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Thermodynamic phases are the most prominent manifestation of emergent behavior.
Among them, crystals and liquids traditionally epitomize the antagonistic concepts of order
and disorder (i.e., the presence or absence of a symmetry). According to common wisdom,
the competition for stability between solid and liquid reflects the struggle between the
opposite tendencies of energy minimization and entropy maximization, which is regulated
by temperature. It goes without saying that the previous statement is in fact too simplistic,
since in equilibrium the guiding principle is rather the minimization of the thermodynamic
potential (maximization of the Massieu function) appropriate to the given control parame-
ters. For instance, crystallization sometimes occurs with the purpose to maximize entropy
(as for hard spheres under pressure). A further example is provided by superfluid, which
can be one of the phases of minimum energy/enthalpy at zero temperature.

The relevance of the solid/liquid dichotomy for statistical physics cannot simply be
overstated. It was under the pressure of accurately locating the solid–liquid transition in
simple-fluid models that “exact” free-energy methods were initially developed [1,2]. Since
then, variations on these methods have been employed to compute the phase diagram of
many complex fluids, such as liquid crystals [3], cluster crystals [4], and fluids of patchy
particles [5]. Generally speaking, the full control of phase behavior can help in the synthesis
of artificial materials with the desired specifications.

Turning to theory, while the exact determination of the partition function for a
non-trivial system with solid, liquid, and vapor phases will probably never be accom-
plished, there are nevertheless variational treatments of the solid–liquid transition (density
functional theories) that have by now reached a high degree of sophistication (see, e.g.,
Refs. [6,7]). However, a schematic phase diagram with the standard three phases can be
obtained with less effort, see for instance the mean-field analysis of the Potts lattice gas [8].

It is usually thought that (classical) liquid is a unique phase, while crystals are a
multitude. In fact, this is only partially true, since liquids composed of hydrogen-bonded
molecules exhibit a number of so-called water-like “anomalies” that make them different
in many respects from conventional (rare-gas) fluids (see, e.g., [9]). The relationship
between such anomalies and solid polymorphism/polyamorphism is an important topic
of statistical physics. Phase diagrams with many solid polymorphs are the rule for simple
substances (e.g., Na [10]) under huge pressure. Here, exact free-energy methods face
a serious limitation, since the crystalline structures—Bravais and non-Bravais—being
potentially relevant are countless. Metadynamics [11] and evolutionary algorithms [12]
are a possible way out, since they do not involve any assumption on the topology of the
energy landscape.

Condensed-matter physics also features a wide variety of phases with mixed solid
and liquid characteristics. Hexatic fluids [13], liquid-crystal smectics [14], crystalline mem-
branes [15], and quantum supersolids [16] are just a few examples of hybrid states of
aggregation, with others yet to be discovered. In the last few years, a new category of sys-
tems, i.e., self-assembling materials, has fallen under the scrutiny of the statistical-physics
community (see, e.g., [17]). Here, some kind of order at the mesoscopic scale spontaneously
emerges from the interaction between simple microscopic units. For these systems, the
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precise interplay between thermodynamics and kinetics in the onset of aggregates is still
being worked out. As we move forward in the bottom-up investigation of biological matter,
the concerted role of energy and entropy in the formation of structures with hierarchical
order will be made more clear.

This Special Issue collects articles published between April 2020 and May 2021, high-
lighting novel results in the application of statistical thermodynamics to liquids and crystals.

In the first of these articles [18], the focus is on the virial equation of state for mixtures
of hard hyperspheres. While such systems obviously have no counterpart in the real
world, they still represent a useful playground where to explore the effectiveness of
approximations routinely employed in three dimensions. If geometric considerations
play a leading role in the crossover from three to five dimensions, then simple analytic
extensions of approximations that proved successful in lower dimensions would provide
accurate equations of state for hard hyperspheres in the fluid phase. It turns out that the
sole requirement of reproducing the exact second and third virial coefficients yields, in
four and five dimensions, approximate equations of state of overall good quality in the
comparison with computer-simulation data.

Moderately dense particles driven far from equilibrium are much harder to attack
theoretically. In this case, numerical simulation is the only method to assess the accuracy
of fluid dynamic equations. The second article in this Special Issue [19] is an attempt to
investigate turbulent convection using the Boussinesq approximation—accounting for the
variation of density with temperature only in the buoyancy term of the Navier–Stokes
equation. The approach of numerical simulation allows one to analyze both heat and mass
flow under a variety of boundary conditions, with potential applications in oceanography,
geophysics, astrophysics, and industry.

