
2327-4697 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2021.3110003, IEEE
Transactions on Network Science and Engineering

1

A Cloud-based and Dynamic DNS approach
to enable the Web of Things

Zakaria Benomar∗, Francesco Longo∗†, Giovanni Merlino∗†, Antonio Puliafito∗†
∗Department of Engineering, University of Messina, Italy
Email: {zbenomar,flongo,gmerlino,apuliafito}@unime.it

† CINI: National Interuniversity Consortium for Informatics, Rome, Italy

Abstract—Thanks to the evolution in the hardware and software fields, the Internet usage scope is continuously covering smaller and
resource-constrained devices. Such devices, commonly called Internet of Things (IoT) devices, with sensing/actuation capabilities, are
becoming capable of managing the complexity of communications over the Internet. Nevertheless, the IoT ecosystem is still
fragmented due to the different used vertical solutions. This heterogeneity makes IoT devices/systems unable to communicate
seamlessly, leading to limited cooperation and tightly coupled deployments. To deal with the interoperability issues in IoT, we propose,
in this paper, a Cloud-based approach with a Dynamic Domain Name System (DDNS) mechanism enabling the IoT devices to
communicate using the Representational state transfer (REST) model: an approach that follows the Web of things (WoT) paradigm. In
particular, the system makes the IoT devices’ hosted resources (e.g., sensors and actuators) able to be steered using globally
resolvable (over the Internet) Uniform Resource Locators (URLs) even when deployed behind Network Address Translators (NATs) and
firewalls. The system we conceived requires only one public registered domain name to associate, for all the distributed IoT devices,
sub-domains of the public one while using a clever routing mechanism. An online implementation of the testbed is provided to show the
feasibility of the approach. Further, a performance evaluation of the system is reported to assess the resource usage of the solution.

Index Terms—Internet of Things, Cloud computing, Web of Things, REST, Cyber Physical Systems, OpenStack, Web services.

F

1 INTRODUCTION

The significant progress in the field of embedded sys-
tems’ has lead to a considerable decrease in smart devices’
prices, hence their adoption in different fields (e.g., indus-
try, healthcare, environmental monitoring). In this context,
a trend aiming at embedding computational capabilities
within standard objects/assets (e.g., industrial appliances,
machines, etc.) has arisen under the aegis of pervasive/u-
biquitous computing [1]. By enhancing the processing ca-
pabilities of standard objects/assets, they become smart
enough to achieve practical tasks and provide added value
services. As one of the widely known concepts of per-
vasive computing, the Internet of Things (IoT) [2] is a
major paradigm that does not only aim at enhancing the
computational capabilities of objects, but it goes beyond
this view to connect objects to the Internet whislt making
them able to communicate, sense, and interact with their
local resources and/or surrounding environments. This IoT
view of bridging objects to the Internet and associating
digital artifacts of the physical world will undoubtedly
mark a revolution in how people interact and use everyday
objects. Systems nowadays are fundamentally grounded in
the behavior of people/citizens who may generate data to
conceive new services or make decisions based on the data
collected [3]. In this regard, awareness is growing in relation
to the social dimension of the role of such Cyber-Physical
Systems (CPSs) [4]. Indeed, scholars are increasingly ad-
dressing these systems as Cyber-Physical Social Systems
(CPSS) [5]. The massive growth in terms of the number and
type of devices that CPSS deployments may push for would

bring exciting opportunities, yet with several management
and deployment challenges to tackle. Accordingly, we need,
on the one hand, efficient approaches to deal with IoT
infrastructure management and, on the other hand, suitable
methods to integrate the devices within the Internet wisdom
and bridge their compatibility gap [6]. In fact, the inter-
operability between devices from different manufacturers
remains a major burden for IoT applications’ developers
owing to the different used vertical silos, communication
protocols, and data formats [7].

The Web is considered today as the communication
linchpin of the Internet. Web protocols provide suitable
mechanisms connecting machines (e.g., computers, servers)
from different manufacturers among each other. Systems’
interoperability, in this context, is a key enabler to foster new
services in distributed environments [8]. Considering the
ever more lightweight footprint and resource requirements
of (tiny) Web servers developed in recent years, IoT nodes
are becoming increasingly suitable to host such services (i.e.,
Web servers). By extension, their resources can be abstracted
and exposed through the same hypermedia they serve,
a paradigm that is known as Web of Things (WoT) [9].
The IoT nodes then enhance their capability of being IP-
enabled devices connected to the Internet to become able to
communicate with other devices or Web systems using the
same language. In such a homogeneous environment, the
smart objects can provide their functionalities (e.g., sensed
data) via Representational state transfer (REST) interactions;
thus, new IoT-based services/applications become easier to
conceive.

This paper is an extension of our previous work [10] that

Authorized licensed use limited to: Universita degli Studi di Messina. Downloaded on October 09,2021 at 20:59:24 UTC from IEEE Xplore. Restrictions apply.

2327-4697 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2021.3110003, IEEE
Transactions on Network Science and Engineering

2

accommodates relatively powerful IP-enabled devices (e.g.,
single-board computers) to be part of the Web and expose
their hosted resources (e.g., sensors and actuators) using
RESTful APIs (i.e., based on HTTP). In this paper, we en-
hance our system by implementing a mechanism capable of
enabling server-initiated (i.e., Cloud-triggered) connectivity
to any device-hosted resource over User Datagram Protocol
(UDP) transport (before, we used only TCP). That said, in
a WoT context, the system can support plain (TCP-based)
HTTP as well as other, newer, HTTP versions, such as HTTP
over Quick UDP Internet Connections (QUIC). We also
strengthen the approach by leveraging HTTPS instead of
HTTP, using tooling for automatic issuance and validation
of X.509 certificates in the IoT landscape.

The rest of the paper is organized as follows. Section II
surveys the relevant literature. Section III, introduces the
enabling technologies/approaches related to the design of
our system. Section IV describes the tunneling approach
we used to expose services (e.g., Web servers) hosted on
IoT nodes deployed at the network edge to any audience
over the Internet. Section V introduces our WoT-oriented
Dynamic Domain Name System (DDNS) as well as a de-
tailed functional workflow. Section VI describes an online
accessible testbed that uses our WoT system. We also report
the performance results of the system. Section VII closes the
paper and hints at promising future work.

2 RELATED WORKS

2.1 RESTful Web services and IoT
The Web services concept plays a relevant role in enabling
interoperable machine-to-machine communications over the
Internet. On this basis, two main categories of Web services
are used: the REST-compliant Web services and the arbitrary
Web Services (WS-*). The difference between the two models
resides in their way of managing communications. While
the first approach uses systematic and well-defined opera-
tions (e.g., GET, POST, DELETE), the second approach, in-
stead, makes use of arbitrary operations (e.g., using Simple
Object Access Protocol (SOAP)). In this context, the choice of
the suitable model to implement depends strictly on the use
case. In [11], the authors recommend opting for the RESTful
oriented Web services when dealing with ad-hoc services
over the Web (so-called mashups). Likewise, in [12], authors
outline the relevance of using the REST model in an IoT
context to enable the WoT communication model and the
design of flow-based applications (using tools such as Node-
RED).

