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Abstract 

Objective. Muscle activation patterns in the muscle-to-force null space, i.e., patterns that do not 
generate task-relevant forces, may provide an opportunity for motor augmentation by allowing 
to control additional end-effectors simultaneously to natural limbs. Here we tested the 
feasibility of muscular null space control for augmentation by assessing simultaneous control 
of natural and extra degrees of freedom. Approach. We instructed eight participants to control 
translation and rotation of a virtual 3D end-effector by simultaneous generation of isometric 
force at the hand and null space activity extracted in real-time from the electromyographic 
signals recorded from 15 shoulder and arm muscles. First, we identified the null space 
components that each participant could control more naturally by voluntary co-contraction. 
Then, participants performed several blocks of a reaching and holding task. They displaced an 
ellipsoidal cursor to reach one of nine targets by generating force, and simultaneously rotated 
the cursor to match the target orientation by activating null space components. We developed 
an information-theoretic metric, an index of difficulty defined as the sum of a spatial and a 
temporal term, to assess individual null space control ability for both reaching and holding. 
Main Results. On average, participants could reach the targets in most trials already in the first 
block (72%) and they improved with practice (maximum 93%) but holding performance 
remained lower (maximum 43%). As there was a high inter-individual variability in 
performance, we performed a simulation with different spatial and temporal task conditions to 
estimate those for which each individual participants would have performed best. Significance. 
Muscular null space control is feasible and may be used to control additional virtual or robotics 
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end-effectors. However, decoding of motor commands must be optimized according to 
individual null space control ability. 

Keywords: electromyography, muscle-to-force null space, human augmentation, myoelectric control, virtual reality, reaching, 
Fitts' law 

 

 

1. Introduction 1 

Electromyographic (EMG) signals have been used for many 2 
years to control upper and lower limb prostheses [1–6], 3 
rehabilitation robotic devices [7–11], and virtual end-effectors 4 
[12–15]. Myoelectric control of a prosthetic limb by an 5 
amputee, as a replacement of the missing limb, can rely either 6 
on the detection of movement intention by EMG pattern 7 
recognition [16,17] or on the direct control of one or multiple 8 
degrees of freedom (DoFs) using EMG signals recorded from 9 
many different muscles [4,18,19]. EMG signals can be used 10 
for the control of robotic devices such as exoskeletons [20], 11 
enhancing existing abilities [21], substitute missing ones [22], 12 
or for rehabilitation after orthopedic or neurological injuries 13 
[23–25]. Myoelectric control is also a powerful tool to 14 
investigate basic principles of human motor control [12–14]. 15 
By using EMG signals to control a cursor in a virtual 16 
environment, it is possible to alter the mapping between motor 17 
commands and end-effector motion and to study how the 18 
central nervous system adapts to such perturbations. For 19 
example, a linear mapping of EMG signals onto isometric end-20 
point forces applied to a simulated mass can be altered 21 
(“virtual surgery”) such that new muscle synergies are 22 
required to compensate the perturbation [12]. Thus, to date, 23 
myoelectric control has been used mostly either to control an 24 
external device or to assist the movement of a natural limb. 25 

Myoelectric control, however, could also be used to control 26 
an external device concurrently with the motion of the natural 27 
limbs, possibly augmenting human motor capabilities. At the 28 
basis of augmentation lies the concept of motor task null 29 
space. Due to the redundancy of the musculoskeletal and 30 
neural systems, i.e., the presence of a higher number of active 31 
units (muscles and neurons) than the end-effector degrees of 32 
freedom involved in a task, many combinations of joint 33 
angles, muscle patterns and neural signals do not generate 34 
task-relevant movements or forces [26]. Such combinations 35 
lie in the kinematic, muscular and neural null space 36 
respectively. A few approaches for augmentation based on 37 
these concepts have been recently investigated. Abdi and 38 
collaborators [27] developed three-handed manipulation in a 39 
virtual environment, using the motion of a foot to control the 40 
third hand in a simple task. Similarly, a third robotic thumb 41 
controlled using a toe [28] and a sixth finger controlled 42 

through kinematic null space of upper limbs [29] have been 43 
developed and tested. Salvietti and collaborators [30] also 44 
demonstrated that it is possible to control a supernumerary 45 
robotic finger using EMG signals from frontalis muscles, 46 
while Parietti and Asada [31] controlled an extra robotic leg 47 
using EMG signals from torso muscles. In most cases, 48 
however, kinematic or muscular signals used for controlling 49 
additional DoFs have been recorded from body parts not 50 
directly involved in the task performed concurrently with the 51 
DoFs of the natural limbs. In many real-life conditions, 52 
however, such body parts may be involved in the task and thus 53 
may not be available to control extra DoFs. Finally, 54 
concerning neural null space, a non-invasive brain-machine 55 
interface has been used to control a third arm for multitasking 56 
[32], but not all participants were able to achieve multitasking. 57 

Here we propose a novel approach to motor augmentation 58 
based on the concept of task-intrinsic muscular null space.  59 
Muscular null space is the vector space of muscle activation 60 
patterns that do not generate net joint torques (e.g., the co-61 
contraction of two antagonistic muscles, which 62 
counterbalance the effect of each other). In many real-life 63 
motor tasks, muscular null space is associated to the control of 64 
end-effector impedance, especially in presence of unstable 65 
interactions with the environment [33–35]. Thus, muscular 66 
null space has been successfully used for tele-impedance 67 
application, i.e. the control of the impedance of robotic 68 
devices through human impedance [36,37]. However, 69 
muscular null space can also be used to control extra DoFs. 70 
Borzelli and collaborators have demonstrated that muscular 71 
null space can be controlled voluntarily to modulate the 72 
stiffness of a virtual end-effector during the generation of 73 
multidirectional isometric forces [38]. Takagi and 74 
collaborators [39] have shown that it is possible to regulate co-75 
contraction of two antagonist muscles to control the vertical 76 
position of a 2D cursor while simulaneously controlling the 77 
horizontal position with reciprocal activation. Bräcklein and 78 
collaborators [40] have successfully proved that beta band 79 
activity in the neural drive to a muscle, which does not directly 80 
affect the force generated by that muscle, can be modulated to 81 
control a cursor in a 2D environment. However, no study to 82 
date has used null space signals extracted from many muscles 83 
to directly control extra DoFs while simultaneously 84 
performing a task in 3D environment involving multiple DoFs 85 
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controlled by the same muscles (i.e., using the “task-intrinsic” 1 
null space), thus augmenting human motor abilities. This 2 
approach differs both from the use of task-extrinsic null space, 3 
i.e., from body part not directly involved in the task, and from 4 
tele-impedance control. 5 

In this study, we aimed at testing the feasibility of task-6 
intrinsic muscular null space control for motor augmentation 7 
by assessing the performance of participants in the 8 
simultaneous control of natural and extra DoFs. Moreover, we 9 
aimed at assessing whether and how fast null space control 10 
ability improves with practice. We designed an experimental 11 
protocol in which participants had to displace a cursor in a 3D 12 
virtual environment to reach 8 targets by generating isometric 13 
force and simultaneously to control an extra DoF, i.e., the 14 
rotation around one axis of the cursor, which had an ellipsoidal 15 
shape, through null space activation in arm and/or shoulder 16 
muscles. Participants were also instructed to hold the cursor at 17 
the target for a given time interval. Thus, our protocol required 18 
the simultaneous control of natural and extra DoFs to perform 19 
both a spatial and a temporal task. 20 

To quantify participants’ performances and to understand 21 
how the task could be optimized to match individual control 22 
ability, we used a novel index of difficulty (ID), an 23 
information-theoretic metric inspired by Fitts’ law. Although 24 
Fitts’ law general validity has been frequently questioned in 25 
the past, Gori and collaborators [41] have proposed an 26 
information-theoretic model of the human motor system for 27 
pointing tasks, where the ID is the information about the 28 
selection of a target transmitted through a noisy channel. To 29 
date, many researches in human motor control used measures 30 
derived from the Fitts’ law to evaluate performance in 31 
different tasks [42–44]. However, the possibility of 32 
considering the time as a “target” itself, i.e., the application of 33 
the Fitts’ law to temporal control, has been rarely studied [45]. 34 
To address this issue, we introduced an ID defined as the sum 35 
of a spatial term, related to difficulty in selecting a target by 36 
reaching it (i.e., quantifying spatial control ability), and a 37 
temporal term, related to the difficulty in holding the target for 38 
a given time interval (i.e., quantifying temporal control 39 
ability). 40 

2. Materials and Methods 41 

2.1 Participants 42 

Eight naïve right-handed participants (mean ± SD age: 27.5 43 
± 7.8 years, age range: 20–45, 2 females) participated in the 44 
experiments after giving written informed consent. All 45 
procedures have been conducted in accordance with the 46 
principles embodied in the Declaration of Helsinki, comply 47 
with national regulations, and have been approved by the 48 
ethics committee IRCCS Sicilia - Sezione Neurolesi "Bonino-49 
Pulejo" (Prot. n. 02/18). All participants had normal or 50 

corrected to normal vision and did not report any known 51 
neurological disorder or upper right limb injury. 52 