A well-established approach to the entropy of a simple fluid is the so-called mul-
tiparticle correlation expansion (MPCE), expressing the statistical entropy as a sum of
contributions from increasingly large numbers of particles. Upon truncating the MPCE
after the two-body term S2, one has an estimate of the exact entropy that turns out to be
accurate right at the point of transition into a crystal, leading to a freezing criterion [20]
that has had a certain success in the past. After reviewing the history of the entropy MPCE,
Ref. [21] inquires into the possibility of formulating an analogous entropic criterion for
melting, given that a MPCE formally holds also for the entropy of a crystal. However, the
computation of S2 proves to be a formidable task even for a crystal of hard disks, thus
dampening the enthusiasm for any melting criterion based on the numerical evaluation of
the two-body entropy.

Reference [22] investigates pattern formation in a two-dimensional lattice gas system.
Lattice gases allow for an exact thermodynamic analysis at zero temperature, since all
possible ground states can be enumerated and compared with each other in terms of
enthalpy. Such studies can be helpful to design and control the functionalization of
colloidal particles with polymers.

Hard-core bosons are the quantum counterpart of lattice-gas particles. Lattice systems
of bosonic particles provide models where the competition between itinerant and local-
ized quantum states can be examined in full detail. The prototype of all such models is
the celebrated Bose-Hubbard model, describing the behavior of ultracold bosonic atoms
trapped in an optical lattice. Upon increasing the intensity of laser light, the confining
potential gets deeper until a transition occurs from superfluid to Mott insulator (i.e., a
normal cluster solid) [23,24]. The Bose–Hubbard model and its variants provide an ideal
setting for exploring strong-correlation effects in quantum systems, which now are also
studied for bosons on the nodes of a spherical mesh [25,26]. However weird this geometry
may seem, traps located at the vertices of a polyhedron can be fabricated with optical
tweezers and loaded with Rydberg atoms [27]. In particular, a system of bosons in a cubic
mesh [25] offers the opportunity to assess the validity of mean-field theory, as well as to
uncover the manifestations of superfluidity in a small quantum system.
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Spatial correlations between triplets of particles in a fluid or solid are notoriously
difficult to investigate in full extent, owing to heavy CPU-time and memory requirements.
Yet, triplet correlations convey crucial information for any statistical analysis aiming to
go beyond the traditional pairwise approximation. Reference [28] investigates triplet
correlations in a fluid of quantum hard spheres, as well as in two crystalline phases of the
same system. Using path-integral Monte Carlo simulations, the author of [28] delves into
the accuracy of a few closure relations expressing the triplet distribution function in terms
of two-body terms, eventually identifying a combination of closures that performs well in
rather disparate conditions.

The emergency caused by the COVID-19 pandemic has boosted a large amount of
research activities in the last year with the purpose of clarifying the many open questions
that arise in connection with the transmission of the infection. Our Special Issue too
contains an article on the problem [29], about diffusion in the air of liquid nanodroplets
containing the infective agent. Using a molecular theory, the author of [29] derives an
effective Hamiltonian for gas atoms and liquid droplets which accounts for the interaction
and correlation effects induced by the granular structure of the droplets. Similar theoretical
studies may be viewed as complementary to atomistic simulations, which are obviously
much more computationally demanding.

The last article in this Special Issue [30] deals with a numerical investigation of the
self-assembling behavior of a system made up of asymmetric dimers and marbles (“disks”)
confined in a spherical surface, as is realized by, e.g., a mixture of colloidal particles
spread over the surface of an oil droplet. In the model, the formation of disk aggregates is
triggered by a short-range attraction between the disk and one of the monomers. For low
disk compositions, only small clusters are found, while for higher composition values, we
observe the onset of long flexible chains which, at sufficiently high density, give origin to an
intricate network on the sphere. When disks are much larger than dimers, square-ordered
patches are formed instead, similar to the truncated triangular crystals of polystyrene
spheres growing on the inside walls of water droplets [31], and in striking contrast to the
spanning triangular crystal, punctuated by islands of defects, that is promoted by entropy
alone in dense hard disks on a sphere [32].

It is our hope that this Special Issue leaves the reader with the impression that the field
of liquids and crystals is a vivid research area, full of problems still waiting for solution,
and open to surprises.
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