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Abstract: The most efficient energy management strategies for hybrid vehicles are the “Optimization-
Based Strategies”. These strategies require a preliminary knowledge of the driving cycle, which is
not easy to predict. This paper aims to combine Worldwide Harmonized Light-Duty Vehicles Test
Cycle (WLTC) low section short trips with real traffic levels for vehicle energy and fuel consumption
prediction. Future research can focus on implementing a new strategy for Hybrid Electric Vehicle
(HEV) energy optimization, taking into account WLTC and Google Maps traffic levels. First of all,
eight characteristic parameters are extracted from real speed profiles, driven in urban road sections in
the city of Messina at different traffic conditions, and WLTC short trips as well. The minimum distance
algorithm is used to compare the parameters and assign the three traffic levels (heavy, average, and
low traffic level) to the WLTC short trips. In this way, for each route assigned from Google maps,
vehicle’s energy and fuel consumption are estimated using WLTC short trips remodulated with
distances and traffic levels. Moreover, a vehicle numerical model was implemented and used to test
the accuracy of fuel consumption and energy prediction for the proposed methodology. The results
are promising since the average of the percentage errors’ absolute value between the experimental
driving cycles and forecast ones is 3.89% for fuel consumption, increasing to 6.80% for energy.

Keywords: HEV; WLTC; Google Maps traffic levels; driving cycles; passenger car; numerical model

1. Introduction

One of the most Hybrid Electric Vehicle (HEV) advantages is the possibility to optimize
the use of energy storage during the trip using the Energy Management System (EMS).
Zhou et al. [1] categorize EMSs in:

1. Rule-Based Strategies (RBSs): These strategies define a local optimization of the
powertrain’s operating points. They use only the battery State of Charge (SOC)
knowledge and the driver’s load signal [2] to manage the vehicle’s power. RBSs
are easy to implement and require low computational cost, but energy management
efficiency is modest. One example of RBS is presented by Bagwe et al. [3] and Wu
et al. [4].

2. Optimization-Based Strategies (OBSs): These strategies define a global optimization of
the powertrain’s operating points. They optimize energy management by considering
the car’s whole Driving Cycle (DC), so the optimization depends on both internal and
external parameters of the vehicle. The OBS’s energy management efficiency is higher
than RBS; on the other hand, they require a high computational cost, a significant
complexity, and the prediction of DC. One example of OBS is presented by Fang
et al. [5] and Wu et al. [6].

The scientific community is proposing numerous techniques for predicting the driving
cycle. Wang et al. [7] summarize the prediction techniques in three categories:

1. Statistic and Cluster Analysis based Recognition: this category collects the techniques
that use the historical and current vehicle’s speed profile parameters to predict future
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conditions. The techniques differ for the number of the analyzed parameters (for
example, sixty-two presented by Ericson et al. [8], eleven by Xi et al. [9], and three by
Chen et al. [10]), for the length of the prediction time window, and for parameter’s
analysis methods (Bayesian classifying algorithm, decision tree, fuzzy clustering anal-
ysis, neural network). Neural Network (NN) is the most common method according
to Wang et al. [7], and it is used by Langari et al. [11], by Jeon et al. [12] and by Han
et al. [13].

2. Markov Chain-Based Predictive Control: this category collects the techniques that use
the current vehicle’s state to predict future conditions. All the techniques are based
on the stochastic Markov chain prediction process but differ for the optimization
algorithm. Some examples of optimization algorithms are the Pontryagin Minimum
Principle (used by Liu et al. [14]), the Stochastic Dynamic Programming (used by
Johannesson et al. [15] and by Lin et al [16]), Genetic Fuzzy Logic control (used by
Chaofeng et al. [17]), and NN (used by Shen et al. [18]).

3. Global Positioning System (GPS) and Intelligent Transportation Systems (ITS) based
prediction: this category collects the techniques that use the historical and current
vehicle’s parameter, GPS, and ITS data to forecast the DC.

Numerous researches belong to the third category. Zhang et al. [19] use prior knowl-
edge of the car’s route altimetry profile (provided by GPS) to optimize the power split
between energy sources in an HEV. Qiuming et al. [20] use ITS data to assign a speed profile
to a specific road section. The speed profile depends on the traffic light distribution, the
average speed of the vehicle’s flow-rate, and the historical traffic state data. He et al. [21]
use a dataset similar to Qiuming et al. [20] assigning a driving cycle in a freeway road
section. The main difference is the possibility to modify the speed profile according to
the car’s GPS information. Zhang et al. [22] use data similar to He et al. [21], adding the
near field vehicles’ GPS information. A NN makes up the DC and uses it to predict each
vehicle’s energy expenditure for a ten-second length time window.

The third category also includes some articles that consider the Worldwide Harmo-
nized Light-Duty Vehicles Test Cycle (WLTC). Hu et al. [23] develop an EMS optimization
based on speed profile, traffic status, and road gradient knowledge. They assign to the
WLTC a road grade profile and a traffic state according to a threshold velocity. It is possible
to evaluate the EMS performance assuming that the vehicle under test will be in this condi-
tion. Yavasoglu et al. [24] trained a neural network to predict an electric vehicle’s actual
residual autonomy. The autonomy estimation is based on GPS (itinerary, road gradient
profile) and ITS (traffic) information. If GPS and ITS information are not available, the
neural network predicts the remaining range based on 19 training set parameters extracted
from the WLTC. The NN compares the training set and the car’s instantaneous parameters
value to estimate the remaining autonomy.