From the performance point of view, the RESTful com-
pliant Web services are a convenient choice compared to
WS* when it comes to IoT. In fact, the RESTful Web services
are characterized by less overhead and parsing complexity
while providing stateless interactions [13]. Besides, the fact
that WS* supports only the Extensible Markup Language
(XML) as an encoding pattern makes it unsuitable to be
adopted in specific IoT scenarios such as low power and low
data rate sensor networks. On the other hand, REST affords
more choices (e.g., plain text and JavaScript Object Notation
(JSON)) that make it a flexible model to be adapted depend-
ing on the use case. In particular, in IoT scenarios, the use
of JSON ensure higher performance implementations than

XML [14]. In [15], Yazar et al. made a performance compar-
ison of different parameters (e.g., memory footprint, power
consumption) between the two Web services approaches
when deployed on constrained IoT nodes. The authors
conclude that the REST model outperforms WS*. Besides,
authors in [16] outline that the REST architectural design
is more fit to be used with constrained IoT networks (e.g.,
Wireless Sensors Networks (WSNs)) as it can seamlessly be
mapped to other protocols (e.g., Constrained Application
Protocol (CoAP)).

Another critical parameter to consider when choosing
the suitable Web services paradigm in IoT is the software de-
velopment aspect. In order to promote external developers’
communities in conceiving new IoT-based services/appli-
cations, providing a consistent software architectural style
with accurate APIs is critical in adopting IoT services on
a larger scale. In [17], the authors investigated applications
developers’ preferences. The results show that developers
prefer the REST architectural style as it is less complex to
implement and use.

In the literature, a set of IoT-based architectures and
testbeds opt for the RESTful model. In [18], a system for
smart cities energy management is described. In [19] another
IoT REST-based system for warehousing is introduced.
A system designed for domotic applications is presented
in [20] with simulated performance results. Other solutions
such as [21] and [22] promote the WoT architectural design.
Although these aforementioned architectures/testbeds are
relevant and promising, they did not tackle the important
aspect of having IoT nodes deployed within restricted and
masqueraded networks. Indeed, having IoT nodes or gate-
ways reachable over the Internet is not always ensured or
at least requires some specific networking configurations
(e.g., port forwarding at the router’s level). In most IoT
deployments, nodes are often deployed behind NAT/fire-
walls. Thus, their reachability should not be taken for
granted as it is a critical parameter in adopting the WoT
model.

2.2 Secure Web services in IoT

In IoT deployments, particularly the WoT architectural de-
sign, we expect to have services (e.g., Web servers) and,
therefore, data exposed publicly over the Web. Considering
the distributed nature of IoT deployments, ensuring secure
data transmission is challenging. In such an environment
where the infrastructure (i.e., IoT nodes) is geographically
distributed with networks’ designers having limited con-
trol over the infrastructure (e.g., when it is contributed by
volunteers), chances of malicious users to falsify the data
being transmitted or even spoof IoT nodes is consider-
ably high [23]. As the WoT paradigm aims to merge IoT
with the Web, enabling HTTPS-based communications is a
convenient choice. In fact, HTTPS is actually the de-facto
protocol used in the Web that ensures peers identification
and prevents against communications sniffing and data
manipulation [24].

To ensure secure communications between peers,
Certification Authorities (CAs) tend to make servers’
administrators follow a set of manual tasks while config-
uring their domains/servers. However, in the kind of IoT

Authorized licensed use limited to: Universita degli Studi di Messina. Downloaded on October 09,2021 at 20:59:24 UTC from IEEE Xplore. Restrictions apply.

2327-4697 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2021.3110003, IEEE
Transactions on Network Science and Engineering

3

IoTronic
database

IoTronic
conductor

IoTronic
command
line client

IoTronic
AMQP
queues

WAMP
router

IoTronic
WAMP
agent

Web
browser

IoTronic server
D

esignate server

Designate
database

Designate
AMQP
queues

Dashboard

WAMP control
channel

Central

Web service tunnel
(WebSocket)

REST communication

AMQP pub/sub and RPC

other communication

Designate
MiniDNS

Pool
Manager

Backend
(BIND,

Infoblox)

WS tunnel
agent

NGINX
reverse
proxy

NGINX
reverse
proxy

NGINX proxy
host

Fig. 1: IoTronic and Designate integration design.

deployment we are targeting, the manual configuration of
servers’ certificates may become an error-prone task besides
being time-consuming [24] due to the high-density of IoT
networks. In this context, the use of an efficient mechanism
such as the Automated Certificate Management Environ-
ment (ACME) [25] protocol is essential in enabling secure
data exchange in IoT and avoid any manual configuration.
Even more so, efforts are actually on the way to enhance
the ACME Protocol by using a distributed trust mechanism
based on Bockchain [26].

3 BACKGROUND ON S4T, DNSAAS AND WOT AP-
PROACHES

In this section, we give details about the different concepts
we made use of to come up with our system. We introduce
our Stack4Things middleware, then we describe briefly the
architecture of the OpenStack DNS-as-a-Service (DNSaaS)
subsystem (i.e., Designate), and finally, we discuss the WoT
integration patterns.

3.1 Stack4Things
Stack4Things (S4T) [27] is an OpenStack-based platform tai-
lored for IoT infrastructure management. Based on a set of
refined and new mechanisms, S4T deals with the typical IoT
deployments’ constraints (e.g., NATs/firewalls traversal,
connectivity disruption). The S4T design is composed of two
parts: a Cloud-based deployment hosting the subsystem
called IoTronic (see red subsystem in Fig. 1) and a number of
(distributed) IoT nodes deployed at the network edge while
hosting the device-side agent named Lightning-Rod (LR)
(See Fig. 2). IoTronic is a subsystem designed with respect
to the standard architecture of OpenStack services there-
fore, its integration with other subsystems (e.g., Keystone,
Neutron) can seamlessly be realized to provide advanced
user-facing features [28] [29]. To overwhelm networking
issues such as NATs/firewalls traversals, communications
between IoTronic and LR are based on a permanent full-
duplex communication channel based on WebSocket with
a reverse tunneling mechanism. As hardware setup for the

IoT nodes we are targetting, we made a choice, on purpose,
to use relatively smart devices (e.g., single-board comput-
ers) that are microprocessor (MPU)-powered. This specific
hardware setup enables the nodes to host a (minimal) Linux
distribution (e.g., OpenWRT) together with a set of runtime
environments (e.g., C, Node.js, and Python).

