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Abstract: Osteoarthritis (OA) is a disease that currently has no cure. There are numerous studies
showing that carnosine and hyaluronic acid (HA) have a positive pharmacological action during
joint inflammation. For this reason, the goal of this research was to discover the protective effect of a
new carnosine conjugate with hyaluronic acid (FidHycarn) on the inflammatory response and on
the cartilage degradation in an in vivo experimental model of OA. This model was induced by a
single intra-articular (i.ar.) injection of 25 µL of normal saline with 1 mg of monosodium iodoacetate
solution (MIA) in the knee joint of rats. MIA injection caused histological alterations and degradation
of the cartilage, as well as behavioral changes. Oral treatment with FidHycarn ameliorated the
macroscopic signs, improved thermal hyperalgesia and the weight distribution of the hind paw,
and decreased histological and radiographic alterations. The oxidative damage was analyzed by
evaluating the levels of nitrotyrosine and inducible nitric oxide synthase (iNOS) that were significantly
reduced in FidHycarn rats. Moreover, the levels of pro-inflammatory cytokines and chemokines
were also significantly reduced by FidHycarn. Therefore, for the first time, the effectiveness of
oral administration of FidHycarn has been demonstrated in an osteoarthritis model. In conclusion,
the new FidHycarn could represent an interesting therapeutic strategy to combat osteoarthritis.

Keywords: osteoarthritis; carnosine; hyaluronic acid; inflammation; oxidative stress

1. Introduction

Osteoarthritis (OA) is one of the most common arthropathies and is the leading cause of disability,
with a large socioeconomic cost. OA is a condition which can affect any joint in the body. OA generally
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affects the joints that support most of the weight (such as the knees and feet) and the joints we use the
most (e.g., hand joints). In a healthy joint, the cartilage shelters the surface of the bones and supports
the bones to move liberally against each other. When a joint develops OA, part of the cartilage tapers
and the surface becomes coarser. This means the articulation does not move as easily as it should.
When the cartilage becomes worn out or damaged, all the tissues within the articulation become more
active than usual as the body attempts to repair the damage. However, the reparation processes do not
always operate well, and thus, modifications to the joint structure can occasionally cause or contribute
to symptoms such as swelling, pain, and ultimately, disability.

One of the leading characteristics of OA is collagen deterioration, as suggested by augmented
tissue swelling and the loss of proteoglycans [1]. Both collagen destruction and the loss of proteoglycans
unfavorably affect the mechanical properties of cartilage. Chondrocytes respond to tissue injury by
increasing collagen and proteoglycan synthesis in an attempt to repair the tissue [2]. If repair fails,
the damage will progress to articular cartilage degeneration. It is still not clear exactly what causes
osteoarthritis. We do know that it is not simply ‘wear and tear’ and that the danger of developing OA
depends on a number of factors.

Furthermore, these degradation processes are thought to be largely elicited through excess
production of pro-inflammatory and catabolic mediators. Among them, interleukin-1β (IL-1β) has
been demonstrated to be predominantly involved in both disease initiation and progression [3,4].
Oxidative stress shows a fundamental role in supporting cartilage degradation. In chondrocytes of the
joint, the data implicate reactive oxygen species (ROS) as signaling intermediates of IL-1β [5]. It has
been proposed that ROS produced internally in the joints may contribute notably to the pathogenesis of
OA, as these inorganic oxidants are able to deteriorate cartilage through oxidation of the extra-cellular
matrix (ECM) components or post-translational modification (PTM) of metalloproteinases (MMPs) [6,7].

The existing treatments for postponing OA and rheumatoid arthritis (RA) progression comprise
of some disease modifying anti-rheumatic drugs (DMARDs) and biological agents that operate as
immunomodulatory drugs in RA [8]. Several also act by inhibiting endothelial cell proliferation and
cytokines [9]. Moreover, all of these compounds have potentially grave side effects and there are
substantial differences in toxicity among DMARDs [10]. Hyaluronan (HA) is a foremost component of
synovial fluid (SF) and is necessary for the proper functioning of joints. Yet, owing to the fact that SF
does not have any hyaluronidases, it is considered that ROS could also be involved in HA catabolism
in the inflamed articulation. A transition metal, e.g., copper or iron, would also be required to show an
active function in oxidative HA catabolism. The polymer functions of HA are dimension specific and
its fragments represent an information-rich system. The intermediate-sized HA-polymer fragments
are inflammatory, immune-stimulatory, and highly angiogenic [11].