Considering all the research, it is clear that the EMSs can forecast the vehicle’s energy
expenditure and fuel consumption only if many data are available. It means the use of
sensor-equipped cars and cities, which is not always easy to achieve.

This paper investigates the possibility to predict the amount of fuel and energy
consumed by a vehicle using a limited number of parameters and sensors to achieve
a simple, easily implemented, and cost-effective prediction. The starting point of the
research was the assumption that vast majority of the population and new generation
vehicle can easily access GPS software (such as Google Maps). Google Maps (Mountain
View, CA, USA) can provide information about the route’s altitude, the distance to be
driven, and the intensity of traffic. Its algorithm gives easy to read GPS and ITS data. The
second assumption was that WLTC collects speed profiles made by worldwide drivers and
performed in different traffic conditions, making it universal.

This paper aims to combine WLTC low section short trips with real traffic levels for
vehicle energy and fuel consumption prediction.

The first step was to drive road sections in the city of Messina, recording the traffic
information and speed profile provided by Google Maps (GM) and Trackaddict (HP Tuners,
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Buffalo Grove, IL, USA). Only a smartphone was needed to carry out the data collection
campaign, which was, therefore, extremely economical. Three databases were created
containing the speed profiles collected under the same traffic condition (red in GM for high
traffic intensity, yellow in GM for medium traffic intensity, and green in GM for low traffic
intensity). Each database was filtered to compare the experimental speed profiles with the
WLTC’s short trips. Eight parameters were extracted from profiles of each database and
from the individual short trips that make up the WLTC low section. Through the minimum
distance calculation, parameters for each database were compared with short trips’ ones.
The algorithm assigned the WLTC’s short trips the traffic level that best suits them. By
substituting GM’s road sections with the WLTC’s short trips, respecting the traffic levels
and distances, the DC used to forecast fuel and energy was obtained. A dynamic numerical
model of a passenger car was created, using the potential of the AVL Cruise-M™ software
(AVL, Graz, Austria), to evaluate the forecasting accuracy. The model setup and validation
were based on literature data.

Simulations were conducted to evaluate the quality of the prediction method. The
results highlight that the methodology forecasts fuel consumption and energy expenditure
with acceptable errors, considering the small amount of information it requires. The GM
algorithm and WLTC have worldwide nature so the study suits all cities without modifying
or adding infrastructure.

2. Vehicle Mathematical Model and Validation

A dynamic numerical model was developed in the AVL Cruise-M™ environment to
solve the vehicle’s longitudinal motion equation. Douglas et al [25] describe a 1.6 L four-
cylinder spark-ignition engine (SI) engine, Front-Wheel Drive, with a five-speed manual
gearbox vehicle. This paper refers to Douglas et al. [25] for the model implementation and
validation of results. Table 1 summarizes the engine specifications and the vehicle data
used in the simulations.

Table 1. Vehicle and engine specifications.

Vehicle Data

Kerb mass + 75 kg driver 1405 kg
Wheelbase 2.6 m

Front and Rear track 1.48 m
DCofG to front axle 0.95 m
HCofG to ground 0.58 m

Frontal Area 2.01 m2

Drag Coeff 0.325
Air Density 1.205 kg/m3

Wheel and tire front 0.2978 m
Tire drive efficiency 0.95

Front and rear wheel inertia 0.74 kg·m2

Gearbox Data

Gear 1 Ratio 3.583
Gear 2 Ratio 1.847
Gear 3 Ratio 1.343
Gear 4 Ratio 0.976
Gear 5 Ratio 0.804

Final Drive Ratio 4.052

Engine Data

CR 10
Cylinders 4

Bore 76 mm
Stroke 88 mm

Swept volume 1.5968 dm3

Idle speed 800 rpm
Engine inertia 0.1224 kg·m2

Fuel S.G. 0.743
Calorific Value 435,000 kJ/kg
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The model calculates the thrust that the engine must provide to perform the driving
cycle and to overcome the resistance’s forces to motion, which are the aerodynamic drag,
the rolling resistance, and the gradient loading.

Table 1 contains the data to calculate the inertia and the drag force. For the calculation
of the tire rolling resistance coefficient, the method proposed by Cooper [26], expressed in
Equation (1), was taken into account.

µ = 0.0085 + (0.018/p) + (1.59·10−6/p)·V2 If V < 165 km/h
µ = (0.018/p) + (2.91·10−6/p)·V2 If V > 165 km/h

(1)

where µ is the rolling resistance coefficient, p is the tire pressure expressed in bar and V is
the vehicle velocity expressed in km/h. Douglas et al. [25] report the Engine Brake-specific
fuel consumption (BSFC) map and the full load curve used to determine the vehicle’s
performance. The driver, modeled as PI control, generates a load signal to request traction
proportional to the full load torque curve, in relation to the actual engine speed. BSFC
map and the maximum torque curve of the engine are shown in Figure 1. The BSFC map
numerical values are extracted by using “WebPlotPigitizer” software (Pacifica, CA, USA)
and Table A1 in Appendix A shows them.

Figure 1. Engine’s full load torque and Brake-specific fuel consumption (BSFC).

The map presents the full load engine’s torque curve in Nm and the fuel consumption
in g/kWh. Consumption was converted into g/s to implement it quickly in the AVL
Cruise-M™ workspace, by the Equation (2).

