou 1989, Stafford et al 

2009, Marano 2019]. Due to their non-stationarity in time, these are called separable non-

stationary stochastic processes or more commonly: quasi-stationary (or uniformly modulated 

non-stationary) random processes. 

Opposite to temporal non-stationarity, which can be easily modelled by multiplying the 

stationary process by a modulating function, spectral non-stationarity is not so easy to model. 

The spectral non-stationarity is prevalently due to different arrival times of the body (primary, 

secondary) and surface waves that, propagate at different velocities through the earth crust, 

vary significantly in frequency content and reach the ground surface at different times. 

Moreover, it has been shown that the non-stationarity in frequency content can have 

significant effects on the response of both linear and non-linear S&G systems [Yeh and Wen 

1990, Conte 1992, Beck and Papadimitriou 1993, Wang et al. 2002]. Non-linear S&G systems 

tend to have resonant frequencies which decay with time as the system responds to seismic 

acceleration, as a consequence of non-linear effects. This trend may coincide with the 

variation in time of the predominant frequency of the ground motion. The stochastic processes 

involving both the intensity and the spectral variation in time are referred in literature as fully 

non-stationary (or non-separable) stochastic processes.  

Several approaches have been adopted in the literature to capture the variation in both 

amplitude and frequency of recorded accelerograms. In particular, by solving probabilistic 
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energy spectra equations, Spanos [Spanos 1980, Spanos and Solomos 1982] introduced 

evolutionary non-separable power spectra as the product of a deterministic time-frequency 

dependent function by the PSD function of stationary zero-mean Gaussian stochastic 

processes. Stefanou and Tsiliopoulos [2019] applied the method of separation proposed by 

[Schillinger and Papadopoulos, 2010] for the estimation of the evolutionary power spectra of 

specific earthquakes using artificial accelerograms (generated through the algorithm of 

[Sabetta and Pugliese, 1996]) or actual ground motion records. 

Alternative very widespread fully non-stationary stochastic process models based on 

filtered processes have also been proposed. These models, whose parameters can be identified 

by matching with characteristics of the target accelerogram, can be subdivided in two 

categories: i) stochastic processes obtained by passing a white noise through a filter with time 

dependent coefficients [Fan and Ahmadi 1990, Yeh and Wen 1990, Beck and Papadimitriou 

1993, Rofooei et al 2001, Rezaeian and Der Kireghian 2008]; b) processes obtained by 

passing a train of Poisson pulses through a linear filter [Lin 1965, Liu. 1970, Lin 1986, Lin 

and Yong 1987].  

A very useful approach to generate fully non-stationary zero-mean Gaussian stochastic 

processes is the one based on the evolutionary spectral representation, that requires the 

introduction of the evolutionary power spectral density (EPSD) function [Priestley 1965, 

Priestley 1967]. Three main models have been proposed in the literature to evaluate EPSD 

functions whose parameters are identified from recorded accelerograms. The first was the 

Saragoni and Hart model [1973] in which the time axis is subdivided in three contiguous 

intervals, each with different modulating and PSD functions. The modulating function is used 

to control the process intensity level, while the counting of zero-level crossings and peaks are 

used to characterize the PSD functions in the three time intervals. The second model was 

proposed by Der Kiureghian and Crempien [1989] in which the strength function of the 

process is changed at discrete points along the frequency axis. The resulting process is given 

by the superposition of independent processes with constant PSD function, and unitary 

variance, over their respective bands. This model, in a sense, can be considered as the 

complement of the Saragoni and Hart [1973] model. However, one shortcoming of this model 

in the identification of its parameters, is the need to perform, in each frequency segment, the 

inverse Fourier transform of the Fourier transform of the accelerogram. 
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In the third model, proposed by Conte and Peng [1997], the resulting process is evaluated 

as the sum of a finite number of zero-mean, independent, uniformly modulated zero-mean 

Gaussian sub-processes, the so-called sigma-oscillatory processes. Each uniformly modulated 

process consists of the product of a real deterministic time modulating function and a 

stationary Gaussian sub-process, having unimodal PSD function with unitary variance. The 

parameters of the resulting analytical EPSD function are estimated in the least-square sense 

by using the short-time Thomson's multiple-window method.  

Other strategies to analyse the evolutionary frequency content of fully non-stationary 

stochastic processes are based on: i) the short time Fourier transform [Narasimhan and 

Pavanalatha 2004, Liang et al 2007]; ii) the wavelet transform [Spanos and Failla 2004, 

Spanos et al. 2005, Wang et al 2018]; iii) the Hilbert-Huang transform [Huang et al 2018, 

Garcia et al 2019]. 

 

4.3 Spectral representations of fully non-stationary zero-mean 

Gaussian stochastic processes 

4.3.1 The Saragoni and Hart model  

To generate artificial accelerograms coherent with the recorded ones, Saragoni and Hart 

[1973], in the framework of the evolutionary spectral analysis, subdivided the time duration 

of the accelerogram analysed in three contiguous time intervals, each with different PSD 

functions. Instead, the same modulating function is adopted for all time intervals. In 

particular, the EPSD function of this model can be defined as: 

 ( ) ( ) ( )
3 3
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where a(t) is the modulating function, 1 1( , ) ( ) ( )j j j jt t t t t t− −= − − −  is the window 

function, and ( )t  the unit step function defined, respectively, as: 
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 (4.2) 

The following EPSD function was proposed for each time interval of Eq.(4.1):  
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 ( ) ( )( ) 2 ( )
10 0, ( ) ( , )j j

j jt t t tS a S −=  (4.3) 

where ( )( )
0

jS   is the following unimodal PSD function:  

 ( )  ( )
0,0 expjPj

j jQS S  = −  (4.4) 

which satisfies the following condition: 
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=  (4.5) 

with the following constraint on  
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The characterization of modulating function a(t) and, of parameters jP  and jQ , which are 

different for each time interval, is carried out by evaluating for the chosen recorded 

accelerogram: i) expected energy function; ii) the number of zero-level up-crossings and 

peaks. Notice that the expected energy function of a given accelerogram ( )gU t  of duration 

TD, is defined as [Saragoni-Hart 1973]: 
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g
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g

t
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Then a complex optimization procedure is applied. Der Kiureghian and Crempien [1989] 

stated that the main drawback of the Saragoni-Hart [1973] model is that it exhibits 

discontinuity at the time points where the power spectral density is changed.  

Finally, since the following relationship holds 
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 (4.8) 

In the Saragoni and Hart (SH) model, the r-th sample of the stochastic earthquake process, 

FSH(t), having the same spectral characteristics of the analysed recorded accelerogram, can be 

evaluated as: 
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3

( ) ( )
1

1

( ) ( ) ( , ) ( )r r
j j jSH

j

F t a t t t X t−

=

=   (4.9) 

where ( )jX t  is a stationary zero-mean Gaussian filtered white noise process defined in the 

time interval, 1j jt t −
 −  , possessing PSD function ( )( )

0
jS   of Eq.(4.4) . 

 

4.3.2 The Der Kiureghian and Crempien model 

Whereas in the Saragoni-Hart [1973] model the frequency content of the process was 

changed at discrete points in time, in Der Kiureghian and Crempien [1989] the strength 

function of the process is changed at discrete points along the frequency axis. This is 

accomplished by defining the process as a superposition of individually modulated stationary 

component processes, each representing the content in the motion in a distinct frequency 

band. The characteristics of the component processes are determined by matching the 

temporal moments of the process with those of a target accelerogram. The Der Kiureghian-

Crempien [1989] model, in a sense, can be considered as the complement of the model by 

Saragoni and Hart [1973]. 

In this model a class of evolutionary processes is defined by simply superposing several 

zero-mean Gaussian stationary processes Xk (t), with unitary variance 2E ( ) 1kX t =  and PSD 

( )( )
0

kS  . In the Der Kiureghian-Crempien (DC) model, the processes Xk (t), each modulated 

by a different modulating function ak (t), were assumed to be mutually statistically 

independent. i.e.: 
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It follows that the mean value and the mean square function of this process are given 

respectively as: 
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Therefore, the EPSD function of the process FDC(t) is given as: 
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since the following relationship holds: 
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Dividing the frequency domain into non-overlapping interval  1:k k kD    −=   , 

the PSDs ( )( )
0

kS   are considered to be constant over their respective bands interval 
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The procedure adopted by Der Kiureghian-Crempien [1989] for selecting the parameters of 

their model is the following:  

i) first to define frequency bands Dk. To do this to divide the frequency range 0 to 25 Hz 

of the Fourier transform of a recorded accelerograms  ( ) ( )g gU t U =  in 32 equal 

bands. In each band, the total Arias intensity IA is computed. If a frequency band does 

not contribute 10 percent or more of the total intensity, then that band is combined 

with the neighboring lower-frequency band. With this procedure, any accelerograms is 

decomposed into at most 9 frequency bands. 

ii) to perform the inverse Fourier transform of the Fourier transform of the 

accelerograms in each of the at most 9 frequency bands, obtaining:  

 
( ) i( ) ( ) e d

k

k t
g gD

U t U  =   (4.15) 

iii) then the parameters of the modulating function , ( )j ka t , that in the Der Kiureghian-

Crempien [1989] model is assumed as a piecewise linear function depending on only 

two parameters , , and j k j k   in each frequency interval Dk, are evaluated by least-
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square fitting, i.e. minimizing the following integral in 10 intervals, 1[ , ]j jt t − , of equal 

length, Δt along the time axis: 
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under the condition: 

 , , 1 , 1( ) ( ) ;j k j k j j j k j ja t t t t t t − −= − +    (4.17) 

Furthermore, to ensure continuity of the function from one interval to the next, the 

following condition is also imposed 

 , 1, 1 1,( )j k j k j j j kt t  − − −= − +  (4.18) 

This solution is particularly simple if the piecewise linear model (4.17) for the component 

modulating functions is adopted. 

One drawback of the model is its disregard of the physical processes involved in the 

generation of the ground motion, i.e., the rupture mechanism at the source and the 

propagation of seismic waves through the ground medium. For application in earthquake-

resistant design, it is necessary to relate the parameters of the proposed model to basic 

variables describing the earthquake source, such as the magnitude and the distance from the 

source to the site. This can be done by regressing the parameters of the model against the 

earthquake source variables for a large number of recorded events. 

 

4.3.3 The Conte and Peng model  

In order to consider the time-frequency variation of non-stationary stochastic ground 

motion, Conte and Peng [1997] proposed a sigma-oscillatory process model in the case of 

mono-correlated input. This process model is evaluated as the sum of a finite number, M, of 

zero-mean, independent, uniformly modulated Gaussian sub-processes ( )kX t . Each 

uniformly modulated process consists of the product of a real deterministic time modulating 

function, ( )ka t , and a stationary Gaussian sub-process, having PSD function 
( ) ( )CP
kS  .  
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In the Conte and Peng (CP) model, the r-th realization and the EPSD function can be 

expressed as [Conte and Peng 1997]: 

 ( ) ( )( ) ( ) 2 ( )
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where: 
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In the previous equations k  and k  are positive constants; kr  is a positive integer number; 

kt  is the arrival time of the sub-process ( )kX t ; k  and k  are two free parameters 

representing the frequency bandwidth and the circular mean frequency of the k-th stationary 

sub-process, respectively, whose autocorrelation function is: 

 ( ) ( ) ( )exp cos
k kX X k kR    = −   (4.22) 

Since ( ) 20 1
k kX X kR = = , it follows that: 
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and 
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The EPSD function (4.19) describes simultaneously the time-varying intensity and the 

time-varying frequency content. It follows that the excitation ( )CPF t  is not separable (i.e. 

fully-non stationary) although its component processes are individually separable (i.e., 

uniformly modulated). Each uniformly modulated component process, ( )kX t , is 
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characterized by a unimodal PSD function in the frequency domain and a unimodal mean 

square function in the time domain [Conte and Peng 1997].  

The parameters of the earthquake accelerations model defined above are estimated such 

that the analytical EPSD function best fits, in the least-square sense, the EPSD function of 

target earthquake accelerograms estimated using the short-time Thomson’s multiple window 

method. 

The main drawback of this very interesting model is the complexity of the identification 

procedure. Moreover, the PSD function 
( ) ( )CP
kS   of the uniformly modulated Gaussian sub-

processes ( )kX t , defined in Eq.(4.21), presents two shortcomings: i) higher order moments 

are not convergent quantities; ii) since 
( )

0
lim ( ) 0CP

kS



→

 , a distortion in ω=0 appears.  

 

4.4 Proposed evolutionary model for earthquake-induced ground 

acceleration 

A new procedure for generating a set of fully non-stationary artificial accelerograms, 

having the same characteristics of an earthquake induced ground motion, is detailed in the 

following. 

In the proposed model, the fully non-stationary process of earthquake ground acceleration 

F0 (t) is defined as the sum of zero-mean Gaussian uniformly modulated stochastic processes 

F0,k (t) each of which consists of the product of a positive deterministic modulating function 

a(t) times a stationary zero-mean Gaussian filtered sub-process Xk (t). 

Thus, according to the philosophy of Saragoni and Hart [1973] model, the fully non-

stationary stochastic process F0 (t), of time duration TD, is here obtained by dividing the time 

interval 0÷TD  in n contiguous time intervals of amplitude 1k k kT t t − = −  ( 1,2 , )k n=
 
 and 

requiring that in each time interval the sub-process Xk (t), possesses a unimodal PSD function, 

that is: 

 0 0, 1

1 1

( ) ( ) ( ) ( ) ( , )
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k k k k
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where 1 1( , ) ( ) ( )k k k kt t t t t t− −= − − −  is the window function, with ( )t  the unit step 

function. Moreover, in the time interval 1[ , )k kt t− , the sub-process Xk (t) is here characterised 

by the following one-sided PSD function:  
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 (4.26) 

where ωL,k and ωH,k are the k-th frequency control of the second order low pass and first order 

high pass Butterworth filters, respectively, ( )( ) ( )2CP CP
k kG S =  is the unimodal one-sided PSD 

function, having unit area, of the Conte and Peng model (see Eq. (4.21)): 
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Finally, in Eq.(4.26) the coefficient k  is evaluated in such a way that the sub-process Xk(t)  

possesses unit variance 2 2  E ( ) 1
kk XX t  = . It is given in closed form solution as follows: 

 
( )

( )

4 4
, ,

3
,

2 k k H k L k

k

L k k k k

a b

c d e

 




+
=

+ +
 (4.28)    

where: 
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Scaling the PSD function (4.26) to have unit variance allows separating, in each time 

interval, the time variation in amplitude from the frequency content of the various segments of 

the stochastic process F0(t). 

It has to be emphasised that the unimodal PSD function ( )( )CP
kG   of the Conte and Peng 

[1997] model behaves like 2−  for   tending to infinite and this shows that ( )( )i CP

kG   for 

1i   is not integrable. So, the spectral moments of the function ( )( )CP
kG   of order greater 

than zero are divergent quantities. Moreover, the PSD function ( )( )CP
kG   presents frequency 

distortion at very low frequencies. To avoid these two drawbacks of ( )( )CP
kG   function, 

second order low pass Butterworth filters, with k-th frequency control ωL,k, and first order 

high pass Butterworth filters, with k-th frequency control ωH,k, have been introduced in 

Eq.(4.26), to characterise the one-sided PSD function of the k-th sub-process ( )kX t .  