Consequently, substances preventing HA from being degraded could have anti-inflammatory
and anti-angiogenic properties. Carnosine (CARN), a fundamental endogenous molecule, has several
physiological functions: pH buffering, radical scavenging, anti-glycating, heavy metal chelating,
and neutralization of toxic aldehydes. CARN is found to have neuroprotective, cataract treating,
hepatoprotective, and anti-aging abilities [12]; however, its anti-inflammatory strength in auto-immune
systemic inflammatory diseases has been recently investigated. The ambition of this study is to
explore the effect of FidHycarn on the inflammatory response and on the cartilage degradation in the
experimental rat model of OA.

2. Material and Methods

2.1. Animals

Sprague-Dawley male rats (200–230 g, 7-weeks old, Envigo, Udine, Italy), were used for this study.
Ten rats were used for each treatment group (see below). Food and water were available ad libitum.
This study was conducted in accordance with the University of Messina Review Board for the care and
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use of animals. Animal care was in accordance with the Italian regulations on safety of animals used
and other scientific purposes (D.Lgs 2014/26 and EU Directive 2010/63).

2.2. Osteoarthritis Induction and Treatment

OA was induced by intra-articular (i.ar.) injection of monosodium iodoacetate solution (MIA) in
the knee joint of rats, as previously described [13]. On the first day, the rats were anesthetized and only
one injection of 25 µL germ-free normal saline containing 1 mg MIA was injected into the right knee
articulation through the infra-patellar ligament. The left knee received an identical volume of 0.9%
saline. MIA and drug solutions were prepared under germ-free conditions and injected with a 50 µL
Hamilton microliter syringe with a 6-mm, 27-gauge needle that was introduced into the joint circa
2–3 mm.

2.3. Experimental Groups

Rats were distributed into the following experimental groups:
Sham—Control: The rats were exposed to intra-articular injection with 0.9% saline (25 µL) instead

of MIA and were orally treated with vehicle (distilled water) every day starting from day 3 after MIA
induction; (n = 20).

MIA—Vehicle: The rats were subjected to MIA (as indicated below) (1 mg/kg) and were orally
treated with distilled water (vehicle for FidHycarn) every day starting from day 3 after MIA induction;
(n = 20).

MIA—Carnosine: The rats were subjected to MIA (1 mg/kg) and received oral Carnosine
(17.6 mg/kg) every day starting from day 3 after MIA induction; (n = 20).

MIA—HA: The rats were subjected to MIA (1 mg/kg) and received oral HA (70.9 mg/kg) every
day starting from day 3 after MIA induction; (n = 20).

MIA—Carnosine+HA: The rats were subjected to MIA (1 mg/kg) and received oral Carnosine+HA
(17.6 + 70.9 mg/kg) every day starting from day 3 after MIA induction; (n = 20).

MIA—FidHycarn (carnosine conjugate with hyaluronic acid): The rats were subjected to MIA
(1 mg/kg) and received oral FidHycarn (88.5 mg/kg) every day starting from day 3 after MIA induction;
(n = 20).

MIA—Naproxen: The rats were subjected to MIA (1 mg/kg) and treated orally with Naproxen
(10 mg/kg) every day starting from day 3 after MIA induction. (n = 20).

The beginning of treatment was 3 days after MIA injection to allow the development of the first
cartilage damages [14].