2.2 Setup 53 

The setup used for this work is similar to that used in 54 
previous studies [12,38,46]. Participants sat on a gaming chair 55 
in front of a desktop (Fig. 1A), with the right hand inserted in 56 
an orthosis rigidly connected to a 6-axis force transducer 57 
(Delta F/T Sensor, ATI Industrial Automation, Apex, NC, 58 
USA). Arm and forearm formed a 90° angle, and the chair was 59 
positioned so that the hand was at level of the solar plexus. Car 60 
belts immobilized the participant’s torso and shoulders. 61 
Shutter glasses (GeForce 3D Vision 2, NVIDIA Corporation, 62 
Santa Clara, CA, USA), allowed to view stereoscopically a 63 
three-dimensional scene displayed on a horizontal mirror, 64 
placed over the participant’s hand, reflecting the image 65 
visualized at 120 Hz (60 Hz for each eye) on a monitor. The 66 
scene included a virtual desktop and a cursor (spherical or 67 
ellipsoidal) whose position matched the position of the center 68 
of the palm when no force was exerted. Real-time feedback of 69 
the exerted force was provided as the displacement of the 70 
cursor. Cursor motion in three-dimensional space was 71 
simulated as an adaptive mass-spring-damper system, subject 72 
to the force applied by the participant on the orthosis. The 73 
spring constant was set such that the force applied to maintain 74 
the cursor stationary at the target was equal to a specific 75 
fraction of the magnitude of the participant’s maximum 76 
voluntary force (MVF, see below). The mass was adjusted 77 
adaptively in the range 15–140 g as a sigmoidal function of 78 
the rate of change in the magnitude of the recorded force, to 79 
maintain fast responses to changes in force while reducing the 80 
effect of noise with stationary force [12]. 81 

Surface EMG activity was recorded from fifteen muscles 82 
acting on the shoulder and elbow: brachioradialis, biceps 83 
brachii long head and short head, pectoralis major, anterior 84 
deltoid, middle deltoid, posterior deltoid, triceps brachii 85 
lateral head and long head, infraspinatus, teres major, 86 
latissimus dorsi, lower trapezius, middle trapezius, and upper 87 
trapezius. The signal was acquired at 1000 Hz with active 88 
wireless bipolar surface electrodes (Trigno System, Delsys 89 
Inc., Natick, MA, USA), bandpass filtered (20 – 450 Hz), and 90 
amplified with a gain of 1000. Participants’ skin, in 91 
correspondence to the target muscles, was cleansed with 92 
alcohol and electrodes were placed based on 93 
recommendations from SENIAM [47] and by palpating 94 
muscles to locate the muscle belly and orienting the electrodes 95 
along the main direction of the muscle fibers. 96 

Experiment control, data acquisition, and data analysis 97 
were performed with custom-written software in MATLAB® 98 
(MathWorks Inc., Natick, MA) and Java®. 99 

2.3 Experimental protocol 100 



Journal XX (XXXX) XXXXXX Author et al  

 4  
 

After an initial familiarization with the experimental setup, 1 
participants performed 18 blocks with different task 2 
conditions. In the first block (MVF estimation), they were 3 
instructed to exert their MVF directed towards their chest on 4 
the horizontal plane (-y, with y away from the chest along the 5 
anteroposterior axis). The maximum of the force recorded in 6 
this block was used to normalize target distance in the 7 
following blocks. Using data previously collected with a 8 
similar protocol [48], we verified that such estimation of MVF 9 
was highly correlated to the average maximum force across 10 
multiple horizontal directions. 11 

In the second block (force control, FC), participants were 12 
instructed to move, both accurately and quickly, a spherical 13 
cursor from the rest position to a target (Fig. 1B), located in 14 
one of twenty spatial positions around the rest position, by 15 
applying isometric forces on the orthosis. At the beginning of 16 
each trial (rest phase) participants were asked to relax their 17 
right arm muscles to maintain the cursor inside a transparent 18 
sphere at the centre of the scene, i.e., the rest position, for 1 s. 19 
Then, a transparent sphere appeared in one of the twenty target 20 
positions (target go event), placed on the vertices of a 21 
dodecahedron inscribed into a sphere, centred in the rest 22 
position, and whose radius was either 15% or 25% the MVF. 23 
Participants were asked to reach the target and remain within 24 
the target sphere (see Fig. 1B), whose radius exceeded that of 25 
the cursor by 2% the MVF, for 0.5 s (holding phase). When 26 
the cursor was within the target tolerance, the target changed 27 
color (from gray to yellow). Each target was presented three 28 
times, such that each participant performed a total of 120 trials 29 
(20 targets × 2 radii × 3 repetitions, presented in random 30 
order). The time limit for trial completion was 4 s. EMG and 31 
force data collected from the target go event until the first time 32 
the cursor entered the target (dynamic phase) were used to 33 
estimate a subject-specific matrix that approximates the 34 
mapping of EMG activations onto isometric force (see below 35 
EMG-to-force matrix) and its null space. The maximum 36 
amplitude of each EMG signal (low-pass filtered with second-37 
order Butterworth after rectification; 1 Hz cutoff) collected 38 
during the same phase, first computed for each trial, was 39 
averaged for each target and then the maximum across all the 40 
target directions was used to normalize EMGs during the rest 41 
of the experiment. After this block, there was a 5 min pause to 42 
process the data. 43 

In the third block (null space modulation, NSM), 44 
participants performed a cursor stabilization task that required 45 
voluntarily modulation of muscular co-contraction. The EMG 46 
data collected in this condition were used to estimate the null 47 
space patterns that each participant generated more naturally. 48 
Participants had to maintain, using muscular null space 49 
activations, the cursor inside a target placed at the rest 50 
position, whose radius exceeded that of the cursor by 6% of 51 
the MVF, for 1 s while a simulated force perturbed its motion. 52 
The perturbing force was the sum of three sinusoidal forces 53 

acting along the three dimensions and with frequencies (38 Hz 54 
for the x component, 30 Hz for the y component, and 46 Hz 55 
for the z component) too high to be tracked by voluntary 56 
modulation of force production. The motion of the cursor was 57 
simulated in real-time as a mass-spring-damper system with a 58 
stiffness related to the amount of co-contration (see “Cursor 59 
control during the NSM block” section below; further details 60 
can be found in [38]). To reduce this oscillation, participants 61 
were instructed to co-contract their right arm and/or shoulder 62 
muscles, as they prefer and feel more natural, without any 63 
other constraint except the generation of zero force. The time 64 
limit for trial completion was 15 s, with 5 s of pause between 65 
trials. As for the FC block, visual feedback of the cursor being 66 
within target tolerance was provided by changing the color of 67 
the target. EMG data collected during the holding phase were 68 
used to calculate the null space directions to be used for the 69 
control the extra degree of freedom (see “Selection of null 70 
space control variables” Appendix in Supplementary 71 
Material). 72 



Journal XX (XXXX) XXXXXX Author et al  

 5  
 

In the fourth block (isometric reaching with ellipsoidal 1 
force control, EFC), participants performed an isometric 2 
reaching task with ellipsoidal, rather than spherical as in the 3 
FC block, cursor and targets. There were eight targets (3 4 
repetitions), each placed on the x-y plane at 20% of MVF from 5 
the origin, with a tolerance of 2% of MVF, and equally 6 
distributed with a 45° angular distance one from the other (0° 7 
= +x direction, with x mediolateral axis pointing to the right; 8 
in the analysis, target 1 has been considered the one with x = 9 
+20% of MVF and y = 0, with the others following in counter-10 
clockwise rotation). This block provided a baseline reference 11 
for the following 12 blocks. 12 

In blocks 5th to 16th (null space control, NSC), participants 13 
were instructed to both translate and rotate the ellipsoidal 14 
cursor (around the intermediate axis of the ellipsoid which was 15 
rotated such that it was parallel to the longitudinal axis of the 16 
forearm) to match the position and orientation of the target 17 
(Fig. 1C). Translation was achieved by exerting force and 18 
rotation by generating muscle patterns with a component 19 
aligned to specific null space directions, identified using the 20 
data collected in the NSM block (see “Selection of null space 21 
control variables” Appendix in Supplementary Material). 22 
Each block was composed of three repetition of trials with 23 
nine targets (Fig. 1D) in different x-y positions – the same 24 
eight as in the EFC block plus one in the rest position – and 25 
with the same orientation corresponding to a 60° rotation of 26 
the ellipsoidal cursor from the rest orientation and a tolerance 27 
of 7.2° (4% of 180°). The target orientation  could be achieved 28 
with a null space activation norm of 20% of the maximum 29 
norm recorded during NSM block (“maximum voluntary co-30 
contraction”, MVCC). The translation tolerance was also 4% 31 
of MVF. Participants were instructed to hold the cursor at the 32 
target for 1 s. In this case, the target changed color only when 33 
the cursor was within spatial and angular tolerances 34 

simultaneously. The nine targets were presented in a random 35 
sequence (cycle). The time limit for trial completion was of 4 36 
s. At the end of each cycle, the score for that cycle was 37 
visualized. 38 

The 17th block was a null space control block without visual 39 
feedback (hidden NSC), and was meant to assess the level of 40 
retention of null space control without visual feedback. 41 

Finally, the 18th block was an additional EFC block. A 42 
schematic of the experimental protocol is presented in Fig. 1E. 43 

2.3.1 EMG-to-force mapping 44 
In isometric conditions, i.e., when muscles generate force 45 

without reducing or increasing their length, as in our 46 
experimental protocol, and when the force exerted is 47 
submaximal, the relationship between muscle activation and 48 
force exterted at the hand can be approximated by a linear 49 
mapping: 50 

