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Abstract. Economics is a direction in which there becomes visible to be many
occasions for applications of time scales. The time scales approach will not
only unify the standard discrete and continuous models in economics, but also,
for example, authorizes for payments that reach unequally spaced points in
time. We are going to study dynamic optimization problems from economics,
construct a time scales model, and apply variational methods and critical
point theory to obtain the existence of solutions. We derive several conditions
ensuring existence of solutions of dynamic Sturm–Liouville boundary value
problems. Variational methods are utilized in the proofs. We discuss the
existence of at least one, three and infinitely many solutions for the problems
under different conditions on the data. Examples are also given to illustrate
the main results.
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1. Introduction

Differential equations always play an essential role in the field of mathematics
and calculus. In order to calculate the rate of change in one quantity with respect to
the other one, we need differential equations. As differential equations are used in
many fields like physics, chemistry, biology, economics and finance, so the existence
of solutions of differential equations has been investigated by many researchers
recently. Finding solution is not a single process but a set of processes where
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some binary operations, repetitions of the operations, checking the consistency of
functions within the interval etc. take place. Here it becomes very important that
the time taken to execute the differential equations problem must be least. Thus a
vital need of pipelining performance improvement approaches, parallel processing
etc. is demanded. There are many places where differential equations are used in the
critical situation for example weather forecasting, treatment of diseases like analysis
of heart beat, infection evolution, cancer etc. Therefore, there must be quick output
from differential equations required which is acquired by the parallel approach to
solve the differential equations faster than the sequential approach [27,56,60].

Time scales theory was created by Hilger [48] in 1988, and it serves to unify
continuous and discrete analysis. Moreover, basic elements of variational calcu-
lus on time scales were introduced in 2004 [9]. Time scales theory has received
considerable attention due to its potential applications in the study of epidemic
models, population models, finance, stock market, economics [8], and heat transfer,
and it has since then been further developed by many authors in several different
directions, e.g., [31, 49,55].

In economic modeling, either continuous timing or discrete timing is present, and
there is not a common view among economists on which representation of time is
better for economic models [32]. Concurrently, many results regarding differential
equations may carry over to related results for difference equations, while other
results seem to be completely different in nature from their continuous analogs [21].

Recently, BVPs for dynamic equations on time scales have been extensively
studied by many researchers. Various methods and techniques have been applied,
such as methods of lower and upper solutions, cone-theoretic fixed point theorems,
variational methods, and coincidence degree theory.

The general assumption that economic processes are either entirely continuous or
entirely discrete, while advantageous for traditional mathematical approaches, may
sometimes be unsuitable, because in reality many economic occurrences present
both continuous and discrete components. In biology, an intimate example is a
seasonal breeding population in which generations do not overlap [32]. A similar
example in economics is the seasonally changing investment and revenue in which
seasons play an important effect on this kind of economic activity. Therefore, there
is a great need to find a more adaptable mathematical structure to precisely model
the dynamical blend of such systems, so that they are exactly described and better
understood. To meet this requirement, an emerging, progressive and modern area
of mathematics, known as dynamic equations on time scales, has been introduced.

In the last decades, this kind of equation arises in numerous problems in finance,
economics and management. Research on this field and its applications have become
a notable endeavor among researchers in mathematical finance, optimal control and
differential equation. Recently, mathematical modelling and computer simulation
have become important in all scientific research. In order to gain both quantitative
and qualitative features, one should resort to nonlinear modelling frameworks being
increasingly employed to explore the intricate dynamics of complex systems which
are capable of exhibiting rich features like self-organization and multiple equilibria.

Many classical results of variational calculus such as sufficient and necessary
conditions for optimality have been generalized to arbitrary time scales. Because
many economic and finance models are dynamic models, the results of time scale
calculus are directly applicable to economics as well, see [14,15,19,21,37]. Solutions
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of ordinary differential equations, such as initial value problems and boundary value
problems, have been studied and published during the past two decades on time
scales. In 2002, Hoffacker [52] and Ahlbrandt and Morian [7] demonstrated the
related ideas to the multivariate case and studied partial dynamic equations on time
scales. Notations and definitions on multivariate time scales calculus can be found
in Bohner and Guseinov [16,18]. For a more current reference for the multivariate
case we refer to [17]. Jackson [53] extended the existing ideas of the time scales
calculus [7] to the multivariate case. The method of generalized Laplace transform
on time scales is applied to find solutions of the homogeneous and nonhomogeneous
heat and wave equations. Recent developments in the method of finding solutions
have aroused further interest in the discussion of partial dynamic equations on time
scales. Very recently, the study of boundary value problems for dynamic equations
on time scales develops at relatively rapid rate. By applying various methods
and techniques, such as the cone theoretic fixed point theorems, the method of
upper and lower solutions, coincidence degree theory, variational methods, a series
of existence results of solutions or positive solutions have been established in the
literature, see [3, 5, 6, 10, 28, 30, 35, 43, 57, 63, 65, 66, 68] and the references therein.
For example, in [5,6], Agarwal et al. respectively studied the following equation on
time scales {

−u∆∆(t) = f(t, uσ(t)), t ∈ [0, T ]T
or {

−u∆∆(t) = f(σ(t), uσ(t)), t ∈ [0, T ]T

with Dirichlet boundary condition, and established some existence criteria of single
and multiple positive solutions by using variational techniques. Çetin and Topal
in [28] by using the Krasnosel’skii fixed point theorem, obtained existence of at least
one or two symmetric positive solutions of the above problem on time scales. Zhang
and Sun in [66] by using variational method and critical point theory, obtained that
the boundary value problem has solutions for ν being in some different intervals for
eigenvalue boundary value problems on time scales. Eckhardt and Teschl in [30]
established the connection between Sturm–Liouville equations on time scales and
Sturm–Liouville equations with measure valued coefficients. Based on this connec-
tion, they generalized several results for Sturm–Liouville equations on time scales,
which have been obtained by various authors in the past. Thiramanus and Tari-
boon in [63] by using the Krasnosel’skii fixed point theorem, the Avery–Henderson
fixed point theorem and the Leggett–Williams fixed point theorem, obtained some
results for the existence of at least one, two or three positive solutions of m-point
integral boundary value problems for nonlinear second order p-Laplacian dynamic
equations on time scales. Zhou and Li in [68], by using variational methods and
critical point theory, obtained the existence of nontrivial periodic solutions for a
class of p-Laplacian systems on time scales.

Also, Sturm–Liouville equations on time scales have attracted substantial in-
terest, see for example [3, 30, 35, 36, 50, 51, 57, 65, 66, 68]. Zhang and Sun in [66],
using critical point theory and variational methods, have established existence of
solutions for (Pν,0). First, they have ensured an existence interval for ν such that
(Pν,0) possesses one or two solutions. Then, under entirely different assumptions on
f and by employing a three critical point theorem, they have derived some sufficient
conditions for existence of at least three solutions for (Pν,0) when ν is located in
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a certain interval. In [30], the authors established a connection between dynamic
Sturm–Liouville equations and corresponding equations with measure-valued coef-
ficients. Based on this, they generalized several known results for dynamic Sturm–
Liouville equations. In [57], Ozkan considered a boundary value problem involving
a dynamic Sturm–Liouville equation and boundary conditions depending on a spec-
tral parameter, and he also introduced an operator formulation for the problem and
gave several properties of eigenvalues and eigenfunctions. Finally, for finite time
scales, he derived the exact number of eigenvalues of the problem. In [65], exis-
tence of at least one and at least two positive solutions for (P1,0) was obtained.
In [61], for a periodic time scale, Su and Feng have studied a dynamic second-
order p-Laplacian equation together with certain boundary value conditions. They
used the three critical point theorem, the least action principle, and the saddle
point theorem in order to obtain existence of at least one or at least three distinct
periodic solutions. Existence results on periodic time scales, by establishing a suit-
able variational setting, were also proved in [68] for a class of dynamic p-Laplacian
systems.

Here we are going to discuss the existence of one solution and multiple solutions
for dynamic Sturm–Liouville boundary value problems which turns out as an op-
timization problems on time scales which arises in economics and finance, using
variational methods and critical point theory under different assumptions. To ap-
ply variational methods to our models first we construct related energy functionals
and by assuming appropriate hypotheses on the data we prove the existence of
critical points of the energy functionals and we show that the critical points are
solutions of our models. Moreover, we overcome some technical difficulties treating
the problems. First, under an asymptotical behavior of the nonlinear datum at
zero we discuss the existence of solutions for our models. After that, we obtain the
existence of at least three distinct nonnegative solutions for the double eigenvalue
models by utilizing a critical point result. Requiring an additional asymptotical
behaviour of the data at zero, nontriviality of the solution can also be achieved
under appropriate assumptions. Moreover, we investigate the existence of solu-
tions for ν → 0+. Then, we study the existence of solutions for the second order
Sturm–Liouville type boundary value problem on time scales, under an appropriate
oscillating behaviour of the nonlinear term f , and we determine the exact collections
of the parameter ν in which the problem for every non negative arbitrary function
g which is measurable in [0, T ] and of class C1(R) satisfying a certain growth at
infinity, choosing ζ sufficiently small, admits infinitely many solutions. Replacing
the oscillating behaviour condition at infinity, with a similar one at zero, we obtain
a sequence of pairwise distinct solutions that converges to zero. We also list some
consequences the main results. The applicability of our results is illustrated by
several examples. The main references are the papers [10,41,43].

2. Time scale calculations and notations

This section is devoted to introduce some basic notations and results on time
scale.

Let be given any time scale T, namely, a closed and nonempty subset of the real
numbers. In particular, T = Z (all integers) and T = R (all real numbers) are
two examples of time scales, and so-called dynamic equations on these time scales
correspond to difference equations and differential equations, respectively.
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Definition 1. One defines the forward jump operator σ : T → T, the backward
jump operator ρ : T→ T, and the graininess ζ : T→ R+ by

σ(t) = inf{s ∈ T : s > t}, ρ(t) = sup{s ∈ T : s < t}, ζ(t) = σ(t)−t for every t ∈ T,

respectively. If σ(t) = t, then t is called right dense (otherwise: right scattered),
and if ρ(t) = t, then t is called left dense (otherwise: left scattered). Denote
yσ(t) = y(σ(t)) and σ2(T ) = σ(σ(T )). We are going to give some calculus on time
scales which can be found in [21]. Let f be a function defined on T. We say that
f is delta differentiable (or simply: differentiable) at t ∈ T provided there exists an
α such that for all ε there is a neighborhood N around t with

|f(σ(t))− f(s)− α(σ(t)− s)| ≤ ε|σ(t)− s| for all s ∈ N .

In this case we denote the α by f∆(t), and if f is differentiable for every t ∈ T,
then f is said to be differentiable on T and f∆ is a new function defined on T. If
f is differentiable at t ∈ T, then it is easy to see that

f∆(t) =

{
lims→t,s∈T

f(t)−f(s)
t−s if ζ(t) = 0

f(σ(t))−f(t)
ζ(t) if ζ(t) > 0.

(1)

To illustrate the idea, we now give another formula, which holds whenever f is
differentiable at t ∈ T:

f(σ(t)) = f(t) + ζ(t)f∆(t). (2)
When applying formula (2), we do not need to distinguish between the two cases
ζ(t) = 0 and ζ(t) > 0. Formula (2) holds in both of these cases. Two further
examples of such formulas are the product rule for the derivative of the product of
two differentiable functions f and g:

(fg)∆(t) = f∆(t)g(t) + f(σ(t))g∆(t) (3)

and the quotient rule for the derivative of the quotient of two differentiable functions
f and g 6= 0: (

f

g

)∆

(t) =
f∆(t)g(t)− f(t)g∆(t)

g(t)g(σ(t))
. (4)

Clearly, 1∆ = 0 and t∆ = 1, so we can use (3) to find

(t2)∆ = (t · t)∆ = t + σ(t),

and we can use (4) to find (
1
t

)∆

= − 1
tσ(t)

.

Other formulas may be obtained likewise.

Here, F is called an antiderivative of a function f defined on T if F∆ = f holds
on T. In this case we define an integral by

∫ t

s

f(τ)∆τ = F (t)− F (s) where s, t ∈ T.