2.4. Synthesis of FidHycarn

The synthesis of FidHycarn is described in the patent WO2019069258 [15]. Briefly, the first step
is the synthesis of carnosine methyl ester. We treated 1.5 g of carnosine with 50 mL of an acetyl
chloride solution in anhydrous methanol (pre-mixed) in a 1:20 ratio (v/v), under stirring inside a
250 mL flask, and successively, about 90% of the solvent was removed by evaporation. 20 mL of
anhydrous methanol was then added to the reaction residue, and again, 90% of the solvent was
removed by evaporation. The operation was repeated until all HCL (which was formed during the
reaction) had been removed; the product was then brought to dryness under a vacuum. Following this
step, 1.1 g of about 700 kDa hyaluronic acid were introduced in a reactor with 80 mL of a mixture of
H2O and DMSO. Successively, a solution of H2O and DMSO containing tris 2-(2 methoxethoxy) ethyl
amine, 3-hydroxy 1,2,3 benzotriazin 4 (3H) one, and N (3 dimethylaminopropyl) N ethylcarbodiimide
hydro-chloride was added. Successively, 365 mg of carnosine methyl ester in DMSO were added.
The product was precipitated with the addition of ethanol. The final precipitate was dissolved in water
and subsequently lyophilized. An amount of 100 mg of the FidHycarn batch used in this in vivo study
was constituted of 19.89 mg of carnosine and 80.11 mg of hyaluronic acid. In Figure 1 we represent the
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new carnosine-hyaluronic acid conjugate. All FidHycarn samples were subjected to accurate 1H-NMR
analysis to define their structure and the % of carnosine loading (Figure 2).
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Figure 2. Overlapped 1H-NMR spectra of carnosine in mixture with hyaluronic (CAR+HA; grey line)
and of the carnosine-hyaluronic acid conjugate (red line). The signals attributable to the protons on
C-2 of the beta-alanine moiety in the mixture (2.68 ppm) appear upfield shifted at 2.44 ppm in the
spectrum of the conjugate (according to the transformation of the amino group into the relevant amide
function). At the same time, the signals of protons on C-3 of beta-alanine in the mixture (3.2 ppm)
appear downfield at 3.68 ppm in the spectrum of the conjugate (these are hidden by the signals of the
hyaluronic acid backbone). The signal assignments were confirmed by bi-dimensional 1H-1H-NMR
(COSY experiments). Abbreviations: HA, hyaluronic acid.
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3. Behavioral Analysis

The hyperalgesic reactions to heat were determined at different time points (days 0, 7, 10, 13,
16, and 21) using a Basile Plantar Test. Each rat was limited to staying in a plexiglass chamber and
was allowed to habituate. A portable unit consisting of a high intensity projector lamp was placed to
deliver a thermal stimulation directly to a hind paw from under the chamber. The retraction latency
period of injected paws was defined with an electronic clock circuit and thermocouple. Results were
expressed as paw-withdrawal latency (s) [16].

3.1. Evaluation of Pain-Related Behavior

Pain connected with OA was characterized by changes in the weight distribution on each hind
paw [17]. The animals were positioned into a plexiglass chamber with each hind paw on the distinct
force plate, and they were allowed to habituate. When still, the force used on the plate by each hind
paw was annotated. A total of four readings was taken for each rat at each time point (days 0, 7, 10,
13, 16, and 21) and the mean was used for calculation. The percent weight distribution of the left
(ipsilateral) hind paw was calculated by the following formula:

% weight distribution of left hind paw = left weight/(left weight + right weight) × 100.

3.2. Macroscopic Examination of the MIA Induced OA Site

The rats were euthanized by giving excess anesthesia on the 21th day of post-MIA injection.
The whole right knee joint of all the animals was explanted for macroscopic study. Soft tissues
surrounding the right knee were removed to observe the clear features of the articular cartilage.
Macroscopic investigation was performed to find the deformities of the joint capsules [18].

3.3. Radiographic Analysis

Radiographic analysis was performed with an X-ray Bruker FX Pro instrument (Milan, Italy).
The radiographs were assessed by an observer in a blinded mode and scored by means of a
semi-quantitative grading scale as previously indicated [19]. Briefly, the articular space was scored by
a scale 0–3 with 0 = regular, 1 = mild, 2 = partial, and 3 = whole loss of joint space. Subchondral bone
sclerosis was indicated as 0 = normal, 1 = mild, 2 = moderate, and 3 = severe. Osteophyte formation
was recorded as 0 = normal, 1 = osteophytes on the proximal tibia, 2 = osteophytes on the femoral
condyle, and 3 = osteophytes present on both the tibial and femoral condyle.