3.2 The OpenStack DNSaaS system: Designate
In OpenStack deployments, the DNSaaS system, Designate,
manages DNS records created by the Cloud users/tenants.
The robustness of the subsystem relies on enabling auto-
mated updates to DNS records based on events triggered
by other OpenStack services. As for all OpenStack sub-
systems, the architectural design of Designate is modular
and, thus, composed of several components that commu-
nicate via Advanced Message Queuing Protocol (AMQP)
(see blue subsystem in Fig. 1). Specifically, the system
is made of an API server (designate-API) that exposes
the systems’ functionalities, a central controller (designate-
central) managing the access to the database, and finally, the
Designate-pool-manager and Designate-mdns that handle
the communication with the backend DNS servers (e.g.,
BIND and PowerDNS).

3.3 Web of Things integration patterns
In this subsection, we discuss the WoT architectures as well
as their environments characteristics and constraints.

WAMP control
channel

MPU-powered IoT node

Board FileSystem

s4
t W

A
M

P
lib

Lightning-Rod
engine

wstunnel plugin

Certbot

Lightning-Rod

plugin
plugin
loader

Other communication
Socket communication

ServiceService

NGINX
reverse
proxy

Web service tunnel
(WebSocket)

sensors
and

actuators

Traffic pipe GPIO

MPU

Fig. 2: S4T Lightning-Rod architecture.

Authorized licensed use limited to: Universita degli Studi di Messina. Downloaded on October 09,2021 at 20:59:24 UTC from IEEE Xplore. Restrictions apply.

2327-4697 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2021.3110003, IEEE
Transactions on Network Science and Engineering

4

Cloud

IoT
device

IoT
device

IoT
device

Cloud

IoT
device

IoT
device

IoT
device

Gateway

WoT
API

WoT
API

Direct integration Gateway-based integration

Fig. 3: WoT integration patterns.

3.3.1 Direct integration
In the direct integration pattern, the IoT nodes are powerful
enough to be directly bridged to the Web wisdom (see the
left integration pattern in Fig. 3). In particular, IoT nodes, in
this case, are capable of managing TCP/IP and HTTP-based
communications. Albeit appearing a simple architecture to
deploy, it is not that straightforward. Indeed, in most of
the IoT deployments, the IoT nodes do not have public IP
addresses (i.e., they are deployed within masqueraded IPv4
networks) and, consequently, no publicly resolvable domain
names. Therefore, exposing the IoT nodes’ hosted resources
(e.g., sensors and actuators) publicly and making them
reachable through globally resolvable URLs is challenging.

3.3.2 Gateway-based integration
In specific IoT deployments, mainly when many IoT nodes
are needed, opting for relatively powerful IP-enabled de-
vices is not financially viable. In such environments, the
devices used do not have enough resources to manage
the complexity of Web-based communications (also because
of energy constraints). Networks’ designers then opt for
intermediate well-powered smart IP-enabled gateways in
order to bridge the constrained devices to the Web (see the
right integration pattern in Fig. 3). In this architecture, the
gateway is responsible of forwarding/routing requests to
the different constrained devices.

4 EXPOSING CLOUD-ENABLED IOT-HOSTED SER-
VICES

This section describes the tunneling approach we conceived
to expose, publicly, via the Cloud, TCP or UDP services
hosted on IoT nodes deployed at the network edge. This
feature is then leveraged as an infrastructure-level enabling
mechanism to expose the IoT nodes’ hosted resources (i.e.,
sensors and actuators) by assigning them publicly resolv-
able domain names (a detailed description of this system is
reported in the next section).

As remote infrastructure, the deployed IoT nodes will
be reachable over restrictive and even masqueraded IPv4
networks. In this case, the unique assumption that can
(always) be considered valid is outgoing Web traffic being
authorized; that is, only device-initiated (TCP) communica-
tions over standard HTTP/HTTPS ports are permitted. To
cope with the constraint mentioned above, we opted for a
standard TCP-based HTTP-borne full-duplex communica-
tion, namely WebSocket (WS) coupled with a reverse (tun-
neling) mechanism, i.e., IoT nodes will initiate the process

of setting up the tunnel to the Cloud. Besides providing
bidirectional flows between two ends, WS is a network-
agnostic protocol by turning communications into standard
HTTP interactions. Any mechanism then that exploits WS
can overwhelm the issues of reaching environments that
block Web-unrelated traffic. An interesting feature that can
be enabled using WS is establishing TCP tunnels over WS, a
way to get client-initiated connectivity to any server/device-
side service. For our system, we designed and implemented
a suitable reverse tunneling over WS1 solution as an ap-
proach to provide connectivity to any IoT node-hosted
service. Even though we opt for the WS protocol that adds
additional overhead to the packets and requires a hand-
shake to establish the client-server connection as a transport
medium for our tunneling system, those parameters do not
significantly affect the system performance. Indeed, authors
in [30] outline that during long WS sessions, the impact
of those parameters becomes insignificant just after few
messages’ exchanges (see also subsection 6.3).

We depict in Fig. 4 the design of the system as well as
the process of a WS reverse tunnel (rtunnel) creation. To
expose a TCP service hosted on a remote IoT node, the
rtunnel client (which is pre-configured with the IP address
of the rtunnel server) sends a WS connection request to the
rtunnel server (i.e., the Cloud). In particular, the request
specifies a TCP port to be used on the server-side. Once the
rtunnel server receives the request, it brings up a TCP server
listening on the port indicated, and a WS connection used
as a control channel is established (green arrow in Fig. 4).
When an external TCP client connects to the TCP server on
the rtunnel server (i.e., Cloud), the rtunnel client and server
manage this event by instantiating a new WS connection
(yellow arrows in Fig. 4), and the TCP session gets piped to
it. On the rtunnel client-side, a similar mechanism is used by
bringing up a TCP client connecting to the local (or remote)
service involved and pipe afterward the traffic to the tunnel.

We depict in Fig. 4 all the three scenarios the system
may enable. A first scenario, as we mentioned before, is
node-provided access to a service running on the node
itself (service 1 in Fig.4). To illustrate a use case, we
can consider a Web server exposing the IoT node’s hosted
resources (e.g., sensors and actuators). The second use case,
still the service runs on the IoT node itself, but it can
forward/map requests to other constrained nodes behind it
(service 2 in Fig.4). A relevant use case we can mention
is a proxy relaying HTTP requests to a constrained network
(e.g., 6LoWPAN-based) using an HTTP-COAP proxy. Last
and not least, the system can also provide access to services
running on other devices deployed on the same LAN as the
gateway (service 3 in Fig.4). In this case, the gateway,
a relatively powerful node deals with the complexity of
setting up the WS tunnel; therefore, only applications’ flows
are forwarded to the constrained devices behind it.