An antiderivative of 0 is 1, an antiderivative of 1 is t, but it is not possible to find
a polynomial (or any “nice” formula of a function) which is an antiderivative of t
(where T is an arbitrary time scale). The role of t2 is therefore played in the time
scales calculus by ∫ t

0

σ(τ)∆τ and
∫ t

0

τ∆τ.
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Note that both integrals exist as the functions σ and identity are both continuous.
For f ∈ L1

∆([t1, t2)T), we denote for convenience
∫ t2

t1
f(s)∆s =

∫
[t1,t2)∩T f(s)∆s.

In order to study our problems on time scales, the variational setting is the space

H := H1
∆([0, σ2(T )]) =

{
u : [0, σ2(T )] → R : u ∈ AC[0, σ2(T )] and u∆ ∈ L2

∆([0, σ2(T )))
}

.

Then H1
∆([0, σ2(T )]) is a Hilbert space with the inner product,

(u, v)H1
∆

=
∫ σ2(T )

0

u(t)v(t)∆t +
∫ σ2(T )

0

u∆(t)v∆(t)∆t

(see [67]), and let ‖ · ‖H1
∆

be the norm induced by the inner product (·, ·)H1
∆
. For

every u, v ∈ H1
∆([0, σ2(T )]), we define

(u, v)0 =
∫ σ2(T )

0

p(t)u∆(t)v∆(t)∆t +
∫ σ(T )

0

q(t)uσ(t)vσ(t)∆t

+β1p(0)u(0)v(0) + β2p(σ(T ))u(σ2(T ))v(σ2(T ))

where

β1 =





α1

α2
, if α2 > 0,

0, if α2 = 0
(5)

and

β2 =





α3

α4
, if α4 > 0,

0, if α4 = 0.
(6)

We let ‖u‖0 be the norm induced by the inner product (u, v)0.

Lemma 2. [66, Lemmas 2.1, 2.2 and 4.2] The immersion H1
∆([0, σ2(T )]) ↪→

C([0, σ2(T )]) is compact. If u ∈ H1
∆([0, σ2(T )]), then

|u(t)| ≤
√

2 max
{

(σ2(T ))
1
2 , (σ2(T ))−

1
2

}
‖u‖H1

∆
for every t ∈ [0, σ2(T )].

If α2, α4 > 0 or q(t) > 0 for every t ∈ [0, T ], then for every u ∈ H1
∆([0, σ2(T )]),

|u(t)| ≤ C‖u‖0 for every t ∈ [0, σ2(T )], where C = min {M1,M2,M3} and

M1 =
√

2max

{
1√

β1p(0)
,

√
σ2(T )

mint∈[0,σ(T )]p(t)

}
,

M2 =
√

2max

{
1√

β2p(0)
,

√
σ2(T )

mint∈[0,σ(T )]p(t)

}
,

M3 =
√

2 max

{ √
σ(T )

mint∈[0,T ]q(t)
,

√
σ2(T )

mint∈[0,σ(T )]p(t)

}
,

and where
1
0

= +∞.
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3. The existence of one solution

3.1. Main results. Let be given any time scale T, namely, a closed and nonempty
subset of the real numbers. Let T > 0 be fixed and suppose 0, T ∈ T. In this
contribution, we study the second-order dynamic Sturm–Liouville BVP (boundary
value problem)

{
−(px∆)∆(t) + q(t)xσ(t) = f(t, xσ(t)), t ∈ [0, T ]T,
α1x(0)− α2x

∆(0) = 0, α3x(σ2(T )) + α4x
∆(σ(T )) = 0,

(P f )

where

p ∈ C1([0, σ(T )]T, (0,∞)), q ∈ C([0, T ]T, [0,∞)), f ∈ C([0, T ]T × R,R),
α1, α2, α3, α4, α1 + α2 ≥ 0, α1 + α3, α3 + α4 > 0.

In this section, we discuss existence of at least one nontrivial solution of the second-
order dynamic Sturm–Liouville boundary value problem (P f ), under a certain
asymptotical assumption of the nonlinearity at zero (Theorem 4). In Theorem
5, we present an application of Theorem 4. Moreover, we give some observations
and remarks on our results. As a special case of our result, we present Theorem
12, in the case when the function f does not depend on time. Finally, we offer
Example 13, in which all hypotheses of Theorem 12 are satisfied. In this section,
we prove the existence of at least one nontrivial solution for (P f ).

The main argument in our results is a famous variational principle by Ricceri
[59, Theorem 2.1], in the special form given by Bonanno and Molica Bisci in [25].
This principle has been extensively applied to a variety of problems, and we refer
to [1, 2, 12,13,33,46,47].

Theorem 3. Assume B is a real and reflexive Banach space. Let be given two
Gâteaux-differentiable functionals J1,J2 : B → R so that J1 is strongly continuous,
sequentially weakly lower semicontinuous, and coercive in B, and J2 is sequentially
weakly upper semicontinuous in B. Define the functional Iν by Iν := J1 − νJ2,
ν ∈ R. Moreover, for any s > infB J1, define the function ϕ by

ϕ(s) := inf
x∈J−1

1 (−∞,s)

supy∈J−1
1 (−∞,s) J2(y)− J2(x)

s− J1(x)
.

Then, for any s > infB J1 and any ν ∈
(

0,
1

ϕ(s)

)
, the restriction of the functional

Iν to J−1
1 (−∞, s) has a global minimum, which is a critical point (more precisely,

a local minimum) of Iν in B.

We now give our main result for (P f ).

Theorem 4. Assume

sup
θ>0

θ2

Fθ
> 2C2, where Fθ =

∫ σ(T )

0

max
|ξ|≤θ

F (t, ξ)∆t. (S)

Then, (P f ) has at least one solution in H.

Proof. We will apply Theorem 3 to (P f ). Let B = H. Let us introduce the two
functionals J1,J2 by

J1(x) =
1
2
‖x‖20 (7)
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and

J2(x) =
∫ σ(T )

0

F (t, xσ(t))∆t (8)

for x ∈ B. We define

I(x) = J1(x)− J2(x) for x ∈ B.

We now show that J1 and J2 fulfill the conditions assumed in Theorem 3. As
B is compactly embedded in (C0([0, T ]T),R), it is easy to see that J2 is Gâteaux
differentiable, and the Gâteaux derivative of J2 at x ∈ B is J ′2(x) ∈ B∗ given as

J ′2(x)(y) =
∫ σ(T )

0

f(t, xσ(t))yσ(t)∆t for all y ∈ B,

and J2 is sequentially weakly upper semicontinuous. Additionally, J1 is also
Gâteaux differentiable, and the Gâteaux derivative of J1 at x ∈ B is J ′1(x) ∈ B∗
given as

J ′1(x)(y) =
d
dν
J1(x + νy)

∣∣∣∣
ν=0

=
d

2dν
‖x + νy‖20

∣∣∣∣
ν=0

=
d

2dν

{∫ σ2(T )

0

p(t)(x∆(t) + νy∆(t))2∆t +
∫ σ(T )

0

q(t)(xσ(t) + νyσ(t))2∆t

+ β1p(0)(x(0) + νy(0))2 + β2p(σ(T ))(x(σ2(T )) + νy(σ2(T )))2
}∣∣∣∣∣

ν=0

=
∫ σ2(T )

0

p(t)(x∆(t) + νy∆(t))y∆(t)∆t +
∫ σ(T )

0

q(t)(xσ(t) + νyσ(t))yσ(t)∆t

+ β1p(0)(x(0) + νy(0))y(0) + β2p(σ(T ))(x(σ2(T )) + νy(σ2(T )))x(σ2(T ))

∣∣∣∣∣
ν=0

=
∫ σ2(T )

0

p(t)x∆(t)y∆(t)∆t +
∫ σ(T )

0

q(t)xσ(t)yσ(t)∆t

+ β1p(0)x(0)y(0) + β2p(σ(T ))x(σ2(T ))y(σ2(T ))

for all y ∈ B. Furthermore, see that J1 is coercive and sequentially weakly lower
semicontinuous. From (S), we can find θ̄ > 0 satisfying

θ̄2

Fθ̄

> 2C2. (9)

Define

s =
θ̄2

2C2
.

If x ∈ J−1
1 (−∞, s), then J1(x) < s, that is,

1
2
‖x‖20 < s. Hence, by Lemma 2, we

obtain |x(t)| ≤ C
√

2s = θ̄ for all t ∈ [0, σ2(T )]T. So

sup
J1(x)<s

J2(x) ≤ Fθ̄.

From the above, since 0 ∈ J−1
1 (−∞, s) and J1(0) = J2(0) = 0, we get

ϕ(s) = inf
x∈J−1

1 (−∞,s)

(supy∈J−1
1 (−∞,s) J2(y))− J2(x)

s− J1(x)
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≤
supx∈J−1

1 (−∞,s) J2(x)

s

≤ 2C2 Fθ̄

θ̄2
.

Thus, it follows that

ϕ(s) ≤ 2C2 Fθ̄

θ̄2
. (10)

Therefore, by (9) and (10), we get ϕ(s) < 1. Hence, as 1 ∈
(
0, 1

ϕ(s)

)
, Theorem

3 implies that I has at least one critical point (more precisely, local minimum)
x̃ ∈ J−1

1 (−∞, s). Thus, using that the solutions of (P f ) are exactly the critical
points of I, we obtain the claim. ¤

We remark that Theorem 4 can also be used to ensure the existence of a solution
for the parametric problem

{
−(px∆)∆(t) + q(t)xσ(t) = νf(t, xσ(t)), t ∈ [0, T ]T,
α1x(0)− α2x

∆(0) = 0, α3x(σ2(T )) + α4x
∆(σ(T )) = 0,

(P f
ν )

where ν > 0 is a parameter. This result about (P f
ν ) is given as follows.

Theorem 5. For all

ν ∈
(

0,
1

2C2
sup
θ>0

θ2

Fθ

)
,

(P f
ν ) admits a solution xν ∈ H.

Proof. Let ν be in the stated interval. Suppose J1 and J2 are as in (7) and (8).
Define

Iν(x) = J1(x)− νJ2(x) for all x ∈ H.

Thus, we obtain the existence of θ̄ > 0 satisfying

2C2ν <
θ̄2

Fθ̄

.

Put

s =
θ̄2

2C2
.

Using the notations from Theorem 4, we get

ϕ(s) ≤ 2C2 Fθ̄

θ̄2
<

1
ν

.

Then, as ν ∈
(
0, 1

ϕ(s)

)
, Theorem 3 implies that Iν has at least one critical point

(more precisely, local minimum) xν ∈ J−1
1 (−∞, s), and recalling that critical points

of Iν are solutions of (P f
ν ), we have the conclusion. ¤
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3.2. Remarks, Applications, Example. We give some implications of the above
results.

Remark 6. We remark that, in general, Iν may be unbounded in H. Indeed, e.g.,
when f(ξ) = 1 + |ξ|γ−2ξ for ξ ∈ R with γ > 2, for any x ∈ H \ {0} and υ ∈ R, we
get

Iν(υx) = J1(υx)− ν

∫ σ(T )

0

F (υx(t))∆t ≤ υ2

2
‖x‖20− νυ|σ(T )|− ν

υγ

γ
|σ(T )|γ → −∞

as υ →∞. Therefore, the condition [58, (I2), Theorem 2.2] is not fulfilled. Hence,
we cannot use the direct minimization approach to find the critical points of Iν .

Now we show that Iν associated with (P f
ν ) is, in general, not coercive. For

example, when F (ξ) = |ξ|s for ξ ∈ R with s ∈ (2,∞), for any x ∈ H \ {0} and
υ ∈ R, we get

Iν(υx) = J1(υx)− ν

∫ σ(T )

0

F (υx(t))∆t

≤ υ2

2
‖x‖20 − νυs|σ(T )|s → −∞

as υ → −∞.

Remark 7. If in Theorem 4, f(t, ξ) ≥ 0 for almost every (t, ξ) ∈ [0, T ]T × R, then
(S) becomes the simpler form

sup
θ>0

θ2

∫ σ(T )

0
F (t, θ)∆t

> 2C2. (Sν)

Additionally, if

lim sup
θ→∞

θ2

∫ σ(T )

0
F (t, θ)∆t

> 2C2,

then (Sν) automatically holds.