 51 
𝒇 = 𝑯𝒎, 52 

 53 
where 𝒇 is the tridimensional force vector, 𝒎 is the 15-54 

dimensional muscle activation vector, and 𝑯 is the EMG-to-55 
force matrix that maps muscles activations onto force. The 56 
matrix 𝑯 was estimated using multiple linear regressions of 57 
each force component, low-pass filtered (second-order 58 
Butterworth; 1 Hz cutoff), with EMG signals recorded during 59 
the dynamic phase of the first force control block, low-pass 60 
filtered (as the force, but after rectification) and normalized to 61 
the maximum EMG activity recorded during the force control 62 
block targets at 25% of the MVF distance. We verified that the 63 
𝑯 matrix estimated using holding phase data was similar to 64 
the one extracted using dynamic phase. In fact, the angle 65 
between the force vectors of the dynamic phase 𝑯 matrix and 66 
the holding phase 𝑯 matrix for the same muscle was 23° ± 34° 67 

Figure 1. Experimental setup and protocol. (A) Experimental setup: a 3D virtual scene is projected stereoscopically on a 
horizontal mirror occuding the participant’s hand, which is attached through an orthosis at a force transducer (below the 
desktop, not visible); wireless sensors are used to collect EMG activity from shoulder and arm muscles. (B) Illustration of 
the task during force control blocks (the blue cursor moves in the direction of the arrow). (C) Illustration of the task during 
null space control blocks (the dashed lines represent the rotation axis). (D) Target arrangement. (E) Experimental protocol 
schematic (MVF = maximum voluntary force, FC = force control, NSM = null space modulation, EFC = ellipsoidal force 
control, NSC = null space control; the number after the block abbreviation is the number of trials). 
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(median value ± interquartile range across muscles and 1 
participants). 2 

The matrix 𝑯 was also used to compute the null space 3 
matrix 𝑵, i.e., a matrix whose columns constitute an 4 
orthonormal basis for the subspace of EMG activation vectors 5 
𝒎଴ that are mapped by the 𝑯 matrix onto the null force vector: 6 

 7 
0 = 𝑯𝒎଴. 8 

2.3.2 Cursor control during the NSM block 9 
In the NSM block, the perturbation was generated as a 10 

sinusoidal force (with different frequencies along different 11 
axes) acting on a mass attached to a position (controlled by 12 
force) through a spring with an elastic constant that was 13 
adjusted in real time according to the norm of the null space 14 
activation vector through a logistic function [38]: 15 

 16 

𝑘(𝒏) =
𝑘௠௔௫

𝑒ି௥ೖ(‖𝒏‖ି‖𝒏𝟎‖) + 1
, 17 

 18 
where ‖𝒏‖ is the norm of the null space activation vector, 19 
𝑘௠௔௫ = 9500 𝑁/𝑚ଶ is the spring constant, 𝑟௞ is a variation 20 
rate parameter, and ‖𝒏𝟎‖ is the value of the null space norm 21 
such that 𝑘(𝒏𝟎) =

௞೘ೌೣ

ଶ
. The value of ‖𝒏𝟎‖ was set equal to 22 

2.5 times the minimum norm (‖𝒏𝒎𝒊𝒏‖) of the mean null space 23 
activation during the holding phases of FC block, while 𝑟௞ was 24 
calculated using the formula: 25 

 26 

𝑟௞ =  − log ቌ

𝑘௠௔௫
𝑦଴

ൗ − 1

𝑥଴ − 1
ቍ, 27 

 28 
where (𝑥଴, 𝑦଴) = (‖𝒏𝒎𝒊𝒏‖, 500 𝑁/𝑚ଶ). These parameters 29 
limited the cursor oscillation when participants had their 30 
muscles relaxed, but assured an adequate reduction of the 31 
oscillations when participants were actively co-contracting. 32 
Therefore, these parameters were chosen to ensure that the 33 
level of co-contraction observed in each participant was 34 
effective in modulating the stiffness of the virtual end-35 
effector. 36 

2.3.3 Control of the extra degree of freedom by null 37 
space variable 38 

To characterize the subject-specific directions in the EMG 39 
null space to be used for the control of the extra DoF, each 40 
participant performed a NSM block. This procedure allowed 41 
to identify the directions that each participant could control 42 
more naturally and the dimensionality of this subspace. We 43 
then selected the directions in the null space with the largest 44 
amplitude modulation of null space activation during the NSM 45 
block and used the projection of the instantaneous muscle 46 
activity vector onto those directions as the signal to control the 47 

extra DoF (mean value of components ± SD among 48 
participants: 2.1 ± 0.8, range 1-3). 49 

The mapping of null space activation into a control variable 50 
was selected in a preliminary study (see “Selection of null 51 
space control variables” Appendix in Supplementary 52 
Material). We used data collected during simultaneous force 53 
production and null space modulation in a different study [38] 54 
to compare three different methods. We selected as control 55 
variable (𝑓஽௢ி) the norm of the projection of the null space 56 
activation vector 𝒏 onto the first 𝑛𝑐 principal components that 57 
explain 80% of variance of NSM block data after subtraction 58 
of the mean vector of null space activation in baseline FC 59 
block 𝒏ഥ𝒃𝒍, taken as a reference of residual, involuntary null 60 
space activation: 61 

 62 
𝑓஽௢ி = ‖𝑽𝒄𝒄(: , 𝑛𝑐)்[𝒏 − 𝒏ഥ𝒃𝒍]‖; 63 

 64 
 where 𝑽𝒄𝒄(: , 𝑛𝑐)் represents the transpose of the first nc 65 

columns of the matrix of the principal components of the null 66 
space activation vectors collected in the NSM block. 67 

We then mapped the null space control variable onto the 68 
extra DoF according to a logistic function, similar to the one 69 
used in the NSM block, because it is positive defined, and 70 
participants could then reach the rest position simply by 71 
relaxing their muscles. Moreover, it has a smooth and 72 
continuous derivative, so that there is no need for 73 
thresholding, as it would have been necessary for example 74 
with a linear function. 75 

Therefore, the control law that mapped the null space 76 
control variable onto cursor rotation angle was defined as: 77 

 78 
𝜃(𝑓஽ைி) =

ఏ೘ೌೣ

௘
షೝഇ൫೑ವ೚ಷష೑ವ೚ಷ,బ൯

ାଵ
, (3) 79 

 80 
where 𝜃 is the angle of rotation, 𝜃௠௔௫  is the maximum 81 

angle of rotation, set to 145°, 𝑟 is the variation rate, 𝑓஽௢ி is the 82 
control variable and 𝑓஽௢ி,଴ is the value of the control value for 83 
which 𝜃(𝑓஽௢ி) =

ఏ೘ೌೣ

ଶ
. 84 

The value of 𝑓஽ைி,଴ was computed using 𝑛 equal to 25% of 85 
the MVCC. The 𝑟ఏ  value was calculated using the formula: 86 

 87 

𝑟ఏ =  − log ቌ

𝜃௠௔௫
𝑦଴

ൗ − 1

𝑥଴ − 1
ቍ, 88 

 89 
where (𝑥଴, 𝑦଴) = (𝑓஽௢ி(𝒏𝒎𝒊𝒏), 0.1°). 90 

2.4 Data Analysis 91 

All collected data were visually inspected and trials in 92 
which EMG artefacts were detected were discarded. The 93 
discarded trials were 13.1 ± 7.6 (mean ± SD over participants) 94 
over a total of 536 trials performed by each participant. Trials 95 
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in the NSC blocks with the target in the central position (i.e., 1 
requiring only cursor rotation) were not included in the 2 
analysis. 3 

2.4.1 Task performance 4 
Task performance was evaluated both as the fraction of 5 

trials per block in which participants reached the target 6 
(reaching success rate), and as the fraction of trials per block 7 
in which participants held the cursor in the target for the 8 
required time (holding success rate). 9 

Mean holding time and mean angular error per block were 10 
also calculated. In each trial, holding time was defined as the 11 
longest time interval in which the cursor remained inside the 12 
target (maximum value 1 s, the required holding time). The 13 
angular error was defined as the mean of the absolute value 14 
of the difference of the cursor rotation angle and the target 15 
rotation angle over the interval in which the cursor positional 16 
error in space was under the threshold of 6% of MVF. It was 17 
calculated for both NSC blocks and the hidden NSC block; 18 
however, due to the low performance in reaching (mean ± SD 19 
over participants: 4 ± 8 %), we decided to not perform any 20 
analysis on this block due to low availability of trials. 21 

To address the issue of muscular fatigue, we calculated the 22 
Welch’s power spectral density of the raw EMG data for each 23 
participant, cycle and muscle (using MATLAB function 24 
pwelch). For each muscle, we considered only the target with 25 
the highest average activation across blocks. We then 26 
calculated the median frequency, i.e., the frequency that 27 
separates the power spectrum into two parts of equal energy. 28 
It is known from literature that an increase in the median 29 
frequency indicates the occurrence of fatigue [49,50]. We 30 
performed a linear regression of the median frequency for 31 
each muscle and participant as a function of cycle, and we 32 
found that an average of 3.5 ± 2.7 muscles (mean ± SD among 33 
participants) presented a significant fit with positive slope. 34 
This indicates that fatigue could have affected individual 35 
performance and learning. 36 