To expose UDP-based services hosted on remote IoT
nodes, we accommodate UDP flows on both sides (i.e.,
rtunnel client and server) to fit the WS tunnels TCP server/-
client. Specifically, we used an executable, namely Socat,
that establish bidirectional byte streams between two ex-
tremities (i.e., ports) whatever the transport protocol used

1. https://github.com/MDSLab/wstun

Authorized licensed use limited to: Universita degli Studi di Messina. Downloaded on October 09,2021 at 20:59:24 UTC from IEEE Xplore. Restrictions apply.

2327-4697 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2021.3110003, IEEE
Transactions on Network Science and Engineering

5

WebSocket reverse
tunnel server

TCP piping

TCP/UDP communication

Control channel

WebSocket tunnel

WebSocket reverse
tunnel client

WebSocket tunnels

new_TCP_connection(ID)

WS message

WS connection request

TCP/UDP
client

IoT node

Constrained
IoT node

Constrained
IoT node

new websocket_connection_request(ID)

Fig. 4: The WebSocket tunneling system.

(UDP or TCP) and transfers data between them using TCP.
Consequently, UDP packets on both sides (i.e., client and
server) get adapted to fit the (TCP-based) WS tunnel. This
way, a UDP flow coming from an external UDP client
towards the Cloud gets tunneled and reaches services de-
ployed at the network edge.

5 S4T DYNAMIC DNS SYSTEM

In this work, we aim at introducing a novel approach to
overcome interoperability issues in IoT by enabling REST-
ful interactions. By assigning (publicly) resolvable domain
names to the Web servers hosted on the distributed IoT
nodes, we can expose their resources (i.e., sensors and
actuators) using REST APIs. Thus, we are moving towards a
more decentralized yet developer-side uniform IoT ecosys-
tem. In the following, we describe our OpenStack-based
WoT system that uses IoTronic capabilities together with the
DNSaaS subsystem, Designate.

5.1 Overview of the S4T Web of Things system

We report in this subsection an overview of our tunneled
reverse proxying approach capable of assigning globally
resolvable domain names to Web servers deployed within
IPv4 masqueraded networks. In particular, the approach
uses only one publicly registered domain name to make the
distributed Web servers appear to be hosted on sub-domains
of the public one. That says, no public IP or domain name
on the local IoT node is needed.

To conceive our system, we are considering, as men-
tioned before, that the IoT nodes are typically deployed
behind NATs and firewalls; therefore, they do not have
routable public IP addresses. To expose the IoT nodes’
hosted Web servers, and by transitivity sensors/actuators,
our approach uses Designate to deal with the manage-
ment of DNS records (which are sub-domains of the pub-
lic one) associated with the edge-based Web servers. To
route requests based on the URLs indicated, IoTronic and
LR, together with two NGINX reverse proxies2 deal with
requests’ forwarding (see Figs.1 and 2). In particular, for
each sub-domain created and assigned to a Web server,
IoTronic and LR manage the instantiation of a (reverse) WS
tunnel between the Cloud and the IoT node (see Section 4).
Afterward, clients’ requests in the destination of the Web

2. https://www.nginx.com

server are forwarded (through the WS tunnel) using the
NGINX reverse proxies’ rules managed, automatically, by
IoTronic and LR.

Regarding the DV certificate issuance and validation,
once the reverse WS tunnel gets created and the two NG-
INX proxies configured, LR manages the X.509 certificate
issuance and validation using the ACME-based Let’s En-
crypt CA client, namely Certbot. Clients then, such as Web
browsers and mobile applications, can communicate using
HTTPS with the edge-based Web server running on the
IoT node. Specifically, a client request is sent to the Cloud
NGINX reverse proxy that manages, based on the URL
indicated in the request (specifically, the sub-domain part),
the forwarding/routing of the request through the suitable
WS tunnel to reach the IoT node/service concerned.

5.2 Workflow of exposing a service

In the following, we report a detailed description of the
workflow when a user wants to expose, publicly, a Web
server running on an IoT node. The full domain name
we are considering to be assigned to the Web server is
web-server.node-A.example.com. Consequently, the registered
public domain used is example.com whereas the rest of the
domain name, i.e., node-A and web-server are managed by
our DNS system to identify the IoT node and the service
concerned, respectively (an IoT node can host multiple
services). Regarding the Cloud NGINX reverse proxy, we
consider that the host where it is running has as an IP
address 1.1.1.1 while the Web server hosted on the IoT
node runs on port 9000. We assume that the IoT node has
already gone through a set of verification processes (e.g.,
authentication) required by S4T; thus, it is registered and
connected to the Cloud. The following list of sequences
takes place when exposing the Web server, with (low-level)
operations as depicted and numbered in Fig. 5):

1) The user send a request to expose a service (e.g., Web
server) running on a specific IoT node using the Open-
Stack dashboard or the Command-Line Interface (CLI).
In particular, the user chooses the service name (in this
case, named web-server), DNS zone that indicate the IoT
node where the server is running (i.e., node-A), and the
port on which the Web server is listening (i.e., 9000).

2) The dashboard/CLI sends a REST request to the
IoTronic API server that pushes a new message into
AMQP queue.

Authorized licensed use limited to: Universita degli Studi di Messina. Downloaded on October 09,2021 at 20:59:24 UTC from IEEE Xplore. Restrictions apply.

2327-4697 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2021.3110003, IEEE
Transactions on Network Science and Engineering

6

IoTronic
database

IoTronic
conductor

IoTronic
AMQP
queues

WAMP
router

IoTronic
WAMP
agent

Web
browser

IoTronic server
D

esignate server

Dashboard

WAMP control
channel

1 WS tunnel
agent

2

3

4

5

6

6

Web service tunnel
(WebSocket)

D
esignate server

Designate
AMQP
queues

Central
Designate
MiniDNS

Pool
Manager

Backend
(BIND,

Infoblox)

Designate
database

IoTronic
command
line client

Domain NGINX IP
web-server.node-A.example.com 1.1.1.1

Domain Forwarding port

node-A.example.com 443 <--> 10000

MPU-powered IoT node

Board FileSystem

W
A

M
P

lib
ra

ry

Lightning-Rod
engine

WS tunnel plugin

Certbot

Lightning-Rod

plugins
Plugin
loader

NGINX
reverse
proxy

sensors and
actuators

GPIO

MPU 8
Forwarding portWeb service URL

8
web-server.node-A.example.com 20000 <--> 9000

Web
server

9

5

10

10

10

NGINX proxy
host

(1.1.1.1)

NGINX
reverse
proxy

NGINX
reverse
proxy

7

Fig. 5: A detailed workflow description of exposing a Web server hosted on an edge IoT node.

3) The IoTronic conductor gets the message from the
queue and does a check using its database. Specifically,
IoTronic verifies if the IoT node is registered and online.
It also looks up the Web Application Messaging Proto-
col (WAMP) agent and the WS tunnel agent managing
the IoT node concerned (the WS tunnel agent is co-
hosted on the same machine where the Cloud NGINX
proxy is deployed. it has as IP 1.1.1.1).