Remark 8. Assume θ̄ > 0 is fixed and

θ̄2

Fθ̄

> 2C2.

Then the result of Theorem 5 holds with ‖xν‖0 ≤ θ̄.

Remark 9. If, in Theorem 5, f(t, 0) 6= 0 for almost every t ∈ [0, T ]T, then the solu-
tion that is obtained is obviously nontrivial. But the nontriviality of this solution
can also be verified when f(t, 0) = 0 for almost every t ∈ [0, T ]T, requiring the
following additional condition at zero: There exist an open set ∅ 6= D ⊆ (0, T )T
and B ⊂ D with positive Lebesgue measure such that

lim sup
ξ→0+

ess inft∈B F (t, ξ)
|ξ|2 = ∞ and lim inf

ξ→0+

ess inft∈D F (t, ξ)
|ξ|2 > −∞.

To see this, let 0 < ν̄ < ν∗, where

ν∗ =
1

2C2
sup
θ>0

θ2

Fθ
.
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Then, we obtain the existence of θ̄ > 0 satisfying

2C2ν̄ <
θ̄2

Fθ
.

According to Theorem 3, for each ν ∈ (0, ν̄), Iν possesses a critical point xν ∈
J−1

1 (−∞, sν), where sν =
θ̄2

2C2
. In particular, xν is a global minimum of the

restriction of Iν to J−1
1 (−∞, sν). We proceed to show that xν is nontrivial. To do

so, we prove

lim sup
‖x‖→0+

J2(x)
J1(x)

= ∞. (11)

According to our assumptions at zero, we can find ζ > 0 and κ and a sequence
{ξn} ⊂ R+ converging to zero, satisfying

lim
n→∞

ess inft∈B F (t, ξn)
|ξn|2 = ∞

and
ess inf

t∈D
F (t, ξ) ≥ κ|ξ|2 for all ξ ∈ [0, ζ].

Now, take C ⊂ B of positive measure and y ∈ H with
(i) y(t) ∈ [0, 1] for all t ∈ [0, T ]T,
(ii) y(t) = 1 ∈ R for all t ∈ C,
(iii) y(t) = 0 for all t ∈ (0, T )T \D.

Take Y > 0 and let η > 0 be such that

Y <
η meas(C) + κ

∫
D\C |y(t)|2∆t

1
2‖y‖20

.

Then, there exists n0 ∈ N with ξn < ζ and

ess inf
t∈B

F (t, ξn) ≥ η|ξn|2

for all n > n0. Next, for all n > n0, by using the properties of y (i.e., 0 ≤ ξny(t) < ζ
for large enough n), we get

J2(ξny)
J1(ξny)

=

∫
C

F (t, ξn)∆t +
∫

D\C F (t, ξny(t))∆t

J1(ξny)

>
η meas(C) + κ

∫
D\C |y(t)|2∆t

1
2‖y‖20

> Y.

As Y is arbitrary, we obtain

lim
k→∞

J2(ξny)
J1(ξny)

= ∞,

from which (11) follows. Thus, there exists {wn} ⊂ H that converges strongly to
zero, wn ∈ J−1

1 (−∞, s), and

Iν(wn) = J1(wn)− νJ2(wn) < 0.

As xν is a global minimum of the restriction of Iν to J−1
1 (−∞, s), we conclude

Iν(xν) < 0, (12)

and thus xν is nontrivial.
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From (12), we also get that the map

(0, ν∗) 3 ν 7→ Iν(xν) (13)

is negative. Further, we have

lim
ν→0+

‖xν‖0 = 0.

In fact, by noting that J1 is coercive and that for ν ∈ (0, ν∗), xν ∈ J−1
1 (−∞, s),

one obtains existence of a constant L > 0 with ‖xν‖ ≤ L for all ν ∈ (0, ν∗). This
implies existence of M > 0 satisfying∣∣∣∣∣

∫ σ(T )

0

f(t, xσ
ν (t))xσ

ν (t)∆t

∣∣∣∣∣ ≤M‖xν‖0 ≤ML (14)

for every ν ∈ (0, ν∗). Since xν is a critical point of Iν , we obtain I ′ν(xν)(y) = 0 for
any y ∈ B and all ν ∈ (0, ν∗). In particular, I ′ν(xν)(xν) = 0, that is,

J ′1(xν)(xν) = ν

∫ σ(T )

0

f(t, xσ
ν (t))xσ

ν (t)∆t (15)

for every ν ∈ (0, ν∗). Then, since

0 ≤ ‖xν‖20 ≤ J ′1(xν)(xν),

by using (15), it is concluded that

0 ≤ ‖xν‖20 ≤ J ′1(xν)(xν) ≤ ν

∫ σ(T )

0

f(t, xσ
ν (t))xσ

ν (t)∆t

for any ν ∈ (0, ν∗). Letting ν → 0+, by (14), we have limν→0+ ‖xν‖0 = 0. One has

lim
ν→0+

‖xν‖∞ = 0. (16)

Finally, we demonstrate that the map

ν 7→ Iν(xν)

strictly decreases in (0, ν∗). To do so, we note that

Iν(x) = ν

(J1(x)
ν

− J2(x)
)

for all x ∈ H. (17)

Fix 0 < ν1 < ν2 < ν∗ and let xν1 , xν2 be the global minima of Iν1 , Iν2 , restricted
to J1(−∞, s). Put

mνi =
(J1(xνi)

νi
− J2(xνi)

)
= inf

y∈J−1
1 (−∞,s)

(J1(y)
νi

− J2(y)
)

for i = 1, 2. Then, (13) and (17), since ν > 0, yield

mνi < 0 for i = 1, 2. (18)

Moreover,
mν2 ≤ mν1 (19)

due to 0 < ν1 < ν2. Then by considering (17)–(19) and again since 0 < ν1 < ν2,
we get

Iν2(xν2) = ν2mν2 ≤ ν2mν1 < ν1mν1 = Iν1(xν1),
so that the map ν 7→ Iν(xν) strictly decreases in ν ∈ (0, ν∗). As ν < ν∗ is arbitrary,
we get ν 7→ Iν(xν) strictly decreases in (0, ν∗).
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Remark 10. We remark that Theorem 5 is a bifurcation result, i.e., (0, 0) belongs
to the closure of

{
(xν , ν) ∈ H × (0,∞) : xν is a nontrivial solution of (P f

ν )
}

in H× R. Indeed, we know that

‖xν‖0 → 0 as ν → 0.

Thus, there are two sequences {xj} in H and ν > 0 (here xj = xν) such that

νi → 0+ and ‖xj‖0 → 0

as j →∞. Additionally, we point out that since the map

(0, ν∗) 3 ν 7→ Iν(xν)

is strictly decreasing, for every ν1, ν2 ∈ (0, ν∗) with ν1 6= ν2, the solutions xν1 and
xν2 are different.

Remark 11. If f ≥ 0, then also the solution in Theorem 5 is nonnegative. To show
this, assume x0 is a nontrivial solution of (P f

ν ). Suppose

A = {t ∈ (0, T ]T : x0(t) < 0}
has positive measure. Define ȳ(t) = min{0, x0(t)} for t ∈ [0, T ]T. We obtain ȳ ∈ H
and

∫ σ2(T )

0

p(t)x∆
0 (t)ȳ∆(t)∆t +

∫ σ(T )

0

q(t)xσ
0 (t)ȳσ(t)∆t + β1p(0)x0(0)ȳ(0)

+ β2p(σ(T ))x0(σ2(T ))ȳ(σ2(T ))− ν

∫ σ(T )

0

f(t, xσ
0 (t))ȳσ(t)∆t = 0.

Thus, since f is assumed to be nonnegative, we get

0 ≤‖x0‖2A ≤
∫ σ2(T )

0

p(t)x∆
0 (t)x∆

0 (t)∆t +
∫ σ(T )

0

q(t)xσ
0 (t)xσ

0 (t)∆t

+ β1p(0)x0(0)x0(0) + β2p(σ(T ))x0(σ2(T ))x0(σ2(T ))

=ν

∫ σ(T )

0

f(t, xσ
0 (t))xσ

0 (t)∆t ≤ 0.

Hence, x0 = 0 in A, and this is a contradiction.

The next theorem is concerned with a particular case of our results.

Theorem 12. Assume f : R → [0,∞) is continuous and define F (ξ) =
∫ ξ

0
f(s)ds

for ξ ∈ R. If

lim
ξ→0+

F (ξ)
ξ2

= ∞,

then, for all

ν ∈ Λ =
(

0,
1

2σ(T )C2
sup
θ>0

θ2

F (θ)

)
,

the problem
{
−(px∆)∆(t) + q(t)xσ(t) = νf(xσ(t)), t ∈ [0, T ]T,
α1x(0)− α2x

∆(0) = 0, α3x(σ2(T )) + α4x
∆(σ(T )) = 0



14 S. HEIDARKHANI

has a nontrivial solution xν ∈ H satisfying

lim
ν→0+

‖xν‖0 = 0,

and

ν → 1
2
‖x‖20 − ν

∫ σ(T )

0

F (x(t))∆t

is strictly decreasing in Λ and negative.

Finally, we offer an example illustrating Theorem 12.

Example 13. Let T =
{

4
n : n ∈ N} ∪ {0} and T = 1. Consider

{
−x∆∆(t) = νf(xσ(t)), t ∈ [0, 1]T,
x(0)− 2x∆(0) = 0, x∆( 4

3 ) = 0,
(20)

where

f(ξ) =
3
64

(
2ξ + 2 tan(ξ) sec2(ξ) + eξ

)
for all ξ ∈ R.

Then (20) is in the form of (P f
ν ) with

α1 = 1, α2 = 2, α3 = 0, α4 = 1, p(t) ≡ 1, q(t) ≡ 0.

We calculate

β1 =
1
2
, β2 = 0, σ(1) =

4
3
, σ2(1) = 2,

p = 1, q = 0, M1 = M2 = 2, M3 = ∞, C = 2,

and

F (ξ) =
3
64

(
ξ2 + tan2(ξ) + eξ − 1

)
for all ξ ∈ R.

Note that we clearly have (using L’Hôpital’s rule)

lim
ξ→0+

F (ξ)
ξ2

= ∞.

Hence, all assumptions in Theorem 12 are fulfilled. Note that

sup
θ>0

θ2

θ2 + tan2(θ) + eθ − 1
≈ 0.347529 ≥ 0.3475

so that, by Theorem 12, for all ν ∈ (0, 0.695) problem (20) has a nontrivial solution
xν ∈ H1

∆([0, σ2(1)]T) satisfying

lim
ν→0+

‖xν‖0 = 0,

and the map

ν 7→ 1
2
‖x‖20 − ν

∫ 4
3

0

F (x(t))∆t

is strictly decreasing in (0, 0.695) and negative.
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4. The existence of three solutions

4.1. Main results. Let ∅ 6= T ⊂ R, called a time scale, be given. For example,
T = R and T = Z are time scales that correspond to differential and difference
equations, respectively. Let S > 0 be fixed and suppose 0, S ∈ T. Consider the
second-order dynamic Sturm–Liouville boundary value problem{

−(px∆)∆(t) + q(t)xσ(t) = νf(t, xσ(t)) + ζg(t, xσ(t)), t ∈ [0, S]T,
α1x(0)− α2x

∆(0) = 0, α3x(σ2(S)) + α4x
∆(σ(S)) = 0,

(Pν,ζ)

where p ∈ C1([0, σ(S)]T, (0,∞)), q ∈ C([0, S]T, [0,∞)), f, g ∈ C([0, S]T × R,R),
ν > 0 and ζ ≥ 0 are real parameters, αi ≥ 0 for i = 1, 2, 3, 4 and α1 + α2 ≥ 0,
α3 + α4 > 0, α1 + α3 > 0.

In the section, see Theorem 17 below, we obtain the existence of at least three
distinct nonnegative solutions for (Pν,ζ) by utilizing a critical point result due to
Bonanno and Candito [23, Theorem 3.3]. Demanding an additional asymptotical
behaviour of the data at zero, nontriviality of the solution can also be achieved
under appropriate assumptions, see Remark 18. Moreover, existence of solutions
for ν → 0+ is investigated, see Remark 19. Theorem 20 follows from Theorem
17. As a special case of Theorem 20, we present Theorems 21 and 22. Next, we
offer Example 23, in which the assumptions of Theorem 22 are satisfied. Finally,
in Theorem 24, existence of at least four distinct nontrivial solutions of (Pν,0) is
discussed.