2.4.2 Velocity peaks and movement strategies 37 
Two different velocities of the cursor were calculated: the 38 

tangential velocity of the cursor spatial position (therefore 39 
related to the force), and the angular velocity of the cursor 40 
(therefore related to the muscle null space activation). 41 

The two velocities were computed numerically for each 42 
trial, after applying a 2nd order Butterworth filter (3 Hz low-43 
pass cutoff frequency) to the cursor position (measured as a 44 
fraction of MVF) and to the cursor rotation angle. The 45 
movement onset was defined as the first sample after the end 46 
of the rest phase (i.e., when the target appeared on the screen) 47 
at which the cursor velocity was higher than a threshold equal 48 
to three times the mean velocity recorded in the 0.5 s before 49 
the ‘target go’ event, which is generally equal to zero due to 50 
the participant being at rest, but could be greater than zero due 51 

to oscillations or noise. The peak velocity was defined as the 52 
first maximum after the movement onset. 53 

Movement onset and velocity peaks were analyzed to 54 
assess if different participants used different movement 55 
strategies. For example, if a participant displaced the cursor 56 
first and then rotated it (using muscular null space activation), 57 
or vice versa, or if they moved and rotated the cursor 58 
simultaneously, or if there was no specific relation between 59 
the two movement components. 60 

2.4.3 Performance analysis 61 
In addition to success rates, we used information theory to 62 

assess individual control ability. We considered the 63 
information about the instructed target and time interval that 64 
is transmitted by each participant when performing a reaching 65 
and holding movement. To generalize the assessment of 66 
individual ability beyond the performance achieved by each 67 
participant with the specific parameters of the experimental 68 
protocol (e.g., the target size or the required holding time) we 69 
estimated, through a simulation, the information that would 70 
have been transmitted with different target sizes and holding 71 
times. 72 

The information transmitted accomplishing a reaching task 73 
may be quantified by an index of difficulty, as introduced by 74 
Fitts [51]. The Fitts’ law states that movement time 𝑀𝑇 in a 75 
reaching task is linearly related to an index of difficulty 𝐼𝐷: 76 

 77 
𝑀𝑇 = 𝑎 ∙ 𝐼𝐷 + 𝑏. 78 

 79 
The Fitts’ ID, for a target of width 𝑊 and distance 𝐷 from 80 

the origin, in the Shannon-MacKenzie formulation [52], is 81 
equal to: 82 

 83 

𝐼𝐷 = 𝑙𝑜𝑔ଶ ൬
𝐷

𝑊
+ 1൰. 84 

 85 
While Fitts’ law validity has been questioned because of its 86 

unclear theoretical foundations [53,54], Gori and 87 
collaborators [41] derived this law with a simple model of the 88 
human performance of an aiming task as a communication 89 
process. In this model, the source of the message is the target 90 
the individual intends to reach (“aiming is choosing”). In the 91 
original formulation of Fitts, aiming at a target of width 𝑊 at 92 
distance 𝐷 is equivalent to selecting one of 𝑛 linearly arranged 93 
targets of width 𝑊 such that 𝐷 = 𝑛𝑊 (Fig. 2A). If the targets 94 
can be selected with the same probability, the entropy of the 95 
target distribution, i.e., the entropy of the source, is equal to 96 
the ID. The message is then sent through a noisy channel, 97 
representing the execution of the reaching movement with 98 
physiological noise in the neural and the musculoskeletal 99 
systems. If the noise results in a distribution of the arrival 100 
position with an amplitude less than 𝑊 2⁄ , aiming at the center 101 
of the target allows to always hit the selected target and thus 102 



Journal XX (XXXX) XXXXXX Author et al  

 8  
 

transmitting the message without error. Then, the ID 1 
quantifies the information that can be transmitted in an aiming 2 
task with negligible error rate, equal to the source entropy for 3 
errorless transmission. Apart from its theoretical framework, 4 
Fitts’ law has been shown to be a robust empirical relation 5 
between movement time and the spatial parameters of a task 6 
as long as no temporal constraints are set, or if these 7 
constraints are relaxed in such a way that they do not influence 8 
too much the task itself [55–57]. 9 

Since in our task subjects were required to reach the spatial 10 
location (xyz coordinates) of the target and to align the cursor 11 
to the target orientation, we can define two distinct indices of 12 
difficulty for each one of the two components of the reaching 13 
movements (translation and rotation). For the 3D 14 
displacement of the cursor position, considering that the 15 
tolerance is always the same for the three axis, a displacement 16 
ID can be defined as: 17 

 18 

𝐼𝐷௫௬௭ = 𝑙𝑜𝑔ଶ ቆ
𝐷

𝑊௫௬௭

+ 1ቇ = 𝑙𝑜𝑔ଶ ൬
𝐷

2𝑅
+ 1൰, 19 

 20 
where 𝐷 is the target distance in % of MVF, and 𝑅 is the 21 

target radius also in % of MVF. 22 
Recent research has shown a dependence of the movement 23 

time on the target angle for 2D and 3D tasks [58,59]. 24 
According to our data, the dependence resembles a linear 25 
combination of a sine term and a cosine term. Therefore, a 26 
better definition of the ID is: 27 

 28 

𝐼𝐷௫௬௭ = 𝑙𝑜𝑔ଶ ൬
𝐷

2𝑅
+ 1൰ + 𝑐 ∙ sin(𝛼) + 𝑑 ∙ cos(𝛼), 29 

 30 
where 𝛼 is the direction angle of the target on the x-y plane. 31 

The two coefficient 𝑐 and 𝑑 were calculated by fitting 32 
movement times vs 𝐼𝐷௫௬௭ in the two EFC control blocks. 33 

For the cursor rotation, a rotation ID can be defined as: 34 
 35 

𝐼𝐷ఏ = 𝑙𝑜𝑔ଶ ൬
𝐷

𝑊ఏ

+ 1൰ = 𝑙𝑜𝑔ଶ ൬
𝜃

∆𝜃
+ 1൰, 36 

 37 
where 𝜃 is the rotation angle and ∆𝜃 is the rotation angle 38 

tolerance (Fig. 2B). The total spatial ID can then be defined 39 
as the sum of the displacement and rotation indices: 40 

 41 
𝐼𝐷ௌ = 𝐼𝐷௫௬௭ + 𝐼𝐷ఏ . 42 

 43 
The application of this ID formulation to our experimental 44 

protocol raises three issues. First, Fitts’ law has been 45 
formulated for an aiming task in which the participant is not 46 
required to hold the end-effector at the target location for a 47 
specific time interval, but rather to simply hit the target. 48 
However, when considering the control of an end-effector 49 
with myoelectic signals, it may be necessary to provide also a 50 

temporal command in addition to a spatial one. Because 51 
myoelectric control is typically noisier than the natural limb 52 
control, it would be then useful to quantify also the target 53 
holding performance. Second, the Fitts’ law does not consider 54 
the actual error rate in the reaching task, assuming that it is 55 
low enough to be neglected. This second issue has been 56 
addressed by estimating an effective target width for which the 57 
error rate is below a given small (but arbitrary) threshold  58 
[44,60,61]. However, individual ability in aiming at a target 59 
can be rigorously quantified using a communication model 60 
with transmission errors [41]. Third, to properly assess the 61 
individual ability to control the position and orientation of the 62 
cursor, we should have used targets of different size and 63 
different holding time requirements. Indeed, speed-accuracy 64 
trade-off functions derived by systematically varying the 65 
required accuracy have been used to assess individual skill in 66 
manual tasks [62,63]. However, an additional factor in our 67 
experimental design would have required a large number of 68 
trials making the assessment too long and fatiguing. We 69 
therefore opted for an approximate but faster assessment of the 70 
dependence of the individual cursor control ability on the 71 
specific task parameters by simulating off-line the 72 
performance that would have been achieved with different 73 
parameters.   74 

Concerning the first issue, we followed the model of a 75 
communication system to derive also a temporal ID. Making 76 
a parallel with the spatial case, in which we have n targets of 77 
width 𝑊 in a length 𝐷, we can consider a time interval of 78 
duration 𝑇, which can be divided in 𝑛 consecutive temporal 79 
targets of duration ∆𝑡. In this way, in addition to selecting a 80 
spatial target by reaching it, it is possible to select one of the 81 
temporal targets by holding at the spatial target until the 82 
specific time is elapsed. In addition to considering that 83 
“aiming is choosing” (Fig. 2A and B) [41], which means that 84 
an individual can choose one target from a set of many by 85 
aiming at it, we consider that “waiting is choosing” (Fig. 2C), 86 
which means that an individual can choose a “temporal target” 87 
from a set of many by waiting for a given time interval before 88 
moving. Following this reasoning, an expression for a 89 
temporal index of difficulty can be derived as: 90 

 91 

𝐼𝐷் = 𝑙𝑜𝑔ଶ ൬
𝑇

∆𝑡
+ 1൰, 92 

 93 
where 𝑇 is the duration of the considered time interval, while 94 
∆𝑡 is the duration of the time sub-intervals, defining the 95 
required temporal accuracy. 96 
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Concerning the second issue, many attempts have been 1 
done to calculate the effective size of the target that would 2 
satisfy the assumption of negligible error rate, such as the one 3 
from Welford [60], which however has been criticized 4 
because it is based on questionable assumptions [41]. 5 
Therefore, Gori and collaborators have proposed a new 6 
corrected index of difficulty that takes into account the error 7 
rate. It can be derived using a compound channel with two 8 
states (a good state and a bad state), as the Shannon-9 
MacKenzie ID multiplied by the success rate (1 − 𝜀): 10 