3.4. Histological Investigation

On the 21st day post MIA administration, the rats were killed by anesthetic overdose and the tissues
were fixed by transcardiac perfusion with 4% paraformaldehyde solution. The tibiofemoral joints
were taken and post-fixed in neutral buffered formalin (having 4% formaldehyde), were decalcified in
EDTA, and were treated as previously described. Mid-coronal tissue sections (5 µm) were stained for
valuations. Slices were stained with Hematoxylin and Eosin (H&E), and studied using light microscopy
(Dialux 22 Leitz; Leica Microsystems SpA, Milan, Italy). The histopathological examination of the
cartilage was assessed using the modified score of Mankin et al. (score range 0 to 12, from normal to
complete disorganization and hypocellularity) [20]. Cartilage degeneration was assessed by staining
with toluidine blue and analyzed using the following criteria described by Janusz et al.: 1 = mild
into the surface region; 2 = slightly extended in the upper center; 3 = moderate in the median area;
4 = extended area deep; and 5 = severe degeneration [21].

3.5. Immunohistochemistry

Briefly, the slides for immunohistochemistry (7µm) were prepared from paraffin-embedded tissues.
After deparaffinization, endogenous peroxidase was slaked with 0.3% hydrogen peroxide in 60%
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methanol for 30 min. The slides were permeabilized with 0.1% Triton X-100 in PBS for 20 min. Sections
were incubated overnight with anti-nitrotyrosine (1:500 in PBS, w/v; Millipore Sigma, Burlington, MA,
USA, Cat. 06-284); anti-iNOS antibody (1:500 in PBS, w/v; BD Biosciences, San Jose, CA, USA, Cat.
610600); anti-IL-1β (1:500 in PBS, v/v; Santa Cruz Biotechnology, Heidelberg, Germany, Cat. sc-52012);
and anti-interleukin (IL)-6 (1:500 in PBS, w/v; Santa Cruz Biotechnology, Heidelberg, Germany, Cat.
sc-28343). Sections were washed with PBS, and then incubated with the secondary antibody. Specific
labelling was identified with a biotin-conjugated goat anti-rabbit IgG and avidin-biotin peroxidase
complex. The counter stain was developed with diaminobenzidine (brown) and nuclear fast red (red
background). To verify that the immune-reaction for the nitrotyrosine is specific, we incubated some
slices with the primary antibody in the presence of excess nitrotyrosine (10 mM). Similarly, to verify
the binding specificity for iNOS, IL-1β, and IL-6, we incubated several slices with only the primary
antibody (no secondary) or with only the secondary antibody (no primary).

As a general procedure, the digital images were opened in ImageJ, followed by deconvolution using
the color deconvolution plug-in. When the IHC profiler plug-in is selected, it spontaneously plots a
histogram profile of the deconvoluted DAB image, and a corresponding scoring log is demonstrated [22].
The histogram profile corresponds to the positive pixel intensity value obtained from the computer
program [23].

3.6. Measurement of Cytokines

Tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and IL-1β levels were evaluated in the plasma
from MIA and sham rats. The assay was carried out using a colorimetric commercial ELISA kit
(Calbiochem-Novabiochem Corporation, Milan, Italy).

3.7. Measurement of Chemokines

On the 21st day post MIA, the administration levels of chemokines MIP-1α and MIP-2 were
estimated in the aqueous joint extracts. In brief, articular tissues were homogenized on ice in 3 mL
of lysis buffer (PBS including 2 mM PMSF, and 0.1 mg/mL (final concentration), each of antipain,
aprotinin, pepstatin A, and leupeptin) by means of a Polytron (Brinkinarm Instruments, Westbury, NY,
USA). After homogenization, the tissues were centrifuged at 2000× g for 10 min. The supernatants
were decontaminated with a Millipore filter (0.2 µm) and were conserved at −80 ◦C, if they are not
analyzed immediately. The extracts generally contained 0.2 to 1.5 mg protein/mL, as quantified with a
protein-assay kit (Pierce Chemical Co., Rockford, IL, USA). The levels of MIP-1α and MIP-2 have been
quantified by means of a modification of a double-ligand method.