The main tool to derive existence of at least three solutions for (Pν,ζ) is the
following three critical point theorem due to Bonanno and Candito. For X 6= 0,
J1,J2 : X → R, and r, r1, r2 > infX J1, r2 > r1, r3 > 0, define

ϕ(r) := inf
x∈J−1

1 (−∞,r)

supy∈J−1
1 (−∞,r) J2(y)− J2(x)

r − J1(x)
,

β(r1, r2) := inf
x∈J−1

1 (−∞,r1)
sup

y∈J−1
1 [r1,r2)

J2(y)− J2(x)
J1(y)− J1(x)

,

γ(r2, r3) :=
supx∈J−1

1 (−∞,r2+r3)
J2(x)

r3
,

and
α(r1, r2, r3) := max{ϕ(r1), ϕ(r2), γ(r2, r3)}.

Theorem 14 (See [23, Theorem 3.3]). Let be given a reflexive real Banach space X.
Suppose J1 : X → R is a convex, coercive, and continuously Gâteaux-differentiable
functional such that its Gâteaux derivative admits a continuous inverse on X∗.
Assume that J2 : X → R is a continuously Gâteaux-differentiable functional such
that its Gâteaux derivative is compact. Assume

(a1) infX J1 = J1(0) = J2(0) = 0,
(a2) for every x1, x2 ∈ X such that J2(x1) ≥ 0 and J2(x2) ≥ 0, one has

inf
s∈[0,1]

J2(sx1 + (1− s)x2) ≥ 0.

Suppose that there exist r1, r2, r3 > 0 with r1 < r2 and
(a3) ϕ(r1) < β(r1, r2),
(a4) ϕ(r2) < β(r1, r2),
(a5) γ(r2, r3) < β(r1, r2).
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Then, for any ν ∈
(

1
β(r1,r2)

, 1
α(r1,r2,r3)

)
, J1 − νJ2 admits at least three distinct

critical points x1, x2, x3 such that

x1 ∈ J−1
1 ((−∞, r1)), x2 ∈ J−1

1 ([r1, r2)), x3 ∈ J−1
1 ((−∞, r2 + r3)).

We refer the reader to [1, 12, 13, 20, 24, 38–40, 42, 54] for situations of successful
employments of results such as Theorem 14 in order to prove existence of three
solutions for various boundary value problems.

For each x ∈ H, define the functionals J1 and J2 by

J1(x) =
1
2
‖x‖20 (21)

and

J2(x) =
∫ σ(S)

0

F (t, xσ(t))∆t +
ζ

ν

∫ σ(S)

0

G(t, xσ(t))∆t (22)

where

F (t, ξ) =
∫ ξ

0

f(t, s)ds for (t, ξ) ∈ [0, S]T × R
and

G(t, ξ) =
∫ ξ

0

g(t, s)ds for (t, ξ) ∈ [0, S]T × R.

Define also
Iν = J1(x)− νJ2(x).

The following auxiliary result is used later.

Lemma 15. Let T : H → H∗ be defined by T (x)(y) = (x, y)0. Then T possesses a
continuous inverse on E∗.

Proof. Note that

lim
‖x‖0→∞

T (x)(x)
‖x‖0 = lim

‖x‖0→∞
(x, x)0
‖x‖0 = lim

‖x‖0→∞
‖x‖0 = ∞.

Thus, the map T is coercive. Now, we will prove that T is strictly monotone:

T (x)(x− y)− T (y)(x− y) = (x, x− y)0 − (y, x− y)0

= (x− y, x− y)0 = ‖x− y‖20.
By [64, Theorem 26.A(d)], T−1 exists and is continuous on H∗. ¤

Proposition 16. x ∈ H is a critical point of J1 − νJ2 iff x solves (Pν,ζ).

Proof. Suppose x ∈ H is a critical point of J1 − νJ2. Thus, for any y ∈ H,

〈(J1 − νJ2)′(x), y〉 = 0,

that is,
∫ σ2(S)

0

p(t)x∆(t)y∆(t)∆t +
∫ σ(S)

0

q(t)xσ(t)yσ(t)∆t

− ν

∫ σ(S)

0

f(t, xσ(t))yσ(t)∆t− ζ

∫ σ(S)

0

g(t, xσ(t))yσ(t)∆t

+ β1p(0)x(0)y(0) + β2p(σ(S))x(σ2(S))y(σ2(S)) = 0.
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Simple calculations show that

−
∫ σ2(S)

0

(px∆)∆(t)yσ(t)∆t

+
∫ σ(S)

0

[q(t)xσ(t)− νf(t, xσ(t))− ζg(t, xσ(t))] yσ(t)∆t

+ p(0)y(0)
[
β1x(0)− x∆(0)

]

+ y(σ2(S))
[
p(σ2(S))x∆(σ2(S)) + β2p(σ(S))x(σ2(S))

]
= 0.

(23)

Thus, by the fundamental lemma of variational calculus, x satisfies the dynamic
equation in (Pν,ζ). Then (23) becomes

p(0)y(0)
[
β1x(0)− x∆(0)

]

+ y(σ2(S))
[
p(σ2(S))x∆(σ2(S)) + β2p(σ(S))x(σ2(S))

]
= 0.

By using (5) and (6), we have

p(0)y(0)
[
α1x(0)− α2x

∆(0)
]

+ y(σ2(S))
[
p(σ2(S))α4x

∆(σ2(S)) + α3p(σ(S))x(σ2(S))
]

= 0

for all y ∈ X. We now demonstrate that x satisfies the boundary conditions in
(Pν,ζ). Without restricting generality, suppose

α1x(0)− α2x
∆(0) > 0.

We let y(t) = σ2(S)− t. Then

p(0)y(0)
[
α1x(0)− α2x

∆(0)
]

+ y(σ2(S))
[
p(σ2(S))α4x

∆(σ2(S)) + α3p(σ(S))x(σ2(S))
]

= p(0)σ2(S)
[
α1x(0)− α2x

∆(0)
]

> 0,

a contradiction. So x is a solution of (Pν,ζ). Conversely, if x is a solution of (Pν,ζ),
for any y ∈ X, multiplying y(t) on both sides of the dynamic equation in (Pν,ζ)
and integrating on [0, σ(S)]T, in view of the boundary conditions, we observe that
x satisfies 〈(J1 − νJ2)′(x), y〉 = 0 for all y ∈ X. ¤

Next, for our convenience, let

Gθ :=
∫

[0,σ(S))T
G(t, θ)∆t for θ > 0 (24)

and
Gη := σ(S) inf

[0,σ(S))T×[0,η]
G for η > 0. (25)

For a positive constant d, set

Kd =
d2

2

(∫ σ(S)

0

q(t)∆t + β1p(0) + β2p(σ(S))

)
.

We fix four positive constants θ1, θ2, θ3, d and define the constant δν,g by

min

{
1

2C2
min

{
θ2
1 − 2C2ν

∫ σ(S)

0
F (t, θ1)∆t

Gθ1
,
θ2
2 − 2C2ν

∫ σ(S)

0
F (t, θ2)∆t

Gθ2
,
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θ2
3 − θ2

2 − 2C2ν
∫ σ(S)

0
F (t, θ3)∆t

Gθ3

}
,
Kd − ν

∫ σ(S)

0
(F (t, d)− F (t, θ1))∆t

Gd −Gθ1

}
. (26)

Theorem 17. Suppose f : [0, S]T × [0,∞) → (0,∞) is continuous. Assume the
existence of θ1, θ2, θ3, d > 0 such that

θ1 < C
√

2Kd < θ2 < θ3

and
(A1)

max

{∫ σ(S)

0
F (t, θ1)∆t

θ2
1

,

∫ σ(S)

0
F (t, θ2)∆t

θ2
2

,

∫ σ(S)

0
F (t, θ3)∆t

θ2
3 − θ2

2

}

<
1

2C2

∫ σ(S)

0
(F (t, d)− F (t, θ1))∆t

Kd
.

Then, for every

ν ∈
(

Kd∫ σ(S)

0
(F (t, d)− F (t, θ1))∆t

,

1
2C2

min

{
θ2
1∫ σ(S)

0
F (t, θ1)∆t

,
θ2
2∫ σ(S)

0
F (t, θ2)∆t

,
θ2
3 − θ2

2∫ σ(S)

0
F (t, θ3)∆t

})
,

for every nonnegative continuous function g : [0, S]T×R→ R, there exists δν,g > 0
given by (26) such that, for each ζ ∈ [0, δν,g), the problem (Pν,ζ) possesses at least
three nonnegative solutions x1, x2, x3 ∈ H such that

max
t∈[0,σ2(S)]T

|x1(t)| < θ1, max
t∈[0,σ2(S)]T

|x2(t)| < θ2, max
t∈[0,σ2(S)]T

|x3(t)| < θ3.

Proof. We may assume f(t, x) = f(t, 0) for all (t, x) ∈ [0, S]T × (−∞, 0). Let
X = H, and we consider J1 and J2 defined by (21) and (22), respectively. We now
prove that J1 and J2 fulfill the assumptions of Theorem 14. It is clear that J2 is
differentiable with

J ′2(x)(y) =
∫ σ(S)

0

f(t, xσ(t))yσ(t)∆t +
ζ

ν

∫ σ(S)

0

g(t, xσ(t))yσ(t)∆t

for x, y ∈ X. Moreover, J ′2 : X → X∗ is compact. Also, J1 is continuously
differentiable with

J ′1(x)(y) =
∫ σ2(S)

0

p(t)x∆(t)y∆(t)∆t +
∫ σ(S)

0

q(t)xσ(t)yσ(t)∆t

+ β1p(0)x(0)y(0) + β2p(σ(S))x(σ2(S))y(σ2(S))

for x, y ∈ X, while Lemma 15 yields that J ′1 has a continuous inverse on X∗. In
addition, J1 is sequentially weakly lower semicontinuous. Denote

r1 :=
θ2
1

2C2
, r2 :=

θ2
2

2C2
, r3 :=

θ2
3 − θ2

2

2C2

and w(t) = d for t ∈ [0, S]T. Clearly, w ∈ X. From (21), we observe that J1(w) =
Kd, and by the condition

θ1 < C
√

2Kd < θ2 < θ3,
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we get r3 > 0 and r1 < J1(w) < r2. From the definition of r1 and Lemma 2, we
obtain

J−1
1 (−∞, r1) ⊆

{
x ∈ X : ‖x‖0 ≤

√
2r1

}

⊆ {
x ∈ X : |x(t)| ≤ C

√
2r1 for all t ∈ [0, σ2(S)]T

}

=
{
x ∈ X : |x(t)| ≤ θ1 for all t ∈ [0, σ2(S)]T

}
,

and since we assumed that f and g are nonnegative, this ensures

J2(x) ≤ sup
y∈J−1

1 (−∞,r1)

[∫ σ(S)

0

F (t, yσ(t))∆t +
ζ

ν

∫ σ(S)

0

G(t, yσ(t))∆t.

