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Abstract: This paper proposes a particular type of nonlinear data-driven Model Predictive
Control (NMPC) strategy, called Neural Network Model Predictive Control (NNMPC), applied
to a simulated neuro-inspired quadruped robot. The locomotion control is realised using a central
pattern generator (CPG) implemented through oscillators synchronized through environmental
feedback. The NMPC provides a descending command to the robot for steering control. This
is realized by regulating a parameter governing the dynamics of the CPG structure. In order
to test the performance obtained applying the NMPC, the results are compared with those
obtained using a linear MPC. Carrying out a comparative analysis, the differences between the

two methods will be highlighted.
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1. INTRODUCTION

The field of mobile robot control has been the focus of ac-
tive research in the past decades and the Model Predictive
Controllers (MPCs), with the increasing computing power
of microprocessors, have been increasingly used for the
control of wheeled and legged robots. An MPC includes
a large range of control methods that make explicit use
of a process model, exploiting the prediction capabilities,
generating suitable control signals by minimizing a cost
function.

There are a lot of research works focused on the study of
MPCs applied to both quadrupedal and wheeled robots.
In Horvat et al. (2017) the main goal is to improve the
balance of a static walking quadruped robot using the
MPC to provide a center of mass projection reference kept
within support polygons to ensure stability. A different
solution is proposed in Shi et al. (2019) where the MPC
uses a 3D model of a reverse pendulum to represent the
dynamics of the center of mass for path planning. The
footholds are then automatically generated. This MPC
optimization problem can be reformulated as quadratic
programming, there are four weighted combinations of
the cost function. Lages and Vasconcelos Alves (2006)
presents an optimal control scheme for a wheeled mobile
robot with nonholonomic constraints related to trajectory
tracking. To solve this problem, a linear MPC Quadratic
programming is used, working on successive linearizations
of an error model of the robot.

* This research was funded by MIUR project CLARA - Cloud
platform for LAndslide Risk Assessment grant number SNC 00451

Linear MPC (LMPC) refers to the simplest MPC family
in which linear models are used to predict the system
dynamics and represents a fairly mature theory (Lee,
2011). When it is necessary to control intrinsically non-
linear systems, the performance obtained by LMPC is
not sufficient. In these cases, a nonlinear MPC (NMPC)
can be adopted (Gros et al., 2016). Neunert et al. (2018)
tested the NMPC performance to locomotion control of
two different quadruped robots, identifying and optimizing
the leg ground contacts efficiently.

The use of a nonlinear model implies higher complexity
in terms of calculation of the control law and, in the
stability analysis of the obtained closed-loop system. The
formulation of the optimization problem is the principal
part of the control design involving numerous decisions
that are fundamental for the control performance and the
stability issues (Grancharova and Johansen, 2012).

Farshidian et al. (2017) uses an NMPC for the motion
planning of legged robots and the SLQ algorithm to solve
the related optimal control problems with nonlinear dy-
namics, cost, and equality constraints (Farshidian et al.,
2017). In Lim et al. (2008), the authors focused on the
schematization of an NMPC with obstacle avoidance for
the control of a robot on two wheels. In literature, the
works related to the control of quadruped robots, in most
of the cases, use the LMPC solutions. Very recently the
interest in legged robots grew a lot, due to the large poten-
tial of these machines both in reaching very unstructured
environments and also to cover a large range of speeds. On
the other hand, the control problems of these sophisticated
structures are the real challenge. In the last few years,
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MPC was applied to such machines, as previously intro-
duced. In particular, when dealing with the robot model,
often a simplified linear dynamic structure was adopted,
which neglected several aspects, including, for example,
leg dynamics (Carlo et al., 2018). This approximation,
although relevant, allowed to formulate a linear analytical
representation of the robot and to apply convex, real-
time optimization algorithms for the control law design. In
other cases first, a more complex nonlinear state represen-
tation of the robot was derived, but afterwards, a linearised
version was used for carrying out the MPC calculations,
reaching real-time performance (Ding et al., 2019). On
the other hand, it is interesting to analyse the role of
nonlinearities and maintaining them through the whole
optimization task. To this aim, it is convenient to adopt
the same ground for the model design. Since it is fairly
complicated to derive a nonlinear accurate model, in this
work a data-driven approach was adopted and referred to
the same quadrupedal structure.