4) IoTronic interacts with the Designate API server to
request the creation of a type A DNS record using the
IP of the NGINX proxy from step 3 (i.e., 1.1.1.1) and
the information provided by the user in step 1 (i.e., the
sub-domain names: web-server and node-A).

5) Designate creates the DNS record within its backend
environment.

6) The IoTronic conductor sends a Remote Procedure Call
(RPC) to the WAMP agent managing the IoT node
to start the configuration process. Subsequently, the
IoTronic WAMP agent sends a WAMP-based RPC to the
NGINX proxy running on the IoT node to instantiate
a WS tunnel to the Cloud. A random port number is
generated and sent as an argument of the RPC to create
the tunnel. In our scenario, we consider as random port
number 10000.

7) The IoT node receives the RPC through the WAMP
library.

8) The LR agent manages the setup of the (reverse) WS

tunnel by generating a random port number (20000 in
our scenario) and taking into consideration the port
number received as an argument of the RPC (i.e.,
10000). Next, LR configures the NGINX reverse proxy
to forward requests in destination of the URL web-
service.node-A.example.com to the port on which the Web
server is listening (specified by the user in step 1, 9000
in this case)

9) LR manages, using the local Certbot daemon, the is-
suance of the DV certificate from the Let’s Encrypt CA.

10) The IoTronic conductor interacts with the WS tunnel
agent managing the IoT node (using an RPC) to config-
ure the Cloud-based NGINX reverse proxy. Specifically,
the proxy is used to forward requests in the destination
of node-A.example.com to the WS tunnel instantiated in
step 6. That said, requests reaching the Cloud NGINX
reverse proxy on port 443 and having as destination
node-A.example.com are forwarded to port 10000 (i.e., the
port on which the WS tunnel is running).

To illustrate a functional workflow that uses the
mechanisms described before, we report in subsection 6.2
a detailed workflow of a request being routed using the
tunneling system.

Authorized licensed use limited to: Universita degli Studi di Messina. Downloaded on October 09,2021 at 20:59:24 UTC from IEEE Xplore. Restrictions apply.

2327-4697 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2021.3110003, IEEE
Transactions on Network Science and Engineering

7

ç√

NGINX reverse
proxy

B.B.B.B

NGINX reverse
proxy

board A

S4T
OpenStack Cloud

S4T
OpenStack DNS

server

(3) DNS resolver query for

wot.rasp-univ.iot.felooca.eu

(4) DNS query response

B.B.B.B

Zone Forwarding port

rasp-univ 443 <--> 60000

(7) HTTPS GET request

https://wot.rasp-univ.iot.felooca.eu/temperature

ws: 60000<-->50000

Service Forwarding port

wot 50000 <--> 5000

(6) Forwarding

(8) Forwarding

(5) HTTPS GET request

https://wot.rasp-univ.iot.felooca.eu/temperature

Public DNS server with an NS
record for the S4T DNS server

(1) DNS resolver query for
wot.rasp-univ.iot.felooca.eu

Web server
(2) DNS query response
S4T DNS server address port: 5000

/temperature

/humidity

/temperature

/humidity

Zone Forwarding port

rasp-univ 443 <--> 60000

Service Forwarding port

wot 50000 <--> 5000

(1) DNS resolver query
wot.rasp-univ.iot.felooca.eu

(2) DNS query response
IP @ of the S4T DNS server

(4) DNS query response
IP @ (i.e., 51.75.29.20) of the
NGINX proxy managing the

board

ISP
DNS

server

(5) HTTPS GET request
https://wot.rasp-univ.iot.felooca.eu/temperature

(7) HTTPS GET request

https://wot.rasp-univ.iot.felooca.eu/temperature

ws: 60000:50000

S4T DNS
server

OpenStack
Cloud

NGINX
proxy

IP: 51.75.29.20

w
s

se
rv

er

/redled

node-red 50000 <--> 1880

port:1880

port:5000

w
s

cl
ie

nt

sensors
&

actuators

/greenled

https://streaming.rasp-univ.iot.felooca.eu

streaming 50000 <--> 8090

(6) Forwarding

port:8090

(8)Forwarding

/temperature

/humidity

/redled

port:1880

w
s

cl
ie

nt

sensors
&

actuators

/greenled

Raspberry Pi

w
s

cl
ie

nt

sensors
&

actuators

Service

Service

Service

ws: 70000:80000

...

test-board 443 <--> 70000 ...

GPIO

(3) DNS resolver query
wot.rasp-univ.iot.felooca.eu

Fig. 6: The Stack4Things-based WoT routing mechanism.

6 IMPLEMENTATION AND EXPERIMENTAL RE-
SULTS

In this section, we provide an online accessible testbed
powered by the S4T DDNS system. We also report a set
of experiments results to assess the performance of the
approach.

6.1 Testbed description
To prove the feasibility of our approach, we used a Rasp-
berry Pi single-board computer to host a Web server and
therefore expose publicly a set of hosted sensors/actuators
as depicted in Fig. 6. The OpenStack environment, including
our IoTronic system, is hosted at the Department of En-
gineering, University of Messina, Italy. The Raspberry Pi
runs the device-side agent (LR) agent and hosts a Web
application that uses the built-in Flask Web server running
on port 5000. We used the approach presented in Section 5 to
expose the Web server. As URL, we choose https://wot.rasp-
univ.iot.felooca.eu under which /temperature, /humidity, /redled
and /greenled are made available as resources. We remind
that the choice of the URL is up to the user except for its pub-
lic part (in this case, felooca.eu). Other services hosted on the
same board are exposed as well, such as a video streaming
from a Web camera using streaming.rasp-univ.iot.felooca.eu
as URL and a Node-RED instance3. We mention here that
the registered (and globally resolvable) domain name the
approach uses is felooca.eu. The iot sub-domain was created
for management purposes as the domain (i.e., felooca.eu) is
used for production by the smartme.IO4 spin-off company.
The iot sub-domain does not affect the workflows described
before: it is transparent with regard to the approach here
presented. To be aligned with the descriptions presented
in section 5, we can consider that our public domain is
iot.felooca.eu.

3. We exposed three services that the readers can access:
• The web page: https://wot.rasp-univ.iot.felooca.eu
• The video streaming: https://streaming.rasp-

univ.iot.felooca.eu/?action=stream/
• A Node-RED instance: https://node-red.rasp-univ.iot.felooca.eu

4. https://smartme.io/

By enabling the use of globally resolvable URLs associ-
ated with geographically distributed services deployed at
the network edge, we are able to create mashups based on
distributed Web services. For instance, we used the video
streaming URL to incorporate the streaming on the Web
page. The mechanisms provided by the system make user
agents, for example, web browsers, able to interact with
the board-hosted resources using HTTPS. The reader can
access the following URL: https://wot.rasp-univ.iot.felooca.eu
that point out the Flask Web server hosted on the Rasp-
berry Pi. In this deployment, all the requests made to get
sensors values (i.e., temperature and humidity), as well as
the LEDs status, are HTTPS-based GET requests. The Linux
command-line tool, curl, can also be used to retrieve the
value of a metric from a resource, for example, temper-
ature: curl -X GET -H “Accept: application” https://wot.rasp-
univ.iot.felooca.eu/temperature. Even more so, the reader can
interact, in real-time, with the two LEDs using the cor-
responding Web page widgets by sending HTTPS POST
requests under the hood.