 11 

𝐼𝐷(𝜀) = (1 − 𝜀) ∙ 𝑙𝑜𝑔ଶ ൬
𝐷

𝑊
+ 1൰. 12 

 13 
In our case, we considered the reaching error rate 𝜀௥ (or the 14 

success rate (1 − 𝜀௥)) related to the identification of the target 15 
in space, i.e., to the spatial ID, while the holding error rate 𝜀௛ 16 
(or the success rate (1 − 𝜀௛)) to the identification of the time 17 
interval, i.e., to the temporal ID. Therefore, the corrected ID 18 
can be defined as: 19 

 20 
𝐼𝐷(𝜀௥ , 𝜀௦) = (1 − 𝜀௥) ∙ 𝐼𝐷ௌ + (1 − 𝜀௛) ∙ 𝐼𝐷் . 21 

 22 
Concerning the third issue, in our experimental protocol we 23 

used only one target size (corresponding to a cursor translation 24 
accuracy of 4% MVF), and one cursor rotation tolerance 25 
(corresponding to 4% of the MVCC). Moreover, the temporal 26 
accuracy required for the holding time (the ∆𝑡 parameter) was 27 
not explicitly defined: partipants were required to keep cursor 28 
in position inside targets for a time 𝑇 = 1 𝑠. However, since 29 
we wanted to assess the individual ability in displacing and 30 
orienting the cursor and in holding the target regardless of 31 
specific task parameters, we used the data collected in one 32 
condition to simulate the performance that participants would 33 
have achieved in different conditions. Thus, we computed the 34 

reaching performance with targets of different sizes (6% to 3 35 
% of MVF and corresponding % of MVCC, with a step of 36 
0.5%), and the performance for holding the target for the 37 
required time with differenent temporal tolerances (1 s ± 0.1 s 38 
to 1 s ± 0.9 s with a step of 0.1 s, and 1 s ± 0.999 s, this last 39 
being equivalent to just spatial reaching). 40 

As a first step, we estimated the mean reaching movement 41 
time 𝑀𝑇ோ (defined as the time interval between the “target go” 42 
event and the first time the cursor entered the target) and the 43 
mean execution movement time 𝑀𝑇ா  (defined as the time 44 
interval between the “target go” event and the end of the 45 
holding phase) from simulations with different target size and 46 
holding time (for 𝑀𝑇ா  only) tolerances for each participant. 47 
The simulation was performed by measuring if a target of a 48 
specific size would be hit by a participant with the real 49 
trajectories recorded during task execution, and how much 50 
time a participant kept the cursor inside the specified space 51 
region according to the real trajectories. Then, we linearly 52 
fitted reaching movement times vs reaching IDs (in the form: 53 
𝑀𝑇ோ = 𝑎ௌ ∙ 𝐼𝐷ௌ + 𝑏, where 𝑎ௌ and 𝑏 are the fitted parameters) 54 
to verify that our data follow Fitts’ law, and execution 55 
movement times versus total IDs (in the form: 𝑀𝑇ா = 𝑎ௌᇱ ∙56 
𝐼𝐷ௌ + 𝑎் ∙ 𝐼𝐷் + 𝑏′, where 𝑎ௌᇱ, 𝑎் and 𝑏′ are the fitted 57 
parameters) to verify that a linear relation still holds when the 58 
temporal ID is added. 59 

Finally, an additional measure of performance that can be 60 
obtained from the Fitts’ law is the throughput, defined as the 61 
ratio between the ID and the movement time. The average 62 
movement times for each block and target were taken, and the 63 
mean across targets was computed. We then estimated the 64 
throughput considering only the reaching phase, because the 65 
holding phase has a fixed information rate. Whenever a target 66 
was not reached in a block, we set the throughput for that 67 
target to zero. 68 

2.4.4 Statistical Analysis 69 
Statistical analysis was performed using MATLAB. 70 

Kruskal-Wallis one-way ANOVA (function kruskalwallis), 71 
after Anderson-Darling test (function adtest), was used to 72 
compare reaching and holding success rates for all targets, and 73 
the R2 of reconstruction of the three force control blocks (one 74 
FC and two EFC blocks). 75 

For the NSC blocks, the dependence of reaching and 76 
holding success on cycle and target was assessed by fitting a 77 
generalized linear mixed model (function fitglme), with the 78 
cycle (3 cycles per block) and target (8 peripheral targets) as 79 
fixed effects and participant as random effect. Similarly, the 80 
dependence of angular deviation and holding time on cycle 81 
and target was assessed by fitting a linear mixed model 82 
(function fitlme). Additionally, a generalized linear model  83 
function fitglm) and a linear model (function fitlm) were fitted 84 
to the response variables for each participant separately. 85 

Figure 2. Spatial and temporal ID definitions. Schematic 
representation of target patterns, according to the 
Shannon-MacKenzie formulation of the ID, for the three 
indices: (A) displacement, (B) rotation, and (C) time. 
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Pearson correlation coefficient (function corrcoef) between 1 
force and extra DoF peak velocity times was calculated to 2 
assess the correlation between the two velocity peak times 3 
across blocks, and Kruskal-Wallis one-way ANOVA, after 4 
Anderson-Darling test, was used to evaluate differences 5 
between the dataset distributions. 6 

3. Results 7 

3.1 Force control performance 8 

We recruited eight participants to assess their ability to 9 
control simultaneously natural and extra DoFs. We first 10 
assessed baseline performance in FC. During this block, 11 
participants displaced the cursor toward the targets along 12 
approximately straight paths, reached the target successfully 13 
in 92 ± 6 % (mean ± SD across participants) of the trials, and 14 
remained in the target for the required time in 63 ± 19 % of 15 
the trials (see Table 1 for individual data). Thus, while 16 
reaching the target was easily accomplished by our 17 
participants, holding was more challenging. Moreover, 18 
holding performance varied considerably across participants, 19 
as indicated by its large standard deviation. Similar 20 
performances were observed during the initial EFC block, for 21 
which the success rates for reaching and holding were, 22 
respectively, 88 ± 25 % and 67 ± 31 %. No significant 23 
differences were found between FC and EFC blocks for both 24 
reaching and holding performance (p = 0.24 and 0.56, 25 
respectively, Kruskal-Wallis one-way ANOVA). Therefore, 26 
the shape (spherical or ellipsoidal) of cursor and targets did 27 
not affect force control performance. 28 

The mean R2 across participants of the tridimensional force 29 
reconstruction during the FC block, was 0.76 ± 0.11 (see Table 30 
1 for individual data). During the initial EFC block, the mean 31 
horizontal (rather than tridimensional, as targets were all 32 
planar in this block) force reconstruction R2 was 0.78 ± 0.13, 33 
and no significant differences were found with respect to the 34 
initial FC (p = 0.46, Kruskal-Wallis one-way ANOVA). These 35 
results support the robustness of the EMG-to-force mapping, 36 
which was used for calculating the EMG null space and 37 
therefore the variable used to control the extra DoF. 38 

 39 

Participant 
Reaching 
success rate 

Holding 
success 
rate 

Force 
reconstructio
n R2  

1 0.92 0.59 0.85 
2 0.88 0.42 0.52 
3 0.96 0.51 0.74 
4 0.96 0.78 0.75 
5 0.89 0.46 0.79 
6 0.97 0.72 0.84 
7 0.83 0.56 0.70 
8 0.99 0.98 0.89 

Table 1: individual performance and quality of force 40 
reconstruction by EMG-to-force linear mapping for the FC 41 
block. 42 

3.2 Simultaneous force and null space control 43 
performance 44 

In NSC blocks, participants performed trials with eight 45 
ellipsoidal targets, positioned at a distance and with an 46 
orientation corresponding to 20% of MVF and 20% of MVCC 47 
respectively. Additional trials with the target at the rest 48 
position and orientation corresponding to 20% of MVCC, i.e., 49 
requiring only cursor rotation, were not included in the 50 
analysis. 51 

Differently from FC and EFC blocks, especially in the 52 
initial NSC blocks, cursor trajectories were highly variable 53 
over repetitions because of the interference between the 54 
natural and extra DoFs and the lack of coordination among 55 
them. Although participants directed the cursor quite 56 
accurately toward the targets, they were less accurate with the 57 
cursor rotation (i.e., the extra DoF), which was controlled by 58 
null space activation, and the rotation angle often overshoot 59 
the target angle and oscillated around it. This is clearly visible 60 
in both panels of Fig. 3, where in the first blocks the extra DoF 61 
often exceed the upper target threshold (dashed horizontal 62 
line). Interference between force and null-space control 63 
sometimes also led to an oscillation in the spatial position of 64 
the cursor, highlighting the difficulty in simultaneous control 65 
of the different DoFs, as it is visible in panel A of Fig. 3. With 66 
practice, however, all participants improved in their control of 67 
the extra DoF. For example, for all three participants 68 
illustrated in Fig. 3 initially (Block 5, blue lines) the first peak 69 
velocity of cursor rotation (vertical lines, middle row) 70 
occurred often much later than the peak velocity of the cursor 71 
translation (vertical lines, bottom row), but it then occurred 72 
progressively earlier with practice (Blocks 8-16, yellow lines). 73 