ṁfuel = (BSFC·NEng·TEng)/(3.6 × 106) (2)

where NEng is the engine’s speed, TEng is the engine’s torque, and BSFC represents the
consumption at the operating point considered.

Figure 2 shows all the AVL Cruise-M™ library’s components that build up the model
and their links.



Energies 2021, 14, 1548 5 of 16

Figure 2. Vehicle’s plan model on the AVL Cruise-M™ workspace.

Douglas et al. [25] present two experimental tests performed by the reference car. The
first test measures the vehicle’s maximum acceleration performance in 0–100 km/h speed
range. The second test measures the vehicle’s fuel consumption during the New European
Driving Cycle (NEDC)test procedure execution. This study refers to these experimental
data for numerical model validation.

2.1. Maximum Acceleration

The first simulation highlights the vehicle’s performance in the acceleration from a
standing start to 100 km/h. Simulation evaluates the vehicle’s maximum speed too. The
shifting strategy was set to perform the gear upshifting at 6700 rpm of engine speed, with a
gear change duration of 0.5 s. The launching speed was set to be 1000 rpm as performed in
the experimental test. For all simulation time, except during the gear change, the driver’s
load signal was equal to 100%. The simulated results are very similar to the experiment
presented in Douglas et al. [25]. The shift from 1st to 2nd gear occurring at 4.315 s for
the simulated vehicle and 4.10 s for the real one (5.24% of percentage error), the upshift
from 2nd to 3rd occurs at 10.395 s, 0.2 s delay compared to the experimental data (2.92% of
percentage error). Percentage error decreases at the 100 km/h (2.58%) and at the maximum
velocity’s evaluation (−1.01%). Figure 3 shows the correlation achieved between simulated
and measured data. Table 2 collects the parameters considered for the validation of the
model in this case.

Table 2. Results in maximum acceleration test.

Parameter Simulated Experimental Abs Error

1st–2nd 4.315 s 4.100 s 0.215 s
2nd–3rd 10.395 s 10.100 0.295 s

0–100 km/h 11.695 s 11.400 0.295 s
Max velocity 190.05 km/h 192 km/h 1.95 km/h

From comparison with experimental data, it is possible to assert that the model
describes the real vehicle with an acceptable error. Only between 0 s and 1.8 s the simulated
results do not closely mimic that found in the experimental test, due probably to a different
clutch release. The lack of data on clutch management makes it impossible to compare the
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model and the real car in the starting phases. Inertias, efficiencies, and resistance forces of
the numerical model can adequately describe the real vehicle.

Figure 3. Maximum acceleration comparison between measured and simulated results.

2.2. NEDC Test Procedure

Following the workflow presented by Douglas et al. [25], the NEDC test procedure
was simulated to validate the vehicle’s fuel consumption and PI control setting. The
procedure defines the gear-shifting strategy. The NEDC requires a cold start to describe
the vehicle’s performance adequately. Still, the Engine BSFC map was available only for
steady-state operating temperature, so differences were expected from experimental tests
in the “cold” region of the NEDC. To overcome this problem, Douglas et al. [25] suggest
applying the corrections described in Equation (3).

ṁfuel cold = 4·ṁfuel hot If 0 s < t < 80 s
ṁfuel cold = 1.4·ṁfuel hot If 80 s < t < 230 s

(3)

At 230 s, the engine coolant temperature is almost 85 ◦C, which is the engine’s average
running temperature. Moreover, the fuel consumption lower limit was set to 0.156 g/s to
emulate the car’s idle consumption. Figure 4 shows the correlation between measured and
simulated fuel consumption, both instantaneous and in the accumulative form.

The fuel consumed at the end of the procedure is quite similar in both situations, with
711.00 g for the experimental data and 706.56 g for the simulation one. The percentage
error is −0.62% that confirms the quality of the model. Simulated and experimental
instantaneous fuel consumption are quite similar too, except for the first 230 s where the (3)
is operating. Figure 5 shows the correlation between the NEDC velocity profile and vehicle
velocity. PI control can manage the clutch, brake, and accelerator pedal properly.
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Figure 4. Fuel consumption in New European Driving Cycle (NEDC).

Figure 5. Speed profile and actual gear in simulation.

3. Data Collection and Processing

The same datasets presented by Previti et al. [27] were used in this study. Data
collection starts with traveling road sections within the city of Messina. During the routes’
execution, the TrackAddict application recorded the vehicle’s speed profile while Google
Maps (GM) application showed the level of service of the trip. The measurement campaign
allowed the creation of three experimental DCs databases driven in three traffic conditions:
High Traffic level (red in GM), Medium Traffic level (orange in GM), and Low Traffic level
(green in GM).

Because the final goal is the fuel and energy forecasting comparing, through the use
of WLTC, it was necessary to filter the experimental datasets following the same procedure
used during the standard cycle’s creation.

Tutuianu et al. [28] discuss the data filtration procedure, which consists of splitting the
DCs in idling and short trips. Idle periods are the portions of the driving cycle where the
speed is zero. Short trips are the portions contained between two idle periods and where
the speed is non-zero, except in the first and last instants of time.

Authors continue applying elimination criteria to the short trips:
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• Elimination of short trips with a duration smaller than ten seconds.
• Elimination of short trips with a maximum speed smaller than 1 m/s.
• Elimination of short trips with acceleration higher than 4 m/s2 and smaller than

−4.5 m/s2.