]

≤
∫ σ(S)

0

F (t, θ1)∆t +
ζ

ν

∫ σ(S)

0

G(t, θ1)∆t

=
∫ σ(S)

0

F (t, θ1)∆t +
ζ

ν
Gθ1

for every x ∈ X such that J1(x) < r1. Thus,

sup
x∈J−1

1 (−∞,r1)

J2(x) ≤
∫ σ(S)

0

F (t, θ1)∆t +
ζ

ν
Gθ1 . (27)

Similarly,

sup
x∈J−1

1 (−∞,r2)

J2(x) ≤
∫ σ(S)

0

F (t, θ2)∆t +
ζ

ν
Gθ2 (28)

and

sup
x∈J−1

1 (−∞,r2+r3)

J2(x) ≤
∫ σ(S)

0

F (t, θ3)∆t +
ζ

ν
Gθ3 . (29)

Therefore, since 0 ∈ J−1
1 (−∞, r1) and J1(0) = J2(0) = 0, using (27), one has

ϕ(r1) ≤
supx∈J−1

1 (−∞,r1)
J2(x)

r1
≤ 2C2

∫ σ(S)

0
F (t, θ1)∆t + ζ

ν Gθ1

θ2
1

<
1
ν

because ζ < 1
2C2

θ2
1−2C2ν

∫ σ(S)
0 F (t,θ1)∆t

Gθ1
due to (26), and using (28), one has

ϕ(r2) ≤
supx∈J−1

1 (−∞,r2)
J2(x)

r2
≤ 2C2

∫ σ(S)

0
F (t, θ2)∆t + ζ

ν Gθ2

θ2
2

<
1
ν

because ζ < 1
2C2

θ2
2−2C2ν

∫ σ(S)
0 F (t,θ2)∆t

Gθ2
due to (26), and using (29), one has

γ(r2, r3) ≤
supx∈J−1

1 (−∞,r2+r3)
J2(x)

r3
≤ 2C2

∫ σ(S)

0
F (t, θ3)∆t + ζ

ν Gθ3

θ2
3 − θ2

2

<
1
ν

because ζ <
θ2
3−θ2

2−2C2ν
∫ σ(S)
0 F (t,θ3)∆t

Gθ3
due to (26). Also, taking into account (25),

we get

J2(w) =
∫ σ(S)

0

F (t, w(t))∆t +
ζ

ν

∫ σ(S)

0

G(t, w(t))∆t

≥
∫ σ(S)

0

F (t, w(t))∆t + σ(S)
ζ

ν
inf

[0,σ(S)]T×[0,d]
G
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=
∫ σ(S)

0

F (t, d)∆t +
ζ

ν
Gd.

Hence, if x ∈ J−1
1 (−∞, r1), then, taking (27) into account,

J2(w)− J2(x) ≥
∫ σ(S)

0

(F (t, d)− F (t, θ1))∆t +
ζ

ν
(Gd −Gθ1)

and
0 < J1(w)− J1(x) ≤ J1(w) = Kd,

so that

β(r1, r2) ≥
∫ σ(S)

0
(F (t, d)− F (t, θ1))∆t + ζ

ν (Gd −Gθ1)
Kd

>
1
ν

because ζ <
Kd − ν

∫ σ(S)

0
(F (t, d)− F (t, θ1))∆t

Gd −Gθ1
due to (26). Altogether, we get

α(r1, r2, r3) < β(r1, r2).

Next, we illustrate that J2 fulfills (a2) of Theorem 14. Suppose x1, x2 are local
minima for Iν . Then x1, x2 are critical points for Iν and hence nonnegative solutions
of (Pν,ζ). Thus, it follows that

(νf + ζg)(t, sx1 + (1− s)x2) ≥ 0

for all s ∈ [0, 1], and therefore, J2(sx1 +(1−s)x2) ≥ 0 for all s ∈ [0, 1]. By utilizing
Theorem 14, we get that for every

ν ∈
(

Kd∫ σ(S)

0
(F (t, d)− F (t, θ1))∆t

,

1
2C2

min

{
θ2
1∫ σ(S)

0
F (t, θ1)∆t

,
θ2
2∫ σ(S)

0
F (t, θ2)∆t

,
θ2
3 − θ2

2∫ σ(S)

0
F (t, θ3)∆t

})

and ζ ∈ [0, δν,g), the functional Iν has three critical points xi, i = 1, 2, 3, in X such
that J1(x1) < r1, J1(x2) < r2, and J1(x3) < r2 + r3, that is,

max
t∈[0,σ2(S)]T

|x1(t)| < θ1, max
t∈[0,σ2(S)]T

|x2(t)| < θ2, max
t∈[0,σ2(S)]T

|x3(t)| < θ3.

The proof is complete. ¤

Remark 18. If f(t, 0) 6= 0 or g(t, 0) 6= 0 for some t ∈ [0, S]T, then the solutions
obtained in Theorem 17 are nontrivial. Moreover, nontriviality can be demonstrated
also if f(t, 0) = 0 for some t ∈ [0, S]T, requiring an extra condition at zero, namely
the existence of ∅ 6= D ⊆ [0, S]T (D open) and B ⊂ D such that

lim sup
ξ→0+

inft∈B F (t, ξ)
|ξ|2 = ∞ and lim inf

ξ→0+

inft∈D F (t, ξ)
|ξ|2 > −∞. (30)

To see this, let 0 < ν < ν∗, where

ν∗ =
1

2C2
min

{
θ2
1∫ σ(S)

0
F (t, θ1)∆t

,
θ2
2∫ σ(S)

0
F (t, θ2)∆t

,
θ2
3 − θ2

2∫ σ(S)

0
F (t, θ3)∆t

}
.
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Let J1 and J2 be as given in (21) and (22), respectively. Because of Theorem 14,

for all ν ∈
(

Kd∫ σ(S)

0
(F (t, d)− F (t, θ1))∆t

, ν

)
, there exist three critical points x1ν ,

x2ν and x3ν of the functional Iν = J1(x)− νJ2(x) such that

x1ν ∈ J−1
1 (−∞, r1ν), x2ν ∈ J−1

1 (−∞, r2ν), x3ν ∈ J−1
1 (−∞, r3ν),

where

r1ν =
θ2
1ν

2C2
, r2ν =

θ2
2ν

2C2
, r3ν =

θ2
3ν − θ2

2ν

2C2
.

In particular, xiν for i = 1, 2, 3 is a global minimum of the restriction of Iν to
J−1

1 (−∞, riν) for i = 1, 2, 3. We will prove that x1ν cannot be trivial. Let us show
that

lim sup
‖x‖→0+

J2(x)
J1(x)

= ∞. (31)

According to (30), we may τ > 0 and κ and a sequence {ξn} ⊂ R+ that converges
to zero such that, for all ξ ∈ [0, τ ],

lim
ξ→0+

inft∈B F (t, ξn)
|ξn|2 = ∞ and inf

t∈D
F (t, ξ) > κ|ξ|2.

We consider E ⊂ B of positive measure and y ∈ X satisfying
(k1) y(t) ∈ [0, 1] for all t ∈ [0, S]T,
(k2) y(t) = 1 for all t ∈ E,
(k3) y(t) = 0 for all t ∈ [0, S]T \D.

Finally, let M > 0 and let η > 0 such that

M < 2
meas(E) + mpκ

∫
D\E |y(t)|∆t

Ky
,

where

Ky :=
∫ σ2(S)

0

p(t)|y∆(t)|2∆t +
∫

E

q(t)∆t +
∫

D\E
q(t)|yσ(t)|2∆t

+ β1p(0)y2(0) + β2p(σ(S))y2(σ2(S)).

Then, there is n0 ∈ N such that

ξn < τ and inf
t∈B

F (t, ξn) ≥ κ|ξn|p

for all n > n0. Now, for every n > n0, by taking into account 0 ≤ ξny(t) < τ for
sufficiently large n, since g is nonnegative, one has

J2(ξny)
J1(ξny)

=

∫
E

F (t, ξn)∆t +
∫

D\E F (t, ξny(t))∆t +
ζ

ν

∫ σ(S)

0
G(t, ξny(t))∆t

J1(ξny)

≥
∫

E
F (t, ξn)∆t +

∫
D\E F (t, ξny(t))∆t + ζ

ν Gτ

J1(ξny)

≥
η meas(E) + κ

∫
D\E |y(t)|∆t

Ky
> M.



22 S. HEIDARKHANI

Hence, by the arbitrariness of M , we obtain

lim
n→∞

J2(ξny)
J1(ξny)

= ∞,

from which (31) follows. Thus, there exists {ωn} ⊂ X that converges strongly to
zero such that ωn ∈ J−1

1 (−∞, r1ν) and

Iν(ωn) = J1(ωn)− νJ2(ωn) < 0.

Since x1ν is a global minimum of the restriction of Iν to J−1
1 (−∞, r1ν), we get

Iν(x1ν) < 0, (32)

which means x1ν is nontrivial. By the same arguments, we see that x2ν and x3ν

are nontrivial. If we assume that there exist ∅ 6= D ⊆ [0, S]T (D open) and B ⊂ D
such that

lim sup
ξ→0+

inft∈B G(t, ξ)
|ξ|2 = ∞ and lim inf

ξ→0+

inft∈D G(t, ξ)
|ξ|2 > −∞

instead of (30), respectively, then the solutions are again nontrivial.

Remark 19. Using (32), we obtain negativity of the map

Λ :=

(
Kd∫ σ(S)

0
(F (t, d)− F (t, θ1))∆t

, ν∗
)
3 ν 7→ Iν(xiν), i = 1, 2, 3. (33)

Also, one has
lim

ν→0+
‖xiν‖ = 0, i = 1, 2, 3.

Indeed, recalling that J2 is coercive and for all ν ∈ Λ, for the solution xiν ∈
J−1

1 (−∞, riν), i = 1, 2, 3, we get the existence of L > 0 satisfying ‖xiν‖ ≤ L,
i = 1, 2, 3 for all ν ∈ Λ. Then, there exists N > 0 with∣∣∣∣∣

∫ σ(S)

0

f(t, xσ
iν(t))xσ

iν(t)∆t +
ζ

ν

∫ σ(S)

0

g(t, xσ
iν(t))xσ

iν(t)∆t

∣∣∣∣∣ ≤ N‖xiν‖ ≤ NL (34)

for i = 1, 2, 3, for every ν ∈ Λ. Since xiν , i = 1, 2, 3 is a critical point of Iν , we have
I ′ν(xiν)(y) = 0, i = 1, 2, 3, for all y ∈ X and all ν ∈ Λ. Hence, I ′ν(xiν)(xiν) = 0,
i = 1, 2, 3, that is,

J ′1(xiν)(xiν) = ν

∫ σ(S)

0

f(t, xσ
iν(t))xσ

iν(t)∆t + ζ

∫ σ(S)

0

g(t, xσ
iν(t))xσ

iν(t)∆t

for all ν ∈ Λ. Then, it follows

0 ≤ J ′1(xiν)(xiν) = ν

∫ σ(S)

0

f(t, xσ
iν(t))xσ

iν(t)∆t + ζ

∫ σ(S)

0

g(t, xσ
iν(t))xσ

iν(t)∆t

for all ν ∈ Λ. Letting ν → 0+ by (34), we obtain

lim
ν→0+

‖xiν‖ = 0, i = 1, 2, 3.

This gives the desired conclusion. Finally, we show that the map

ν 7→ Iν(xiν), i = 1, 2, 3

strictly decreases in ν ∈ Λ. For any x ∈ X, we have

Iν(x) = ν

(J1(x)
ν

− J2(x)
)

. (35)
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Take 0 < ν1 < ν2 < ν∗ and let xiνj be the global minimum of Iνj restricted to
J1(−∞, riνj

) for i = 1, 2, 3, j = 1, 2. Also, put

miνj =
J1(xiνj )

νi
− J2(xiνj ) = inf

y∈J−1
1 (−∞,riνj

)

(J1(y)
νj

− J2(y)
)

for every i = 1, 2, 3, j = 1, 2. Then, (33) in conjunction with (35) and ν > 0 yields

miνj < 0 for i = 1, 2, 3, j = 1, 2. (36)

Moreover,

miν2 < miν1 , i = 1, 2, 3 (37)

due to the fact that 0 < ν1 < ν2. Then, by (35)–(37) and again by the fact that
0 < ν1 < ν2, we get

Iν2(xiν2) = ν2miν2 ≤ ν2miν1 < ν1miν1 , i = 1, 2, 3

so that the map ν 7→ Iν(xiν), i = 1, 2, 3, decreases strictly in ν ∈ Λ. Since ν < ν∗

is arbitrary, we obtain that ν 7→ Iν(xiν) decreases strictly in ν ∈ Λ.

For positive constants θ1, θ4, and d, set

δ′ν,g :=min

{
1

2C2
min

{
θ2
1 − ν

∫ σ(S)

a
F (t, θ1)∆t

Gθ1
,

θ2
4 − 2ν

∫ σ(S)

0
F (t, 1√

2
θ4)∆t

2G
1√
2
θ4

,
θ2
4 − 2ν

∫ σ(S)

0
F (t, θ4)∆t

2Gθ4



 ,

Kd − ν
∫ σ(S)

0
(F (t, d)− F (t, θ1))∆t

Gd −Gθ1

}
.