A particular type of NMPC, i.e., the Neural Network
Model Predictive Controller (NNMPC) (Piche et al.,
2000), will be applied for the steering control of a
quadruped robot simulated in a dynamic environment, in
particular the yaw control is chosen to be the test case
to validate the proposed method. The use of a dynamic
simulator is essential in the designing phase. Even if the
model dealt with in this manuscript has no real counter-
part nevertheless, for several existing quadrupedal proto-
types, efficient dynamic models were developed, exactly
to try novel control strategies before real implementation.
In particular, we developed an NNMPC-based heading
control for a bio-inspired quadruped robot actuated using
the CPG paradigm. Experiments in a simulated environ-
ment using the LMPC and NNMPC controllers as control
techniques will be carried out. Finally, a comparison of the
results of these two approaches will be presented.

Our quadruped model takes into account a bio-inspired
hierarchical structure, in which a low-level neural locomo-
tion controller is responsible for the motion aspects, at the
level of the single legs, and the coordination of them, using
the Central Pattern Generator (CPG) paradigm. The low-
level controller is bio-inspired, whereas the high-level one
is based on NMPC, exploiting a data-driven approach.

This paper is structured as follows: the robotic neural
locomotion architecture used is shown in Section 2. In
Section 3 the implementation details and the NNMPC
outcomes are reported. Section 4 shows the test outcomes
of the dynamic simulator and the results of the compar-
isons between NNMPC and LMPC. Finally, conclusions
are drawn in Section 5.

2. ROBOTIC STRUCTURE AND LOCOMOTION
CONTROLLER

A Dbio-inspired locomotion control architecture for a 12-
degrees-of-freedom quadruped robot, introduced in Arena
et al. (2018); Arena et al. (2019), is here recalled and then
exploited for an NNMPC-based navigation control system.
The robot model was created in a dynamic simulation
environment named CoppeliaSim (Rohmer et al., 2013).
The model consists of four legs actuated by three revolute
joints, as seen in Fig.1. Each foot has a cylindrical shape

connected to the knee through a prismatic passive joint
acting as a shock absorber. As reported in Fig. 1, the robot
is composed of two main bodies representing the front and
the hind trunk, linked by a bar with a negligible mass. In
this way, the robot mass is evenly located just above front
and rear legs.

Fig. 1. Quadruped model developed in the dynamic simu-
lation environment.

2.1 Neural locomotion architecture

The architecture for the neural controller is stated
schematically in Fig.2, for more details please refers to
Arena et al. (2018). Each leg is controlled by a half-center
oscillator implemented by two complex integrated systems
that imitate extensor and flexor muscle dynamics and is
inspired by the Matsuoka neuron model (Matsuoka, 1987).
In this implementation, a hybrid centralized locomotion
controller was implemented. In fact, whereas in traditional
CPGs the neural oscillators are connected among them-
selves with a rigid network structure, in our implementa-
tion, coordination among the neurons controlling each leg,
arises only as a consequence of environmental feedback
through load sensors placed on the leg tips.
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Fig. 2. CPG scheme controlling the robot locomotion. The
load feedback connections are reported: ipsilateral
connections (red line), diagonal connections (green
line), contralateral connections (blue line).

The low level locomotion controller for each leg is repre-
sented by the nonlinear dynamics reported below, describ-
ing the behaviour of a flexor-extensor neural coupling:

&1,, =€ (—x1,, —bra,, + vy + s+ feedle;), (1a)
i'ZEi - Ga(_xZCi + yei)a (1b)
Yei = xlEiH(xlei) (1C)
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Ty, =€ (=21, — bTo,, +YYei + 5+ feedly; (2a)
+ feed2y;),
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where H(z) is the Heaviside function.

The dynamic behaviour of the neuron is shaped by the
sensory input signals which act through the feedl and
feed?2 signals described below:

feedl{eﬁf} ==+ kl . (ei - 00), (3&)
feed2; =[feed2;1, feed2ys, - feed2;4]”  (3b)
:K2 . L7
KQ = k‘zpfp + kcoco + kdlDl S R4X4a (48“)
L =[l1,la,13,14)" € R* (4b)
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The indexes e, f describe the extensor and flexor neurons,
whereas i specifies the considered leg (i.e., 1: left front, 2:
right front, 3: left hind, 4: right hind).