6.2 Functional workflow

We report in the following the functional workflow when a
Web client requests the value of the temperature sensor. The
URL we consider is the one mentioned before and made
available over the Web: https://wot.rasp-univ.iot.felooca.eu and
the resource involved is /temperature. The complete work-
flow is reported in Fig. 6 (we skip the different TCP/TLS
handshakes for a matter of simplicity and to make the
workflow easier to grasp):

1) The client (a Web browser in this case) sends a
DNS resolver query about the URL (i.e., wot.rasp-
univ.iot.felooca.eu) to the Internet Service Provider
(ISP) public DNS server.

2) The public DNS server sends a response back to the
client about the felooca domain name. The response
contains the public IP address of the S4T Cloud DNS
server.

3) The client sends a new DNS request to the S4T DNS
server.

Authorized licensed use limited to: Universita degli Studi di Messina. Downloaded on October 09,2021 at 20:59:24 UTC from IEEE Xplore. Restrictions apply.

2327-4697 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2021.3110003, IEEE
Transactions on Network Science and Engineering

8

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 18 35 52 69 86
103

120
137

154
171

188
205

222
239

256
273

290

La
te

nc
y

(s
)

Packet number

Latency experienced with WS tunnel (100 pps, 40 bytes)

(a) Latency experienced with the WS tunnel using a packet rate of
100 pps and 40 bytes as payload length.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 18 35 52 69 86
103

120
137

154
171

188
205

222
239

256
273

290

La
te

nc
y

(s
)

Packet number

Latency experienced with WS tunnel (200 pps, 40 bytes)

(b) Latency experienced with the WS tunnel using a packet rate of
200 pps and 40 bytes as payload length.

Fig. 7: Latency measured with the WS tunnel when using packets with 40 bytes of payload.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 18 35 52 69 86
103

120
137

154
171

188
205

222
239

256
273

290

La
te

nc
y

(s
)

Packet number

Latency experienced with WS tunnel (100 pps, 400 bytes)

(a) Latency experienced with the WS tunnel using a packet rate of
100 pps and 400 bytes as payload length.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 18 35 52 69 86
103

120
137

154
171

188
205

222
239

256
273

290

La
te

nc
y

(s
)

Packet number

Latency experienced with WS tunnel (200 pps, 400 bytes)

(b) Latency experienced with the WS tunnel using a packet rate of
200 pps and 400 bytes as payload length.

Fig. 8: Latency measured with the WS tunnel when using packets with 400 bytes of payload.

4) The DNS server sends a response back to the client with
the IP address of the NGINX reverse proxy managing
the board concerned (in the testbed we are making
accessible online, the proxy IP address is 51.75.29.206).

5) The client sends an HTTP GET request to the IP address
specified by the DNS server from the previous step (i.e.,
51.75.29.206).

6) Once the NGINX reverse proxy receives the HTTP
request, it checks the URL mentioned. Based on the
sub-domain specified (i.e., rasp-univ) that indicates the
board, the NGINX reverse proxy forwards the request
through the appropriate WS tunnel connecting the
Cloud to that board. Specifically, in our online testbed,
requests received on port 443 and having as URL
https://wot.rasp-univ.iot.felooca.eu are forwarded via the
WS tunnel running on port 60000.

7) The request reaches the board NGINX reverse proxy
through the WS tunnel.

8) The NGINX reverse proxy checks the URL of the re-
quest specifically, the service name (i.e., wot). Based on
its forwarding rules (created when exposing the Web
server, see Section 5.2), the proxy forwards the request
to the port on which the Web server is listening. In our
scenario, the service is named wot and runs on port
5000. As a result, the request reaches the Web server,
and the response (value of the /temperature resource)
travels back the same way.

6.3 Performance evaluation

In this subsection, we evaluate firstly the performance of
the tunneling approach we implemented. Then, we present

the results of deploying the whole solution (i.e., WS tunnel
client and NGINX) on an IoT node.

To assess the performance of the tunneling mechanism,
we used two Virtual Machines (VMs) as UDP client and
server communicating through a WS tunnel. Each of the
VMs has two vCPUs and 2 GB of RAM. The VMs are
hosted on a 2020 Intel i5 MacBook Pro while being timely
synchronized using Network Time Protocol (NTP).

To evaluate the impact of the WS tunnel on the latency
it may introduce, we fixed the latency between the 2 VMs
(using the virtual bridge interface) at 50 ms. We measured
then the delay between the timestamp when a packet with
40 bytes of data is sent by the client and the timestamp
when the same packet reaches the server. For the sake of
clarity, we state here that the latency we intend to evaluate
is a one-way measure. Specifically, we used UDP as it brings
more flexibility and control over the testbed since the packet
sending rate can be controlled with higher granularity.

Figs. 7a and 7b depict the results of our experiments
at 100 and 200 packets per second (pps), respectively. The
packet number (x-axis) represents the sequential number of
the packets received by the UDP server at a given packets
sending rate. We mention here that to accommodate the
UDP traffic sent/received by the client and make it tunneled
through the (TCP) WS tunnel, we used the Socat tool as
discussed in Section 4. As reported in Fig. 7a, the latency
stabilizes at around 50 ms (i.e., the latency between the two
VMs) after some packet transmissions. This result shows
that the WS tunnel’s impact on latency is negligible during
long sessions. At the beginning of the communication, the
higher latency value is due to the three-way TCP handshake
used to set up the WS tunnel (the second peak is attributed

Authorized licensed use limited to: Universita degli Studi di Messina. Downloaded on October 09,2021 at 20:59:24 UTC from IEEE Xplore. Restrictions apply.

2327-4697 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2021.3110003, IEEE
Transactions on Network Science and Engineering

9

Packets with 40 bytes of payload Packets with 400 bytes of payload
Packets generation

rate (pps)
WS tunnel client
CPU usage (%)

Socat
CPU usage (%)

Total
CPU usage (%)

WS tunnel client
CPU usage (%)

Socat
CPU usage (%)

Total
CPU usage (%)

100 2.48 0.38 2.86 2.6 0.4 3
200 4.37 0.76 5.13 4.31 0.71 5.02
300 5.2 1.12 6.32 5.23 1.09 6.32
400 5.78 1.4 7.18 5.62 1.42 7.04
500 6.18 1.66 7.84 6.11 1.58 7.69

TABLE 1: WS tunnel client and Socat CPU usage with different packets’ payload lengths.