After the filtering process, the databases consist of 22 short trips for the Low Traffic
level database, 25 short trips for the Medium Traffic level database, and 18 short trips for
the High Traffic level database. The 65 short trips represent the speed profiles in different
traffic conditions in the city center of Messina. The database containing idle periods was
not considered further. This paper aims to create a DC that HEVs’ EMS can use to predict
energy and fuel consumption. Since HEVs are equipped with start and stop systems, the
power and fuel consumption during idle times are zero.

For each ST belonging to each database, the following quantities were calculated:

1. Duration.
2. Traveled distance.
3. Maximum speed.
4. Arithmetic mean of the speed.
5. Distance weighted average of speed.
6. Distance weighted average of positive acceleration.
7. Distance weighted average of negative acceleration.
8. Relative Positive Acceleration (RPA).

Equation (4) gives arithmetic mean of the speed for each short trip.

Vm = ∑ vi/nvi (4)

Being vi the instantaneous velocity of short trip, expressed in m/s, and nvi the number
of measurements. Equation (5) gives the distance-weighted average of speed.

Vw = ∑ vi·(di − di−1)/∑(di − di−1) (5)

The subscript i represents the time instant and di the distance traveled at the corre-
spondent time instant. Distance weighted average acceleration is given by Equation (6).

aw = ∑ ai·(di − di−1)/∑(di − di−1) (6)

In which ai represents the acceleration at the given time instant and the term (di − di−1)
is the partial distance; the equation was applied to both positive and negative accelerations.
Equation (7) gives the value of RPA.

RPA = [
∫

(vi·ai
+)·dt]/x (7)

With being ai
+ the positive acceleration and x being the total trip distance.

The eight parameters were extracted from the five short trips of the low section of the
WLTC too. Only the low section was considered because experimental speed profiles were
only available for urban routes.

The parameters were processed using the method of minimum distances already ap-
plied by Brusca et al. [29], in order to assign each short trip of the WLTC to a corresponding
traffic level. The procedure consists of calculating the geometrical centroid for each traffic
level class considering the parameters as geometrical coordinates. In this way, each short
trip of the WLTC, with its corresponding parameters, was assigned to the most appropriate
class by considering the shortest Euclidean distance from its centroid.

The proposed method assigned the first and the third ST of WLTC as medium traffic
level, the second one as low traffic level, and the fourth and the fifth as high traffic level.

Figure 6 shows the workflow followed, from raw data to the assignment of traffic
levels to the WLTC low section.
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Figure 6. Data acquisition, filtering, and analysis process.

4. Simulations

Section 2 describes the numerical model used for the simulation. In the maximum
acceleration validation procedure, the shifting strategy was defined by the experimental
tests, while in the NEDC simulation the standard procedure provided the shift profile. A
gear-change profile was not available for real driving cycles, so a shifting strategy had to
be defined to conduct the simulations. The new strategy performs the gear upshifting at
3000 rpm of engine speed and the gear downshifting at 1250 rpm. The strategy allows
obtaining a good range of operating points and efficiency, considering that the lowest BSFC
values are between 2000 and 3000 rpm of engine speed [30]. The gear change duration
remained 0.5 s, as well as the launching speed remained at 1000 rpm. The fuel consumption
and energy demand were set to zero in the idling period, assuming that the car is equipped
with a Start and Stop system, which is common in new-generation cars.

The forecasting method refers to Google Maps information: the distance to drive and
the trip’s traffic status once defining the route’s starting and arrival point. The 65 short trips
discussed in the previous chapter were reprocessed to replicate GM information and real



Energies 2021, 14, 1548 10 of 16

drive condition. The STs were arranged randomly, using the MatLab (Mathworks, Natick,
MA, USA) function “rand”, and organized into groups with ten ST. The arrangement
led to the creation of six driving cycles consisting of 10 short trips and one driving cycle
consisting of 5 short trips. Lastly, all the short trips, organized according to an increasing
traffic level (from low to high traffic), formed the eighth driving cycle. For the eight driving
cycles obtained, the distance covered and traffic level distribution were known in each
time instant that is the information provided by Google Maps. The eight DCs were used
to obtain the reference fuel and energy consumption value during the execution of road
routes in Messina.

The knowledge of the distance to drive in different traffic conditions made it possible
to construct the driving cycle to be used for fuel and energy prediction. It was sufficient to
reiterate or to interrupt the WLTC short trips, respecting the assigned traffic status, until
they cover the same distance as real ones.

By having the eight real driving cycles and the eight constructed ones, it was possible
to calculate the real and predicted fuel consumption and energy expenditure. First, a simu-
lation was conducted in which the driver performed the experimental cycles, evaluating
the reference fuel and energy value. In the second simulation, the driver performed the
driving profiles obtained from the repetition of the WLTC short trips and provided the
predicted fuel and energy values. Table 3 shows the results of simulations. The first column
contains the driving cycle reference number (one to eight), the second column contains the
level of service distribution of each ST, and the third column shows the distance traveled
in each DC. The fourth and the fifth columns contain the prediction of energy and fuel
consumption accuracy, as percentage error, evaluated by Equations (8) and (9).

ε% energy = (energywltc-energyexp)/energyexp·100 (8)

ε% fuel = (fuelwltc-fuelexp)/fuelexp·100 (9)

Table 3. Results. Each square is a short trip with a traffic level: red for high, orange for medium, green for low.