(38)

Theorem 20. Let f : [0, S]T×[0,∞) → [0,∞) be continuous. Assume the existence
of θ1, θ4, d > 0 such that

θ1 < C
√

2Kd <
θ4√
2

and

(A2) max

{∫ σ(S)

0
F (t, θ1)∆t

θ2
1

,
2

∫ σ(S)

0
F (t, θ4)∆t

θ2
4

}
< 1

4C2

∫ σ(S)

0
F (t, d)∆t

Kd
.

Then, for every

ν ∈
(

Kd∫ σ(S)

0
F (t, d)∆t

,
1

4C2
min

{
θ2
1∫ σ(S)

0
F (t, θ1)∆t

,
θ2
4

2
∫ σ(S)

0
F (t, θ4)∆t

})

and every continuous g : [0, S]T × R → [0,∞), there is δ′ν,g > 0 defined by (38)
such that, for all ζ ∈ [0, δ′ν,g), (Pν,ζ) admits at least three nonnegative solutions
x1, x2, x3 ∈ H satisfying

max
t∈[0,S]T

|x1(t)| < θ1, max
t∈[0,S]T

|x2(t)| < θ4√
2
, max

t∈[0,S]T
|x3(t)| < θ4.
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Proof. Choose θ2 = θ4√
2

and θ3 = θ4. So, from (A2) one has

∫ σ(S)

0
F (t, θ2)∆t

θ2
2

=
2

∫ σ(S)

0
F (t, θ4√

2
)∆t

θ2
4

≤ 2
∫ σ(S)

a
F (t, θ4)∆t

θ2
4

<
1

4C2

∫ σ(S)

0
F (t, d)∆t

Kd

(39)

and ∫ σ(S)

0
F (t, θ3)∆t

θ2
3 − θ2

2

=
2

∫ σ(S)

0
F (t, θ4)∆t

θ2
4

<
1

4C2

∫ σ(S)

0
F (t, d)∆t

Kd
. (40)

Moreover, taking into account that θ1 < C
√

2Kd <
θ4√
2
, by using (A2), we have

1
2C2

∫ σ(S)

0
(F (t, d)− F (t, θ1))∆t

Kd
>

1
2C2

∫ σ(S)

0
F (t, d)∆t

Kd
−

∫ σ(S)

0
F (t, θ1)∆t

θ2
1

>
1

2C2

(∫ σ(S)

0
F (t, d)∆t

Kd
− 2C2

4C2

∫ σ(S)

0
F (t, d)∆t

Kd

)

=
1

4C2

∫ σ(S)

0
F (t, d)∆t

Kd
.

Hence, from (A2), (39), and (40), we observe that (A1) of Theorem 17 is fulfilled,
completing the proof. ¤

The following two results are special cases of Theorem 20.

Theorem 21. Let f1 ∈ L1([0, S]T) and f2 ∈ C(R). Put F̃ (ξ) =
∫ ξ

0
f2(s)ds, ξ ∈ R,

and assume the existence of θ1, θ4, d > 0 with

θ1 < C
√

2Kd <
θ4√
2

and

(A3) f1(t) ≥ 0 for all t ∈ [0, S]T and f2(ξ) ≥ 0 for each ξ ∈ [0,∞),

(A4) max

{
F̃ (θ1)

θ2
1

,
2F̃ (θ4)

θ2
4

}
<

1
4C2

F̃ (d)
Kd

.

Then, for every

ν ∈
(

Kd

F̃ (d)
∫ σ(S)

0
f1(t)∆t

,
1

4C2
∫ σ(S)

0
f1(t)∆t

min
{

θ2
1

F̃ (θ1)
,

θ2
4

2F̃ (θ4)

})

and every continuous g : [0, S]T × R→ [0,∞), whenever

ζ ∈
[
0, min

{
1

2C
min

{
θ2
1 − νF̃ (θ1)

∫ σ(S)

0
f1(t)∆t

Gθ1
,

θ2
4 − 2νF̃ ( θ4√

2
)
∫ σ(S)

0
f1(t)∆t

2G
θ4√
2

,
θ2
4 − 2νF̃ (θ4)

∫ σ(S)

0
f1(t)∆t

2Gθ4



 ,
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Kd − ν
∫ σ(S)

0
f1(t)∆t−

(
F̃ (d)− F̃ (θ1)

)

Gd −Gθ1






 ,

the problem{
−(px∆)∆(t) + q(t)xσ(t) = νf1(t)f2(xσ(t)) + ζg(t, xσ(t)), t ∈ [0, S]T,
α1x(0)− α2x

∆(0) = 0, α3x(σ2(S)) + α4x
∆(σ(S)) = 0

(Pν)

admits at least three nonnegative solutions x1, x2, x3 ∈ H satisfying

max
t∈[0,σ2(S)]T

|x1(t)| < θ1, max
t∈[0,σ2(S)]T

|x2(t)| < θ4√
2
, max

t∈[0,σ2(S)]T
|x3(t)| < θ4.

Proof. Put f(t, x) = f1(t)f2(x) for (t, x) ∈ [0, S]T × R. Since F (t, x) = f1(t)F̃ (x)
for all (t, x) ∈ [0, S]T × R, from (A4), we obtain (A2). ¤

Theorem 22. Assume the existence of θ1, θ4, d > 0 with

θ1 < C
√

2Kd <
θ4√
2

and
(A5) f(ξ) ≥ 0 for all ξ ∈ [0,∞),

(A6) max
{

F (θ1)
θ2
1

,
2F (θ4)

θ2
4

}
< 1

4C2

F (d)
Kd

.

Then, for every

ν ∈
(

Kd

σ(S)F (d)
,

1
4C2σ(S)

min
{

θ2
1

F (θ1)
,

θ2
4

2F (θ4)

})

and every continuous g : [0, S]T × R→ [0,∞), whenever

ζ ∈
[
0, min

{
1

2C2
min

{
θ2
1 − νσ(S)F (θ1)

Gθ1
,
θ2
4 − 2νσ(S)F ( 1√

2
θ4)

2G
1√
2
θ4

}
,

Kd − νσ(S)(F (d)− F (θ1))
Gd −Gθ1

}]
,

the problem{
−(px∆)∆(t) + q(t)xσ(t) = νf(xσ(t)) + ζg(t, xσ(t)), t ∈ [0, S]T,
α1x(0)− α2x

∆(0) = 0, α3x(σ2(S)) + α4x
∆(σ(S)) = 0

(41)

admits at least three nonnegative solutions x1, x2, x3 ∈ H satisfying

max
t∈[0,σ2(S)]T

|x1(t)| < θ1, max
t∈[0,σ2(S)]T

|x2(t)| < 1√
2
θ4, max

t∈[0,σ2(S)]T
|x3(t)| < θ4.

In the following example, all assumptions of Theorem 22 are fulfilled.

Example 23. Consider the nontrivial time scale (see Figure 1)

T =
{

1− 1
2n

: n ∈ N0

}
∪ [1, 2] ∪ {3}.

Let p(t) ≡ 1 and q(t) ≡ 1 on T. Let

S = 1, α1 = 1, α2 = 2, α3 = 1, α4 = 4,
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Figure 1. T in Example 23
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and

f(ξ) =

{
13ξ12, ξ ≤ 1,
13
ξ , ξ > 1.

Hence, we have

σ(S) = σ2(S) = 1, β1 =
1
2
, β2 =

1
4
, C = min

{
2, 2

√
2,
√

2
}

=
√

2,

and

F (ξ) =

{
ξ13, ξ ≤ 1,

1 + 13 ln(ξ), ξ > 1.

We now choose
θ1 = 10−8, θ4 = 103, and d = 10.

Now, it is easy to check that all assumptions of Theorem 22 are fulfilled. Thus, for
every

ν ∈
(

87.5
1 + 13 ln 10

,
106

16(1 + 39 ln 10)

)

and every continuous g : [0, 1]T × R→ [0,∞), whenever

ζ ∈

0, min





1
4

min





10−16 − ν10−104

G10−8 ,
106 − 2ν

(
1 + 13 ln

(
1000√

2

))

2G
1000√

2



 ,

87.5− ν
(
1 + 13 ln 10− 10−104

)

G10 −G10−8

}]
,

the problem
{
−x∆∆(t) + xσ(t) = νf(xσ(t)) + ζg(t, xσ(t)), t ∈ [0, 1]T,
x

(
1
2

)
= 2x∆(0), x(1) + 4x∆(1) = 0

(42)

admits at least three nonnegative solutions x1, x2, and x3 satisfying

max
t∈[0,1]T

|x1(t)| < 10−8, max
t∈[0,1]T

|x2(t)| < 1000√
2

, max
t∈[0,1]T

|x3(t)| < 103.

Our final result is concerned with the case ζ = 0.

Theorem 24. Let f : [0, S]T × R→ R be continuous such that ξf(t, ξ) > 0 for all
(t, ξ) ∈ [0, S]T × (R \ {0}). Suppose

(A7) limξ→0
f(t,ξ)
|ξ| = lim|ξ|→∞

f(t,ξ)
|ξ| = 0.
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Then, for all

ν > ν∗∗ := max

{
inf
d>0

Kd∫ σ(S)

0
F (t, d)∆t

, inf
d<0

Kd∫ σ(S)

0
F (t, d)∆t

}
,

the problem (Pν,0) admits at least four distinct nontrivial solutions.

Proof. Put

f1(t, ξ) =

{
f(t, ξ) if (t, ξ) ∈ [0, S]T × [0,∞),
0 otherwise

and

f2(t, ξ) =

{
−f(t,−ξ) if (t, ξ) ∈ [0, S]T × [0,∞),
0 otherwise

and set F1(t, ξ) :=
∫ t

0
f1(t, s)ds for every (t, ξ) ∈ [0, S]T × R. Take ν > ν∗∗ and

d > 0 with ν > Kd∫ σ(S)
0 F1(t,d)∆t

. From

lim
t→0+

f1(t, ξ)
|ξ| = lim

t→∞
f1(t, ξ)
|ξ| = 0,

there exist θ1 and θ4 such that

θ1 < C
√

2Kd <
θ4√
2
,

∫ σ(S)

a
F1(t, θ1)∆t

θ2
1

<
1

4C2ν
,

∫ σ(S)

0
F1(t, θ4)∆t

θ2
4

<
1

8C2ν
.

Then, (A2) in Theorem 20 is fulfilled, and

ν ∈
(

Kd∫ σ(S)

0
F1(t, d)∆t

,
1

4C2
min

{
θ2
1∫ σ(S)

0
F1(t, θ1)∆t

,
θ2
4

2
∫ σ(S)

0
F1(t, θ4)∆t

})
.

Hence, the problem (P f1
ν,0) admits two positive solutions x1 and x2, and they are

positive solutions of (Pν,0). Next, by the same arguments, from

lim
t→0+

f2(t, ξ)
|ξ| = lim

ξ→∞
f2(t, ξ)
|ξ| = 0,

we guarantee existence of two positive solutions x3 and x4 for (P f2
ν,0). Clearly, −x3

and −x4 are negative solutions of (Pν,0), and the proof is complete. ¤

Remark 25. We remark that in Theorem 24, f is not assumed to be symmetric. But,
if f 6≡ 0 is odd and continuous satisfying f(t, ξ) ≥ 0 for all (t, ξ) ∈ [0, S]T × [0,∞),
then (A7) may be substituted by

(A8) limξ→0+
f(t,ξ)

ξ = limξ→∞
f(t,ξ)

ξ = 0,

guaranteeing existence of at least four distinct nontrivial solutions of (Pν,0) for
every ν > infd>0

Kd∫ σ(S)
0 F (t,d)∆t

.
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5. The existence of infinitely many solutions

5.1. Main results. Let T be a time scale, that is, a nonempty closed subset of
R. In particular, T = R and T = Z are examples of time scales corresponding
to differential and difference equations, respectively. Let T > 0 be fixed and sup-
pose 0, T ∈ T. The aim of this paper is to investigate the existence of infinitely
many solutions for the following second order Sturm–Liouville type boundary value
problem on time scales:

{
−(pu∆)∆(t) + q(t)uσ(t) = νf(t, uσ(t)) + ζg(t, uσ(t)), t ∈ [0, T ]T,
α1u(0)− α2u

∆(0) = 0, α3u(σ2(T )) + α4u
∆(σ(T )) = 0,

(P f,g
ν,ζ )

where p ∈ C1([0, σ(T )], (0, +∞)), q ∈ C([0, T ], [0,+∞)), f, g ∈ C([0, T ] × R,R),
ν > 0, ζ ≥ 0, αi ≥ 0, for i = 1, 2, 3, 4, σ(0) = 0, σ(T ) = T and α1 + α2 ≥
0, α3 + α4 > 0, α1 + α3 > 0.