Mean success rate across participants in target reaching and 74 
holding increased during the 12 NSC blocks. Reaching 75 
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success rate progressed from 72 ± 26 % in the first block to 93 1 
± 11 % in the last block. Holding success rate was initially 2 
low, 12 ± 12 % in the first block, and achieved a maximum 3 
value of 43 ± 31% (Fig. 4A and B). The mean movement time 4 
across participants decreased over blocks, with a starting value 5 
of 2.79 ± 0.54 s and an ending value of 2.02 ± 0.54 s. The 6 
mean holding time across participants increased, achieving the 7 
highest mean value of 0.70 ± 0.29 s, while the mean angular 8 
error decreased below the required target threshold of 7.2° 9 
(6.69 ± 2.18° for the last block, minimum mean value 10 
achieved) (Fig. 4C and D). 11 

A generalized linear mixed model analysis, with cycle (i.e., 12 
a subdivision of a block, with three cycles per block) and 13 
target as fixed effects and participant as random effect, 14 
showed a significant dependence of both reaching and holding 15 
success rate on cycle (p < 0.001 for both variables, with a slope 16 
of 0.047 and 0.041, respectively), indicating a significant 17 
increase in average performance with practice. The effect of 18 
target was also significant for both reaching and holding (p = 19 
0.001 and 0.041, respectively), which means performances 20 
were not equal across targets. In fact, targets 4, 5 and 8 showed 21 
lower mean reaching success rate with respect to target 1, 22 

Figure 3. Examples of task performance during NSC blocks. (A) Example of cursor trajectories to different targets (1, 3 and 
5) for participant 6: for each target (column) the plot on top shows the trajectory in Fx-Fy plane (being the target distance 
expressed in % of the MVF), the middle plot shows the evolution in time of the normalized null space control variable, and 
the plot on bottom the normalized force. To illustrate the temporal evolution of trajectories, the color changes with block 
number: trajectories became straighter over blocks. Vertical lines show the time of first velocity peak. (B) Example of 
trajectories in the x-y plane (top row) and time evolution of null space control variable (middle row) and force (bottom row) 
to one target (8), for participants 2, 4, and 6 (columns). Trajectories in the x-y plane during EFC are also shown for 
comparison (dashed lines, top row). The dashed black lines indicate target tolerance. 
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taken as reference (p = 0.006, 0.002 and 0.004 respectively), 1 
while target 6 presented higher holding success rate (p = 2 
0.022). 3 

Remarkably, there was substantial inter-individual 4 
variability in performance, especially for target holding, as 5 
indicated by the large standard deviation (Fig. 4A, B, C and 6 
D). For this reason, we also analyzed the data of individual 7 
participants separately, fitting them with a subject-specific 8 
generalized linear model with cycle and target as fixed effects. 9 
Individual performance curves are plotted in Fig. 4E and F. 10 
For reaching success rate, we found a significant effect of 11 

cycle only in participants 2, 3 and 6 (Table 2). This is because 12 
all the other participants, except participant 1, had high 13 
reaching success rate from the beginning of the experiment.  14 
Participant 1 was instead rather erratic, with a large variability 15 
in success rate from block to block, and always below 80%. 16 
For holding success rate, we found a significant effect of cycle 17 
for participants 2, 5, 6, 7 and 8 (Table 2). A significant target 18 
effect on reaching performance was found for participants 1, 19 
2, 3 and 4 and on holding performance for participants 4, 5, 6, 20 
7 and 8 (Table 3). These results indicate that, with practice, 21 
some participants improved their control skills in reaching or 22 

Figure 4. Simultaneous force and null space control performance. The mean values across participants (left column panels) 
show that reaching success rate (A), holding success rate (B) and holding time (C) increased with practice, while angular 
error (D) decreased. Right column panels show the curves for each participant separately and make visible the variability in 
performance among them. Shaded areas represent mean ± SD, and the gray dashed line in panels (D) and (H) represents 
target tolerance for angular error. 
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in holding while others did not, and that such skills were not 1 
equal across the different directions. 2 

Linear mixed models, with cycle and target as fixed effects 3 
and subjects as random effect, showed a significant 4 
dependence of holding time and angular error on cycle (p < 5 
0.001 for both variables, slope 0.009 and -0.12, respectively). 6 
Target effect was not significant for holding time (p = 0.09), 7 
while it was significant for angular error (p < 0.001). 8 

Holding time and angular error individual curves are 9 
plotted in Fig. 4G and H. Linear models fitted separately to 10 
each individual participant showed a significant cycle effect 11 
on holding time for all participants except participant 4, while 12 
for the angular error a significant cycle effect was found for 13 
all participants except participant 4 and 7 (Table 2). Both these 14 
participants had values close to their best values since the 15 
beginning of the experiment. Target effect on holding time 16 
was significant for all participants (while it was not the case 17 
when considering them together) and on angular error for all 18 
participants except participants 6 and 7 (Table 3). In sum, this 19 
analysis highlighted that, even when success rate does not 20 
increase significantly, improvements can be observed in 21 
continuous parameters such as holding time and angular error. 22 

 23 

Subject 
Reaching 
success 

rate 

Holding 
success 

rate 

Holding 
time 

Angular 
error 

1 0.26 0.17 < 0.001* < 0.001* 
2 < 0.001* 0.002* < 0.001* < 0.001* 
3 < 0.001* 0.94 < 0.001* < 0.001* 
4 0.14 0.17 0.20 0.10 
5 0.65 < 0.001* < 0.001* < 0.001* 
6 0.005* < 0.001* < 0.001* < 0.001* 
7 0.61 0.02* < 0.001* 0.09 
8 0.33 0.003* < 0.001* < 0.001* 

Table 2: p-values for the effect of cycle on success rate 24 
(reaching and holding), holding time and angular error. The 25 
asterisk indicates p < 0.05. 26 

 27 

Subject 
Reaching 
success 

rate 

Holding 
success 

rate 

Holding 
time 

Angular 
error 

1 < 0.001* 1 0.048* < 0.001* 
2 < 0.001* 0.574 < 0.001* < 0.001* 
3 0.013* 1 0.015* 0.029* 
4 0.029* 0.007* < 0.001* < 0.001* 
5 0.287 < 0.001* < 0.001* < 0.001* 
6 0.999 < 0.001* 0.001* 0.072 
7 0.726 0.005* 0.004* 0.379 
8 1 < 0.001* < 0.001* < 0.001* 

Table 3: p-values for the effect of target on successful trials 28 
fraction (reaching and holding), holding time and angular 29 
error. The asterisk indicates p < 0.05. 30 

 31 

We then investigated the force control and the null space 32 
control performances separately, i.e., the success rate for 33 
reaching and holding considering only either the position or 34 
the rotation of the cursor (Fig. 5). The separate performances 35 
were better than the combined performance, which was 36 
provided as feedback to the participants during the experiment 37 
(as the change of color of the target when both position and 38 
orientation of the cursor were within the target tolerance). All 39 
participants achieved a 100% reaching success rate in at least 40 
one block for both force control and null space control 41 
separately (maximum mean ± SD across participants: 99.5 ± 42 
1.4 % and 98.9 ± 1.8 %, respectively). Holding success rate 43 
raised to 89 ± 12 % for force control, with 4 participants 44 
achieving 100%, and 60 ± 32 % for null space control. It was 45 
therefore the lack of coordination in displacing and rotating 46 
the cursor that significantly affected the global performance. 47 

A generalized linear mixed model analysis highlighted a 48 
significant dependence on cycle for both reaching and holding 49 
of both force and null space control performance (p < 0.001 50 
for all cases, slope of 0.09, 0.05, 0.05 and 0.04 for force 51 
reaching, force holding, null space reaching and null space 52 
holding respectively). Target effect was significant only for 53 
null space reaching (p < 0.001), while it was not for force 54 
reaching (p = 0.13), force holding (p = 0.15) and null space 55 
holding (p = 0.58). 56 

The analysis of the performances of each participant 57 
separately revealed different individual strategies, which were 58 
not evident when considering success rate for combined force 59 
and null space control. For example, participant 1 showed a 60 
significant cycle effect in all success rates except null space 61 
reaching, showing an improvement not visible with 62 
simultaneous control success rate. This participant, together 63 
with participant 2, was the only one with a significant 64 
improvement in force reaching, while in force holding 65 
participants 3, 6 and 7 also showed a significant improvement 66 
together with 1 and 2. In null space reaching only participants 67 
2 and 3 had a significant cycle effect; nonetheless, all 68 
participants except participant 4 had significant cycle effect in 69 
null space holding. It is worth noting that participant 4 70 
increased their performance in null space holding, but after 71 
nine blocks, performance started to decrease probably due to 72 
fatigue and/or distraction. 73 

In the final EFC block, after the NFC blocks, mean success 74 
rates across participants for reaching and holding were 75 
respectively 95 ± 12 and 77 ± 24 %. No significant differences 76 
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were found between initial and final EFC blocks, for both 1 
reaching and holding (p = 0.19 and 0.48, respectively, 2 
Kruskal-Wallis one-way ANOVA). This indicates that 3 
practicing simultaneous force and null space control did not 4 
affect force control alone. The mean horizontal force 5 
reconstruction R2 across participants during the final EFC 6 
block was 0.67 ± 0.23, and no significant differences were 7 
found with respect to the initial EFC block (p = 0.48, Kruskal-8 
Wallis one-way ANOVA). This suggests that null space 9 
control did not affect standard force control patterns even after 10 
prolonged practice. 11 