0

5

10

15

20

25

30

10 20 30 40 50 60 70 80 90 100

CP
U

 u
sa

ge
 in

 %

Number of clients

WStun client NGINX Flask Web server Total

Fig. 9: CPU usage on the Raspberry Pi.

to the TCP windowing). Indeed, while the WS tunnel is
being created, the UDP client keeps sending the packets
at a fixed generation rate (i.e., 100 pps); those packets got
queued and, therefore, delayed. For the packets generated
at 200 pps (Fig. 7b), similarly, the first train of packets
was affected by a higher latency, whereas a latency of
approximately 50 ms identifies the steady-state response. In
this case, we notice that a higher number of packets was
affected by the WS tunnel setup (i.e., TCP handshake), as
the packets’ generation rate is higher than in the first case;
thus, more packets were delayed in the queue. Albeit higher
rate, the latency always stabilizes around the same value of
50 ms (i.e., the latency we fixed between the two VMs). It
is worth mentioning that even though we depict only the
first 300 packets in the graphs, we run each experiment for
10 minutes. For all cases, the latency remained constant and
close to the values being shown. Regarding the performance
of the tunnel vis-à-vis packets’ sizes, we used larger packets’
payloads. Specifically, as reported in Figs. 8a and 8b, we
used packets with a payload 10 times larger than the first
case (i.e, 400 bytes long) and we got the same results.

To overwhelm the tunnel’s instantiation queuing issue at
the beginning of the communications, a solution that would
be conceivable when exposing services is to instantiate the
WS tunnels more proactively (i.e., once the user expose the
service and before receiving any request), anticipating the
reception of the messages and keeping TCP sessions alive to
avoid the three-way handshakes.

Another aspect we evaluated is the CPU usage since the
WS tunneling mechanism we are introducing is meant to be
implemented on IoT nodes. We report in Table 1 the CPU
usage of the WS tunnel client. As we can notice, the packet
size does not impact the CPU resource usage as the results
when using packets with 40 and 400 bytes payload lengths
are aligned. We mention that the CPU usage of Socat is
reported as well since we are tunneling, in this case, a UDP
traffic. The case when using TCP-based flows Socat is not
required (see Section 4).

We conducted a set of other experiments to evaluate the
performance of the WS tunnel and NGINX reverse proxy
hosted on the IoT node. In particular, we measured the
NGINX reverse proxy and the WS tunnel client CPU and
RAM usage using a Raspberry Pi 3 Model B+ (Quad-Core
1.2GHz Broadcom BCM2837 64bit CPU with 1 GB of RAM).
To generate (GET) HTTP requests, we simulated users by
means of the open-source load testing tool, Locust5. We
configured each (simulated) user to send one GET request
per second (using the constant pacing function). We report
in Fig. 9 the CPU usage of the NGINX reverse proxy and
the WS tunnel client. The CPU usage of the built-in Flask
Web server used is reported as well (we opted for the
Flask built-in Web server for a matter of implementation
simplicity). Of course, other Web servers (e.g., Apache) can
be used to improve the server performance. As shown in
the figure, when generating ten requests per second by ten
users, the WS tunnel client and NGINX uses 0.91/%. This
value keeps increasing quite linearly to reach 8.07% when
reaching 100 users. Regarding the RAM usage, the value
remained constant all along with the experiments while
varying the number of users. Practically, the NGINX reverse
proxy and WS tunnel client combined use exactly 6.6% of
the total amount of 2 GB of RAM available.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we introduced our tunneling Cloud based-
approach with a dynamic DNS mechanism for exposing
services hosted on IoT nodes deployed at the network edge.
In particular, the solution deals with the typical constraints
of IoT environments. We also showed the feasibility of
the approach by providing an online accessible testbed. As
further extensions of this work, we would like to implement
a UDP-based tunneling system instead of the TCP-based
one. Furthermore, in the actual solution, it is mandatory
to go through the Cloud to route clients’ requests. In this
context, as future work, we would like to implement a Fog-
based system with a distributed DNS mechanism to route
requests based on users’ localization.

REFERENCES

[1] M. Satyanarayanan, “Pervasive computing: vision and chal-
lenges,” IEEE Personal Communications, vol. 8, no. 4, pp. 10–17,
2001.

[2] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A
survey,” Computer networks, vol. 54, no. 15, pp. 2787–2805, 2010.

[3] L. T. Yang, B. Di Martino, and Q. Zhang, “Internet of everything,”
Mobile Information Systems, vol. 2017, 2017, cited By :21. [Online].
Available: www.scopus.com

5. https://locust.io

Authorized licensed use limited to: Universita degli Studi di Messina. Downloaded on October 09,2021 at 20:59:24 UTC from IEEE Xplore. Restrictions apply.

2327-4697 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2021.3110003, IEEE
Transactions on Network Science and Engineering

10

[4] R. Baheti and H. Gill, “Cyber-physical systems,” The impact of
control technology, vol. 12, no. 1, pp. 161–166, 2011.

[5] F.-Y. Wang, “The emergence of intelligent enterprises: From cps to
cpss,” IEEE Intelligent Systems, vol. 25, no. 4, pp. 85–88, 2010.

[6] A. Bröring, S. Schmid, C. Schindhelm, A. Khelil, S. Käbisch,
D. Kramer, D. Le Phuoc, J. Mitic, D. Anicic, and E. Teniente,
“Enabling iot ecosystems through platform interoperability,” IEEE
Software, vol. 34, no. 1, pp. 54–61, 2017.

[7] B. Di Martino, M. Rak, M. Ficco, A. Esposito, S. A. Maisto, and
S. Nacchia, “Internet of things reference architectures, security and
interoperability: A survey,” Internet of Things, vol. 1, pp. 99–112,
2018.

[8] B. Di Martino, G. Cretella, and A. Esposito, “Cloud services
composition through cloud patterns: a semantic-based approach,”
Soft Computing, vol. 21, no. 16, pp. 4557–4570, 2017.

[9] D. Guinard, V. Trifa, F. Mattern, and E. Wilde, “From the internet
of things to the web of things: Resource-oriented architecture and
best practices,” in Architecting the Internet of things. Springer, 2011,
pp. 97–129.

[10] Z. Benomar, F. Longo, G. Merlino, and A. Puliafito, “A
stack4things-based web of things architecture,” in 2020 Interna-
tional Conferences on Internet of Things (iThings) and IEEE Green
Computing and Communications (GreenCom) and IEEE Cyber, Physical
and Social Computing (CPSCom) and IEEE Smart Data (SmartData)
and IEEE Congress on Cybermatics (Cybermatics). IEEE, 2020, pp.
113–120.

[11] C. Pautasso and E. Wilde, “Why is the web loosely coupled? a
multi-faceted metric for service design,” in Proceedings of the 18th
international conference on World wide web, 2009, pp. 911–920.