In brief, 96-well microliter plates were treated with 50 µL/well of rabbit anti-cytokine antibodies
(1 µg/mL in 0.08 M NaOH, 0.26 H3BO4, and 0.6 M NaCl pH 9.6) for 16 h at 4 ◦C, and were then laved
with wash buffer (containing PBS, 0.05% Tween-20, pH 7.5). Nonspecific binding sites on the plates
were blocked with 2% BSA in PBS and were incubated for 90 min at 37 ◦C. Plates were cleaned four
times with wash buffer, and diluted aqueous joint samples (50 µL) were added, followed by incubation
for 1 h at 37 ◦C. After washing the plates, the chromogen substrate was added. The plates were
incubated at room temperature to the wanted extinction, after which the reaction was stopped with
50 µL/well of 3 M H2SO4 solution. The plates were then read at 490 nm in an ELISA reader. This ELISA
method consistently had a sensitivity limit of about 30 pg/mL.

4. Materials

All drugs were kindly offered from Fidia Farmaceutici S.p.A. Other compounds were acquired
from Sigma-Aldrich Company (Milan, Italy). All substances were of the highest commercial grade
available. All stock solutions were made in nonpyrogenic saline 0.9% NaCl (Baxter Healthcare Ltd.,
Thetford IP24 3SE, UK) or 10% ethanol (Sigma-Aldrich).
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5. Data Evaluation

All values in the figures and text were expressed as standard error of the mean (SEM) of the
mean of N observations. For the in vivo studies, N represents the number of animals studied. In the
experiments concerning histology or immunohistochemistry, the figures shown are illustrative of at
least three experiments performed on different experimental days on the tissue sections collected from
all the animals in each group. Data sets were examined by one- or two-way analysis of variance followed
by the Bonferroni test for multiple comparisons. A p-value of less than 0.05 was considered significant.

6. Results

6.1. Effects of FidHycarn on Thermal Hyperalgesia and Weight Distribution of the Hind Paw after
OA Induction

Increased thermal hyperalgesia measured at different time points, as evidenced by a significant
reduction in hind paw withdrawal latency as well as an important weight distribution asymmetry
were observed in all MIA injected rats compared to the sham subjects. Oral treatments of carnosine
at 17.6 mg/kg, carnosine+HA (17.6 + 70.9 mg/kg), and HA (70.9 mg/kg) were not able to ameliorate
behavioral deficits. Instead, oral FidHycarn treatment at 88.5 mg/kg showed significant behavioral
improvements (Figure 3A,B). No significant difference was found for hind paw withdrawal latency in
the FidHycarn treatment group vs. the Naproxen treatment group, while the difference is significant
for the weight distribution of the hind paw.
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Figure 3. The effect of FidHycarn on behavior tests. Hyperalgesia was tested on the time-course
indicated. Oral treatment with FidHycarn made a substantial improvement in hyperalgesia compared
to other treatments (A). In addition, the treatment with FidHycarn showed a better distribution of the
weight of the hind paw (B). *** p < 0.001 versus Sham; ### p < 0.001 versus MIA; ## p < 0.01 versus
MIA; # p < 0.05 versus MIA. Abbreviations: MIA, monosodium iodoacetate solution.