Finally, the one-sided EPSD function for the proposed model results: 

 ( ) ( ) ( )
0 0

2
1

1 1

, ( ) ( , ) ,
k k

n n

F F k k X X

k k

G t t t t ta G G  −

= =

=    (4.30) 

Furthermore, since each sub-process possesses unit variance, the time-dependent variance 

of the fully non-stationary process 
0 ( )F t

 
is given as: 

 ( ) ( )
0 0 0

2 2 2
0 1

10

E ( ) , d ) ,  ( ( )
n

F F F k k

k

t F t G t t t ta  


−

=

 = =   (4.31) 

Note that, the EPSD function in Eq.(4.30) describes simultaneously the time-varying 

intensity and the time-varying frequency content. It follows that 
0( )F t  is fully-non stationary, 

although its component processes are individually uniformly modulated. Therefore, each 

uniformly modulated sub-process Xk (t), characterised by a PSD function in the frequency 

domain and a modulating function in the time domain, captures, in its time interval, a group of 

seismic waves possessing a specific time-frequency distribution of earthquake-induced 

ground motion acceleration.  
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4.5 Parameters estimation from target accelerograms 

The purpose of this section is to define a stochastic process 
0( )F t

 
such that the target 

accelerogram, g ( )U t , may be considered as one of its samples. To do this the modulating 

function and the frequency content of the process 
0( )F t  can be estimated separately. 

 

4.5.1 Estimation of modulating function 

Let us consider a target accelerogram g ( )U t  of time duration
 DT . To evaluate the 

modulating function, a(t), the time interval 0 DT  is subdivided in an  contiguous time 

intervals of amplitude 1j j jT t t − = −  ( 1,2 , , )aj m n= . The cumulative energy function of 

the target accelerogram is evaluated as: 
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2 2
g g
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

=

= =     (4.32) 

Moreover, 
0( )

g
DU

E T I  is the so-called total intensity of the ground motion acceleration 

[Chang et al. 1987]. Remembering that in each time interval the sub-processes Xj (t), in 

Eq.(4.25), possess unitary variance as well as the definition (4.31) of the time-dependent 

variance of the fully non-stationary process, the cumulative expected energy function of the 

stochastic process 0( )F t
 
can be evaluated as [Saragoni ad Hart 1973]: 
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To estimate a(t), in the j-th time interval [tj-1, tj), the function ѱj (t) is introduced:  

 
1

2

1 1 ;  ( ( ) ( ) d)  ,
j

t

j j j jtj t t t t ta a  
−

− −
 = +     (4.34) 

where the function ( ) ja t  is here assumed as a polynomial of p-th order: 



Generation of time and frequency dependent random processes compatible with recorded seismic accelerograms 

110 

 
1 1

1

1

, ;

,              

( ) (

.0  

)

 ( ,)

p
i

i j j j

j

j

j

i

j

a t t

a t

t t t t

t t t t

 − −

=

−


−




=

 =

 




 (4.35) 

The polynomial coefficients i  can be evaluated by least-square fitting   ( ) j t  to the 

accelerogram cumulative energy ( )
gU

E t . That is, in the j-th time interval 1[ , )j jt t− , the 

following optimization problems have to be solved: 
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 (4.36) 

being t  the sampling interval of the target accelerogram. Note that the upper limit of the 

integral, in the optimization problem, avoids the overlap between the values of the cumulative 

energy function at the extremes of chosen time intervals. This guarantees the continuity of 

modulating functions too. 

In the last (na-th) time interval with 1[ , ]
a an n Dt t t T−  , the modulating function is 

approximated by an exponential decaying function whose coefficients are evaluated by 

imposing the continuity with the previous one and its decaying down to the absolute value, 

g ( )DU T , at the end of the target accelerogram: 
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Finally, once the functions ( ) ja t  are evaluated, the modulating function in the time interval 

[0,TD]
 
can be written as: 
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It should be emphasised that for the estimation of the modulating function, in each generic 

time interval, only the evaluation of the energy of the target accelerogram in the same time-

interval is required.  

Notice that in the proposed procedure it could be also assumed na ≠ n , n being the number 

of contiguous time intervals in which the EPSD function Eq.(4.30) of the stochastic process 

F0(t)
 

is subdivided. Obviously, the assumption na=n simplifies the procedure from a 

computational point of view. 

 

4.5.2 Estimation of PSD function parameters 

Since analysing the expected cumulative energy function of the fully non-stationary 

stochastic process F0(t), it is possible only to estimate the amplitude variation of the target 

accelerogram Üg(t), another criterion to estimate the variation of the frequency content of 

F0(t) must be established, such that Üg(t) may be considered as one of its samples. Once the 

time interval 0÷TD is divided in n contiguous time intervals, this purpose is here achieved by 

capturing in the generic k-th time interval a group of seismic waves possessing the specific 

frequency distribution of the target accelerogram in the same time interval. To do this the 

spectral parameters, Ωk, ρk, ωH,k and ωL,k , appearing in Eq.(4.26), of the one-sided PSD 

function ( )
kXG   of the stationary sub-process Xk (t) must be appropriately estimated. 

It is well known that the frequency content of a recorded accelerogram Üg(t) can be related 

to the frequency of occurrences of certain events. The most useful are: a) occurrences of both 

positive and negative maxima, here simply called peaks; b) occurrences of crossings of the 

time-axis with positive slope, commonly called zero-level up-crossings.  

For theoretical narrow-band zero-mean stationary stochastic process, the zero-level up-

crossings frequency and peaks frequency are exactly the same and are coincident with the 

mean frequency of the process. For wider bandwidths, more than one peak occurs between 

two zero-level up-crossings. It follows that the ratio of the zero-level up-crossings frequency 

to the peak frequency, the so-called irregularity factor [Lutes and Sarkani 2004], gives a 

measure of the bandwidth of the process, i.e. how much the examined stochastic process 

differs from the narrow band one. To account for the irregularity of zero-mean stationary 

stochastic processes, Cartwright and Longuet-Higgins [1956] introduced the bandwidth 

parameter, which can be evaluated as [Wirshing et al. 1995, Solnes 1997]: 
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 (4.39) 

where 0N +
 and 0P  are the total number of zero-level up-crossings and the total number of 

peaks of target accelerogram. It follows that, having evaluated the mean circular frequency, 

02π DN T+
, a measure of the dispersion width of the energy spectrum of the target 

accelerogram Üg(t) can be approximately evaluated by the following spectral parameter: 
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2π
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DT P

N N
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 (4.40) 

To capture the frequency content of the target accelerogram in the n contiguous time 

intervals in which TD is divided, the number of peaks, Pk, and the number of zero-level up-

crossings, 0,kN +
, in all time intervals, 1[ , )k kt t− , are evaluated.  

Since in the k-th time interval the stochastic process is assumed uniformly modulated, with 

EPSD function ( )( )
kXa t G  , the zero-level up-crossing frequency of target accelerogram, 

0, kkN T+  , is very close to the mean frequency of the process and it can be reasonably 

assumed equal to the predominant circular frequency, Ωk, of the k-th stationary sub-process. 

That is, the following relationship is written: 

 0,2π
k

k

kN

T

+

 


 (4.41) 

In order to evaluate the circular frequency bandwidth parameter, ρk, of the unimodal one-

sided PSD function ( )( )CP
kG  , it needs to evaluate the convergent part of the second 

( )

1, k

CP

X

and third 
( )

2, k

CP

X  spectral moments as [Di Paola and Muscolino 1986]: 
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Relating, for every time interval 1[ , )k kt t− , the spectral parameter given in Eq.(4.40) to the 

radius of gyration, with respect to the centre of gravity, of the unimodal one-sided PSD 

function ( )( )CP

kG  , the following relationship can be written:  

 ( )
2

2
( ) ( ) ( )

2, 1,

0, 0,2π
1

k k k

CP CP CP
X X X

k

k k

k

N N

T P
  

+ + 
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 
 

=  (4.43) 

After some algebra, it can be proved that the frequency bandwidth k  of the function 

( ) ( )CP

kG 
 
can be approximated as: 
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 (4.44) 

To complete the characterization of the one-sided PSD function ( )
kXG  , given in 

Eq.(4.26), the circular frequency control of two Butterworth filters
 
ωH,k and ωL,k in all time 

intervals, 1[ , )k kt t− , have to be estimated. In particular, the k-th high pass filter was introduced 

only to avoid very low frequency distortion of the PSD function 
( ) ( )CP
kG  . On the contrary 

the k-th low pass filter was introduced for both to ensure the convergence of spectral moments 

until fourth order of the one-sided PSD function ( )
kXG  , and to reduce the gap between the 

number of zero-level up-crossings 0,kN +
 of target accelerogram and the expected number of 

zero-level up-crossings of the fully non-stationary process F0(t).  

 

4.6  Numerical examples 

In the previous sections the fully-non stationary zero-mean Gaussian process F0(t), was 

defined as the sum of zero-mean Gaussian uniformly modulated processes, defined in 

contiguous time intervals (see Eq.(4.30)). Then, a method for generating samples of a fully 

non-stationary zero-mean Gaussian process, in such a way that a given target accelerogram 

Üg(t) can be considered as one of its own samples, was proposed. 

In this section, in order to verify the accuracy of the proposed method, some statistics of a 

set of fully non-stationary Gaussian zero-mean artificial accelerograms having on average the 
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cumulative energy functions and the cumulative zero-level up-crossings functions of the target 

ones, are evaluated. The temporal variation of the amplitude is obtained through an 

appropriate estimate of the modulating function a(t), while the variation in the frequency 

content of the generated samples is obtained by appropriately estimating the PSD functions of 

stationary sub-processes having unit variances. Since the sub-processes have unit variances, 

the modulating function and the main parameters characterizing the PSD functions, in the 

various time intervals, can be estimated separately.  

The proposed procedure is applied to both the horizontal components of four seismic 

acceleration records, namely: Kern County (California, USA) 1952, Kobe (Japan) 1995, Friuli 

(Italy) 1976, Kocaeli (Turkey) 1999, downloaded from PEER database [Ancheta et al. 2013].  

Table 4-I lists the main characteristics of the analysed accelerograms: event name, station 

name and event date, moment magnitude Mw, site-source distance RJB [Joyner and Boore 

1981], peak ground acceleration amax (i.e. the largest absolute value of the target 

accelerogram), average value of propagation velocity of S waves in the upper 30 m of the soil 

profile at the recording station 30sv , time duration of the analysed accelerogram TD, 

significant strong motion duration SMD (i.e. interval of time elapsed between the 5% and 

95% of the I0), total intensity I0, Arias intensity IA [Arias 1970], total number of zero-level up-

crossings 0N +
 and total number of peaks P0.  

 

Table 4-I Main characteristics of the selected accelerograms. 

n°  
Earthquake 

Name 

Station and  

Event Date 

Mw 

 

RJB 

[km] 

amax  

[m/s2] 

vs,30 

[m/s] 

TD 

[s] 

SMD 

[s] 

I0 

[m2/s3] 

IA 

[m/s] 

N0
+

 

 

P0 

 

1 
Kern 

County 

Taft Lincoln School-21 

21/07/1952 
7.4 38.4 1.55 385.4 54.3 30.3 3.4 0.55 163 289 

2 
Kern 

County 

Taft Lincoln School-111  

21/07/1952 
7.4 38.4 1.76 385.4 54.3 28.8 3.7 0.59 167 295 

3 
Kobe 

 Japan 

Kakogawa-0 

16/01/1995 
6.9 22.5 2.35 312.0 40.9 13.2 6.4 1.03 154 259 

4 
Kobe 

 Japan 

Kakogawa-90 

16/01/1995 
6.9 22.5 3.18 312.0 40.9 12.9 10.5 1.68 134 264 

5 
Friuli  

Italy-02 

Forgaria Cornino-0 

15/09/1976 
5.9 14.6 2.56 412.4 21.9 4.5 1.8 0.29 116 196 

6 
Friuli  

Italy-02 

Forgaria Cornino-270 

15/09/1976 
5.9 14.6 2.07 412.4 21.9 4.6 2.3 0.37 99 204 

7 
Kocaeli, 

Turkey 

Yarimca-60 

17/08/1999 
7.5 1.4 2.22 297.0 28.9 15.0 8.3 1.32 60 112 

8 
Kocaeli, 

Turkey 

Yarimca-150 

17/08/1999 
7.5 1.4 3.15 297.0 28.9 15.0 8.3 1.32 71 260 
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4.6.1 Estimation of the modulating function parameters  

To evaluate the modulating function a(t) of the uniformly modulated sub-processes, the time 

duration of the analysed accelerogram 0 DT , must be divided in na time intervals. Two 

strategies can be adopted to obtain a good match between the expected cumulative energy 

function of artificial and target accelerograms: i) subdivide the target accelerogram in several 

time intervals, e.g. Der Kiureghian and Crempien [1989] suggested at most nine frequency 

bands); ii) subdivide the time duration in only three time intervals na=3, also optimizing the 

choice of instants of passage from one time interval to adjacent ones.  

The second strategy is here adopted. Moreover, according to the models by Amin and Ang 

[1968] and by Jennings et al. [1968], the modulating function in the first time interval, 

10 t t  , is here assumed parabolically increasing from zero; while in the third time interval, 

2 Dt t T  , it is assumed exponentially decreasing, consistently with Eq.(4.38). 

 In the second time interval, 1 2t t t  , the assumption of constant modulating function, as 

proposed by Amin and Ang [1968] and by Jennings et al. [1968], leads to very unsatisfactory 

results for both energy and frequency content of the fully non-stationary process F0(t). 

Therefore, in the proposed approach, a polynomial of p-th order to model the modulating 

function in the second interval is adopted. It has been also observed that the choice of time 

instants t1 and t2 strongly influences both the energy and frequency content of the process 

F0(t). Hence, the proposed method requires an optimal choice of time instants t1 and t2, as well 

as of the order p of the polynomial modulating function. As a measure of the accuracy, the 

root-mean-square (rms) difference Dp between the estimated modulating function, given in 

Eq.(4.38), and the target accelerogram absolute values, is defined as follows:  
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Δ
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( Δ ) ( Δ| ) |
DT

p
D j

t

D j U j
T

t
a t t

=

 = −   (4.45) 

where Δt

 

is the sampling interval of the target accelerogram and the subscript p denotes the 

order of the polynomial considered in the second time interval.  

Specifically, for the estimation of the modulating function the following steps are required: 

i) in the first time interval, the modulating function a(t), is assumed as a polynomial of second 

order; then the optimization problem described with reference to Eq. (4.36) for five values of 
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1 1% 2% 5%, , ,t t t t=  ( %kt  time instant in which the cumulative energy function of the 

accelerogram assumes the k% of its total intensity:
 

% 0( ) %
g

kU
E t k I  ), is solved; 

ii) in the second time interval it is assumed that the modulating function is a polynomial, the 

order of which, p, varies from one to ten; furthermore, different values of both time instant of 

passage from the first to the second interval, 1 1% 2% 5%, , ,t t t t= , and from the second to the 

third interval, 2 90% 91% 99%, , ,t t t t=  are chosen; 

iii) in the third time interval [t2, TD], according to Eq.(4.38), an exponential decay form for the 

modulating function is assumed; its initial value, a(t2) depends on the various combinations 

adopted for the modulating function in the second time interval. 

Finally, among the various modulating functions obtained by applying the previously 

described procedure (varying the instants t1 and t2), the one characterised by the lowest rms 

Dp, is selected.  

The parameters which characterise the selected modulating functions a(t) are listed in 

Table 4-II, for all the selected accelerograms, together with the values of the time instants, t1 

and t2, corresponding to the passage from one interval to another, the corresponding 

percentages of total intensity, k1% and k2%, the order p of the polynomial in the second time 

interval, the rms difference Dp, and the absolute value 
g ( )DU T  at the end of the target 

accelerogram.  

For the first two time intervals, the polynomial coefficients αi, obtained through the 

optimization procedure, are listed in Table 4-III. 