DC Number Short Trips and Traffic State Distance (m) Energy tot.
Error (%)

Fuel tot. Error
(%)

1 7387 9.27 4.42

2 4317 8.75 9.33

3 9313 8.93 4.38

4 1704 1.44 −3.07

5 4077 10.39 −0.32

6 4018 10.33 1.45

7 3241 −3.00 −3.85

8 (TOT) 34,057 −2.36 −4.11

The average of the absolute values of percentage errors is 3.89% for fuel consumption,
increasing to 6.80% in the energy forecast. In cycle number 8, which covers approximately
34 km, the error in energy expenditure is relatively low (−2.36%) and the fuel consumption
error is similar to the average. In cycle 4, where the traveled distance is around 2 km, the
prediction percentage absolute error decrease and it is lower than the average (1.44% for
energy, 3.07% for fuel). The results suggest that on trips where the distance traveled at
low traffic levels is predominant, the proposed methodology tends to underestimate the
real values (cycles 7 and 8), but the errors remain low. In trips where distances covered at
high traffic intensity are predominant, the methodology tends to overestimate the value of
energy and fuel consumed.

The results are even more relevant considering that the proposed methodology:
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• It only needs as input data the GM’s information; no other device or software is strictly
necessary. This aspect makes the methodology extremely economical.

• The algorithm regulating the traffic levels shown by GM is unique and valid in all city
centers. This aspect makes the methodology universal.

• The WLTC considers the driving styles of drivers worldwide so that the methodology
can be extended to any car driver.

• The prediction accuracy can increase by considering other input information, such as
the traffic lights distribution or typical driver’s gear shifting style. The addition of this
information requires the use of appropriate infrastructure and sensors, which runs
counter to the purpose of the study.

5. Conclusions

The results are promising since the average of the absolute values of percentage errors
between the experimental driving cycles and forecast ones is 3.89% for fuel consumption,
increasing to 6.80% for energy. The smallest percentage error in energy assessment, in abso-
lute value, is presented in cycle number four (1.44%); for fuel assessment in cycle number
five (0.32%). Cycle 5 also presented the highest percentage error in energy assessment
(10.39%), while cycle 2 shows the worst fuel assessment (9.33%). The results highlight
that the method can predict the considered quantities with an acceptable error (−2.36%
relative percentage error for energy, −4.11% relative percentage error for fuel) in long drive
city trips. The technique is easy and cheap to implement in a vehicle’s EMS. The input
data are universal, so they can be extended to all cities and lend themselves to the use of
additional data to improve prediction accuracy. The results show a reasonable accuracy of
fuel consumption and energy expenditure prediction related to the methodology detail and
complexity. This study can be the basis for further studies. The possibility of predicting the
energy expenditure and fuel consumption of a vehicle allows the development of energy
management systems for HEVs which may:

- Manage the energy reserve to allow full electric travel to drive in Limited Traffic Zone
(ZTL) or local air pollution minimization.

- Increase the life cycle of energy reserves (usually batteries) by reducing maintenance
costs and disposal problems.

- Optimize the efficiency of powertrain use by reducing fuel consumption and pollutant
emissions.
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Appendix A

Table A1 collects the numerical values of BSFC map used to evaluate fuel consumption.
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Table A1. BSFC map numerical values function of engine speed and engine torque.

Speed
(Rpm)

Torque
(Nm)

BSFC
(g/kWh)

Speed
(Rpm)

Torque
(Nm)

BSFC
(g/kWh)

Speed
(Rpm)

Torque
(Nm)

BSFC
(g/kWh)

849.0 14.3 600 3048.7 47.1 320 3503.0 85.0 265
971.2 13.8 600 3170.9 47.3 320 3620.8 86.1 265