Appl. Sci. 2020, 10, 1324 8 of 16

6.2. Effects of FidHycarn on Macroscopic and Radiographic Analysis after MIA Injection

We found that 21 days after the i.ar. injection of MIA, the knee sections showed an important
macroscopic and radiographic alteration in rats treated with the vehicle. Oral treatments of carnosine
at 17.6 mg/kg, carnosine+HA (17.6 + 70.9 mg/kg), and HA (70.9 mg/kg) were not able to reduce
these alterations. Instead, oral FidHycarn treatment at 88.5 mg/kg showed a substantial reduction of
macroscopic and radiographic damage compared to the others. The effect of FidHycarn at 88.5 mg/kg
was not statistically different compared to the Naproxen treatment. No damage was discovered in the
sham group (Figure 4A,B and see radiographic analysis C).Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 17 
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Figure 4. FidHycarn’s macroscopic and radiographic effect on the knee joints. Macroscopic images for
the thickening of the joint capsule of the animals of different groups (A). Oral treatment with FidHycarn
displayed a significant improvement of the articular cartilage. This improvement was also observed by
radiographic investigation where a diminution in the joint space was seen (B). Radiographic score (C).
*** p < 0.001 versus Sham; ## p < 0.01 versus MIA; ### p < 0.001 versus MIA.

6.3. Effects of FidHycarn on Histological Damage and Cartilage Degeneration after MIA Injection

We stained the knee slices with H&E 21 days after the i.ar. injection of MIA. Histological
investigation with light microscopy showed irregularities, disorganization, and fibrillation in the
superficial layer and multilayering in the transition and radial zones, in the MIA injected rats in all
experimental groups (Figure 5). In addition, cartilage degeneration was also evident by the blue color
intensity of toluidine staining (Figure 6). Oral treatments of Carnosine at 17.6 mg/kg, Carnosine+HA
(17.6 + 70.9 mg/kg), and HA (70.9 mg/kg) were not able to reduce this histological alteration and
cartilage degeneration. Instead, oral FidHycarn treatment at 88.5 mg/kg showed an essential reduction
of histological damage and cartilage degeneration compared to the others. The effect of FidHycarn
at 88.5 mg/kg on cartilage degeneration was statistically different compared to Naproxen treatment
but no statistical difference was observed for the histological damage. No injury was found in the
Sham group.
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Figure 5. The effect of FidHycarn on the histological features of osteoarthritis (OA) knee tissue.
The histological evaluation was performed by Hematoxylin and Eosin (H&E) staining. Panel (A), Sham;
panel (B), MIA; panel (C), Carnosine; panel (D), Carnosine+HA; panel (E), HA; panel (F), FidHycarn;
panel (G), Naproxen treatment. Figures are representative of all rats in each group. Panel (H),
Mankin score for the treatment groups. *** p <0.001 versus Sham; ### p < 0.001 versus MIA.
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Figure 6. The effect of FidHycarn on cartilage degradation after MIA-induction. Cartilage evaluation by
blue of toluidine-staining of joint sections showed significant degradation in MIA mice (B) compared to
Sham animals (A). Ameliorated cartilage alterations were observed in the sections from MIA-Carnosine,
MIA-Carnosine+HA, MIA-HA (C–E), and more significantly in FidHycarn treated mice (F). Naproxen is
a positive control (G). The cartilage degradation score is shown in (H). Figures are representative of all
animals in each group. *** p < 0.001 versus Sham; ### p < 0.001 versus MIA.
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6.4. Effects of FidHycarn on Cytokine and Chemokine Levels after OA Induction

A substantial increase in TNF-α, IL-1β, IL-6, MIP-lα, and MIP-2 production was found in OA
subjected rats 21 days post MIA injection. The levels of cytokines and chemokines were not significantly
reduced in MIA rats treated orally with carnosine (17.6 mg/kg), carnosine+HA (17.6 + 70.9 mg/kg),
and HA (70.9 mg/kg). On the contrary, oral FidHycarn treatment was able to reduce these levels.
The effect of FidHycarn at 88.5 mg/kg on TNF-α, IL-6, and MIP-1α levels was statistically different to
the naproxen treatment but no statistical difference was observed on IL-1β and MIP-2 levels. Low levels
were found in the Sham animals (Figure 7).
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Figure 7. The effects of FidHycarn on cytokine and chemokine production. TNF-α (A), IL-1β (B),
IL-6 (C), MIP-lα (D) and MIP-2 (E) levels were shown. Values are given as mean ± SEM of 20 animals
for each group *** p < 0.001 versus Sham; ### p < 0.001 versus MIA.