In Figure 4.1, for the eight analysed accelerograms, the absolute value of each 

accelerogram together with the four modulating functions having the smaller rms difference 

Dp are plotted. This figure shows that small rms differences Dp
 
can be obtained with different 

choices of the polynomial order and that often the highest order of the polynomial does not 

provide the smallest Dp. Furthermore, choosing the same polynomial order for all target 

accelerograms could give in many cases inaccurate results. For coherence in the following the 

polynomial order which gives the lowest Dp
 
is adopted. 

Finally, Figure 4.2 shows that the moduli of Fourier transforms of the eight modulating 

functions of Figure 4.1 are mainly concentrated in the region of zero frequency. This is in 

accord with Priestley’s definition of a slowly varying function of time [Priestly 1967]. 
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Table 4-II Parameters of the modulating function selected for the accelerograms listed in Table 4-I. 

n° 

  

t1 

[s] 

t2 

[s] 

k1% 

 

k2% 

 

p 

 

Dp 

[m/s2] 

|Üg(TD)| 

[m/s2] 

1 3.13 40.58 1 98 7 0.167 0.00275 

2 3.45 25.82 3 91 7 0.171 0.00758 

3 2.55 14.22 1 91 10 0.247 0.00210 

4 2.63 26.47 1 99 9 0.308 0.00084 

5 2.51 6.84 2 90 5 0.192 0.00134 

6 3.33 7.55 4 94 9 0.191 0.00114 

7 2.55 14.10 1 91 8 0.285 0.02539 

8 3.31 14.55 3 91 10 0.310 0.01282 

 

 

 

Table 4-III Polynomial coefficients [m/si+2] in the first two time intervals of the modulating 

functions of the selected accelerograms. 

 0 ≤ t < t1 t1 ≤ t < t2 

n° α1 α2 α1 α2 α3 α4 α5 α6 α7 α8
 α9 α10 

1 8.610-3 0.02 0.226 -0.054 5.610-3 -3.310-4 1.210-5 -1.9 1.410-9 - - - 

2 3.710-4 0.03 0.513 -0.247 0.1 -0.005 3.210-4 -9.610-6 1.1810-7 - - - 

3 1.510-3 0.05 1.679 -3.106 2.6 -1.101 0.3 -0.05 4.510-3 -2.710-4 8.910-6 -1.210-7 

4 1.910-4 0.06 1.246 -0.857 0.3 -0.054 5.810-3 -3.810-4 1.510-5 -3.110-7 2.710-9 - 

5 0.07 5.110-4 0.309 1.251 -1.2 0.358 -0.03 - - - - - 

6 0.07 4.610-3 6.505 -22.109 34.2 -27.535 12.1 -2.8 0.3 2.610-4 -1.710-3 - 

7 0.1 6.810-5 1.680 -1.725 0.9 -0.283 0.05 -0.005 2.910-4 -6.610-6 - - 

8 0.1 1.310-4 5.799 -11.743 10.4 -5.114 1.5 -0.3 0.03 2.510-3 1.010-4 1.810-6 
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Figure 4.1 Absolute value of the analysed accelerograms and selected modulating functions a(t), 

having the smaller rms difference Dp: a) Taft Lincoln School-21; b) Taft Lincoln School-111; c) 

Kakogawa-0; d) Kakogawa-90; e) Forgaria Cornino-0; f) Forgaria Cornino-270; g) Yarimca-60; h) 

Yarimca-270. 
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Figure 4.2 Moduli of Fourier transforms of the eight modulating functions evaluated by applying the 

proposed procedure: a) Taft Lincoln School; b) Kakogawa; c) Forgaria Cornino; d) Yarimca. 

 

4.6.2 Estimation of the sub-processes PSD function parameters  

The characterization of the fully-non stationary zero-mean Gaussian process F0(t) must be 

completed by estimating the parameters of the one-sided PSD function ( )
kXG  of the 

stationary sub-process Xk(t), appearing in Eq.(4.26). To do this, for the three time intervals of 

each of the eight analysed accelerograms
 g, ( )U t , the predominant circular frequency Ωk, and 

the bandwidth frequency parameters ρk, have to be evaluated. According to Eqs.(4.41) and 

(4.44), the evaluation of these parameters requires the counting of the number of zero-level 

up-crossings N0,k
+, and the number of peaks Pk in the time intervals ΔTk, of each 

accelerogram. The parameters useful to the characterisation of the one-sided PSD function 

( )
kXG   are reported in Table 4-IV.  

Finally, through several numerical tests it was verified that the control frequencies of two 

Butterworth filters ,H k  and ,L k  can be assumed equal to: 
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 , 0.1H k k =   (4.46) 

 , 0.8L k k k =  +  (4.47) 

 
Table 4-IV Main parameters of the one-sided PSD functions in the three time intervals analysed 

for each of the selected accelorograms. 

 

 

In Figure 4.3, for the eight analysed accelerograms
 g, ( )U t , the one-sided PSD functions, 

( ),kXG 
 

of the stationary sub-processes , ( )kX t  are depicted. Curves in Figure 4.3 

represent the variation of the three PSD functions in the three contiguous time intervals, 

pointing out the time variation of the frequency content of target accelerograms. Analysing 

the results in Figure 4.3, and the predominant circular frequencies listed in Table 4-IV, it is 

apparent that the predominant frequencies Ωk usually decrease with increasing time. However, 

in some cases, this condition is not completely satisfied. 
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 Figure 4.3 One-sided PSD functions in the three contiguous time intervals, of the selected 

accelerograms: a) Taft Lincoln School-21; b) Taft Lincoln School-111; c) Kakogawa-0; d) Kakogawa-

90; e) Forgaria Cornino-0; f) Forgaria Cornino-270; g) Yarimca-60; h) Yarimca-270. 
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4.6.3 Generation of artificial accelerograms 

Once the parameters characterizing the fully-non-stationary zero-mean Gaussian process, 

0( )F t , are estimated, it is easy to generate its samples in such a way that the selected target 

accelerogram can be considered as one of its own samples. Indeed, the i-th sample of the real 

part of the 
0( )F t , containing in its set the target accelerogram g ( )U t , can be evaluated as:  

 
( ) ( )( ) ( )0 1

1 1

( ) ( ) 2 ( , ) cos
N

k

i
mn

i

r Xk k
k r

F t a t t t r t+ rG   −
= =

 
=  

 
     (4.48) 

assuming a frequency increment 0.1rad/sN Nm  = = , an upper cut-off circular frequency 

100 rad / sN = , 1000Nm =  and π (4 )Nt  = . Note that the random phase
 
angles, 

( )i

r , 

uniformly distributed over the interval [ π,π)− , must be the same for all segments of the i-th 

sample.  

Using this approach, a set of one hundred samples is evaluated for each of the selected 

accelerogram. In Figure 4.4 the time-history of the eight analysed records, numbered in Table 

4-I, is compared with one sample of the corresponding stochastic process Eq.(4.48) and a 

good similarity of the sample to the target accelerogram can be observed. 

A more complete comparison can be performed by evaluating for the eight analysed 

accelerograms the cumulative energy functions 
,

( )
gU

E t  and cumulative zero-level up-

crossing functions 0, ( )N t+
, which count the number of zero-level up-crossing until the time t. 

These two functions are compared, for each of the analysed accelerogram, with the 

corresponding mean value functions obtained by calculating the average of the results of the 

sets of artificial accelerogram samples.  

In particular, in Figure 4.5 the cumulative energy functions of the eight analysed target 

accelerograms are compared to those obtained as the mean value of the hundred samples. In 

the Figure 4.5 the cumulative energy function confidence intervals, evaluated as the mean 

values plus/minus the corresponding standard deviation, are also plotted. In Figure 4.6 the 

cumulative zero-level up-crossing functions of target accelerograms are compared with the 

mean value functions of the one hundred samples and the cumulative zero-level up-crossing 

function confidence intervals. In Figures 4.5 and 4.6, the shaded areas represent the envelope 
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of the maximum and minimum values of the cumulative energy function and cumulative zero-

level up-crossing of the 100 generated samples, respectively. 

Figures 4.5 and 4.6 evidence the accuracy of the proposed procedure. Note that the choice 

of the simple decreasing exponential function in the third time interval is paid for with a small 

difference in terms of zero-level up-crossings in the last time interval. 

Note that although the generated accelerograms are samples of a zero-mean Gaussian 

process, the corresponding cumulative energy function and the cumulative zero-level up-

crossing function are not zero-mean Gaussian processes. To evidence this, the mean values 

0 0

,I N
  + , the standard deviations 

0 0

,I N
  + , and the coefficients of variation 

0 0 0 0

,I I N N
   + +  of total intensity I0 and of the total number of zero-level up-crossing 0N +

  

are reported in Table 4-V  for the eight analyzed accelerograms. 
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Figure 4.4 Comparison between the selected horizontal and the corresponding i-th generated samples 
( )

0,

i
F . The vertical dashed lines delimit the three time intervals: a) Taft Lincoln School-21; b) 

Taft Lincoln School-111; c) Kakogawa-0; d) Kakogawa-90; e) Forgaria Cornino-0; f) 

Forgaria Cornino-270; g) Yarimca-60; h) Yarimca-270. 
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Figure 4.4 (Continued). 
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Figure 4.5 Comparison among the energy functions of the selected accelerograms with statistics of the 

artificial ones: a) Taft Lincoln School-21; b) Taft Lincoln School-111; c) Kakogawa-0; d) Kakogawa-

90; e) Forgaria Cornino-0; f) Forgaria Cornino-270; g) Yarimca-60; h) Yarimca-270. Target 

accelerogram (red solid line); mean value function (black dotted line); mean value plus/minus standard 

deviation functions (black dashed lines); envelope of the maximum and minimum values of all 

samples (shaded area). 
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Figure 4.6 Comparison among the zero-level up-crossings of the selected accelerograms with 

statistics of the artificial ones: a) Taft Lincoln School-21; b) Taft Lincoln School-111; c) Kakogawa-0; 

d) Kakogawa-90; e) Forgaria Cornino-0; f) Forgaria Cornino-270; g) Yarimca-60; h) Yarimca-270. 

Target accelerogram (red solid line); mean value function (black dotted line); mean value plus/minus 

standard deviation functions (black dashed lines); envelope of the maximum and minimum values of 

all samples (shaded area). 
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Table 4-V Mean values 
0 0

,I N
  + , standard deviations 

0 0

,I N
  + , and coefficients of variation 

0 0 0 0

, ,I I N N
   + +  of total intensity 

0I , and of the total number of zero-level up-crossing 
0N + , for the 

eight analyzed accelerograms. 

n° 

  
0I  

[m2/s3] 

0I  

[m2/s3] 

0 0I I   

 

0N
 +  

 

0N
 +  

 

0 0N N
 + +  

 

1 3.48 0.32 0.093 163.34 4.65 0.028 

2 3.80 0.36 0.095 167.17 4.59 0.027 

3 6.25 0.64 0.102 152.62 4.44 0.029 

4 10.80 1.18 0.109 135.26 4.58 0.033 

5 1.80 0.32 0.178 114.16 3.75 0.032 

6 2.29 0.48 0.210 98.98 4.06 0.041 

7 8.04 1.28 0.159 62.32 2.92 0.046 

8 8.00 1.47 0.184 74.02 3.37 0.045 

 

 

4.7 Generation of fully non-stationary spectrum compatible 

artificial accelerograms 

In this section the EPSD of the fully non-stationary process is modified to guaranty the 

spectrum compatibility of the sets of artificial accelerograms. Specifically, to reduce the gap 

between the mean spectrum of generated samples and a target spectrum, an iterative 

procedure has been implemented and the EPSD function is rewritten as: 

 

( ) ( ) ( ) ( )

( ) ( ) ( )

0 0

0

0 0 0 0

2
1

1

, ( ) ( ) ( , ) ;

, ,

j j

k

n

k k XF F
k

F F F F

G t t G t t

G t G t

a G  

 

−

=

=




 (4.49) 

where ( )
( )

j
G   is a corrective PSD function at the j-th iteration evaluated as follows 

[Vanmarcke and Gasparini 1977]: 

 ( ) ( ) ( )
0

1 1
( , )( ) ( )

j jj

X X SRG G   
− −

=  (4.50) 
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where 
( )

0

1
( , )

j

SR  
−

  is the ratio between the square values of the mean spectrum of the 

generated samples ( )1
0( , )

j
S  

−
 and the target spectrum 

( )
0( , )TS   : 

 
( )

( )0

( ) 2
1 0

1 2
0

( , )
( , )

( , )

T
j

S j
R

S

S
 

 

 

−

−
=  (4.51) 

being ζ0 the viscous damping ratio.  

Notice that at first iteration it is assumed 
(0)( ) 1G  =  [Vanmarcke and Gasparini 1977]. 

Once the corrective PSD function ( ) ( )
j

G   is introduced, by using the original set of random 

phase angles, 
( )i
r , a new set of spectrum-compatible samples ( )

0 ( )iF t  can be generated as: 

 
( )( ) ( ) ( )( )

10
1 1

( ) ( ) 2 ( , ) cos ( )
N

j

k

mn
ii

r Xk k
k r

F t a t t t r t+ G r rG    −
= =

 
 
  

=       (4.52) 

It has to be emphasized that the procedure should not be expected to be convergent at all 

selected control frequencies. 

 

4.7.1 Types of spectrum-compatibility 

Depending on the purposes of the accelerogram generation procedure, the spectrum 

compatibility can be checked against: 

i) the pseudo acceleration response spectrum 
( )

0( , )TSa    of the target 

accelerogram; 

ii) the Fourier spectrum 
( )( )T
FS   of the target accelerogram;  

iii) the code-prescribed elastic response spectrum 
( )

0( , )T
RS   . 

Notice that to achieve the Fourier-spectrum compatibility 
( ) ( )

0 0( , ) ( , )T T
FS S   = , the 

corrective iterative PSD function 
( ) ( )

j
G   term can be particularized as follows: 

 
( ) ( )

( )

( ) 2
1

1 2

( ,0)
( ) ( )

( ,0)

T
jj V

j

V

S
G G

S


 



−

−
=  (4.53) 

being 
( )( ,0)T
VS   and ( )1

( ,0)
j

VS 
−

 the velocity response spectra for ζ0=0. 
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4.8 Numerical application 

In this section, in order to verify the accuracy of the proposed method, two different sets of 

one hundred artificial accelerograms, spectrum-compatible with the pseudo acceleration 

response spectrum and the Fourier spectrum of the target accelerogram, have been generated. 

The same accelerogram used in Chapter 3 that is, the “090” component of the time history 

recorded at Vasquez Rocks Park during the Northridge earthquake, has been used as target in 

the following.  

For the application of the proposed method, the target accelerogram has been purged of its 

initial and final parts having energy I0 less than 1% and higher than 99% respectively. In this 

way the initial and final parts containing a lot of zero crossings have been removed and the 

duration of the signal changes from TD=39.98 s to TD=36.60 s.  

4.8.1 Set of fully non-stationary accelerograms 

A set of one-hundred artificial accelerograms is generated by the use of appropriate 

modulating and power spectral density functions which allowed to preserve the amplitude 

and the frequency content of the target motion.  

To evaluate the modulating function ɑ(t) of Eq. (4.38), the time duration of the analysed 

accelerogram 0÷TD, is divided in three-time intervals, optimizing the choice of instants of 

passage from one time interval to adjacent ones.  

Figure 4.7 shows the absolute value of the target accelerogram together with the 

modulating function ɑ(t). The vertical dashed lines in Figure 4.7 denote the portions in which 

the target accelerograms has been subdivided to evaluate ɑ(t). 

The parameters which characterise ɑ(t) are listed in Table 4-VI, together with the values of 

the time instants t1 and t2, corresponding to the passage from one interval to another, the 

corresponding percentages of total intensity k1% and k2%, the order p of the polynomial in the 

second time interval and the absolute value |Üg(TD)| at the end of the target accelerogram.  