1093.4 13.9 600 3293.1 47.6 320 3735.2 92.4 265
1215.6 13.8 600 3415.3 48.0 320 3859.6 94.8 265
1337.8 13.6 600 3537.5 48.7 320 3981.8 95.9 265
1460.0 13.4 600 3659.7 49.9 320 4104.1 96.9 265
1582.2 13.4 600 3781.9 51.6 320 4226.3 97.6 265
1704.5 13.2 600 3904.1 52.1 320 4348.5 98.3 265
1826.7 13.2 600 4026.3 51.7 320 4477.6 98.5 265
1948.8 13.4 600 4148.5 52.2 320 4599.0 98.5 265
2071.1 13.6 600 4270.7 52.5 320 4715.1 96.3 265
2193.3 13.8 600 4392.9 53.0 320 4837.3 95.6 265
2315.5 14.0 600 4498.4 53.5 320 4953.9 97.3 265
2437.7 14.4 600 4992.8 55.2 320 5075.5 99.7 265
2559.9 14.1 600 5115.0 55.9 320 5199.4 102.4 265
2682.1 14.0 600 5237.2 56.5 320 5217.2 139.4 265
2804.3 14.0 600 5359.4 57.1 320 5235.7 117.9 265
2926.5 14.2 600 5481.6 58.0 320 5266.8 133.8 265
3048.7 14.2 600 5603.8 58.6 320 5288.3 125.9 265
3170.9 14.5 600 5726.0 58.9 320 5326.1 105.9 265
3293.1 14.5 600 5848.2 59.5 320 5354.5 113.0 265
3415.3 14.4 600 5970.4 60.1 320 5411.2 109.3 265
3546.1 14.1 600 6092.6 60.9 320 2756.7 81.0 265
3659.7 14.6 600 6198.8 63.1 320 2628.9 80.6 265
3781.9 14.9 600 6219.6 68.9 320 1660.0 103.2 260
3904.1 15.2 600 6250.9 74.7 320 1665.6 98.5 260
4026.3 15.4 600 6293.8 79.9 320 1697.0 107.4 260
4148.5 15.6 600 6348.1 85.2 320 1710.0 93.3 260
4270.7 15.5 600 6448.1 89.1 320 1745.2 110.3 260
4392.9 15.5 600 6570.3 91.3 320 1760.0 90.6 260
4509.5 15.6 600 6692.5 92.8 320 1789.6 112.5 260
4637.3 15.6 600 6814.7 93.5 320 1854.4 88.5 260
4759.5 15.8 600 6936.9 91.3 320 1865.5 116.7 260
4881.7 16.0 600 7003.6 89.1 320 1915.5 119.1 260
5003.9 16.1 600 4645.6 54.0 320 1922.2 88.2 260
5126.1 16.4 600 4809.9 54.4 320 2476.5 85.7 260
5248.3 16.7 600 871.3 61.9 300 2559.9 85.8 260
5370.5 16.9 600 993.5 58.4 300 2632.1 86.0 260
5492.7 17.2 600 1115.7 57.0 300 2698.7 86.3 260
5614.9 17.2 600 1237.9 56.4 300 2770.9 86.7 260
5737.1 17.7 600 1360.1 56.0 300 2843.1 86.9 260
5859.3 17.9 600 1482.3 55.6 300 2913.1 87.7 260
5981.5 18.3 600 1604.5 54.9 300 2970.9 88.0 260
6103.7 18.7 600 1726.7 54.2 300 3046.4 88.5 260
6225.9 18.8 600 1848.9 53.6 300 3109.8 88.9 260
6348.1 19.1 600 1971.1 53.1 300 3176.4 89.0 260
6431.4 19.0 600 2093.3 52.9 300 3232.0 89.1 260
6631.4 20.9 600 2215.5 52.7 300 3387.5 89.8 260
6814.7 20.5 600 2337.7 52.7 300 3456.0 90.3 260
6964.7 20.0 600 2459.9 52.9 300 3520.8 91.4 260
860.1 19.3 500 2582.1 53.1 300 3604.1 93.8 260
982.3 19.1 500 2704.3 53.7 300 3687.5 97.4 260

1104.5 18.3 500 2826.5 54.3 300 3726.3 99.5 260
1226.7 18.0 500 2948.7 54.9 300 3820.8 102.0 260
1349.0 18.2 500 3070.9 55.5 300 3865.2 101.9 260
1471.2 18.6 500 3193.1 56.1 300 3954.1 101.1 260
1593.4 18.6 500 3315.3 56.5 300 4019.6 101.4 260
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Table A1. Cont.

Speed
(Rpm)

Torque
(Nm)

BSFC
(g/kWh)

Speed
(Rpm)

Torque
(Nm)

BSFC
(g/kWh)

Speed
(Rpm)

Torque
(Nm)

BSFC
(g/kWh)

1715.6 18.7 500 3437.5 57.2 300 4141.8 103.4 260
1837.8 18.7 500 3559.7 58.5 300 4210.7 104.7 260
1960.0 18.6 500 3681.9 60.0 300 4270.7 105.8 260
2082.2 18.6 500 3804.1 62.0 300 4326.2 107.1 260
2204.4 18.5 500 3926.3 62.1 300 4410.7 108.3 260
2326.6 18.5 500 4031.8 62.1 300 4426.2 121.8 260
2453.4 18.2 500 4504.0 64.5 300 4431.8 128.4 260
2571.0 18.7 500 4626.2 64.7 300 4454.0 131.8 260
2693.2 18.5 500 4748.4 64.7 300 4476.2 109.5 260
2815.4 18.2 500 4870.6 64.7 300 4476.2 134.8 260
2937.6 18.3 500 4992.8 65.1 300 4492.9 118.3 260
3059.8 18.3 500 5115.0 66.1 300 4498.4 138.8 260
3182.0 19.0 500 5237.2 67.6 300 4520.6 141.4 260
3304.2 19.5 500 5359.4 69.2 300 4542.9 145.1 260
3426.4 20.0 500 5481.6 70.7 300 4559.5 115.7 260
3548.6 20.2 500 5603.8 71.9 300 4559.5 147.7 260
3670.8 20.3 500 5726.0 72.8 300 4592.9 109.4 260
3793.0 20.2 500 5848.2 73.2 300 4615.1 114.0 260
3915.2 20.2 500 5910.5 82.7 300 4676.2 107.4 260
4033.7 20.2 500 5973.9 73.8 300 4692.8 115.4 260
4159.6 21.0 500 5948.2 77.8 300 4704.0 119.2 260
4281.8 21.1 500 6037.1 87.9 300 4759.5 122.7 260
4404.0 21.5 500 6153.7 89.6 300 4765.1 103.8 260
4526.2 21.9 500 6216.7 96.6 300 4837.3 101.7 260
4648.4 22.0 500 6230.7 103.7 300 4892.8 101.3 260
4770.6 22.1 500 6242.6 109.3 300 4970.6 121.4 260
4892.8 22.3 500 6267.6 120.7 300 5020.6 117.1 260
5015.0 22.0 500 6259.2 114.1 300 5020.6 103.8 260
5137.2 22.6 500 6289.5 130.6 300 5092.8 115.7 260
5259.4 22.5 500 6281.5 124.6 300 5059.4 104.6 260
5377.3 22.0 500 6325.9 134.8 300 5148.3 114.7 260
5503.8 22.5 500 965.7 88.9 285 5170.5 107.7 260
5623.5 22.5 500 949.0 82.7 285 5203.9 108.4 260
5748.2 23.3 500 976.8 76.6 285 5215.0 114.0 260
5870.4 24.1 500 1017.9 102.8 285 5259.4 110.9 260
5987.1 24.3 500 993.5 96.4 285 4855.5 122.2 260
6153.7 26.7 500 1023.1 70.1 285 3304.2 89.8 260
6457.0 25.8 500 1107.3 66.3 285 2044.9 86.5 260
6570.3 25.8 500 1109.0 107.1 285 2218.3 87.9 260
6692.5 26.3 500 1226.7 65.0 285 2327.8 87.2 260
6814.7 26.7 500 1349.0 64.4 285 1994.7 121.3 260
6936.9 27.3 500 1461.3 64.4 285 2050.4 108.2 255
7003.6 27.6 500 1586.7 64.0 285 2079.4 104.4 255
855.2 29.3 400 1715.6 62.8 285 2121.0 110.7 255
963.8 28.7 400 1837.8 62.9 285 2134.9 102.0 255