In this section, we study the existence of solutions for the second order Sturm–
Liouville type boundary value problem on time scales (P f,g

ν,ζ ) which turns out as
an optimization problem on time scales which arises in economics and finance.
In fact, employing a smooth version of [25, Theorem 2.1], under an appropriate
oscillating behaviour of the nonlinear term f , we determine the exact collections
of the parameter ν in which the problem (P f,g

ν,ζ ) for every non negative arbitrary
function g : [0, T ]×R→ R which is measurable in [0, T ] and of class C1(R) satisfying
a certain growth at infinity, choosing ζ sufficiently small, admits infinitely many
solutions (Theorem 27). Replacing the oscillating behaviour condition at infinity,
by a similar one at zero, we achieve a sequence of pairwise distinct solutions which
converges to zero (Theorem 32). We also list some consequences the main results.
The applicability of our results is illustrated by an example.

We formulate our main results discussing the existence of infinitely many so-
lutions for the problem (P f,g

ν,ζ ). Our main tool to ensure the results is a smooth
version [25, Theorem 2.1] which is a more precise version of Ricceri’s variational
principle [59, Theorem 2.5] that we now recall here.

Theorem 26. Let X be a reflexive real Banach space, let J1,J2 : X −→ R be
two Gâteaux differentiable functionals such that J1 is sequentially weakly lower
semicontinuous, strongly continuous, and coercive and J2 is sequentially weakly
upper semicontinuous. For every r > infX J1, let us put

ϕ(r) := inf
u∈J−1

1 (−∞,r)

supu∈J−1
1 (−∞,r) J2(u)− J2(u)

r − J1(u)

and
θ := lim inf

r→+∞
ϕ(r), δ := lim inf

r→(infX J1)+
ϕ(r).

Then, one has

(a) for every r > infX J1 and every ν ∈
]
0,

1
ϕ(r)

[
, the restriction of the func-

tional Iν = J1 − νJ2 to J−1
1 (]−∞, r[) admits a global minimum, which is

a critical point (local minimum) of Iν in X.

(b) If θ < +∞ then, for each ν ∈
]
0,

1
θ

[
, the following alternative holds: either
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(b1) Iν possesses a global minimum,
or

(b2) there is a sequence {un} of critical points (local minima) of Iν such that

lim
n→+∞

J1(un) = +∞.

(c) If δ < +∞ then, for each ν ∈
]
0,

1
δ

[
, the following alternative holds:

(c1) there is a global minimum of J1 which is a local minimum of Iν ,
(c2) there is a sequence of pairwise distinct critical points (local minima) of Iν

which weakly converges to a global minimum of J1.

We refer the interested reader to the papers [29,34,44,45] in which Theorem 26
has been successfully employed to discuss the existence of infinitely many solutions
for boundary value problems.

For convenience, put

A = lim inf
ξ→+∞

∫ σ(T )

0

sup
|x|≤ξ

F (t, x)∆t

ξ2
,

B =
2∫ σ(T )

0
q(t)∆t + β1p(0) + β2p(σ(T ))

lim sup
ξ→+∞

∫ σ(T )

0
F (t, ξ)∆t

ξ2
,

ν1 =
1
B

and

ν2 =
1

2C2A
.

Theorem 27. Assume that
(B1) F (t, x) ≥ 0 for each (t, x) ∈ [0, T ]× [0, +∞);
(B2)

A <
1

2C2
B.

Then, for each ν ∈]ν1, ν2[ for every nonnegative arbitrary function g : [0, T ]×R→ R
which is measurable in [0, T ] and of class C1(R) satisfying the condition

g∞ := lim sup
ξ→+∞

∫ σ(T )

0
sup|x|≤ξ G(t, x)∆t

ξ2
< +∞ (43)

and for every ζ ∈ [0, ζg,ν [ where

ζg,ν :=
1

2C2g∞

(
1− 2νC2A

)
, (44)

the problem (P f,g
ν,ζ ) has an unbounded sequence of solutions in H1

∆([0, σ2(T )]).

Proof. Our aim is to apply Theorem 26 to the problem (P f,g
ν,ζ ). Take X = H1

∆([0, σ2(T )])
and let the functionals J1,J2 for every u ∈ X, defined by

J1(u) =
1
2
‖u‖20 (45)
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and

J2(u) =
∫ σ(T )

0

F (t, uσ(t))∆t +
ζ

ν

∫ σ(T )

0

G(t, uσ(t))∆t.

Let us prove that the functionals J1 and J2 satisfy the required conditions in
Theorem 26. It is well known that J2 is a differentiable functional whose differential
at the point u ∈ X is

J ′2(u)(v) =
∫ σ(T )

0

f(t, uσ(t))vσ(t)∆t +
ζ

ν

∫ σ(T )

0

g(t, uσ(t))vσ(t)∆t

for every v ∈ X, as well as is sequentially weakly upper semicontinuous. Moreover,
J1 is continuously differentiable whose differential at the point u ∈ X is

J ′1(u)(v) =
∫ σ2(T )

0

p(t)u∆(t)v∆(t)∆t +
∫ σ(T )

0

q(t)uσ(t)vσ(t)∆t

+β1p(0)u(0)v(0) + β2p(σ(T ))u(σ2(T ))v(σ2(T ))

for every v ∈ X. Moreover, J1 is sequentially weakly lower semicontinuous and
coercive. Therefore, we observe that the regularity assumptions on J1 and J2,
as requested in Theorem 26, are verified. Let {ξn} be a real sequence of positive
numbers such that limn→+∞ ξn = +∞, and

A = lim
n→+∞

∫ σ(T )

0

sup
|x|≤ξn

F (t, x)∆t

ξ2
n

.

Put

rn =
ξ2
n

2C2
.

If u ∈ J−1
1 (−∞, r), then J1(u) < rn, that is

1
2
‖u‖20 < rn. Hence, by Lemma 2, we

have |u(t)| ≤ C
√

2rn = ξn for every t ∈ [0, σ2(T )]. So

sup
J1(u)<rn

J2(u) ≤
∫ σ(T )

0

sup
|x|≤ξn

F (t, x)∆t.

Therefore, since 0 ∈ J−1
1 (−∞, rn) and J1(0) = J2(0) = 0, one has

ϕ(rn) = inf
u∈J−1

1 (−∞,rn)

(supu∈J−1
1 (−∞,rn) J2(u))− J2(u)

rn − J1(u)
≤

supu∈J−1
1 (−∞,rn) J2(u)

rn

=

sup
u∈J−1

1 (−∞,rn)

∫ σ(T )

0

[
F (t, u(t)) +

ζ

ν
G(t, u(t))

]
∆t

rn

≤

∫ σ(T )

0

sup
|x|≤ξn

F (t, x)∆t

rn
+

ζ

ν

∫ σ(T )

0

sup
|x|≤ξn

G(t, x)∆t

rn

= 2C2

∫ σ(T )

0

sup
|x|≤ξn

F (t, x)∆t

ξ2
n

+ 2
ζ

ν
C2

∫ σ(T )

0

sup
|x|≤ξn

G(t, x)∆t

ξ2
n
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for all n ∈ N. Consequently, from the assumption (B2) and the condition (43) one
has

θ ≤ lim inf
n→+∞

ϕ(rn) ≤ 2C2

(
A +

ζ

ν
g∞

)
< +∞.

Now, let {ηn} be positive real sequences and for all n ∈ N, and

lim
n→+∞

ηn = +∞.

Define wn(t) = ηn for all t ∈ [0, T ]. Clearly, wn ∈ X, from (45), we have

J1(wn) =

(∫ σ(T )

0

q(t)∆t + β1p(0) + β2p(σ(T ))

)
η2

n

2
. (46)

On the other hand, since g is non negative, bearing the assumption (B1) in mind,
from (45) one has

J2(wn) =
∫ σ(T )

0

F (t, ηn)∆t +
ζ

ν

∫ σ(T )

0

G(t, ηn)∆t

≥
∫ T

0

F (t, ηn)∆t.

Then,

Iν(wn) =J1(wn)− νJ2(wn)

≤
(∫ σ(T )

0

q(t)∆t + β1p(0) + β2p(σ(T ))

)
η2

n

2
− ν

∫ σ(T )

0

F (t, ηn)∆t.

Now, consider the following cases:

If B < +∞, let ε ∈
]
0, B − 1

ν

[
. There exists νε such that

∫ σ(T )

0

F (t, ηn)dt > (B − ε)

(∫ σ(T )

0

q(t)∆t + β1p(0) + β2p(σ(T ))

)
η2

n

2

for all n > νε, and so

Iν(wn) <

(∫ σ(T )

0

q(t)∆t + β1p(0) + β2p(σ(T ))

)
η2

n

2
− ν

∫ σ(T )

0

F (t, wn(t))∆t

=

(∫ σ(T )

0

q(t)∆t + β1p(0) + β2p(σ(T ))

)
η2

n

2
(1− ν(B − ε)).

Since 1− ν(B − ε) < 0, and taking (46) into account, one has

lim
n→+∞

Iν(wn) = −∞.

If B = +∞, fix N > 1
ν . There exists νN such that

∫ σ(T )

0

F (t, ηn)∆t > N

(∫ σ(T )

0

q(t)∆t + β1p(0) + β2p(σ(T ))

)
η2

n

2

for all n > νN , and moreover,

Iν(wn) <

(∫ σ(T )

0

q(t)∆t + β1p(0) + β2p(σ(T ))

)
η2

n

2
(1− νN).
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Since 1− νN < 0, arguing as before, we have

lim
n→+∞

Iν(wn) = −∞.

Notice that ]
1
B

,
1

2C2A

[
⊂

]
0,

1
θ

[
,

and Iν does not possess a global minimum, from part (b) of Theorem 26, there
exists an unbounded sequence {un} of critical points which are the solutions of
(P f,g

ν,ζ ). So, the conclusion is achieved. ¤

We present an example to illustrate Theorem 27 as follows.

Example 28. Let T = { 4
n : n = 1, 2, . . .} ∪ {0} and T = 1. Consider the problem

{
−u∆∆(t) = νf(uσ(t)), t ∈ [0, 1]T,
u(0)− 2u∆(0) = 0, u∆( 4

3 ) = 0,
(47)

where f(ξ) = 2ξ+40ξ sin2(eξ−1)+40ξ2eξ sin(eξ−1) cos(eξ−1) and g(ξ) = 7
5

5
√

ξ2 for
every ξ ∈ R. By the expressions of f and g, we have F (ξ) = ξ2

(
1 + 20 sin2(eξ − 1)

)

and G(ξ) = 5
√

ξ7 for every ξ ∈ R. We observe that C = 2. By simple calculations,
we see that

lim inf
ξ→+∞

sup|x|≤ξ F (x)
ξ2

= lim inf
ξ→+∞

ξ2
(
1 + 20 sin2(eξ − 1)

)

ξ2
= lim inf

ξ→+∞
ξ2 (1 + 0)

ξ2
= 1,

lim sup
ξ→+∞

F (ξ)
ξ2

= lim sup
ξ→+∞

ξ2
(
1 + 20 sin2(eξ − 1)

)

ξ2
= lim sup

ξ→+∞

ξ2 (1 + 20)
ξ2

= 21,

g∞ := lim sup
ξ→+∞

sup|x|≤ξ G(x)
ξ2

= lim sup
ξ→+∞

5
√

ξ7

ξ2
= lim sup

ξ→+∞

1
ξ

3
5

= 0 < +∞,

β1 =





α1

α2
=

1
2
, if α2 > 0,

0, if α2 = 0,

β2 =





α3

α4
= 0, if α4 > 0,

0, if α4 = 0,

M1 =
√

2 max

{
1√

β1p(0)
,

√
σ2(T )

mint∈[0,σ(T )]p(t)

}
=
√

2max





1√
1
2

,

4
3
1





,

M2 =
√

2max

{
1√

β2p(0)
,

√
σ2(T )

mint∈[0,σ(T )]p(t)

}
=
√

2 max





1
0
,

4
3
1





,

M3 =
√

2max

{ √
σ(T )

mint∈[0,T ]q(t)
,

√
σ2(T )

mint∈[0,σ(T )]p(t)

}
=
√

2 max





√
4
3

0
,

4
3
1





,
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and where 1
0 = +∞,

A = lim inf
ξ→+∞

∫ σ(T )

0

sup
|x|≤ξ

F (x)∆t

ξ2
=

4
3

lim inf
ξ→+∞

sup|x|≤ξ F (x)
ξ2

=
4
3
,

B =
2∫ σ(T )

0
q(t)∆t + β1p(0) + β2p(σ(T ))

lim sup
ξ→+∞

∫ σ(T )

0
F (t, ξ)∆t

ξ2

=
2

0 +
1
2

+ 0
(
4
3
× 21) = 112

and C = min{M1, M2,M3} =
√

2
1√
1
2

= 2. We clearly see that all assumptions

A =
4
3

<
112
8

=
1

2C2
B.

are satisfied. Then, for every ν ∈
(

1
112

,
3
32

)
and for each ζ ∈ [0,+∞) the problem

(47) admits a sequence of solutions which is unbounded in H1
∆([0, σ2(1)]).