For the first two time-intervals, the polynomial coefficient αi, obtained through the 

optimization procedure, are listed in Table 4-VII.  
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Figure 4.7 Absolute value of the analysed accelerogram (grey line) with the modulating functions a(t) 

(blue line). 

 

 

 
Table 4-VI Parameters of the modulating function selected for the target accelerogram. 

t1 [s] t2 [s] k1% k2% p |Üg(TD)| [m/s2] 

3.54 11.02 1 92 5 0.0123 

 

Table 4-VII Polynomial coefficients [m/si+2] in the first two time-intervals of the modulating 

function. 

0 ≤ t < t1 t1 ≤ t < t2 

α1 α2 α1 α2 α3 α4 α5 

0.039 6.998·10-4 0.641 -0.429 0.138 -0.020 1.042·10-3 

 

 

The characterization of the fully-non stationary zero-mean Gaussian process F0(t) must be 

completed by estimating the predominant circular frequency Ωk, and the bandwidth circular 

frequency ρk of the one-sided PSD function ( )
kXG  of the stationary sub-process Xk (t), that 

depend exclusively from the number of zero level up crossings 0,kN +
 and peaks P0, according 

to Eqs. (4.41) and (4.44). The two control frequencies of two Butterworth filters ωH,k and ωL,k 

have been assumed equal to , 0.1H k k =   and , 0.8L k k k =  + , respectively (see Eqs. 

(4.46) and (4.47)). 
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To evaluate the spectral parameters, the target accelerogram is preliminary divided into n 

time intervals. Notice that, the subdivision made for the evaluation of the modulating function 

a(t) could be different from that made for the characterization of the one-sided PSD function 

( )
kXG  .  

As highlighted in [Genovese et al. 2020 b], to obtain accurate results, the analysed 

accelerogram is subdivided into n>3 time intervals Üg,k (t). Each time interval must contain a 

number of zero level up crossings 0,kN +
 at least equal to one. Consequently, in this section the 

selected accelerogram is subdivided in 73-time intervals with a constant time step of Δt=0.5s. 

Since the total duration of the accelerogram is not a multiple of the time step Δt, the last time 

interval of the signal has a duration of 0.6 s. 

The parameters useful for the characterisation of the one-sided PSD function ( )
kXG   are 

summarized in Table 4-VIII. The representation of the target accelerogram subdivided in 73 

time intervals is reported in Figure 4.8.  

 

 

Figure 4.8 Selected accelerogram (Northridge earthquake) subdivided in 73-time intervals with a 

constant time step of 0.5 s. 
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Table 4-VIII Main parameters of the one-sided PSD functions in the time intervals analysed.  

 

# N0
+ P0 

Ωk 

[rad/s] 

ρk 

[rad/s] 

ωH 

[rad/s] 

ωL 

[rad/s] 
β 

 
# N0

+ P0 
Ωk 

[rad/s] 

ρk 

[rad/s] 

ωH 

[rad/s] 

ωL 

[rad/s] 
β 

1 4 6 52.3 23.8 5.2 71.3 13.3  38 3 5 39.3 19.1 3.9 54.5 10.7 

2 4 5 52.3 20.2 5.2 68.5 11.3 39 2 4 26.2 14.0 2.6 37.4 7.9 

3 3 4 39.3 16.1 3.9 52.2 9.0 40 4 5 52.4 20.2 5.2 68.5 11.3 

4 3 5 39.3 19.1 3.9 54.5 10.7 41 3 5 39.3 19.1 3.9 54.5 10.7 

5 3 6 39.3 21.0 3.9 56.1 11.9 42 1 3 13.1 8.1 1.3 19.6 4.6 

6 4 5 52.4 20.2 5.2 68.5 11.3 43 3 4 39.3 16.1 3.9 52.2 9.0 

7 6 7 78.6 28.0 7.9 100.9 15.6 44 2 4 26.2 14.0 2. 37.4 7.9 

8 3 3 39.3 11.2 3.9 48.2 6.7 45 3 6 39.3 21.0 3.93 56.1 11.9 

9 4 4 52.4 14.9 5.2 64.3 8.3 46 2 4 26.2 14.0 2.6 37.4 7.9 

10 3 3 39.3 11.2 3.9 48.2 6.3 47 2 5 26.2 15.3 2.6 38.4 8.7 

11 3 4 39.3 16.1 3.9 52.2 9.01 48 2 4 26.2 14.0 2.6 37.4 7.9 

12 3 4 39.3 16.1 3.9 52.2 9.0 49 2 5 26.2 15.3 2.6 38.4 8.7 

13 4 6 52.4 23.7 5.2 71.3 13.3 50 3 6 39.3 21.0 3.9 56.2 11.9 

14 2 5 26.2 15.3 2.6 38.4 8.7 51 3 4 39.3 16.1 3.9 52.3 9.0 

15 3 3 39.3 11.2 3.9 48.2 6.3 52 3 5 39.3 19.1 3.9 54.5 10.7 

16 2 4 26.2 14.0 2.6 37.4 7.9 53 1 4 13.1 8.6 1.3 20.0 4.9 

17 3 3 39.3 11.2 3.9 48.2 6.3 54 2 5 26.2 15.3 2.6 38.4 8.7 

18 2 3 26.2 11.8 2.6 35.7 6.6 55 1 5 13.1 8.9 1.3 20.3 5.1 

19 2 4 26.2 14.0 2.6 37.4 7.9 56 1 5 13.1 8.9 1.3 20.3 5.1 

20 3 4 39.3 16.1 3.9 52.2 9.0 57 3 3 39.3 11.2 3.9 48.2 6.3 

21 2 4 26.2 14.0 2.6 37.4 7.9 58 4 6 52.4 23.7 5.2 71.3 13.3 

22 2 4 26.2 14.02 2.6 37.39 7.9 59 3 4 39.3 16.1 3.9 52.2 9.0 

23 3 5 39.3 19.06 3.9 54.52 10.7 60 2 3 26.2 11.8 2.6 35.7 6.6 

24 4 4 52.4 14.94 5.2 64.31 8.3 61 3 5 39.3 19.1 3.9 54.5 10.7 

25 3 5 39.3 19.06 3.9 54.52 10.7 62 3 4 39.3 16.1 3.9 52.2 9.0 

26 3 5 39.3 19.06 3.9 54.52 10.71 63 1 4 13.1 8.6 1.3 20.0 4.9 

27 3 4 39.3 16.12 3.9 52.16 9.0 64 3 5 39.3 19.1 3.9 54.5 10.7 

28 1 3 13.1 8.10 1.3 19.57 4.6 65 2 4 26.2 14.0 2.6 37.4 7.9 

29 3 5 39.3 19.06 3.9 54.52 10.7 66 1 4 13.09 8.6 1.3 20.0 4.9 

30 3 6 39.3 21.03 3.9 56.09 11.9 67 2 4 26.18 14.0 2.6 37.4 7.9 

31 2 4 26.2 14.02 2.6 37.39 7.9 68 5 5 65.45 18.68 6.5 80.4 10.4 

32 3 3 39.3 11.21 3.9 48.24 6.3 69 2 6 26.18 16.20 2.6 39.1 9.2 

33 3 4 39.3 16.12 3.9 52.16 9.01 70 2 4 26.18 14.02 2.6 37.4 7.9 

34 1 4 13.1 8.64 1.3 20.01 4.9 71 2 3 26.18 11.84 2.6 35.7 6.6 

35 3 4 39.3 16.12 3.9 52.16 9.0 72 3 4 39.27 16.12 3.9 52.2 9.0 

36 3 4 39.3 16.12 3.9 52.16 9.0 73 3 5 31.42 15.25 3.1 43.6 8.6 

37 3 3 39.3 11.21 3.9 48.24 6.3  
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Once the parameters characterizing the fully-non stationary zero-mean Gaussian process, 

F0(t), are estimated, through the application of Eq.(4.48), a set of one-hundred samples has 

been generated in such a way that the selected target accelerogram can be considered as one 

of its own samples. The cumulative energy function and the cumulative zero-level up-crossing 

function of the analysed accelerogram are compared with the corresponding mean value 

functions obtained by calculating the average of the results of the set of artificial 

accelerograms samples. 

In particular, in Figure 4.9 a) the cumulative energy function of the analysed target 

accelerogram (solid red line) is compared to that obtained as the mean value of 100 samples 

(dotted black line). In the Figure 4.9 a) the cumulative energy function confidence interval, 

evaluated as the mean values plus/minus the corresponding standard deviation, are also 

plotted (dashed black lines). In Figure 4.9 b) the cumulative zero-level up-crossing function 

of target accelerogram (red line) is compared with the mean value function of 100 samples 

(dotted black line) and the zero-level up-crossing function confidence intervals (dashed lines).  

In Figures 4.9 a) and 4.9 b), the shaded areas represent the envelope of the maximum and 

minimum values of the cumulative energy function and the cumulative zero-level up-crossing 

function of the 100 generated samples, respectively.   

It can be observed that the mean energy function and zero level up crossing function are in 

a perfect agreement with the corresponding target functions. 

 

 

Figure 4.9 Comparison among the cumulative energy function a) and the cumulative zero-level up-

crossing function b) of the selected accelerogram with statistics of the artificial ones: target function 

(red line); mean value function (black dotted line); mean value plus/minus standard deviation 

functions (black dashed lines); envelope of the maximum and minimum values of all samples (shaded 

area). 
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4.8.2 Spectrum compatibility 

Then, to satisfy the spectrum compatibility in terms of pseudo acceleration response 

spectrum (RSC) or Fourier Spectrum (FSC), the iterative procedure has been applied four 

times and two different sets of one hundred accelerograms, have been obtained by Eq. (4.52). 

Figure 4.10 illustrates the change assumed by different functions, as the j iterations vary, 

for the case in which the spectrum compatibility in terms of pseudo acceleration response 

spectrum (RSC) has been sought. Specifically, for the 4-iterations (RSC model), in Figure 

4.10 are reported the trends of: a) total intensities; b) zero level up crossings; c) pseudo-

acceleration response spectra; d) percentage deviations between the target spectrum and 

those obtain as the mean values of the generated samples (err %); e) ratio between the mean 

squares values of the mean spectrum of the generated samples ( )1
0( , )

j
S  

−
 and the target 

one 
( )

0( , )TS   ; f) corrective power spectral density functions. 

Figure 4.11 shows a comparison between the time history of the target accelerogram and 

the i-th generated sample ( )
0 ( )iF t , after 4 iterations, using the pseudo acceleration response 

spectrum compatibility (RSC) model and the Fourier spectrum-compatibility (FSC) model. In 

both cases the variation in amplitude of the generated samples appears to be preserved in the 

time domain. 

In Figure 4.12, the mean value of the cumulative energy function I0(t) and the cumulative 

zero level up crossing function 0 ( )+N t  of the generated samples, applying the pseudo 

acceleration response spectrum compatibility (RSC) model or the Fourier spectrum 

compatibility (FSC) model, after 4-th iterations, have been compared with the trend of the 

target functions. 

In Figures 4.13 and 4.14 the average acceleration response spectrum Sa(T) and the average 

Fourier spectrum module g| [ ( ) ] |U t  of the two sets of artificial accelerograms, generated 

after 4 iterations by the RSC and FSC model, are compared with the corresponding target 

spectrum, respectively. 
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Figure 4.10 Comparison among: a) the target and the mean cumulative energy functions; b) 

cumulative zero level up crossing functions; c) pseudo acceleration response spectra; d) spectra 

deviations; e) spectra ratio; f) corrective power spectral density functions, for the 4-th iterations (RSC 

model). 
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Figure 4.11: Comparison among the selected accelerogram (black line) and the corresponding i-th 

generated sample by the proposed fully non-stationary spectrum-compatible model, after 4 iterations: 

a) pseudo acceleration response spectrum-compatibility (RSC) model; b) Fourier spectrum-

compatibility (FSC) model. 

 

 

 

 

 

Figure 4.12 Comparison among the cumulative energy function a) or cumulative zero level up 

crossing function b) between the target accelerogram and the corresponding mean cumulative 

functions of the 100 samples, evaluated using RSC model and the FSC model, after 4-th iterations. 
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Figure 4.13 Comparison between the pseudo acceleration response spectrum and the mean response 

spectra of the 100 samples, evaluated using the RSC model and FSC model after 4-th iterations. 

 

 

 

 

 

Figure 4.14 Comparison among the Fourier spectrum module of the selected accelerogram and the 

mean Fourier spectrum module of the generated sample, evaluated after 4 iterations by the: a) RSC 

model, b) FSC model. 
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From the observation of the results obtained in the time and frequency domain, it emerges 

that: 

• the use of the pseudo acceleration response spectrum-compatibility (RSC) model leads 

to outcomes statistically closer to those of the target one in terms of cumulative energy 

function ( )
gU

E t  and pseudo-acceleration response spectrum Sa(T) respect to the trends 

obtained by the application of the FSC model; 

• the application of the Fourier-compatibility (FSC) model allows to obtain samples 

having an average zero level up crossing function 0 ( )+N t  and Fourier spectrum closer to 

target one trend respect to those evaluated though the RSC model. 
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Chapter 5  

 

5 Imprecise power spectral density function characterizing the 

strong motion of recorded accelerograms on rigid soil deposits 

 

5.1 Introduction 

In the framework of earthquake engineering, the recorded accelerograms must be critically 

analysed to predict the seismic behaviour of structures under future earthquakes. Recent 

studies have highlighted that, besides the amplitude, the spectral content of accelerograms 

also plays a key role in the seismic analysis of structural systems. The spectral content varies 

significantly from one accelerogram to another even for records belonging to the same soil 

category. It follows that to account for uncertainty about future seismic events, it is necessary 

to analyse an ensemble of recorded accelerograms and to perform statistical calculations. 

Although various authors recommend certain values of the parameters characterizing the 

above described models of the power spectral density (PSD) function (see sections 4.1-3), it 

has been shown that the parameters characterizing the PSD function are strongly influenced 

by the geotechnical characteristics of the soil deposits on which the seismic accelerograms are 

recorded [Genovese et al. 2019 a]. Consequently, different parameters such as Magnitude Mw, 

site-to-source distance RJB, event depth zip, Arias intensity IA [Arias 1970], strong-motion 

duration t5-95 [Trifunac and Brady, 1975], peak ground acceleration (PGA), average shear 

wave velocity in the upper 30 meters VS,30, etc., which are very often vaguely considered, 

must be taken into account for a correct modelling of the PSD function. 

In 1977, Vanmarcke stated “In reality, of course, neither the seismic load effect nor the 

seismic resistance are perfectly predictable. Therefore, it makes sense to express structural 

performance under earthquake excitation of known intensity in probabilistic terms”. The 

uncertainties that affect the main parameters of strong ground motions have been highlighted 
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in two concomitant studies by Vanmarcke and Lai [1980 a,b], and Luco [1980]. After these 

pioneering studies, Lai [1982] computed the histograms of the main parameters of the Kanai-

Tajimi PSD function by analysing 140 accelerograms recorded in western Unites States. 

Then, he fitted the histograms with analytical probability density functions. More recently, 

Zhang et al. [2017] developed an analytical approach for quantifying the uncertainty in 

stochastic process power spectrum estimates based on samples with missing data. There is a 

general consensus that, when available information on the various sources of uncertainty is 

incomplete or fragmentary, the use of non-probabilistic approaches [see e.g., Elishakoff 2000, 

Elishakoff and Ohsaki 2010] is more appropriate to retrieve reliable predictions of the safety 

level [see e.g., Sofi et al. 2020]. Thus, besides the inherently random nature of seismic 

excitation, epistemic uncertainties affecting the relevant PSD function should be taken into 

account resorting to non-probabilistic models. In this framework, recently, Faes et al. [2020] 

evaluated the bounds of the first excursion probability of linear structures subjected to 

imprecise seismic actions by using the Directional Importance Sampling method.  