1118.1 28.5 400 1964.1 62.8 285 2187.7 111.6 255
1255.6 28.1 400 2100.2 62.9 285 2193.3 99.6 255
1371.2 28.0 400 2215.5 62.9 285 2211.0 122.0 255
1493.4 28.2 400 2337.7 62.9 285 2251.6 113.4 255
1715.0 27.4 400 2454.3 63.6 285 2268.8 97.1 255
1843.3 26.5 400 2582.1 63.4 285 2265.5 121.1 255
2026.6 27.8 400 2702.1 63.6 285 2296.9 115.5 255
2279.9 27.4 400 2825.4 63.6 285 2337.7 94.8 255
2415.4 28.2 400 2982.0 64.5 285 2326.6 118.8 255
2529.3 28.1 400 3108.4 64.5 285 2398.8 93.6 255
2659.8 27.8 400 3222.0 64.9 285 2465.4 93.8 255
2865.4 27.8 400 3326.4 65.4 285 2515.4 93.8 255
2982.0 28.2 400 3474.5 66.1 285 2987.6 94.5 255
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Table A1. Cont.

Speed
(Rpm)

Torque
(Nm)

BSFC
(g/kWh)

Speed
(Rpm)

Torque
(Nm)

BSFC
(g/kWh)

Speed
(Rpm)

Torque
(Nm)

BSFC
(g/kWh)

3116.7 29.0 400 4001.8 73.5 285 3048.7 95.0 255
3226.4 29.0 400 4126.3 74.2 285 3120.9 95.4 255
3348.6 29.3 400 4292.9 74.7 285 3187.5 96.2 255
3470.8 29.4 400 4415.1 74.7 285 3254.2 96.8 255
3593.0 29.9 400 4534.8 75.0 285 3320.8 97.6 255
3698.6 30.3 400 4659.5 75.2 285 3384.2 98.8 255
3798.5 30.7 400 4765.8 75.5 285 3454.2 100.5 255
4017.4 30.9 400 4915.0 75.9 285 3515.3 102.6 255
4124.0 30.9 400 5031.1 76.6 285 3585.6 105.8 255
4292.9 31.5 400 5159.4 78.0 285 3643.0 109.4 255
4410.7 31.0 400 5276.1 79.6 285 3698.6 112.3 255
4534.5 31.7 400 5399.7 81.4 285 3775.2 114.4 255
4687.3 32.3 400 5556.6 82.8 285 3843.0 114.6 255
4808.4 32.8 400 5648.2 87.5 285 3901.3 113.5 255
4926.1 33.6 400 5708.2 105.5 285 3976.3 112.0 255
5048.3 34.1 400 5720.4 92.7 285 4054.1 112.6 255
5131.7 34.5 400 5732.7 112.1 285 4131.8 138.8 255
5291.6 33.5 400 5742.7 98.6 285 4131.8 113.7 255
5392.7 33.9 400 5762.1 137.0 285 4175.1 141.8 255
5514.9 34.0 400 5770.4 117.6 285 4170.7 138.2 255
6048.2 38.0 400 5805.6 123.9 285 4198.5 114.5 255
6152.6 37.1 400 5809.3 131.6 285 4226.3 143.7 255
6488.8 37.6 400 5803.8 126.8 285 4239.6 128.6 255
6687.6 39.7 400 3787.8 71.9 285 4268.5 138.9 255
6818.4 47.0 400 3632.7 68.2 285 4259.6 115.4 255
6935.7 47.6 400 1223.6 109.1 285 4270.7 132.8 255
6333.8 37.9 400 1037.9 93.8 275 4274.4 121.5 255
860.1 39.3 350 1041.6 86.1 275 4298.5 146.0 255