3.3 Peak velocity times and movement strategies 12 

We analyzed peak velocities to better characterize the 13 
different strategies of individual participants. Each participant 14 
showed a specific timing of the peak velocity for cursor 15 
displacement and for cursor rotation. Some participants first 16 
rotated the cursor and then displaced it, others first displaced 17 
the cursor and then rotated it, and others performed both 18 
movements simultaneously. Furthermore, peak velocity times 19 
were not constant over blocks, and they decreased or increased 20 
depending on the participant and on the specific target. As can 21 
be seen in Fig. 6, the high SD values of the peak velocity times 22 
in individual blocks indicate a large variability across targets. 23 

Kruskal-Wallis one-way ANOVA, with peak type as 24 
factor, was performed to compare translation and rotation 25 
peak velocity times of each participant. This revealed a 26 
significant difference between the translation and rotation 27 
peak velocity times for all participants (p = 0.002 for 28 

participant 4, p < 0.001 for participants 1, 3, 5, 7, and 8) except 29 
2 and 6 (p = 0.82 and 0.42 respectively), although participant 30 
6 had a high variability in rotation peak velocity times across 31 
targets. It is also worth noting that, among the participants 32 
with significant differences between the two times, only 33 
participant 4 had significantly earlier rotation velocity peak 34 
than displacement velocity peak. 35 

Translation and rotation peak velocity times showed a 36 
strong positive correlation across blocks for participants 2 and 37 
5 (Pearson correlation coefficient r = 0.87 and 0.83, 38 
respectively) considering all targets directions together, with 39 
both mean times decreasing over time (blocks). Moderate 40 
positive correlation was found for participants 1 and 6 (r = 41 
0.68 and 0.52, respectively), with both mean times also 42 
decreasing over time. Moderate negative correlation was 43 
instead found for participant 3 (r = -0.42), with both mean 44 
times decreasing up to block 10, after which the rotation peak 45 
time increased. Weak negative correlation was found for 46 
participant 4 (r = -0.23), while no significant correlation was 47 
found for participant 8 (r = 0.09), with a constant displacement 48 
peak velocity time and a decreasing rotation peak velocity 49 
time. 50 

3.4 Individual null space control ability 51 

Because of the high variability among the participants in 52 
the performance metrics that we analyzed, such as success rate 53 
and holding time, which depend on task conditions such as 54 
target and time tolerances, we wondered if it was possible to 55 
generalize the assessment of individual ability in the 56 

Figure 5. Separate force control and null space control performance. Reaching and holding success rates for force control 
(first row) and null space control (second row) are shown separately. The black dashed lines represent mean across 
participants. 
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simultaneous control of natural and extra DoFs. To this aim, 1 
we used an information theory approach inspired by Fitts’ law, 2 
with an ID comprising a spatial term for the reaching phase 3 
and a temporal term for the holding phase. We also estimated 4 
the performance that would have been achieved with different 5 
target sizes and holding time tolerances through a simulation. 6 

For the reaching phase only, due to the variability in 7 
movement time for the different directions, the linear fit of the 8 
movement time itself as a function of the Shannon-MacKenzie 9 
ID resulted in a R2 of 0.26 ± 0.17 (mean ± SD across 10 
participants). The linear fit was significant for seven 11 
participants (p < 0.001 for participants 2 to 8, while p = 0.40 12 
for participant 1), which supports the validity of the Fitts’ 13 
model for reaching. The plot of the corrected spatial ID as a 14 
function of the target size (Fig. 7A) shows that the smallest 15 
target is not always the one that allows maximizing the 16 
transmitted information. While simulated performances 17 
appear to be similar for what concerns the largest possible 18 
target, decreasing target size does not always lead to an 19 
increase in the transmitted information, because the increase 20 
in the total available information associated with smaller 21 
targets is overcome by a decrease in success rate. This means 22 
that a specific target size can maximize information 23 
transmitted through reaching, and it is strictly dependent on 24 
participants’ ability. 25 

On average, the throughput, calculated as the ID divided by 26 
the movement time for reaching, increased during NSC blocks 27 
(Fig. 7B). This is expected, as the movement time for reaching 28 
also decreased among blocks. This result indicates that with 29 

practice participants moved faster while keeping good 30 
accuracy. 31 

When considering both the reaching and the holding phase, 32 
the linear fit of the simulated movement time as a function of 33 
combined ID resulted in a mean R2 of 0.56 ± 0.18, and all fits 34 
were significant (p < 0.001 for all participants). This means 35 
that a linear relation still holds when the ID also includes a 36 
temporal term. 37 

Introducing the additional temporal ID generally affects the 38 
target size at which a participant can transmit the maximum 39 
information, as can be seen in the example of participant 6 40 
illustrated in Fig. 7C. While for the reaching ID (which 41 
corresponds to the curve at fixed ∆𝑡 = ± 0.999 s) the best target 42 
size was 3.5 % of MVF/MVCC, for holding the best target 43 
size was 4 % (the red dot in Fig. 7C), with a ∆𝑡 of ± 0.1 s (the 44 
minimum ∆𝑡). Moreover, not all participants had their 45 
maximum information transmitted for the same time 46 
tolerance, indicating that also this quantity depends on 47 
participants’ ability in holding the cursor in a fixed position. 48 

Finally, the maximum information transmitted when 49 
reaching and holding (i.e., the maximum value of information 50 
among all the simulated conditions, Fig. 7D) also increased 51 
with practice. This means that participants improved with 52 
practice their ability to control concurrently natural and extra 53 
DoFs, both spatially and temporally. 54 

4. Discussion 55 

Figure 6. Individual movement strategies. Mean peak velocity times across targets, over null space control blocks, for both 
force and null space control variables. Shaded area represents standard deviation across targets. 
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The control of an extra limb or end-effector while 1 
simultaneously performing movements with the natural limbs 2 
requires using signals that do not interfere with limb motion 3 
[26,64]. As a first step towards the ambitious goal of 4 
augmenting human motor capabilities, we tested whether 5 
simultaneous control of natural and extra DoFs through 6 
isometric force and intrinsic muscular null space signals is 7 
feasible. We developed a control interface in a virtual 8 
environment using isometric force generated at the hand to 9 
control the translation of an ellipsoidal cursor and, 10 
concurrently, muscle-to-force null space activations, i.e., 11 
patterns of muscular activations that do not generate force, to 12 
control the rotation of the cursor around one axis. We assessed 13 
how well 8 participants controlled the end-effector with such 14 
interface in a reaching task that required translating and 15 
rotating the cursor to match the position and orientation of 8 16 
ellipsoidal targets, thus testing spatial control, and maintaining 17 
the cursor in the target for a 1 s, thus also testing temporal 18 
control. The results indicate that such an application of 19 
muscular null space is feasible, as after a moderate amount of 20 
practice average reaching performance was close to 100%. 21 

Furthermore, all the participants showed improvements in 22 
different performance parameters with practice, such as an 23 
increase in reaching and holding success rate, a reduction of 24 
angular error, and an increase of holding time. However, we 25 
found remarkable inter-individual differences in task 26 
performance, learning capabilities, and strategies to 27 
coordinate natural and extra DoFs. We also found significant 28 
increases in the median frequency of the EMG spectrum of 29 
some muscles, which can be considered indices of fatigue that 30 
may have affected performance. 31 

There are three kinds of null spaces that can be defined for 32 
the human motor system: kinematic, muscular, and neural 33 
[26]. Moreover, when considering null space signals to be 34 
used for controlling extra DoF during the performance of a 35 
task, we can define as task-extrinsic those null space signals 36 
generated by body parts, muscles, or neural circuits not 37 
directly involved in the task, and task-intrinsic those signals 38 
directly involved. Here we considered task-intrinsic muscular 39 
null space signals for extra DoFs control.  Muscular null space 40 
may be a convenient choice for augmentation since it 41 
represents a trade-off between the desirable (low noise and 42 

Figure 7. Assessment of individual control ability. (A) The corrected spatial ID (mean among the last three NSC blocks, 
estimated through a simulation) is shown as a function of target tolerance, showing the optimal target size for reaching of 
each participant. (B) Throughput as a function of block number. The dashed black line corresponds to the mean value 
among participants. (C) Example of corrected total ID (mean among the last three NSC blocks) as a function of target and 
time tolerances for participant 6. The red dot indicates the maximum value of transmitted information achieved by the 
participant among all the simulated conditions; the temporal evolution of its value is reported in orange curve of panel (D). 
It is worth noting that other maxima could be present outside the space covered by the simulation, and that the curve for 
∆𝑡 = 0.999 𝑠 (reaching condition) is equivalent to the one present in the panel (A). (D) Temporal evolution of the maximum 
information transmitted (among all the simulated conditions, i.e., the maximum of the surfaces such as that shown in panel 
(C)) for each block and participant. The dashed black line corresponds to the mean value among participants. 
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non-invasiveness) and potentially limiting (low 1 
dimensionality) characteristics of the kinematic null space and 2 
the desirable (high dimensionality) and limiting 3 
(invasiveness) characteristics of the neural null space. A larger 4 
dimensionality of the null space is desirable because it allows 5 
for more flexibility in the selection of the dimensions to be 6 
used for control. Additionally, using intrinsic muscular task 7 
null space may avoid interfering with the performance of 8 
additional tasks involving other body parts. For example, 9 
using null space signal from arm muscles to control extra 10 
DoFs participating to the main task performed by the arms 11 
(e.g., an extra robotic limb positioning an object being 12 
manipulated by hands) may allow to perform secondary tasks 13 
such as standing or walking.  14 