In this Chapter, in order to characterize epistemic uncertainties affecting the power 

spectrum of seismic acceleration, the spectral content in the strong-motion time duration of a 

large set of accelerograms, recorded on rigid soil deposits, is first analysed. The set of 

analysed accelerograms, downloaded from the Engineering Strong Motion database (ESM) 

[Luzi et al. 2020], is subdivided into two subsets following the international seismic code EC8 

[2004] which recommends the use of two categories of spectra: Type 1 for areas of high and 

moderate seismicity (surface-wave magnitude Ms > 5.5), and Type 2 for areas of low 

seismicity (Ms ≤ 5.5). All the selected accelerograms present an almost linear variation of the 

cumulative number of zero-level up-crossings within the strong-motion time region. This 

means that they do not exhibit sensible variation in time of the frequency content and can be 

reasonably regarded as samples of a zero-mean stationary Gaussian random process fully 

characterized by a suitable PSD function. Indeed, for a stationary random process the 

expected number of zero-level up-crossings is constant [see e.g., Lutes and Sarkani 2004]. 

The power spectrum model introduced in Chapter 4, that is able to catch the frequency 

content of recorded accelerograms, is herein adopted. This PSD function depends on the 

following parameters: the total number of both zero-level up-crossing and peaks, and the total 

energy in the strong-motion time region, which are different from one accelerogram to 

another [Muscolino et al. 2021]. In order to estimate the aforementioned parameters and 
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quantify the uncertainty affecting ground motion representation, the associated histograms are 

defined by analysing the spectral content of the selected accelerograms in the strong-motion 

time region. The Chauvenet Criterion [Chauvenet 1863, Barbato et al. 2011] is iteratively 

applied [Maples et al. 2018] to discard outliers from the set of accelerograms. As a final 

outcome of the statistical analysis of the selected accelerograms, the ranges of variability of 

the main parameters of the PSD function are determined. Thus, it is shown that a PSD 

function, representative of accelerograms recorded on soils with specific geotechnical 

characteristics, should be more appropriately modelled as a function of interval parameters 

[Moore 1966, Moore et al. 2009] whose ranges reflect the main properties of the excitation. A 

notable feature of the proposed model of the imprecise PSD function is that it depends on 

three interval parameters only. 

In the context of structural safety assessment, the response level which has a specified 

probability, p, of not being exceeded during a given time interval should be evaluated. This 

quantity is referred to as fractile of order p of the structural response. Due to the imprecision 

of the assumed PSD function, both the CDF and the fractile of order p of the response have an 

interval nature [Muscolino et al. 2016]. Their lower bound (LB) and upper bound (UB) can be 

readily evaluated taking into account that the assumed model of the imprecise earthquake 

spectrum depends on three interval parameters only. Numerical results concerning a single-

degree-of-freedom (SDOF) system under imprecise seismic excitation are presented. 

 

5.2 Selected power spectral density function 

It is well known that the seismic ground motion acceleration can be modelled as a sample 

of a fully non-stationary zero-mean Gaussian random process, evaluated as the product of a 

sample of a zero-mean stationary Gaussian process by a suitable time-frequency dependent 

modulating function. By analysing the frequency content of accelerograms recorded on rock 

soil, it can be observed that they exhibit almost constant zero-level up-crossings especially in 

the strong motion duration. It follows that the pertinent modulating function can be assumed 

as frequency independent unlike the one used for accelerograms recorded on soft soils. 

Moreover, in the strong-motion time region the modulating function can be reasonably 

assumed constant [Jennings et al. 1968, Iyengar and Iyengar 1969]. Since accelerograms 

recorded on rock soil are characterized by an almost constant frequency content and 
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amplitude, they can be modelled as samples of zero-mean stationary Gaussian processes. In 

this Chapter the unimodal one-sided PSD function, has been assumed proportional to the 

unimodal one-sided PSD function introduced in Chapter 4 (see Eq.(4.26)):  

 ( ) ( )
g g

2 4
2 ( )
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CPL
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 (5.1) 

where ωL and ωH are the control frequencies of the second-order low pass and first-order high 

pass Butterworth filters, respectively, ( )( )
0
CPG   is a unimodal one-sided PSD function, which 

can be viewed as the linear combination of the displacement and velocity responses of a 

second-order oscillator subjected to two statistically independent Gaussian white noise 

processes [Conte and Peng 1997]: 
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In the previous equation, ρ0 and Ω0 are two free parameters. The first one is a circular 

frequency bandwidth, the second one is close enough to the predominant circular frequency 

of the filtered stationary process [Conte and Peng 1997]. In Eq. (5.1) ωL=Ω0+0.8ρ0 is the 

frequency control, of a second-order low pass Butterworth filters, while ωH=0.1Ω0 is the 

frequency control of the first-order high pass Butterworth filters, [Muscolino et al. 2021]. 

Finally, in Eq.(5.1) the coefficient β0 : 
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depends on five parameters (a0, b0, c0, d0 and e0), evaluated in closed form (see Eq.(4.29)) in 

such a way that the process Üg(t) possesses variance 
g

2 2
g  E ( )

U
U t = (where E   denoting the 

stochastic average operator). Notice that the variance, 
g

2

U
 , of the zero-mean Gaussian 

stationary process characterized by the unimodal PSD function of Eq.(5.1), defines the 

spectral intensity of the process Üg(t). Indeed, if I0 is the total intensity of a recorded 

accelerogram, assumed as a generic sample of the stochastic process, the cumulative expected 

energy function of the process can be evaluated as [Saragoni and Hart 1973]: 
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It follows that the total intensity of a recorded accelerogram is given as: 
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The previous relationship shows that the variance, 
g

2

U
 , of the zero-mean Gaussian stationary 

process, strictly related to the power spectrum intensity of the process, can be defined as a 

function of the total intensity of a recorded accelerogram, I0, if the latter is considered as a 

sample of the stationary process itself. 

 

5.3 Statistical analysis of accelerograms recorded on rigid soil 

deposits 

5.3.1 Preliminary selection of recorded accelerograms 

In order to estimate the parameters of the PSD function introduced in the previous section, 

a set of 270 corrected accelerograms is downloaded from the Engineering Strong Motion 

(ESM) database [Luzi et al. 2020]. All the selected accelerograms pertain to events mainly 

recorded in the European-Mediterranean regions and the Middle East, with reference 

magnitude MR ≥ 4.0, epicentral distances Repi<100 km, PGA>0.05 g, hypocentral depths 

zip<49 km, strong-motion time duration t5-95 [Trifunac and Brady 1975] and Arias intensity 

IA<6 m/s [Arias 1970]. The value of the reference magnitude MR is taken equal to the moment 

magnitude MW if this information is provided by the ESM database otherwise, MR equal to the 

local Magnitude ML is assumed.  

All the accelerograms used in this work are recorded at stations located on rock subsoil 

(grounds type A, according to EC8 [2004] classification), belonging mainly to the 

topographic class T1 (flat surfaces, isolated slopes, or relief with inclination i≤15o), with 

plane, slope or “not classified” morphological conditions.  

The metadata of recording stations are stored in three main thematic levels based on the 

topographic features (T), geological features (G) and geophysical measurements (S). In most 
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cases the velocity profiles, used for calculation of the average share-wave velocity in the 

uppermost 30 meters VS,30, are derived from a variety of surveys (S) such as down-hole, cross-

hole and surface wave methods. When geophysical measures are not available, proxy 

relationships based on various descriptor or quantitative metrics of site conditions (surface 

geology, topographic slope, and geotechnical or geomorphic categories) have been used to 

estimate VS,30 [Felicetta et al. 2016]. Among all the available recorded accelerograms present 

in the ESM database, only 270 horizontal acceleration time-histories, recorded by 66 stations 

in the frame 1979 - 2019, respect the required conditions. 

Table 5-I lists the main characteristics of the recording stations: network and station code 

and descriptive metadata related to the soil characterization of the recording stations such as 

type of measurement to estimate the shear-wave velocity and VS,30 value. The number of the 

components #c recorded by each station is also reported in Table 5-I. 

The number of recording stations, divided according to the method used to estimate the 

shear-wave velocity VS,30, is collected in the dark grey histogram of Figure 5.1 a). The 

corresponding number of components, recorded by the stations, are shown in the light grey 

histogram of Figure 5.1 a). Notice that in the ESM database, the VS,30 values are available only 

when the metadata of recording stations are inferred from Topography (T) or Geophysical 

survey (S). For these two cases (T and S), the corresponding distribution of the VS,30 values are 

reported in Figure 5.1 b).  

Figure 5.2 shows the histograms of the distribution of the number of components as a 

function of a) reference magnitude MR, b) focal mechanism, c) focal depth zip and d) 

epicentral distance Repi. Most of the accelerograms (62.6 %) are characterised by a normal 

focal mechanism (N), while the events with strike-slip (SS) and thrust (Th) fault mechanisms 

are the 11.5 % and 7.8% of the total data, respectively. The focal mechanism information is 

not available (n.a.) for 49 (18.1 %) time histories. 

In Table 5-II are summarized the main characteristics of the selected accelerograms, 

having MR > 5.5, recorded by the stations listed in Table 5-I: date time, ground-motion 

component channel code (HNN/HNE or HGN/HGE: North-South/East-West components; 

HN2/HN3: orthogonal components but non-traditional orientations), focal mechanism FP, 

reference magnitude MR, epicentral distance Repi, site-source distance RJB [Jooner and Boore 

1981] and depth zip. The same above quantities, for the accelerograms having MR ≤ 5.5, are 

collected in Table 5-III. 
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Table 5-I Main characteristics of the recording stations. In the VS,30 column the used symbols refer to: 

surface geology (G), topography (T) and geophysical survey (S). 

#c 

 

Network and 

Station Code 

VS,30 

Estimation 

VS,30 

[m/s] 

 #c 

 

Network and 

Station Code 

VS,30 

Estimation 

VS,30 

[m/s] 

1 4A.MI05 G - 34 IT.SPT1 G - 

2 A.C1060 T 822 35 IT.SRT S 871 

3 A.C1061 T 820 36 IT.SVN G - 

4 A.C1062 T 838 37 IT.UST G - 

5 A.STBO G - 38 IT.VGG G - 

6 A.STRS G - 39 IT.VGL G - 

7 AC.SRN S 1512 40 IV.EMCN G - 

8 CL.AGRP G - 41 IV.EVRN G - 

9 CL.ROD3 G - 42 IV.FEMA G - 

10 CR.A3062 G - 43 IV.ILLI G - 

11 ES.SADR G - 44 IV.MDAR G - 

12 EU.ULA G - 45 IV.MMUR G - 

13 GE.KARP T 932 46 IV.POFI G - 

14 HI.ATH4 S 1020 47 IV.RM03 G - 

15 HI.KRN1 T 850 48 IV.RM13 G - 

16 HI.PAL1 T 803 49 IV.T0912 G - 

17 HL.KARP T 925 50 IV.T1211 G - 

18 HL.KYPA S 822 51 IV.T1212 G - 

19 IT.0EQT G - 52 IV.T1213 G - 

20 IT.0LAI G - 53 IV.T1215 G - 

21 IT.ACC G - 54 IV.T1218 G - 

22 IT.ANT S 912 55 IV.T1242 G - 

23 IT.ATN G - 56 IV.T1245 G - 

24 IT.CESM G - 57 IV.T1256 G - 

25 IT.FCC G - 58 KO.GMLD T 816 

26 IT.FORC G - 59 KO.MASR T 942 

27 IT.GVD G - 60 KO.SHAP T 841 

28 IT.LPR G - 61 RA.PYAD G - 

29 IT.MRM S 1906 62 RA.PYBB S 894 

30 IT.MZZ G - 63 SI.CEY G - 

31 IT.NOT G - 64 SI.DRZN G - 

32 IT.ORT G - 65 TK.4101 S 827 

33 IT.RQT S 805 66 YP.AC01 T 874 
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Figure 5.1 a) Distribution of: number of stations (dark grey histogram) and time histories (light grey 

histogram) as a function of site classification methodology; b) VS,30 values inferred from topography 

(T) or a variety of surveys (S). 

 

 

Figure 5.2 Distributions of: number of time histories versus a) reference magnitude; b) focal 

mechanism; c) focal depth and d) epicentral distance. 
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The values of the reference magnitude MR versus the epicentral distance Repi of the 270 

horizontal acceleration time-histories are plotted in Figure 5.3 a). The black points provide the 

limits of near-field motions to far-field ones, according to [Vanmarcke 1979], while the black 

solid line is the interpolation of the aforementioned points. A particularization of the Figure 

5.3 a) has been done in Figures 5.3 (b-d) considering only the horizontal acceleration time-

histories recorded by station characterized by: b) geological features, c) topographic features 

or d) by geophysical surveys. 

 

 

 

Figure 5.3 Reference magnitude versus epicentral distance for the selected acceleration time-histories: 

a) all the recording stations; b-d) recording stations classified by: b) geology, c) surface topography 

and d) geophysical measurements. 
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Table 5-II Main characteristics of the accelerograms having MR > 5.5. 

# Station Code date time comp. FP MR Repi [km] RJB [km] zip [km] 

1 A.C1060 1999/11/12 16.57.19 HNE Ss 7.3 48.6 21.12 10.4 

2 A.C1061 1999/11/12 16.57.19 HNE/HNN Ss 7.3 34.7 6.01 10.4 

3 A.C1062 1999/11/12 16.57.19 HNE Ss 7.3 32.3 3.62 10.4 

4 EU.ULA 1979/04/15 06.19.41 HNE/HNN Th 6.9 19.7 5.56 3.8 

5 GE.KARP 2015/04/16 18.07.45 HNE/HNN Ss 6.1 48.9 - 22.6 

6 HI.ATH4 1999/09/07 11.56.49 HN2/HN3 N 5.9 19.7 14.03 9.4 

7 HI.KRN1 1997/10/13 13.39.36 HN2/HN3 Th 6.5 51.4 - 13.3 

8 HL.KARP 2015/04/16 18.07.45 HNE/HNN Ss 6.1 48.9 - 22.6 

9 IT.ACC 
2016/10/26 19.18.06 HGE/HGN N 5.9 25.4 18.05 7.5 

2016/10/30 06.40.18 HGE/HGN N 6.5 18.6 2.19 9.2 

10 IT.ANT 2016/10/30 06.40.18 HGN N 6.5 46.1 2.19 9.2 

11 IT.ATN 1984/05/07 17.49.43 HNE N 5.9 10.1 12.28 20.5 

12 IT.CESM 1997/10/14 15.23.09 HNE/HNN N 5.6 8.7 6.2 6 

13 IT.ORT 1984/05/07 17.49.43 HNE/HNN N 5.9 33.6 32.79 20.5 

14 IT.SRT 1990/12/13 00.24.26 HNE Ss 5.6 36.9 24.59 5 

15 IV.FEMA 2016/08/24 01.36.32 HNE/HNN N 6 32.9 13.92 8.1 

16 IV.MDAR 

2016/10/30 06.40.18 HNE/HNN N 6.5 40.1 27.05 9.2 

2016/10/26 19.18.06 HNE/HNN N 5.9 31.6 20.08 7.5 

2016/08/24 01.36.32 HNN N 6 55.4 35.47 8.1 

17 IV.MMUR 2016/10/26 19.18.06 HNE/HNN N 5.9 60.2 48.95 7.5 

18 IV.T1211 2016/10/30 06.40.18 HNE/HNN N 6.5 39.3 34.29 9.2 

19 IV.T1212 
2016/10/26 19.18.06 HNE/HNN N 5.9 18.8 12.06 7.5 

2016/10/30 06.40.18 HNE/HNN N 6.5 10.5 8.77 9.2 

20 IV.T1215 2016/10/30 06.40.18 HNE/HNN N 6.5 20.1 18.61 9.2 

21 IV.T1218 2016/10/26 19.18.06 HNE/HNN N 5.9 26.5 18.83 7.5 

 

 

Table 5-III Main characteristics of the accelerograms having MR ≤ 5.5. 