Every single cell of the CPG controller consists of a 4-th
order nonlinear system, including two sub-units represent-
ing the flexor-extensor couple (Fukuoka et al., 2015). The
membrane potential (z1,, ,,,) and the recovery variable
(w2, ;,,) are considered as two state variables. The o,
recovery vector inhibits the z1,, ,,, membrane potential
through the b parameter, determining the time constant
used for deciding the specific frequency of the CPG. The
other parameters of the model are reported in Table 1.

The terms feedl{e, f}i are particularly relevant, they are
evaluated using sensory feedback based on the hip joint
angle, fundamental to provide the CPG rhythm during the
steps. The terms feed2{e, f}i stand for the sensory input
from the load sensors. In particular, feed2{e, f}i contains
the afferent loads from the adjacent, legs described by the
vector L € R*, as also shown in Fig. 2. Depending on
the selected locomotion gait, the following gains on the
load sensors are tuned: k;;, (ipsilateral), k., (contralateral)
and kg; (diagonal). y(. r}; are the outputs of the i-th leg
extensor and flexor neurons; these are discontinuous and
non-negative terms due to the H(-) Heaviside function. All
the parameters are the same for each leg.

The CPG output for each leg (if larger or equal to
zero), is used to select the two phases of the leg (i.e.,
stance or swing). In each of these two phases, a PI
speed controller enables the leg to reach the corresponding
reference position for each of the two phases, realizing in
this way a closed-loop cycling motion for each leg.

Adopting the set of parameters shown in Table 1, the
proposed CPG with sensory feedback allows the generation

of different locomotion gaits and the migration between
them.

Table 1. Parameters adopted in the CPG struc-

ture.
Parameters Gait
Lateral Trot | Canter | Gallop
Sequence

€q 1.67

b 3

¥ 2

6o 0

k1 3

S 2.2 2.6 3 3
€r 6.25 8.33 16.67 16.67
kip -0.04 0 0.08 0.08
keco 0.04 0.04 -0.04 -0.04
kai 0 0.08 0 0

Finally, a third feedback signal has been adopted to
generate a heading control. The input is applied as an
additive term to Eq. (2a) adopting the following relation:

feed3s; =c¢; - Se i=1,...,4 (6)

where S, is the steering command and ¢; is the i*" element
of a vector specified as:
+1
c=|1 7
= |+ (7)
-1
which governs the contribution between the legs of the
steering command. The MPC-based strategy is, therefore,
used to control the robot steering and thus to follow an
imposed trajectory by acting on S,.

3. NNMPC DESIGN OF A QUADRUPED ROBOT

In order to implement an NNMPC control a fundamental
step is the system identification to create a model of the
system to be controlled. We defined the quadruped robot
model in our application using a data-driven approach. In
particular, a neural network has been identified to model
the relationship between the input corresponding to the
steering command given to the robot, in the form of the
S, signals, and the output corresponding to the yaw angle
of the robot.

Five different datasets have been used to identify the robot
model, one for the training procedure and the others to
test it. The sampling time is set to 50 ms. In Fig.3, the
relationship between the steering and the yaw values is
shown. The dataset for the training, composed of 10000
samples, is shown in Fig.3(a). The path followed by the
robot is characterized by a yaw ramp with a negative
slope, followed by a positive slope ramp, and gradually a
more complex behaviour is generated with rapid heading
changes. The steering control signal S, in eq.6 covers the
entire allowed range (i.e. from -1.2 to 1.5) representing a
hard constraint on the control output signal to avoid robot
instabilities. In Fig.3(b), one of the test datasets is shown.
The simulated robotic structure is very complex: during
simulation campaigns the robot needed a bias steering
signal of about 0.2 to follow a straight trajectory.