[12] C. Prehofer and I. Gerostathopoulos, “Modeling restful web of
things services: Concepts and tools,” in Managing the Web of Things.
Elsevier, 2017, pp. 73–104.

[13] Z. Shelby, “Embedded web services,” IEEE Wireless Communica-
tions, vol. 17, no. 6, pp. 52–57, 2010.

[14] A.-R. Breje, R. Győrödi, C. Győrödi, D. Zmaranda, and G. Pecherle,
“Comparative study of data sending methods for xml and json
models,” INTERNATIONAL JOURNAL OF ADVANCED COM-
PUTER SCIENCE AND APPLICATIONS, vol. 9, no. 12, pp. 198–
204, 2018.

[15] D. Yazar and A. Dunkels, “Efficient application integration in ip-
based sensor networks,” in Proceedings of the First ACM Workshop
on Embedded Sensing Systems for Energy-Efficiency in Buildings, 2009,
pp. 43–48.

[16] N. Naik, “Choice of effective messaging protocols for iot systems:
Mqtt, coap, amqp and http,” in 2017 IEEE international systems
engineering symposium (ISSE). IEEE, 2017, pp. 1–7.

[17] D. Guinard, I. Ion, and S. Mayer, “In search of an internet of
things service architecture: Rest or ws-*? a developers’ perspec-
tive,” in International Conference on Mobile and Ubiquitous Systems:
Computing, Networking, and Services. Springer, 2011, pp. 326–337.

[18] B. N. Silva, M. Khan, and K. Han, “Integration of big data
analytics embedded smart city architecture with restful web of
things for efficient service provision and energy management,”
Future generation computer systems, vol. 107, pp. 975–987, 2020.

[19] S. Jabbar, M. Khan, B. N. Silva, and K. Han, “A rest-based in-
dustrial web of things’ framework for smart warehousing,” The
Journal of Supercomputing, vol. 74, no. 9, pp. 4419–4433, 2018.

[20] B. N. Silva, M. Khan, K. Lee, Y. Yoon, D. Muhammad, J. Han, and
K. Han, “Restful web of things for ubiquitous smart home energy
management,” in 2020 International Conference on Computing, Net-
working and Communications (ICNC). IEEE, 2020, pp. 176–180.

[21] A. Tiberkak, A. Hentout, and A. Belkhir, “Lightweight remote
control of distributed web-of-things platforms: First prototype,”
in 2020 IEEE International Conference on Internet of Things and
Intelligence System (IoTaIS). IEEE, 2021, pp. 103–108.

[22] L. Mainetti, V. Mighali, and L. Patrono, “A software architecture
enabling the web of things,” IEEE Internet of Things Journal, vol. 2,
no. 6, pp. 445–454, 2015.

[23] R. Yugha and S. Chithra, “A survey on technologies and security
protocols: Reference for future generation iot,” Journal of Network
and Computer Applications, p. 102763, 2020.

[24] A. P. Felt, R. Barnes, A. King, C. Palmer, C. Bentzel, and P. Tabriz,
“Measuring {HTTPS} adoption on the web,” in 26th {USENIX}
Security Symposium ({USENIX} Security 17), 2017, pp. 1323–1338.

[25] R. Barnes, J. Hoffman-Andrews, and J. Kasten, “Automatic cer-
tificate management environment (acme),” Internet-Draft draft-ietf-
acme-acme-09, IETF Secretariat, 2017.

[26] E. F. Kfoury, D. Khoury, A. AlSabeh, J. Gomez, J. Crichigno, and
E. Bou-Harb, “A blockchain-based method for decentralizing the
acme protocol to enhance trust in pki,” in 2020 43rd International
Conference on Telecommunications and Signal Processing (TSP). IEEE,
2020, pp. 461–465.

[27] F. Longo, D. Bruneo, S. Distefano, G. Merlino, and A. Puliafito,
“Stack4things: An openstack-based framework for iot,” in 2015
3rd International Conference on Future Internet of Things and Cloud,
2015, pp. 204–211.

[28] Z. Benomar, F. Longo, G. Merlino, and A. Puliafito, “Cloud-based
enabling mechanisms for container deployment and migration at
the network edge,” ACM Trans. Internet Technol., vol. 20, no. 3,
Jun. 2020. [Online]. Available: https://doi.org/10.1145/3380955

[29] Z. Benomar, D. Bruneo, S. Distefano, K. Elbaamrani, N. Idboufker,
F. Longo, G. Merlino, and A. Puliafito, “Extending openstack for
cloud-based networking at the edge,” in 2018 IEEE International
Conference on Internet of Things (iThings) and IEEE Green Computing
and Communications (GreenCom) and IEEE Cyber, Physical and Social
Computing (CPSCom) and IEEE Smart Data (SmartData), 2018, pp.
162–169.

[30] D. Skvorc, M. Horvat, and S. Srbljic, “Performance evaluation
of websocket protocol for implementation of full-duplex web
streams,” in 2014 37th International Convention on Information and
Communication Technology, Electronics and Microelectronics (MIPRO).
IEEE, 2014, pp. 1003–1008.

Zakaria Benomar is currently a final-year Ph.D.
student at the Department of Engineering, Uni-
versity of Messina, Italy. His main research
interests include Cloud computing, Internet of
Things, Network virtualization and Edge/Fog
computing. He is the recipient of the Outstand-
ing Paper Award during the IEEE international
conference on Internet of Things (iThings-2020).

Francesco Longo is a tenure-track Assistant
Professor of computer engineering at the Uni-
versity of Messina, Italy. His main research in-
terests include performance and dependability
evaluation of distributed systems, IoT, Cloud,
and Fog/Edge computing with applications in
Smart Cities and Industry 4.0, Blockchain and
DLT technologies and their use in building trust-
less systems.

Giovanni Merlino is tenure-track Assistant Pro-
fessor of computer engineering at University of
Messina, Italy. His main research interests re-
volve around mobile and distributed systems
with particular emphasis on the Internet of
Things for the Industry 4.0, Fog Computing and
the Web of Smart Things, in support of Deep
Learning-based biomedical applications, cyber-
physical systems as software-defined Smart City
infrastructure, and mobile crowdsensing

Antonio Puliafito is Professor of computer en-
gineering at the University of Messina, Italy. His
interests include distributed systems, wireless
and Cloud computing. He is acting as an expert
in ICT for the European Commission since 1998.
He is currently the Director of the national CINI
Lab on Smart cities and Communities. He par-
ticipated in several European projects such as
Reservoir, Vision,CloudWave and Beacon. He is
the scientific director of the SmartMe.io spinoff
company.

Authorized licensed use limited to: Universita degli Studi di Messina. Downloaded on October 09,2021 at 20:59:24 UTC from IEEE Xplore. Restrictions apply.