1028.0 38.3 350 1111.5 80.2 275 4304.0 135.4 255
1146.8 37.8 350 1082.3 100.4 275 4315.1 138.6 255
1271.2 37.3 350 1171.2 103.9 275 4337.3 119.0 255
1393.4 36.9 350 1226.7 77.7 275 4309.6 116.4 255
1508.2 36.8 350 1292.2 106.5 275 4381.8 118.5 255
1637.8 36.8 350 1350.1 76.1 275 4542.9 121.0 255
1760.0 36.5 350 1413.4 109.4 275 4608.4 120.8 255
1882.2 36.5 350 1471.2 74.0 275 4604.0 118.2 255
2004.4 36.5 350 1504.5 111.3 275 4637.3 146.0 255
2126.6 36.4 350 1597.8 72.1 275 4631.7 143.3 255
2248.8 36.2 350 1715.6 70.9 275 4642.9 139.9 255
2371.0 36.4 350 1837.8 69.7 275 4659.5 120.6 255
2493.2 36.5 350 1960.0 69.1 275 4681.7 136.5 255
2612.1 36.8 350 2082.2 68.7 275 4715.1 133.2 255
2737.6 36.8 350 2204.4 68.8 275 4726.2 128.4 255
2859.8 37.1 350 2326.6 69.2 275 4765.1 125.9 255
2976.5 37.5 350 2448.8 69.6 275 4781.7 119.3 255
3104.2 37.7 350 2571.0 69.8 275 4785.4 115.5 255
3226.4 38.1 350 2697.9 70.1 275 4809.5 112.4 255
3348.6 38.4 350 2815.4 70.7 275 4842.8 124.4 255
3467.5 38.7 350 2937.6 71.1 275 4865.0 120.2 255
3593.0 39.1 350 3009.8 71.2 275 4870.6 111.3 255
3715.2 39.9 350 3493.0 74.1 275 4909.5 124.0 255
3837.4 40.7 350 3623.9 76.2 275 4903.9 115.9 255
3960.7 41.4 350 3737.4 79.7 275 4937.2 113.9 255
4081.8 42.0 350 3859.6 82.0 275 4961.7 140.7 255
4204.0 42.6 350 3980.6 82.8 275 4965.0 124.7 255
4326.2 42.7 350 4104.1 83.3 275 5026.1 138.9 255
4450.7 43.0 350 4226.3 83.4 275 5026.1 127.5 255
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Table A1. Cont.

Speed
(Rpm)

Torque
(Nm)

BSFC
(g/kWh)

Speed
(Rpm)

Torque
(Nm)

BSFC
(g/kWh)

Speed
(Rpm)

Torque
(Nm)

BSFC
(g/kWh)

4570.6 43.1 350 4348.5 83.5 275 5048.3 130.6 255
4692.8 43.1 350 4470.7 83.7 275 5053.9 133.8 255
4815.0 43.3 350 4554.0 83.9 275 5065.0 137.0 255
4937.2 43.4 350 4726.2 85.1 275 2515.4 124.0 250
5031.7 43.8 350 4848.4 85.7 275 2533.2 119.7 250
5517.7 46.5 350 4970.6 86.3 275 2571.0 117.5 250
5648.2 47.2 350 5092.8 87.1 275 3020.9 107.8 250
5770.4 47.8 350 5215.0 88.0 275 3098.7 108.9 250
5892.6 48.4 350 5337.2 89.3 275 3182.0 110.1 250
6014.8 48.9 350 5454.9 91.4 275 3256.0 111.7 250
6137.0 49.5 350 5505.7 117.0 275 3276.4 117.5 250
6253.1 50.1 350 5581.6 95.6 275 3282.0 114.4 250
6342.6 54.4 350 5570.5 128.5 275 3354.2 121.1 250
6437.0 60.5 350 5564.9 122.5 275 3431.9 123.2 250
6559.2 61.3 350 5564.9 108.9 275 3498.6 124.9 250
6681.4 61.8 350 5587.1 137.6 275 3565.3 126.1 250
6792.5 63.2 350 5592.7 134.0 275 3626.4 127.8 250
6923.0 64.7 350 5609.4 104.3 275 3699.7 129.4 250
5165.8 44.5 350 5648.2 100.4 275 3762.4 130.3 250
5311.8 45.2 350 1439.7 99.0 265 3859.6 130.2 250
849.0 52.0 320 1460.0 92.8 265 3909.6 137.0 250
971.2 49.9 320 1498.9 106.4 265 3954.1 128.2 250

1093.4 48.5 320 1545.6 87.6 265 3973.0 135.4 250
1215.6 47.4 320 1603.4 111.2 265 4037.4 129.2 250
1337.8 46.4 320 1671.1 84.9 265 4088.5 133.6 250
1460.0 45.6 320 1715.6 114.9 265 4087.4 130.8 250
1582.2 45.1 320 1797.8 83.1 265 4772.5 141.6 250
1704.4 44.7 320 1832.2 118.0 265 4806.2 138.4 250
1826.6 44.7 320 1908.1 82.1 265 4819.0 143.4 250
1948.9 44.7 320 2048.8 80.9 265 4846.1 136.9 250
2071.1 44.7 320 2171.0 80.1 265 4881.7 139.8 250
2193.3 44.7 320 2293.2 80.0 265 4881.7 142.5 250
2315.5 44.8 320 2409.9 79.9 265 2528.5 127.3 250
2437.7 45.1 320 2521.0 80.0 265 2656.3 113.5 250
2559.9 45.4 320 3015.3 82.0 265 2729.3 111.3 250
2682.1 45.7 320 3137.5 82.9 265 2802.3 110.2 250
2804.3 46.2 320 3259.7 83.8 265 2920.9 108.7 250
2926.5 46.7 320 3381.9 85.0 265 4746.0 143.4 250
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