In Fig.4 a high-level scheme of the system architecture,
developed in Matlab-Simulink, is reported. The reference



96 Paolo Arena et al. / IFAC PapersOnLine 54-17 (2021) 93—98

Signal| 4
) 5'Angle SN o 2
E %,
2 hr f . 2
SO ks A *vé‘;wf;*m S,
3 £"
<5 <,

6 -
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Samples Samples

(a) (b)

Fig. 3. Training and test datasets used for the identifi-
cation of the robot model, considering the S. signal
as input and the yaw angle as output. (a) Training
dataset; (b) Test datasets. The red line reflects the
Yaw Output and the steering control action is re-
ported in blu. The yaw angle is indicated in radians.

signal X,.¢, representing the desired yaw, is an input for
the NN Predictive Control block, together with the actual
yaw of the robot, whereas the output is the control signal
S. which modulates the CPG locomotion network. The
communication with the CoppeliaSim dynamic framework
has been performed using the 2-level s-function available
in Matlab. The MPC parameters used are the following:
sample time: 0.05s, number of manipulated variables: 1
(steering), number of the measured outputs: 1 (yaw),
prediction horizon: 150, control horizon: 40, closed-loop
performance: fixed, speed of state estimation: fixed.
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Fig. 4. Scheme of the control architecture developed in
Simulink.

Besides the other information, the fundamental param-
eters of MPC are the prediction and control horizon.
According to the MPC guidelines, the prediction horizon
was chosen to have 20-30 samples covering the open-loop
transient system response, whereas the control horizon
was selected among the 10% and 30% of the Prediction
Horizon. The NNMPC block employs a Neural Network-
based model of the robot behaviour able to describe and
predict the effect of the steering control signal on the robot
heading. The best control sequence is derived via a nu-
merical optimization algorithm minimizing the following
performance criterion J over the specified horizon:

N
=Z (yr (t+7)—ym (t+7)) +pz (t+5—1)—u/(t+5—2))* (8)

where N defines the cost horizons over which the tracking
error is evaluated and Ny defines the dimension of the
control horizon, in which the control increments are an-
alyzed. The v’ variable is the tentative control signal, v,
is the reference (desired response), while y,, is the neural
network model response. The p value weights the contri-
bution of the sum of the squared control increments on the
index J; its value was fixed to 0, 05. The optimization block
determines the control input «’ minimizing J, and then the
optimal u is provided as input to the robot CPG controller.
The minimization algorithm used is csrchbac; it is one-
dimensional minimization routine based on a backtracking
technique (Dennis and Schnabel, 1983).

The Search Parameter a works as a stop criterion for the
minimization routine: if the minimization between two
consecutive control input candidates is less than «, the
routine stops (Press et al., 2007).

For comparisons, a linear MPC controller was also de-
veloped, as briefly explained below. The linear model
was obtained through analyzing different transfer function
structures, containing a varying number of poles and zeros
(from 1 to 7). The outcome of this identification proce-
dure was a transfer function characterized by 5 poles and
4 zeros; this was obtained using the same optimization
criterion reported below for the NN structure.

Based on this analysis for the design of the linear model,
the regressors for the input and output variables were
used as input features for the neural network structure.
Therefore the input layer of the networks consisted of
a nine dimension vector. The network has been trained
offline in batch mode, using the training dataset previously
defined and adopting the Levenberg-Marquardt learning
technique with a maximum number of epochs equal to 400.

To find the best number of hidden neurons a supplemen-
tary analysis was carried out, in which the number of
neurons was varied in the range [3,12]. The index used to
choose the best model, both for the neural network and for
the linear model, is based on the Normalized Root Mean
Square Error (NRMSE):

Tpef — T
Fitnpuse = (1 _ Merey — 2L - I ) -100  (9)
[(@res — Zres)l|
where the desired output is x,.r, the mean value is Z,.y,
the actual output is x, and ||-|| indicates the vector 2-norm.

The results of this hyperparameter analysis are shown in
Fig.5.

o
o

Fit Values
[
o

o

ETest Fit
34567 891011121314151617181920
Number of Neurons

Fig. 5. Network performance as function of the num-
ber of hidden neurons. The blue bars represent the
Fityryse on the training dataset, while the red bars
represent the mean of the Fitygpyse calculated on
the test datasets.

The most suitable number of hidden neurons selected is
four. This network has a training fit value of 94 and a
mean test fit value of 65, which represents an improvement
if compared to the linear model identification, which was
able to reach fit values in training and test of 78 and 52,
respectively. In Fig.6 the comparison between the neural
model and the linear transfer function is reported.

4. SIMULATION RESULTS

In this section, the results of the NNMPC controller are
presented and discussed. Moreover, a comparison with the
performance obtained using the LMPC controller is carried
out.
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Fig. 6. Comparison of the identification performance for a
linear and nonlinear model on the (a) training dataset
and (b) one of the test dataset.