6.5. The Effects of FidHycarn on Nitrotyrosine, INOS, IL-1β, and IL-6 Expression after OA Induction

A significant positive staining for nitrotyrosine, iNOS, IL-1β, and IL-6 was found in MIA rats
treated with the vehicle (Figure 6, Figure 7, Figure 8, Figure 9B, and see H). Oral treatments of carnosine
(17.6 mg/kg), carnosine+HA (17.6 + 70.9 mg/kg), and HA (70.9 mg/kg) were not able to reduce this
positive staining (Figure 8, Figure 9, Figure 10, Figure 11C–E, and see H). Instead, oral FidHycarn
treatment at 88.5 mg/kg showed an important reduction of positive staining for nitrotyrosine, iNOS,
IL-1β, and IL-6 compared to the others (Figure 8, Figure 9, Figure 10, Figure 11F, and see H). The effect
of FidHycarn at 88.5 mg/kg was statistically different to the Naproxen treatment (Figure 8, Figure 9,
Figure 10, Figure 11G, and see H). No positive staining was discovered in the Sham group (Figure 8,
Figure 9, Figure 10, Figure 11, and see H).
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Figure 8. The effects of FidHycarn on nitrotyrosine expression. Immunohistochemistry for nitrotyrosine
in joint tissues: (A) Sham group, (B) MIA group, (C) MIA+Carnosine, (D) MIA+Carnosine+HA,
(E) MIA+HA, (F) MIA+FidHycarn treatment group, (G) MIA+Naproxen. The results are expressed
as a % of positive pixels (H). Figures are representative of at least three independent experiments.
*** p < 0.001 versus Sham; ### p < 0.001 versus MIA.
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Figure 9. The effects of FidHycarn on iNOS expression. Immunohistochemistry for iNOS in joint
tissues: (A) Sham group, (B) MIA group, (C) MIA+Carnosine, (D) MIA+Carnosine+HA, (E) MIA+HA,
(F) MIA+FidHycarn treatment group, (G) MIA+Naproxen. The results are expressed as a % of positive
pixels (H). Figures are representative of at minimum three independent experiments. *** p < 0.001
versus Sham; ### p < 0.001 versus MIA.
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Figure 10. The effects of FidHycarn on IL-1 expression. Immunohistochemistry for IL-1β in the joint
tissues: (A) Sham group, (B) MIA group, (C) MIA+Carnosine, (D) MIA+Carnosine+HA, (E) MIA+HA,
(F) MIA+FidHycarn treatment group, (G) MIA+Naproxen. The results are expressed as a % of positive
pixels (H). Figures are representative of at least three independent experiments. *** p < 0.001 versus
Sham; ### p < 0.001 versus MIA.
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Figure 11. The effects of FidHycarn on IL-6 expression. Immunohistochemistry for IL-6 in the joint
tissues: (A) Sham group, (B) MIA group, (C) MIA+Carnosine, (D) MIA+Carnosine+HA, (E) MIA+HA,
(F) MIA+FidHycarn treatment group, (G) MIA+Naproxen. The results are expressed as a % of positive
pixels (H). Figures are representative of at minimum three independent experiments. *** p < 0.001
versus Sham; ### p < 0.001 versus MIA.
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7. Discussion

OA is a very common degenerative disease. This disease is characterized by structural loss and
functional impairment of the joints, leading to disability [24–26]. Whereas there is no cure for OA to
date, most of the treatments available are intended to control pain and uphold joint function. Usually,
the treatment of OA begins with safer and less invasive therapies, such as physical activity. This is
because the benefits of exercise can lead to the prevention of obesity and maintenance of normal
joint health [27,28]. If OA pain cannot be controlled by physical therapy, different pharmacological
treatments are available. Paracetamol is usually the first line drug therapy in OA [29,30]. If paracetamol
is not successful, the next level of pharmacological treatment varies according to the patient, but usually
involves the use of non-steroidal topical or oral anti-inflammatory drugs (NSAIDs); topical capsaicin;
and injections of intra-articular corticosteroids and opioids [31,32]. However, these drugs expose
patients to the risk of liver and kidney damage [30]. In addition, these medicines often offer only partial
relief [33,34] and do not help the body rebuild the damaged joint cartilage [35]. Numerous studies
have shown a role of ROS in the pathogenesis of chronic inflammatory arthropathy, such as OA [36].
Therefore, researchers are considering a multifactorial approach to managing OA.