# Station Code date time comp. FP MR Repi [km] RJB [km] zip [km] 

1 4A.MI05 

2009/04/07 17.47.37 HNE/HNN N 5.5 3.6 1.89 17.1 

2009/04/09 00.52.59 HNE/HNN N 5.4 26.4 23.43 11 

2009/04/23 15.14.08 HNE N 4.1 5.8 - 10.3 

2 A.STBO 2002/04/25 17.41.22 HN2/HN3 - 4.8 6.9 - 10 

3 A.STRS 1990/12/16 15.45.40 HNE Ss 5.4 50.4 - 28.3 

4 AC.SRN 

2016/10/16 00.48.19 HNE/HNN - 4.6 63.6 - 10 

2016/10/19 21.23.57 HNE/HNN - 4.3 52.6 - 10 

2016/10/16 00.09.59 HNE/HNN - 4.5 62.4 - 10 

2016/10/15 20.14.48 HNE/HNN Th 5.5 55.9 - 22 

2016/10/16 02.21.02 HNE/HNN Th 5 53.3 - 19.4 

2016/10/16 03.40.20 HNE/HNN Th 4.8 60.2 - 20.4 

5 CL.AGRP 2016/10/11 11.48.30 HNE N 4.3 7.1 - 10.9 

6 CL.ROD3 2016/10/11 11.48.30 HNE/HNN N 4.3 13.3 - 10.9 

7 CR.A3062 

1990/04/03 22.02.37 HNN - 4.8 22 - 10 

1990/11/27 04.37.57 HNE/HNN Th 5.5 56.9 - 10 

1990/11/27 04.51.36 HNE/HNN - 5.3 59.9 - 10 

8 ES.SADR 1994/01/04 08.03.15 HNN - 4.9 24.4 - 16 

9 EU.ULA 1979/04/09 02.10.21 HNE Th 5.4 10.4 - 7.1 

10 HI.PAL1 1994/04/10 19.46.20 HN3 - 4.6 6.7 - 18 

11 HL.KYPA 1993/03/05 06.55.08 HN3 Th 5.2 17.8 - 38.8 
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1996/10/09 09.46.27 HN2/HN3 - 4.4 58.7 - 5 

12 IT.0EQT 2013/06/30 14.40.08 HGE/HGN N 4.5 3 2.09 6.1 

13 IT.0LAI 2012/10/25 23.05.24 HGE N 5 9.4 - 9.7 

14 IT.ACC 

2016/08/24 17.46.09 HGE N 4.2 4.7 - 10.3 

2016/10/26 17.10.36 HGE/HGN N 5.4 22.1 19.17 8.1 

2016/10/30 07.13.06 HGN - 4.2 1.4 - 10.6 

2016/11/12 14.43.33 HGE/HGN N 4.1 3.9 - 9.8 

2017/01/18 09.25.42 HGN N 5.1 17 14.6 10 

2017/01/18 10.14.12 HGN N 5.5 18.6 5.45 9.6 

15 IT.CESM 
1997/10/14 23.23.28 HNE/HNN - 4.2 4.5 - 5.1 

1998/03/21 16.45.09 HNN N 5 3 0.65 5 

16 IT.FCC 

2016/09/03 10.18.51 HGE/HGN Ss 4.3 12 - 8.3 

2016/10/30 12.07.00 HGE/HGN N 4.5 13.7 12.29 9.7 

2016/10/31 03.27.40 HGN N 4 8.8 - 10.6 

2016/11/01 07.56.39 HGN N 4.8 26.6 25.28 8.3 

2016/11/12 14.43.33 HGE/HGN N 4.1 4.1 - 9.8 

17 IT.FORC 1997/10/12 11.08.35 HNE/HNN N 5.2 4.1 1.53 4.8 

18 IT.GVD 2004/11/24 22.59.38 HNN T 5 13.6 11.92 5.4 

19 IT.LPR 2010/08/16 12.54.47 HNN Ss 4.7 14 12.9 13.5 

20 IT.MZZ 2006/02/27 04.34.01 HNN N 4.4 9.6 - 9.2 

21 IT.RQT 

2016/09/03 10.18.51 HGE/HGN Ss 4.3 9.3 - 8.3 

2016/10/26 17.10.36 HGE/HGN N 5.4 16.7 12.82 8.1 

2016/10/26 21.42.01 HGE/HGN N 4.5 16.4 14.88 9.9 

2016/10/27 03.19.27 HGE/HGN N 4 14.2 - 9.2 

2016/10/30 13.34.54 HGE/HGN N 4.1 11.9 - 9.6 

2016/10/31 07.05.45 HGE N 4 15.4 - 9.5 

2016/11/01 07.56.39 HGE/HGN N 4.8 24.4 - 8.3 

2017/01/18 10.14.12 HGE/HGN N 5.5 31.4 16.55 9.6 

2017/01/18 10.25.26 HGE/HGN N 5.4 34.5 24.59 9.4 

2017/01/18 11.07.39 HGE/HGN N 4.1 22 22.8 10.7 

2017/01/18 13.33.37 HGE/HGN N 5 37.9 - 9.5 

22 IT.SPT1 
2013/12/29 17.08.43 HGE/HGN N 5 8.5 - 20.4 

2014/01/20 07.12.40 HGE N 4.2 10.7 - 17.2 

23 IT.SVN 2018/12/26 02.19.17 HGE/HGN Ss 4.9 4.5 - 1 

24 IT.UST 

2016/12/11 12.54.52 HGE/HGN - 4.3 4.2 - 8.5 

2017/01/18 09.25.42 HGN N 5.1 45.8 - 10 

2017/01/18 10.25.26 HGN N 5.4 50.3 24.59 9.4 

2018/04/10 03.11.31 HGE/HGN N 4.6 15.8 14.86 8.1 

25 IT.VGL 

1980/06/07 18.35.01 HNE/HNN N 4.6 25.8 - 30 

2013/06/21 10.33.56 HGE/HGN N 5.1 12.5 10.55 7 

2013/06/23 15.01.33 HGN N 4.4 9.6 - 9.2 

26 IV.EMCN 2018/12/24 16.50.12 HNE - 4.3 8.4 - 2.2 

27 IV.EVRN 2018/12/26 02.19.17 HNN Ss 4.9 5.3 - 1 

28 IV.FEMA 

2017/04/27 21.19.43 HNN N 4 1.2 - 7.9 

2017/04/27 21.16.59 HNN N 4 0.6 - 7.9 

2017/02/03 04.10.05 HNN N 4.2 4.2 - 7.1 

2016/12/11 12.54.52 HNE - 4.3 8.4 - 8.5 

2016/10/30 12.07.00 HNE/HNN N 4.5 13.5 12.46 9.7 

2016/10/26 17.10.36 HNE/HNN N 5.4 11.5 8.49 8.1 

2016/08/24 02.33.29 HNE/HNN N 5.3 20.6 17.54 8 

29 IV.ILLI 2010/08/16 12.54.47 HNN Ss 4.7 11.4 10.32 13.5 

30 IV.POFI 2013/02/16 21.16.09 HNE N 4.8 11.8 9.97 17.1 

31 IV.RM03 2009/04/07 17.47.37 HNE/HNN N 5.5 3.4 0.26 17.1 

32 IV.RM13 2009/04/07 17.47.37 HNE/HNN N 5.5 15.6 12.29 17.1 

33 IV.T0912 2013/06/23 15.01.33 HNE/HNN N 4.4 0.7 - 9.2 
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2013/06/30 14.40.08 HNE/HNN N 4.5 2.1 0.8 6.1 

34 IV.T1212 

2016/10/26 17.10.36 HNN N 5.4 15.2 12.27 8.1 

2016/10/26 21.42.01 HNE N 4.5 14 12.95 9.9 

2016/10/30 11.58.17 HNE/HNN N 4 10.4 - 9.8 

2016/10/31 03.27.40 HNE/HNN N 4 3.5 - 10.6 

35 IV.T1213 

2016/08/25 03.17.16 HNE/HNN N 4.3 5.9 - 9 

2016/10/30 07.07.54 HNE/HNN - 4.1 5.2 - 10.2 

2016/10/30 11.58.17 HNE/HNN N 4 14.5 - 9.8 

2016/10/30 12.07.00 HNE/HNN N 4.5 13.6 12.77 9.7 

2016/10/30 13.34.54 HNE/HNN N 4.1 9.6 - 9.6 

2016/10/31 03.27.40 HNE/HNN N 4 5.2 - 10.6 

2016/10/31 07.05.45 HNN N 4 12.7 - 9.5 

36 IV.T1218 

2017/01/18 19.32.32 HNE/HNN N 4.2 13.8 - 10.9 

2017/01/18 13.33.37 HNN N 5 25.5 23.5 9.5 

2017/01/18 11.07.39 HNN N 4.1 12.8 - 10.7 

2017/01/18 10.14.12 HNE/HNN N 5.5 20.7 8.5 9.6 

2017/01/18 09.25.42 HNE/HNN N 5.1 19.2 17.1 10 

2016/10/31 03.27.40 HNE N 4 10.4 - 10.6 

2016/10/30 12.07.00 HNE N 4.5 19.4 - 9.7 

2016/10/30 07.13.06 HNE - 4.2 9.4 - 10.6 

2016/10/30 07.07.54 HNE/HNN - 4.1 7.8 - 10.2 

2016/10/26 17.10.36 HNE/HNN N 5.4 22.8 19.66 8.1 

37 IV.T1242 
20160825.031716 HNN N 4.3 9.4 - 9 

20160903.101851 HNN Ss 4.3 3.7 - 8.3 

38 IV.T1245 
2016/10/26 21.42.01 HNE N 4.5 5.4 3.8 9.9 

2016/11/01 07.56.39 HNN N 4.8 15.5 14.22 8.3 

39 IV.T1256 
2016/11/01 07.56.39 HNN N 4.8 7.7 6.07 8.3 

2016/11/03 00.35.01 HNN N 4.7 14.6 12.42 8.1 

40 KO.GMLD 2019/08/08 08.39.09 HNN - 4.8 6.6 - 10 

41 KO.MASR 2014/09/04 03.53.00 HNE/HNN Th 4.1 7.7 - 12.7 

42 KO.SHAP 

2014/07/15 12.25.52 HNE/HNN - 4.1 21.9 - 9.3 

2015/09/22 06.25.04 HNE/HNN - 4.3 16.2 - 11.9 

2015/09/22 07.11.11 HNE/HNN - 4.3 15.7 - 9 

2015/10/13 23.18.10 HNE/HNN N 4.2 19.2 - 10.2 

43 RA.PYAD 2008/07/16 20.33.31 HNE/HNN - 4.2 13.6 - 4.2 

44 RA.PYBB 2006/11/17 18.19.50 HNE/HNN - 4.5 14.6 - 0.9 

45 SI.CEY 1995/05/22 11.16.54 HNE/HNN - 4.2 21.3 - 19.9 

46 SI.DRZN 1998/05/06 02.52.59 HNE - 4.3 8.8 - 5.6 

47 YP.AC01 

2014/11/08 23.15.43 HNE/HNN Ss 5.1 9.6 7.57 18 

2014/11/07 07.41.35 HNE/HNN Th 4.9 9.6 - 18 

2014/02/21 15.18.25 HNE N 4.1 8.8 - 15.9 

2014/02/15 07.31.16 HNE Th 4.9 18.2 - 25.3 

2014/02/06 19.20.59 HNE Th 4.7 14.6 13.67 16.4 

 

Among all the 270 accelerograms that fulfil the required conditions, only those that 

present an almost linear variation of the cumulative number of zero-level up-crossings 

0 ( )N t+
 into the strong-motion time region t5-95, are considered. This means that in such time 

region the selected accelerograms do not present a sensible variation in time of the frequency 

content and can be satisfactorily assumed as samples of a zero-mean stationary Gaussian 

process. Figure 5.4 a) displays the normalized zero-level up crossing functions of the 270 
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accelerograms, 0 0 ,5 95( ) / ( )iN t N t −
+ + , into the strong-motion time region versus the normalized 

time 5 95,/ it t − , with 5 95,it −  denoting the strong-motion time duration of the i-th record, 

together with the bisector of the graph. Figure 5.4 b) shows the absolute maximum residual 

values of the i-th accelerogram, ie , (symbols) calculated as the difference between the 

absolute maximum values of the zero-level up-crossing functions 0, ( )iN t+ , of the i-th 

accelerogram, and the bisector of the graph. The mean-value | |ie  of | |ie  (solid line), 

together with the mean-value plus the standard deviation | | | |i ie e +  (dashed line), are also 

reported in Figure 5.4 b). All the accelerograms having absolute maximum residual values 

| |ie  that exceed the confidence interval given by the mean-value plus the standard deviation 

(dashed grey line in Figure 5.4 b) are discarded. Consequently, the number of accelerograms 

considered in the analysis changes from 270 to 229.  

According to [EC8 2004], which suggests the use of the Type 1 spectrum for areas with 

high-medium seismicity (MR>5.5) and the Type 2 spectrum for areas with low seismicity 

(MR≤5.5), the set of 229 accelerograms is subdivided into two subsets composed by 44 and 

185 time-histories, respectively. 

 

Figure 5.4 a) Normalized zero level up-crossing functions of the selected accelerograms with 

respect to the strong motion time duration (grey lines) together with the bisector of the graph (black 

line); b) Absolute maximum residual values together with its mean value (solid line) and the mean 

value plus standard deviation (dashed line). 
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5.3.2 Statistical analysis of the main parameters of the PSD function  

Then, a further selection of the accelerograms is performed by analysing the light grey 

histograms in Figures 5.5 and 5.6 , associated with the following parameters: i) strong-motion 

time duration t5-95; ii) frequency of zero-level up-crossings υN = N0
+/ t5-95 ; iii) frequency of the 

peaks υP = P0 / t5-95 ; iv) variance 2
0 5 95gU

I t −= ; v) predominant circular frequency Ω0, vi) 

circular frequency bandwidth ρ0.  

Afterwards, the Chauvenet’s Criterion [Chauvenet 1863, Barbato et al. 2011] is iteratively 

applied [Maples et al. 2018] to the selected parameters. So operating, the outliers from both 

subsets of accelerograms are discarded. 

 The Chauvenet’s Criterion works by creating an acceptable band of data around the mean, 

specifying any values that fall outside that band should be eliminated. The application of the 

Chauvenet’s Criterion requires the following steps: 

1) calculate the mean μ and standard deviation σ of the observed set of data; 

2) evaluate the absolute value of the difference between each data xi and the mean 

divided by the standard deviation: 

 i
i

x 




−
=  (5.6) 

3) if 2 ( )d 0.5

i

n p x x

 



+

 
  
 
 

  then reject xi and repeat the step 1 and 2, being n the 

number of data and p(x) the probability density function of a normal distribuited set of 

data with expected value μ and variance σ2: 
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p x
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
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 −
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4) repeat steps 1 and 2 until the number of complying accelerograms remain stable. 

The histograms of the analysed quantities after the iterative application of the Chauvenet’s 

Criterion are also plotted in Figures 5.5 and 5.6 for the two subsets of accelerograms (dark 

grey histograms).  