Remark 29. Under the conditions A = 0 and B = +∞, Theorem 27 deduces that
for every ν > 0 and for each

ζ ∈
[
0,

1
2C2g∞

[

the problem (P f,g
ν,ζ ) admits infinitely many solutions in H1

∆([0, σ2(T )]). Moreover,
if g∞ = 0, the result holds for every ν > 0 and ζ ≥ 0.

Remark 30. Put
ν̂1 = ν1

and
ν̂2 =

1

limn→+∞

∫ σ(T )

0
sup|x|≤cn

F (t, x)∆t− ∫ σ(T )

0
F (t, bn)∆t

c2
n

2C2
−

∫ σ(T )

0
q(t)∆t + β1p(0) + β2p(σ(T ))

2
b2
n

.

We explicitly observe that the assumption (A2) in Theorem 27 could be replaced
by the following more general condition:
(B3) there exist two sequence {cn} with {bn} for all n ∈ N and

bp
n <

1

2C2
(∫ σ(T )

0
q(t)∆t + β1p(0) + β2p(σ(T ))

)cp
n

for every n ∈ N and limn→+∞ cn = +∞ such that

lim
n→+∞

∫ σ(T )

0
sup|x|≤cn

F (t, x)∆t− ∫ σ(T )

0
F (t, bn)∆t

c2
n

2C2
−

∫ σ(T )

0
q(t)∆t + β1p(0) + β2p(σ(T )

2
b2
n

<
2∫ σ(T )

0
q(t)∆t + β1p(0) + β2p(σ(T ))

lim sup
n→+∞

∫ σ(T )

0
F (t, ηn)∆t

η2
n

.
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Obviously, from (A3) we obtain (A2), by choosing bn = 0 for all n ∈ N. Moreover,
if we assume (B3) instead of (B2) and set

rn =
c2
n

2C2

for all n ∈ N, by the same arguing as inside in Theorem 27, we obtain

ϕ(rn) = inf
u∈J−1

1 (−∞,rn)

(supu∈J−1
1 (−∞,rn) J2(u))− J2(u)

rn − J1(u)

≤
sup

u∈J−1
1 (−∞,rn)

J2(u)−
[∫ σ(T )

0

F (t, u(t))∆t +
ζ

ν

∫ σ(T )

0

G(t, u(t))∆t

]

rn − J1(u)

≤
∫ σ(T )

0
sup|x|≤cn

F (t, x)∆t− ∫ σ(T )

0
F (t, bn)∆t

c2
n

2C2
−

∫ σ(T )

0
q(t)∆t + β1p(0) + β2p(σ(T ))

2
bp
n

.

We have the same conclusion as in Theorem 27 with Λ replaced by Λ′ :=]ν̂2, ν̂2[.

Here we point out the following consequence of Theorem 27.

Corollary 31. Assume that (A1) holds and

(B4) lim infξ→+∞

∫ σ(T )

0
sup|x|≤ξ F (t, x)∆t

ξ2
<

1
2C2

;

(A5) lim supξ→+∞

∫ σ(T )

0
F (t, ξ)∆t

ξ2
>

∫ σ(T )

0
q(t)∆t + β1p(0) + β2p(σ(T ))

2
.

Then, for every nonnegative arbitrary function g : [0, T ] × R → R which is mea-
surable in [0, T ] and of class C1(R) satisfying the condition (43) and for every
ζ ∈ [0, ζg,1[ where

ζg,1 :=
1

2C2g∞

(
1− 2C2A

)
,

the problem{
−(pu∆)∆(t) + q(t)uσ(t) = f(t, uσ(t)) + ζg(t, uσ(t)), t ∈ [0, T ],
α1u(0)− α2u

∆(0) = 0, α3u(σ2(T )) + α4u
∆(σ(T )) = 0,

(P f,g
1,ζ )

has an unbounded sequence of solutions in H1
∆([0, σ2(T )]).

In the same way as in the proof of Theorem 27 but using conclusion [(c) of
Theorem 26 instead of [(b), we will obtain the following result.

Theorem 32. Assume that all the hypotheses of Theorem 27 hold except for As-
sumption (B2). Suppose that

(B5)

Ā <
1

2C2
(∫ σ(T )

0
q(t)∆t + β1p(0) + β2p(σ(T ))

) B̄

where

Ā = lim inf
ξ→0+

∫ σ(T )

0

sup
|x|≤ξ

F (t, x)∆t

ξ2
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and

B̄ =
2∫ σ(T )

0
q(t)∆t + β1p(0) + β2p(σ(T ))

lim sup
ξ→0+

∫ σ(T )

0
F (t, ξ)∆t

ξ2
.

Then, for each ν ∈]ν3, ν4[ where

ν3 :=
1
B̄

and

ν4 :=
1

2C2Ā

for every nonnegative arbitrary function g : [0, T ]× R→ R which is measurable in
[0, T ] and of class C1(R) satisfying the condition

g0 := lim sup
ξ→0+

∫ σ(T )

0
sup|x|≤ξ G(t, x)∆t

ξ2
< +∞ (48)

and for every ζ ∈ [0, ζg0,ν [ where

ζg0,ν :=
1

2C2g0

(
1− 2νC2 lim inf

ξ→0+

∫ σ(T )

0
sup|x|≤ξ F (t, x)∆t

ξ2

)
, (49)

the problem (P f,g
ν,ζ ) has a sequence of pairwise distinct solutions which strongly con-

verges to 0 in H1
∆([0, σ2(T )]).

Proof. We take J1 and J2 as in the proof of Theorem 27 and put Iν̄(u) = J1(u)−
ν̄J2(u) for every u ∈ H1

∆([0, σ2(T )]). Since
∫ σ(T )

0

sup
|x|≤ξ

[F (t, x) +
ζ̄

ν̄
G(t, x)]∆t

ξ2

≤

∫ σ(T )

0

sup
|x|≤ξ

F (t, x)∆t

ξ2
+

ζ̄

ν̄

∫ σ(T )

0

sup
|x|≤ξ

G(t, x)∆t

ξ2
,

taking into account (48) one has

lim inf
ξ→0+

∫ σ(T )

0

sup
|x|≤ξ

[F (t, u(t)) +
ζ̄

ν̄
G(t, u(t))]∆t

ξ2

≤ lim inf
ξ→0+

∫ σ(T )

0

sup
|x|≤ξ

F (t, x)∆t

ξ2
+

ζ̄

ν̄
g0.

We verify that δ < +∞. For this, let {ξn} be a sequence of positive numbers such
that ξn → 0+ as n → +∞ and

lim
n→+∞

∫ σ(T )

0

sup
|x|≤ξn

[
F (t, x) +

ζ̄

ν̄
G(t, x)

]
∆t

ξ2
n

< +∞.
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Put

Ā = lim
n→+∞

∫ σ(T )

0

sup
|x|≤ξn

F (t, x)∆t

ξ2
n

and

rn =
ξ2
n

2C2

for every n ∈ N. Therefore, from assumption (B5) and the condition (48) one has

δ ≤ lim inf
n→+∞

ϕ(rn) ≤ 2C2

(
Ā +

ζ̄

ν̄
g0

)
< +∞.

Let us show that the functional Iν̄ does not have a local minimum at zero. For this,
let {ηn} be a sequence of positive such that ηn → 0+ as n → +∞. Put

B̄ =
2∫ σ(T )

0
q(t)∆t + β1p(0) + β2p(σ(T ))

lim
n→0+

∫ σ(T )

0
F (t, ηn)∆t

η2
n

. (50)

Let {wn} be a sequence in H1
∆([0, σ2(T )]) with wn(t) = ηn for all t ∈ [0, T ]. More-

over, since g is non negative, from the assumption (B1) we obtain

J2(wn) =
∫ σ(T )

0

F (t, ηn)∆t +
ζ̄

ν̄

∫ σ(T )

0

G(t, ηn)∆t

≥
∫ σ(T )

0

F (t, ηn)∆t.

Then,
Iν̄(wn) = J1(wn)− ν̄J2(wn)

≤
∫ σ(T )

0
q(t)∆t + β1p(0) + β2p(σ(T ))

2
η2

n − ν̄

∫ σ(T )

0

F (t, ηn)∆t.

Consider the following cases.
If B̄ < +∞, let ε ∈]0, B̄ − 1

ν̄ [. By (50), there exists νε such that
∫ σ(T )

0

F (t, ηn)∆t > (B̄ − ε)

∫ σ(T )

0
q(t)∆t + β1p(0) + β2p(σ(T ))

2
η2

n

for all n > νε, hence

Iν(wn) <

∫ σ(T )

0
q(t)∆t + β1p(0) + β2p(σ(T ))

2
η2

n − ν̄(B̄ − ε)
∫ σ(T )

0

F (t, wn(t))∆t

=

∫ σ(T )

0
q(t)∆t + β1p(0) + β2p(σ(T ))

2
η2

n(1− ν̄(B̄ − ε)).

Since 1− ν̄(B̄ − ε) < 0, and by considering (46), one has

lim
n→+∞

Iν̄(wn) = 0.

If B̄ = +∞, fix N0 > 1
ν̄ . There exists νN0 such that

∫ σ(T )

0

F (t, ηn)∆t > N0

∫ σ(T )

0
q(t)∆t + β1p(0) + β2p(σ(T ))

2
η2

n
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for all n > νN0 , and moreover,

Iν̄(wn) <

∫ σ(T )

0
q(t)∆t + β1p(0) + β2p(σ(T ))

2
η2

n(1− ν̄N0).

Since 1− ν̄N0 < 0, and as above, we can say

lim
n→+∞

Iν̄(wn) = 0.

Since Iν̄ = 0, this implies that the functional Iν̄ does not have a local minimum at
zero. Hence, part (c) of Theorem 26 ensures that there exists a sequence {un} in
H1

∆([0, σ2(T )]) of critical points of Iν̄ such that ‖un‖ → 0 as n →∞, and the proof
is complete. ¤

6. Conclusion

Optimization problem consists of maximizing or minimizing a real function. Op-
timization problems are ubiquitous in the mathematical modeling of real world
systems and cover a very broad range of applications. These applications arise in
economics and finance. Global optimization has its focus on finding the maximum
or minimum over all input values. On the other hand, the calculus on time scales
is a powerful tool to unify discrete and continuous analysis and is also applicable to
any field in which dynamic processes can be described with discrete or continuous
models, such as economics and finance. In this thesis, we have searched for the
existence of local minima for the Euler functionals corresponding to a adynamic
Sturm–Liouville boundary value problem on time scale, and we have proved the
existence of one, three and a sequence of solutions for the problems employing vari-
ational methods and critical point theory. We have presented examples to illustrate
the abstract results.
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