HA is secreted by chondrocytes and used for cartilage synthesis. According to the research,
HA is helpful in the control of OA as it interferes with pain mediators and crucial enzymes (such
as metalloproteinase) that are responsible for the digestion and destruction of healthy cartilage
tissue [37,38]. HA is generally administered intraarticularly, and also orally [39–41]. New products are
frequently being developed that modify the composition of the molecule and associate it with other
drugs to maximize the effect [37,42].

CARN is a dipeptide consisting of β-alanine and L-histidine. The anti-inflammatory potential
of CARN has been studied in autoimmune diseases [43]. Furthermore, the ability of CARN as an
antioxidant, and the anti-glycating and toxic metal-ion chelating properties are well documented [44].
In previous studies the capacity of CARN in the regression of the senescence of cultured human
fibroblasts and in delaying aging has been highlighted; however, the mechanisms remain uncertain [45].
Furthermore, it has been shown that CARN reduces the oxidative damage on chondrocytes and
prevents cartilage degradation in the “arthritic” joints [43]. However, the anti-inflammatory potential
of CARN in OA is still poorly studied. In a recent report, the potential protective effect of an oral
CARN supplement was assessed to improve type 2 diabetes-induced OA [46].

Based on the studies performed on HA and CARN, the aim of this study was to evaluate the
synergistic effect of a new formulation called FidHycarn, consisting of the covalent conjugation of these
two substances, in an in vivo MIA model. In this regard, we have shown that the oral administration
of the conjugated FidHycarn was able to improve behavioral deficits and to reduce macroscopic,
histological, and radiographic alterations in a more significant way compared to the administration of
single compounds or carnosine+HA association.

Oxidative stress shows a potential role on the pathogenesis of OA. In subjects suffering from
OA there is a reduction in antioxidants [47]. Proinflammatory cytokines (IL-1β, IL-6, and TNF-α),
chemokines (MIP-Iα and MIP-2), and NO also play an important function in the pathogenesis of
joint damage [48–50]. In this regard, in this study, it was found that in rats with OA, treated with
carnosine or HA or carnosine+HA, the levels of pro-inflammatory cytokines and chemokines were
not significantly reduced. In contrast, in FidHycarn-treated rats, a significant diminution of these
proteins was observed. The same trend was highlighted when the expression of nitrotyrosine and
iNOS was evaluated. This study has demonstrated that FidHycarn at dose of 88.5 mg/kg was able to
reduce the joint inflammation and cartilage degeneration induced by MIA i.ar. in a more significant
way compared to the of HA and/or CARN treatments. The effects of FidHycarn were only in some
cases statistically different to Naproxen (used as positive control).

The greater efficacy of FidHycarn is due to the ability of hyaluronic acid to protect carnosine from
enzymatic degradation. In fact, the presence of HA in the FidHycarn conjugate allows for a greater
resistance to the action of serum carnosinases, guaranteeing a remarkable stability and consequently a
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higher activity than for unconjugated carnosine [51,52]. Therefore, these two molecules, when they
work in synergy, exhibit greater biological activity and enhanced antioxidant activity.

Furthermore this study has demonstrated that FidHycarn using two safe products: carnosine and
HA has a bio-pharmacological effect comparable to the treatment with naproxen (a standard treatment
for OA but with proven side effects) [53], at the clinical dose per kg, for almost all the parameters
assessed, without significant statistical differences. In conclusion, the results obtained demonstrate
for the first time in an animal model of osteoarthritis the effectiveness of oral administration of the
conjugate FidHycarn compared to the administration of the individual components. Therefore, the new
FidHycarn could represent an interesting therapeutic strategy to combat osteoarthritis.
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