After the iterative application of the Chauvenet’s Criterion, the number of the remaining 

accelerograms for the Type 1 and Type 2 subsets reduces to 20 and 107. The station code, 
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date time, and the ground-motion component channel code (HNN/HNE or HGN/HGE: 

North-South/East-West components; HN2/HN3: orthogonal components but non-traditional 

orientations) of the remaining accelerograms are reported Tables 5-IV and 5-V.  
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Figure 5.5 Distribution of the main characteristics of the accelerograms with MR>5.5 (Type 1) before 

(light grey histogram) and after (dark grey histogram) the iterative application of the Chauvenet’s 

Criterion in terms of: a) strong-motion time duration; b) frequency of zero-level up-crossings; c) 

frequency of the peaks; d) variance; e) predominant circular frequency; and f) circular frequency 

bandwidth. 
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Figure 5.6 Distribution of the main characteristics of the accelerograms with MR≤5.5 (Type 2) before 

(light grey histogram) and after (dark grey histogram) the iterative application of the Chauvenet’s 

Criterion in terms of: a) strong-motion time duration; b) frequency of zero-level up-crossings; c) 

frequency of the peaks; d) normalized total intensity; e) predominant circular frequency; and f) 

frequency bandwidth. 
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Table 5-IV Main recording information of the remaining accelerograms with MR>5.5 (Type 1) after 

the application of the Chauvenet’s Criterion. 

# 
station 

code 
date time comp. # 

station 

code 
date time comp. 

1 A.C1060 1999/11/12 16.57.19 HNE 7 IT.ACC 2016/10/26 19.18.06 HGE/HGN 

2 A.C1061 1999/11/12 16.57.19 HNE 8 IT.ORT 1984/05/07 17.49.43 HNE/HNN 

3 GE.KARP 2015/04/16 18.07.45 HNE/HNN 9 IV.T1211 2016/10/30 06.40.18 HNE/HNN 

4 HI.ATH4 1999/09/07 11.56.49 HN2/HN3 10 IV.T1212 2016/10/26 19.18.06 HNE/HNN 

5 HI.KRN1 1997/10/13 13.39.36 HN2/HN3 11 IV.T1218 2016/10/26 19.18.06 HNE/HNN 

6 HL.KARP 2015/04/16 18.07.45 HNE/HNN  

 

Table 5-V Main recording information of the remaining accelerograms with MR≤5.5 (Type 2) after 

the application of the Chauvenet’s Criterion. 

# 
station  

code 
date time comp. # 

station 

 code 
date time comp. 

1 4A.MI05 
2009/04/09 00.52.59 HNE/HNN 21 IT.VGL 1980/06/07 18.35.01 HNE 

2009/04/23 15.14.08 HNE 

22 IV.FEMA 

2017/02/03 04.10.05 HNN 

2 A.STBO 2002/04/25 17.41.22 HN2/HN3 2016/12/11 12.54.52 HNE 

3 A.STRS 1990/12/16 15.45.40 HNE 2016/10/30 12.07.00 HNE/HNN 

4 CL.AGRP 2016/10/11 11.48.30 HNE 23 IV.RM03 2009/04/07 17.47.37 HNE/HNN 

5 CL.ROD3 2016/10/11 11.48.30 HNE 24 IV.RM13 2009/04/07 17.47.37 HNE/HNN 

6 CR.A3062 1990/11/27 04.51.36 HNE/HNN 
25 IV.T1212 

2016/10/30 11.58.17 HNE/HNN 

7 ES.SADR 1994/01/04 08.03.15 HNN 2016/10/31 03.27.40 HNE/HNN 

8 EU.ULA 1979/04/09 02.10.21 HNE 

26 IV.T1213 

2016/08/25 03.17.16 HNE/HNN 

9 HL.KYPA 1996/10/09 09.46.27 HN2/HN3 2016/10/30 07.07.54 HNE/HNN 

10 IT.0LAI 2012/10/25 23.05.24 HGE 2016/10/30 11.58.17 HNE/HNN 

11 IT.ACC 

2016/08/24 17.46.09 HGE 2016/10/30 13.34.54 HNE/HNN 

2016/10/26 17.10.36 HGE/HGN 2016/10/31 07.05.45 HNN 

2017/01/18 10.14.12 HGN 

27 IV.T1218 

2017/01/18 19.32.32 HNE/HNN 

12 IT.CESM 
1997/10/14 23.23.28 HNE/HNN 2017/01/18 13.33.37 HNN 

1998/03/21 16.45.09 HNN 2017/01/18 11.07.39 HNN 

13 IT.FCC 

2016/10/30 12.07.00 HGE/HGN 2017/01/18 10.14.12 HNE/HNN 

2016/10/31 03.27.40 HGN 2017/01/18 09.25.42 HNE 

2016/11/01 07.56.39 HGN 2016/10/30 12.07.00 HNE 

2016/11/12 14.43.33 HGE/HGN 2016/10/30 07.13.06 HNE 

14 IT.FORC 1997/10/12 11.08.35 HNE/HNN 2016/10/30 07.07.54 HNE/HNN 

15 IT.GVD 2004/11/24 22.59.38 HNN 2016/10/26 17.10.36 HNE/HNN 

16 IT.LPR 2010/08/16 12.54.47 HNN 
28 IV.T1242 

2016/08/25 03.17.16 HNN 

17 IT.MZZ 2006/02/27 04.34.01 HNN 2016/09/03 10.18.51 HNN 

18 IT.RQT 

2016/09/03 10.18.51 HGE 
29 IV.T1256 

2016/11/01 07.56.39 HNN 

2016/10/26 21.42.01 HGN 2016/11/03 00.35.01 HNN 

2016/10/27 03.19.27 HGE/HGN 30 KO.MASR 2014/09/04 03.53.00 HNN 

2016/10/30 13.34.54 HGE 

31 KO.SHAP 

2014/07/15 12.25.52 HNE/HNN 

2016/11/01 07.56.39 HGE/HGN 2015/09/22 06.25.04 HNE/HNN 

2017/01/18 10.14.12 HGE/HGN 2015/09/22 07.11.11 HNE 

2017/01/18 10.25.26 HGE/HGN 32 SI.CEY 1995/05/22 11.16.54 HNN 

2017/01/18 11.07.39 HGE/HGN 33 SI.DRZN 1998/05/06 02.52.59 HNE 

2017/01/18 13.33.37 HGE/HGN 

34 YP.AC01 

2014/11/08 23.15.43 HNE/HNN 

19 IT.SPT1 2013/12/29 17.08.43 HGE/HGN 2014/11/07 07.41.35 HNE/HNN 

20 IT.UST 

2016/12/11 12.54.52 HGN 2014/02/21 15.18.25 HNE 

2017/01/18 09.25.42 HGN 2014/02/15 07.31.16 HNE 

2018/04/10 03.11.31 HGN 2014/02/06 19.20.59 HNE 
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A statistical analysis of the data represented in the histograms of Figures 5.5 and 5.6, for 

Type 1 and Type 2 areas, before and after the application of the Chauvenet’s Criterion, have 

been performed. 

Specifically, the following quantities have been evaluated in the strong motion time region 

t5-95 of the downloaded accelerograms: lower bound (LB), upper bound (UB), midpoint (mid), 

normalized deviation amplitude (dev/mid), defined as (UB-LB)/(UB+LB) [Moore 1966]; 

mean value (MV); standard deviation (SD); skewness (skew); and kurtosis (kurt) [Lutes and 

Sarkani 2004].  

The values of statistical parameters have been collected in: Tables 5-VI (Type I) and 5-VII 

(Type II) before the application of the Chauvenet’s Criterion, and in Tables 5-VIII (Type I) 

and 5-IX (Type II) after the application of the Chauvenet’s Criterion. 

Tables 5-VI and 5-VII clearly show a remarkable variation of the selected parameters 

which would entail a huge change of the associated PSD function of ground motion 

acceleration. 

Comparing Tables 5-VI and 5-VII with Tables 5-VIII and 5-IX as expected, it is observed 

that the application of Chauvenet’s Criterion leads to a significantly smaller scatter of the 

selected parameters. 

By inspection of Tables 5-VI and 5-VII, it appears that the main parameters characterizing 

the one sided PSD function in Eq.(5.1) should be more appropriately modelled as non-

deterministic quantities. Notice that, based on the statistical analysis of the selected 

accelerograms, the parameters pertaining to low seismicity regions (Type 2, Table 5-IX) 

exhibit larger fluctuations around the midpoint value, as can be readily inferred by comparing 

the normalized deviation amplitudes listed in Table 5-VII and Table 5-IX. Furthermore, it is 

worth emphasizing that, for both Type 1 and Type 2 regions, the variance 
2

gU
  is affected by 

a very high degree of uncertainty. Alternative methods for the statistical analysis of the 

recorded data could be applied to obtain tighter ranges of variability. 
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Table 5-VI Main characteristics of selected accelerograms for Type 1 regions. 

 LB UB mid dev/mid MV SD skew kurt 

5 95  [s]t −  3.690 19.470 11.580 0.681 10.894 3.850 0.144 2.426 

[Hz]N  1.704 13.980 7.842 0.783 6.268 2.651 1.329 4.287 

[Hz]P  4.158 20.858 12.508 0.668 10.370 3.664 1.077 3.879 

2 2 4m /s
gU

  
 

 0.010 2.062 1.036 0.990 0.181 0.420 3.741 16.392 

 0 rad/s  10.708 87.838 49.273 0.783 39.380 16.654 1.329 4.287 

 0 rad/s  6.216 36.583 21.399 0.709 18.644 6.788 1.147 3.897 

 

 

 

Table 5-VII Main characteristics of selected accelerograms Type 2 regions. 

 LB UB mid dev/mid MV SD skew kurt 

5 95  [s]t −  0.805 15.355 8.080 0.900 4.576 2.788 1.564 5.729 

[Hz]N  3.598 23.022 13.310 0.729 8.921 3.234 1.145 5.398 

[Hz]P  5.021 25.036 15.028 0.666 12.439 3.195 0.768 4.105 

2 2 4m /s
gU

  
   0.005 2.791 1.398 0.996 0.114 0.309 6.688 52.669 

 0 rad/s  22.606 144.649 83.628 0.729 56.053 20.320 1.145 5.398 

 0 rad/s  9.710 47.102 28.406 0.658 23.202 6.281 0.740 3.682 
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Table 5-VIII Main characteristics of selected accelerograms for Type 1 regions evaluated through the 

iterative application of the Chauvenet’s Criterion. 

 LB UB mid dev/mid MV SD skew kurt 

5 95  [s]t −  5.025 19.470 12.248 0.598 12.523 3.883 -0.004 2.252 

[Hz]N  3.746 7.802 5.774 0.351 5.591 1.166 0.192 2.031 

[Hz]P  6.006 11.406 8.706 0.310 8.955 1.629 -0.132 1.672 

2 2 4m /s
gU

  
 

 0.010 0.092 0.051 0.804 0.036 0.028 0.958 2.457 

 0 rad/s  23.534 49.024 36.279 0.351 35.127 7.327 0.192 2.031 

 0 rad/s  11.145 20.899 16.022 0.304 16.442 2.897 -0.240 1.582 

 

 

Table 5-IX Main characteristics of selected accelerograms for Type 2 regions evaluated through the 

iterative application of the Chauvenet’s Criterion. 

 LB UB mid dev/mid MV SD skew kurt 

5 95  [s]t −  1.040 8.215 4.628 0.775 4.084 1.713 0.482 2.553 

[Hz]N  3.766 15.505 9.636 0.609 9.212 2.750 0.164 2.343 

[Hz]P  5.021 20.444 12.733 0.606 12.825 2.869 0.158 2.728 

2 2 4m /s
gU

  
   0.005 0.104 0.054 0.908 0.037 0.025 0.928 2.991 

 0 rad/s  23.661 97.423 60.542 0.609 57.881 17.278 0.164 2.343 

 0 rad/s  9.710 38.062 23.886 0.593 24.065 5.718 0.186 2.514 
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5.4 Imprecise power spectral density function 

5.4.1 The interval model 

The probabilistic approaches require a wealth of data, often unavailable, to define the 

probability distribution density of the uncertain parameters. It has recently been recognized 

that when crucial information on a variability is missing, it is not good practice to model it as 

a probabilistic quantity [Moens and Vandepitte 2005]. In this section the above described 

uncertainties affecting the PSD function of ground motion acceleration are modelled via 

interval analysis [Moore 1966, Moore et al. 2009], which may be viewed as the most popular 

among non-probabilistic approaches for uncertainty treatment. According to this model, the 

generic parameter characterizing the PSD function in Eq.(5.1) is described as an interval 

variable defined by its LB and UB or, alternatively, by the midpoint and deviation amplitude, 

whose values are determined by statistically analysing the set of recorded accelerograms (see 

Tables 5-VIII and 5-IX). In the framework of the so-called Improved Interval Analysis via 

Extra Unitary Interval (IIA via EUI) [Muscolino and Sofi 2012], an interval variable 
I
ix  can 

be defined as follows: 

 
mid, mid, ˆ, (1 ) (1 )I I I

i i i i i i i ix x x x x e  =  + = + 
 

 (5.8) 

where the symbols ix  and ix  denote the LB and UB of the interval, respectively; the apex I 

characterizes the interval variables;  ˆ 1,1I
ie = −  is the so-called EUI, associated with the i-th 

interval variable [Muscolino and Sofi 2012]. In Eq.(5.8), mid,ix  and i  are the midpoint 

value (or mean) and the normalized deviation amplitude (or radius) of 
I
ix , given, respectively, 

by:  

 mid, ;  
2

i i

i

x x
x

+
=  (5.9) 

 
mid,

0
2

i i i
i

i

x

x

 


 −
 = =   (5.10) 
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where ( ) / 2i i ix x x = −  is the deviation amplitude of 
I
ix . Notice that i  represents the 

deviation amplitude (or radius) of the dimensionless interval fluctuation ˆI I
i i ie =   around 

mid,ix  such that 1i  . 

In the framework of interval symbolism, a generic interval-valued function f and a generic 

interval-valued matrix function A of the interval variables 
I
i , ( )1,2,...i =  or I

j  

( )1,2,...j =  and of classical, not interval, quantities kb  ( )1,2,...k =  and c  ( )1,2,...=  will 

be denoted in equivalent form, respectively, as: 

 1 2 1 2 1 2 1 2 1 2 1 2( , , ) ( , , , , ); ( , , ) ( , , , , ).I I I I I If b b f b b c c c c    A A  (5.11) 

 

5.4.2 Interval PSD function 

The PSD function introduced in Eq.(5.1) depends on three parameters: the predominant 

circular frequency, Ω0; the circular frequency bandwidth 0 ; and the variance, 
g

2  
U

 . In this 

section, according to the results reported in Tables 5-VIII and 5-IX, these parameters are 

treated as interval variables in the framework of the IIA via EUI [Muscolino and Sofi 2012]:  

 

( )

0 0 0

0 0 0

2 2 2

g g g g g g

0 0 0 0,mid 0,mid

0 0 0 0,mid 0,mid

2 2 2 2 2

,mid ,mid

ˆ, (1 ) (1 );

ˆ, (1 ) (1 );

ˆ, (1 ) (1 ).
U U Ug g

I I I

I I I

I
I I

U U U U U

e

e

e

  

  

 

      

      

  
  =   =  + =  + 
 

 = = + = + 
 

 = = + = + 
 

 (5.12) 

The midpoints, 0,mid , 0,mid  and 
g

2

,midU
 , and the normalized deviation amplitudes, 

0
,  

0 , and 2

Ug


 , are herein assumed equal to those listed in the fourth and fifth columns of 

Tables 5-VIII and 5-IX for Type 1 and Type 2 regions, respectively. Under this assumption, 

the PSD function representative of accelerograms recorded in soils with specific geotechnical 

characteristics is consistently modelled as an interval function. This entails that the well-

established seismic spectra, with deterministic parameters proposed in literature, provide only 
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indicative models of recorded accelerograms in seismic areas which may differ from the 

actual ones. Note that, since the PSD function in Eq. (5.1) depends linearly on 
g

2( )I
U

 , this 

parameter could be set a posteriori as a function of site seismic hazard or as a function of the 

expected peak ground acceleration (PGA). Relying on this observation, the following 

expression of the interval extension of the PSD function given in Eq.(5.1) is assumed:  

 ( ) ( )
g g g g

2 2
0 0; , , ( ) ( )I I I I I

U U U U
G G       (5.13) 

with 

 ( ) ( )
( )

( )

( )
( )

g g

4
2

( )
0 0 0 0 002 4

2 4
; , , ,

I
LI I I I CP I I

U U
I I
H L

G G G


     

   

  
  

  =   
  + +
  

 (5.14) 

denoting the interval PSD function of the unit variance process 

g g0 0 0 0( ) ( ; , ) ( ; , , ) /I I I I I I I
g g g U U

U t U t U t     =  . The interval quantities appearing in Eq. 