The NNMPC was tested on six different reference signals:
two representing an ideal square route (one clockwise and
the other counterclockwise), two representing an ideal
equilateral triangle route (also in this case, in both direc-
tions), a one-period sine reference, and two semicircular
routes.

The results are reported in Fig.7, as a function of the
searching parameter «, used as a stopping criterion. In
particular, in Fig.7(c), when the first negative step is
applied in the reference yaw, the controller does not
properly work with o = 0.001. Here, the control signal
starts to oscillate between the two saturation limits with
the results that the output yaw is almost constant and
loses the reference command tracking.
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Fig. 7. Behaviour of the quadruped robot while follow-
ing the reference steering command generated by the
NNMPC with a varying between 0.1, 0.01, 0.001:
(a) Clockwise square reference; (b) Counterclockwise
square reference; (c¢) Clockwise triangle reference; (d)
Counterclockwise triangle reference; (e) Sine refer-
ence; (f) Semicircular reference.

To better evaluate these results, the F'it yryrsr between
the robot yaw and the reference signal was evaluated. The
fit value is affected by the maximum angular velocity that
the robot can reach, due to the physical constraints and to
the constraints added in the control action, i.e. the steering
bounds. In fact, the reference signal is an ideal figure, and

it assumes that the robot should have the capability to
turn on the spot: this is not possible in our case, unless
at the expenses of complicated maneuvers, not conceived
within the trotting gait, which is the locomotion patterns
shown by our robot.

Table 2 shows the outcome of this analysis: the best results
are obtained with o= 0.01 (i.e., Mean Fityrymse = 77).

Table 2. Fit values for the six datasets obtained
through the NNMPC, for different values of a.

Fitnrmse | FitNruse | FitNrRMSE
References a=0.1 @=0.01 a=0.001

CW sq 74.51 75.77 70.35
CCW sq 71.60 69.57 69.67
CW tr 71.44 70.49 -44.38
CCW tr 64.48 64.26 64.16
sine 80.87 88.97 88.69
semi 90.04 92.85 92.57
Mean 75.49 76.99 56.84

Finally, the NNMPC and the LMPC performance were
compared. The results in terms of Fit values and max-
imum absolute error (MaxAE) are outlined in Table 3.
The NNMPC performs better in almost all cases as also
demonstrated in Fig.8. The accuracy is even more evident
when the yaw signal undergoes continuous variations, as
depicted in Fig.8 (e)-(f). Here the NMPC controller does
not suffer from any tracking delay and is also smoother
than the MPC controller result.

Table 3. Comparison between the NNMPC
and LMPC Fit values and MaxAE for the
six test datasets adopted. In the last row the
mean values calculated on the datasets are
indicated. (CW sq: clockwise square; CCW
sq: counterclockwise square; CW tr: clockwise
triangle; CCW tr: counterclockwise triangle;
sine: sine yaw; semi: semicircular).

Ref NNMPC LMPC
Fit MaxAE Fit MaxAE

CW sq 75.77 0.20 72.31 1.63
CCW sq | 69.57 0.24 71.02 1.58
CW tr 70.49 0.19 68.48 2.18
CCW tr | 64.26 0.28 65.45 2.06
sine 88.97 0.08 74.88 0.30
semi 92.85 0.07 84.47 0.40
Mean 76.99 0.17 72.77 1.35

5. CONCLUSION

In this work, the effect of a nonlinear MPC-based control
strategy applied on a quadruped robot, endowed with
a bio-inspired locomotion controller is analyzed. In par-
ticular, the controller acts on the robot steering. The
quadruped robot behaviour has been modelled using a
neural network designed and optimized following a data-
driven approach. From a comparative analysis carried out
considering the fit values performance and the MaxAE
index, it was possible to evaluate the control results in
terms of matching between the reference signals of the
yaw angle of the controlled robot simulated in a dynamic
framework. A comparative analysis of the results obtained
using a linear and a nonlinear MPC demonstrates the
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Fig. 8. Comparison between the robot heading and the ref-
erence signal obtained using the LMPC and NNMPC
control strategies in the case of: (a) Clockwise square
reference; (b) Counterclockwise square reference; (c)
Clockwise triangle reference; (d) Counterclockwise
triangle reference; (e) Sine reference; (f) Semicircular
reference.

effectiveness of the NNMPC in particular in presence of
continuously time-varying trajectories.
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