(5.14) are defined as follows: 

 ( )0 0 0 0 0 0 0 0 0 0, ; ( ) 0.1 ; ( , ) 0.8 .I I I I I I I I I I I
H H L L            =    =  +  (5.15) 

For illustration purposes, Figures 5.7 (a,b) show the realizations of the imprecise PSD 

function 
g
( )I

U
G   (see Eq.(5.14)) pertaining to the extreme values of the interval parameters 

0Ω
I

 and 0
I

  along with the nominal spectrum for Type 1 and Type 2 seismic actions, 

respectively. The nominal PSD function is evaluated by assuming the three parameters of 

Eqs. (5.13) and (5.14) simultaneously equal to their mid-point value. 

Notice that imprecision causes a significant variation of the PSD function. In particular, 

for Type 2 areas, the degree of uncertainty affecting the predominant circular frequency, 0Ω
I
, 

and the circular frequency bandwidth, 0
I

 , is much larger than the one pertaining to Type 1 

spectrum. This entails that seismic excitation may have the highest power content over quite 

different ranges of frequencies depending on the value of the uncertain parameters. 
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Figure 5.7 Realizations of the imprecise PSD function 
g

( )I
U

G   of ground motion acceleration 

(see Eq. (5.14)) for different values of the uncertain predominant circular frequency Ω0 and 

circular frequency bandwidth ρ0: a) Type 1 regions (see Table 5-VIII); b) Type 2 regions (see 

Table 5-IX). 

 

 

5.5 Bounds of interval fractiles 

In the context of structural safety assessment, a very meaningful quantity, able to provide a 

direct design provision, is the so-called fractile of order p, i.e. the response level which has a 

specified probability, p, of not being exceeded during the observation time. 

To do this, let us introduce a generic response quantity of interest, ( )I

hY t  (e.g., 

displacement, strain or stress at a critical point). Since the PSD function is imprecise and 
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modelled as an interval function, the extreme value random process, over the time interval 

[0,T], has an interval nature and is mathematically defined as: 

 ( ) ( ) ( )g gmax, max, 0 0 0 0
0

; , , max ; , ,I I I I I I I
h h hU U

t T
Y T Y T Y t   

 
  =   (5.16) 

where the symbol |·| denotes absolute value.  

In the framework of stochastic dynamics, the interval fractile of order p can be directly 

estimated by the interval extension of the approximate analytical expression which holds in 

the context of the Vanmarcke [1975 and 1972] assumption of out-crossings in clump i.e. 

[Muscolino et al. 2016]:  

 ( ) ( ) ( )
g g,max ,max

2 2
0,, , ( ) ( ) ,

hh h h

I I I I I I
Y Y Y YU U

Z p T p T Z p T   = =  (5.17) 

where ( )
,max

,
h

I
YZ p T  is the interval fractile of order p, purged of 

g

2( )I
U

 , and ( ),
h

I
Y p T  is 

the so-called interval peak factor, which can be defined, according to Vanmarcke [1975 and 

1972], as: 

( ) ( )

( )
( )

( )

g

2
0 0

1.22, 2,

0, 0,

, , ; , , ( )

2 ln 1 exp π ln
π ln π ln

h h

h

h h

h h

I I I I
Y Y U

I I
Y YI

YI I
Y Y

p T p T

T T

p p

   

 


 

  =

    
    = − −    − −       

 (5.18) 

In the previous equations, ( )0, 0, 0 0, ,
h h

I I I
Y Y     ( )1, 1, 0 0,

h h

I I I
Y Y     and 

( )2, 2, 0 0,
h h

I I I
Y Y     are the interval spectral moments [Muscolino and Sofi 2012] of zero-, 

first- and second-order, respectively, of the normalized random process ( ) ( )
g

/I I I
h h U

Y t Y t = , 

given by: 

 ( ), , 0 0

0

, ( )d , 0,1,2
h h h h

I I I I
Y Y Y YG     



  = =  (5.19) 

where ( )
h h

I
Y YG   is the one-sided interval PSD function of the normalized response process 

( ) ( )
g

/I I I
h h U

Y t Y t = , whose PSD function can be defined as follows: 
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 ( )
g

2

1
( ) ,

( )h h h h

I I
Y Y Y YI

U

G G 


  (5.20) 

In Eq.(5.18) 
h

I
Y  is the so-called interval bandwidth parameter of the stationary process 

( ) ( )
g

/I I I
h h U

Y t Y t =  defined as: 

 ( )
 

2

1,

0 0

0, 2,

Re
, 1 .

h

h h

h h

I
YI I I

Y Y I I
Y Y


  

 
  = −  (5.21) 

Since the interval spectral moments, in general, are not monotonic functions of the interval 

parameters affecting the imprecise PSD function, the lower and upper bounds of ( )
,max

,
h

I
YZ p T  

can be evaluated by solving numerically the following constrained minimum and maximum 

problems [Muscolino et al. 2016]: 

 ( ) ( ) 
0 0 0 0

,max ,max 0 0
, 

, min , ; , ;
I Ih hY YZ p T Z b T

 


  
   (5.22) 

 ( ) ( ) 
0 0 0 0

,max ,max 0 0
   , 

, max , ; ,
I Ih hY YZ p T Z b T

 


  
   (5.23) 

Notice that only two uncertain parameters appear in Eqs. (5.22) and (5.23) i.e. 0 0
I   and 

0 0
I  . 

Finally, taking into account Eq.(5.17), the bounds of the interval fractile of order p can be 

derived as follows: 

 ( ) ( )
g,max ,max

2, , ;
h hY YU

Z p T Z p T=  (5.24) 

 ( ) ( )
g,max ,max

2, , .
h hY YU

Z p T Z p T=  (5.25) 

It is worth remarking that the quantity of interest for design purpose is the UB of the interval 

fractile of order p , which describes the worst case scenario. In fact, for the UB of the fractile 

of order p, a higher value of the maximum of the response of interest is exceeded, with the 

same probability, than that in the LB. 
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5.6 Numerical example 

The presented procedure is applied to a single-degree-of-freedom (SDOF) system under 

seismic excitation characterized by the proposed imprecise PSD function (see Eq.(5.14)) with 

interval parameters defined in Table 5-VIII for moderate and high seismicity areas. Under this 

assumption, the normalized one-sided PSD function matrix of the response in terms of 

displacement, ( )IU t , can be written as: 

 
2

0( ) ( ) ( )
g

I I
UU U

G H G  =  (5.26) 

where H0(ω) is the frequency response function FRF function of the SDOF system:  

 0 2 2
0 0 0

1
( )

2i
H 

    
=

− +
 (5.27) 

with ω0 denoting the natural circular frequency of the SDOF system, ξ0 its damping ratio 

herein assumed equal to ξ0=0.05 and 𝑖 = √−1  is the imaginary unity. 

Figure 5.8 a) shows the bounds of the interval fractiles ( )
max

,I
UZ p T  of order p=0.50 

(the median) and p=0.95, purged of 
g

2( )I
U

 , versus the natural vibration period T0 of the 

seismically excited SDOF system for a given value of the modal damping ratio ξ0=0.05. 

Finally, in Figure 5.8 b), the interval fractile ( )
max

,I
UZ p T  multiplied by the square of 

the natural frequency 
2
0  of the SDOF system versus T0 is plotted. The nominal values of 

the aforementioned quantities are also reported. It is recalled that the quantities plotted in 

Figures 5.8 (a,b) play a crucial role in the framework of seismic structural analysis.  
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Figure 5.8 a) Interval fractile ( )
max

,I
UZ p T  and b) ( ) 2

0max
,I

UZ p T   of order p=0.5 and p=0.95 versus the natural 

period of vibration 0T . 

 

 

By inspection of Figure 5.8 a), it is observed that, as expected, the bounds of the interval 

fractiles of order 0.95p =  are larger than the ones of order 0.5p = . Furthermore, the region 

enclosed by the LB and UB becomes wider as the natural period of vibration increases. The 

comparison with the nominal values clearly shows the remarkable influence of imprecision of 

the excitation on safety assessment of structures subjected to earthquake ground motion. 

These results show that the structural performance under imprecise excitation might range 

from very low to very high safety levels. In this regard, it is worth mentioning that the region 

of the interval fractiles ( )
max

,I
UZ p T  (see Eqs. (5.24) and (5.25)), herein not plotted, would be 

much larger due to the high degree of uncertainty affecting the variance of the excitation 
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process 
g

2( )I

U
 . It follows that, further statistical analyses of recorded accelerograms are 

needed to obtain tighter bounds of the interval variance. 
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                                                                                Conclusions 

 

 

Earthquake-resistant design of new structures and evaluation of safety of existing ones 

requires the analysis of their response to the expected seismic excitation. The level of shaking 

produced by an earthquake, for which satisfactory performance is expected, is often referred 

to as a design level of shaking and is described by a design ground motion.  

Seismic ground motions, usually expressed in the form of acceleration time histories, 

provide the basic data for earthquake engineering as they contain information regarding both 

the nature of the wave propagation and the soil characteristics.  

Despite the increasing availability of recorded accelerograms, due to mechanical properties 

and non-linear behaviour of soils, there are situations in which it is not possible to obtain the 

minimum number of spectrum-compatible accelerograms required by seismic codes to carry 

out fully dynamic analysis without applying large scale factors to each record of the set, 

which may distort the recorded accelerogram, leading to unrealistic input motions. In these 

situations, the generation of artificial accelerograms could represent a possible alternative to 

realistically reproduce the seismic excitations. 

 Since stationary artificial accelerograms are usually characterized by an excessive number 

of strong motion cycles and a high energy content, it becomes necessary to develop 

procedures to generate artificial accelerograms which suitably incorporate the large variability 

of the seismological parameters observed in real-life time-histories (i.e. magnitude, site to 

source distance, local site characteristics, etc).  

For conventional earthquake resistant systems, intensity measures such as Arias intensity, 

peak ground acceleration and pseudo-acceleration response spectrum provide important 

information to carry out the seismic analysis and design checks. A brief overview of the main 

information carried by the different engineering measures of the strong ground motions has 

been reported in Chapter 1.  

From the analysis of recorded accelerograms it can be observed that the acceleration 

amplitudes and the frequency content of actual ground motions changes over the duration of 

Conclusions 
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shaking. Thus, because of the inherent non-stationarity of the signals encountered in 

earthquake engineering there is a need for methods implementing joint time-frequency 

analysis algorithms. 

 After an introduction to wavelet analysis, that was originally designed as a tool that could 

eliminate the disadvantages of both traditional Fourier analysis and short time Fourier 

analysis, Chapter 2 focused on the properties of the circular harmonic wavelets through which 

it is possible to exactly reproduce the non-stationary characteristics of a given signal.  

In Chapter 3, the properties of the circular wavelets have been exploited to propose a novel 

wavelet-based method for the generation of fully non-stationary random accelerograms. The 

proposed discrete circular-wavelet transform method, consisting of a phase angle rotation of 

the circular wavelets, allows the generation of the required number of fully non-stationary 

samples without the need of defying the evolutionary power spectral density function of the 

ground acceleration. Because of the inherent uncertain nature of the earthquake, the correct 

choice of the number of bands in which to divide the frequency domain is an important step to 

generate samples with the desired time-variation of amplitude and frequency content. 

A second method for generating samples of a fully non-stationary zero-mean Gaussian 

process, in such a way that the chosen target accelerogram can be considered as one of its 

own samples, has been proposed in Chapter 4. The main advantage of the procedure proposed 

in this Chapter, which is based on the use of the evolutionary spectral model, is that requires 

only the knowledge of the total intensity, number of peaks and zero level up crossings of the 

design earthquake. Specifically, the evolutionary power spectral density (EPSD) function of 

the proposed fully non-stationary model is evaluated as the sum of uniformly modulated 

processes. The EPSD function is defined in each time interval in which the target signal is 

subdivided, as the product of deterministic modulating functions times stationary zero-mean 

Gaussian sub-processes, whose unimodal power spectral density (PSD) functions are filtered 

by high pass and low pass Butterworth filters. In each time interval the parameters of 

modulating functions are estimated by least-square fitting the expected energy of the proposed 

model to the energy of the target accelerogram, while the parameters of PSD functions of 

stationary sub-processes are estimated once both occurrences of peaks and of zero-level up-

crossings of the target accelerogram, in the various intervals, are counted. Therefore, unlike 

the wide variety of methods based on non-stationary random process theory, for the 

application of the proposed method there is no need for sophisticated processing of the 
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recorded motion. It is important to notice that, despite the proposed procedure was presented 

and described with reference to a single target accelerogram, it can be extended to account for 

the variability of the expected ground motion considering the uncertainties inherent to the 

values of the seismic parameters assumed as targets in the generation procedure.  In the last 

part of Chapter 4, the evolutionary spectral model has been modified to obtain the 

compatibility between the generated fully non-stationary accelerograms and a target spectrum. 

Specifically, the reduction of the gap between the mean spectrum of the generated samples 

and the target one has been done through the introduction of a corrective iterative PSD 

function. Depending on the aim to be achieved, the target spectrum can be a response 

spectrum or a Fourier spectrum therefore, to achieve the desired spectrum-compatibility, the 

procedure is particularized using two different corrective PSD function terms. 

The examination of the characteristics of recorded accelerograms plays a key role in the 

field of earthquake engineering. In the Chapter 5, the analysis of a large number of 

accelerograms recorded on rigid soil deposits has shown that: i) within the strong-motion  

duration, the number of zero level up-crossings is almost constant, so that the records can be 

reasonably considered as samples of zero-mean stationary Gaussian processes, fully 

characterized by a PSD function; ii) the accelerograms exhibit different spectral contents even 

if they are recorded in the same soil category, so that the main parameters of the pertinent 

PSD function vary from one accelerogram to another. As a consequence, in order to provide a 

reliable characterization of future seismic events on rigid soil deposits, the spectral parameters 

should be more appropriately treated as uncertain quantities leading to an imprecise PSD 

function of seismic excitation. Based on these results, an imprecise model of the PSD function 

of ground motion acceleration has been derived relying on the spectrum able to catch the 

frequency content of recorded accelerograms proposed in Chapter 4. Specifically, the three 

main parameters characterizing the novel spectral model i.e. the predominant circular 

frequency, the circular frequency bandwidth and the variance of the process, have been 

modelled as interval variables whose bounds have been estimated by analysing a large set of 

accelerograms recorded on rigid soil deposits. Such analysis has shown that the power 

spectrum representative of accelerograms recorded in soils with specific geotechnical 

characteristics is more appropriately described by an interval function. 
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 The well-established seismic spectra with deterministic parameters turn out to provide 

only indicative models of recorded accelerograms in seismic areas which may differ to a large 

extent from the actual spectra. 
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