Our approach is novel because it is the first time that an 15 
intrinsic muscular null space signal extracted from multiple 16 
arm muscles is used to control an extra DoF. Many 17 
applications of extrinsic [27,65–67] or intrinsic [68] kinematic 18 
null space, as well as extrinsic muscular null space [31,69,70] 19 
and neural null space [32,71,72] has been proposed in the past. 20 
However, the possibility of using intrinsic muscular null space 21 
for augmentation has received less attention. A recent study 22 
has shown that the muscle projection in the beta-band of 23 
spiking activity of motor neurons identified from high-density 24 
EMGs electrode from a single muscle could be suitable to 25 
control additional DoFs concurrently with natural limb motion 26 
[40], but possible interference with other muscles was not 27 
directly monitored. Another recent study [39] has 28 
demonstrated the possibility of controlling the vertical 29 
displacement of a cursor in a 2D environment through co-30 
contraction of two antagonistic muscles (pectoralis major and 31 
posterior deltoid) while controlling the horizontal 32 
displacement through the reciprocal activity of the two 33 
muscles. With respect to these recent studies, our interface 34 
allowed to directly test the feasibility of simultaneous control 35 
in a scenario closer to real-life, i.e., in a 3D virtual 36 
environment, of 3 natural DoFs (cursor translation) and an 37 
extra DoF (cursor rotation), for a total of 4 DoFs controlled 38 
simultaneously. Moreover, our task-intrinsic muscular null 39 
space signal was extracted from many muscles involved in the 40 
reaching/holding task. We could assess the interference 41 
between the different DoFs and the relative muscle 42 
activations, showing that participants could learn to reduce 43 
such interference with practice. In principle, our approach 44 
could also be extended to the control of multiple extra DoFs 45 
by selecting different components in the intrinsic muscular 46 
null space. However, further investigation is needed to assess 47 
how performance and learning rate depends on the number of 48 
extra DoFs. 49 

Because of the high inter-individual variability among our 50 
participants, we developed an assessment framework based on 51 
information theory inspired by Fitts’ law to assess individual 52 
control ability independently from the performance observed 53 

with specific task parameters. In fact, performance quantities 54 
such as success rates are strictly dependent on the specific task 55 
conditions used in the assessment. In contrast, evaluating 56 
performances in terms of an ID, such as the one proposed in 57 
the Fitts’ law, allows to generalize an individual’s 58 
performance and extrapolate it from the specific context, 59 
representing them as transmitted information and giving a 60 
measure of the effective spatial accuracy limits of a 61 
participant. Tasks with larger and closer targets can be easily 62 
accomplished with high success rates but low spatial accuracy, 63 
which means low information transmitted, i.e., the possibility 64 
of choosing a smaller number of targets in a given task. On the 65 
other hand, tasks with smaller and farther targets are more 66 
difficult, requiring high spatial accuracy which is equivalent 67 
to more spatial information transmitted. Since its original 68 
formulation [51], Fitts’ law has been widely employed to 69 
evaluate human performance during tracking [73], 70 
myoelectric control [74], prostheses control [75], and human-71 
computer interaction (HCI) [44,52,76]. Fitts’ law captures the 72 
speed-accuracy tradeoff typically observed in human aimed 73 
movements by relating movement duration to an ID defined 74 
according to target distance and size. Thus, since the ability to 75 
accurately control an end effector depends on the speed of 76 
movement, motor control ability should be assessed according 77 
to a speed-accuracy trade-off function rather than by accuracy 78 
alone [62]. However, the ID itself, corrected through the 79 
success rate of a participant, as a measure of average 80 
transmitted information [41], can be taken as a metric for 81 
performance evaluation related to spatial accuracy and control 82 
ability.  83 

While various formulation of Fitts’ law have been 84 
developed to adapt to different tasks or to correct the ID to 85 
account for target misses [41,60,77], Fitts’ law has always 86 
been considered in the spatial domain, with time taken into 87 
account only in the form of temporal constraints influencing 88 
task execution [55,56]. However, it may be sometimes 89 
necessary to evaluate the performance also in temporal 90 
domain, such as to evaluate whether an individual is able to 91 
perform an action at the right time or for the required time 92 
lapse. To account for the effects of temporal targeting, i.e., a 93 
task in which spatial distance is minimal and for this reason 94 
movement time can be considered constant and close to zero, 95 
a recent study applied Fitts’ law to a temporal pointing task, 96 
in which the user must only decide when to perform an action 97 
(in this case, pressing a button when the cursor is inside 98 
targets) [45]. Assuming a Gaussian response distribution for 99 
the endpoints, the error rate could be expressed as a function 100 
of an ID equal to the logarithm of a temporal target distance 101 
divided by a temporal target width. Similarly, to take into 102 
account the holding phase in our task, which can be considered 103 
a temporal task, we hypothesize that the total information 104 
transmitted performing the task is equal to the sum of two IDs, 105 
a spatial ID resembling the classical Fitts’ index, and a 106 
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temporal ID similar to the one proposed in [45]. As the Fitts’ 1 
ID can be derived from an “aiming is choosing” rationale [41], 2 
we simply derived the temporal ID from a “waiting is 3 
choosing” rationale, which allows a generalization of the 4 
temporal ID to any compatible temporal task without relying 5 
on any assumption on the response function. We also 6 
corrected those ID multiplying them for the respective success 7 
rate (reaching or holding) [41]. Such ID therefore allows to 8 
consider not only reaching tasks, but also holding tasks, and 9 
could be hypothetically extended to more complex task 10 
composed by multiple reaching and holding phases to evaluate 11 
an invidual performance based on the average information 12 
transmitted in each phase. Through this framework, we found 13 
that, when considering only the reaching phase, the smallest 14 
target size is not always the one providing the highest 15 
information transmitted because the gain in source 16 
information associated with smaller targets may be overcome 17 
by the loss in transmission performance corresponding to a 18 
decrease in reaching success rate. When considering both 19 
reaching and holding phases, we found that spatial and 20 
temporal requirements affect each other, generally reducing a 21 
participants’ optimal target size with respect to the reaching 22 
phase only, with the maximum information transmitted 23 
resulting for a specific, individual combination of spatial and 24 
temporal parameters. Such an approach could allow to 25 
hypothetically optimize an interface (not necessarily based on 26 
myoelectric control) depending on the user’s capabilities, 27 
possibly also adapting the interface parameters as the user 28 
learns to control the device. 29 

However, it must be considered that the simulation using 30 
such a model, while based on real trajectories of the cursor, 31 
has been performed offline after the experiment and the 32 
resulting parameters to be used to personalize the interface 33 
have not been tested in a subsequent experiment. Therefore, 34 
actual performances in real tasks may anyway differ from the 35 
predicted ones. Moreover, the range of spatial and temporal 36 
tolerances used in the simulation corresponded to a range of 37 
uncorrected spatial IDs (3.2-5 bits, considering direction 38 
corrections) that was higher than the range of temporal IDs 39 
(0.6-2.6 bits). This was determined by the specific task 40 
conditions (i.e., distance of the targets at 20% of MVF and 41 
holding time at 1 s) which constrained the set of tolerances 42 
that could be simulated, and by the fact that the spatial ID is 43 
the sum of a displacement ID (range: 1.2-2.3 bits, considering 44 
direction corrections) and an angular ID (range: 1.9-2.7 bits).  45 
Then, the total ID metric and, consequently, the selection of 46 
optimal spatial and temporal tolerances, poses more emphasis 47 
on the individual ability of controlling simultaneously natural 48 
DoFs and null space DoFs spatially, considering reaching and 49 
holding simply as separate phases.  50 

The prolonged exposition to the control of both prostheses 51 
and augmenting devices may have effects at the neural level. 52 
Amputation causes reorganization in the primary 53 

somatosensory cortex [78]. A recent study has showed that, in 54 
BCI control of independent DoFs, it is possible to dissociate 55 
neural gamma activity correlated to muscle activations [71]. 56 
Another study has shown that users of a third thumb controlled 57 
through a toe presented, after 5 days, a different representation 58 
of their hand in the sensorimotor cortex [28]. Considering the 59 
findings of such studies, we expect that even the intrinsic 60 
muscular null space control of an external device could bring 61 
some modifications in neural motor circuits. The exploitation 62 
of musculoskeletal redundancy to control a device is actually 63 
a new motor skill that requires learning, as it has been shown 64 
by the success rate curves from our study, and it is something 65 
different from the natural modulation of limb impedance [38] 66 
and even from the tele-impedance, which is based on the use 67 
of muscular null space to control the impedance of robots, 68 
providing them with a task-related elastic profile in addition 69 
to position trajectories [36], while no actual additional DoF is 70 
controlled. Thus, we hypothesize that, in this context, null 71 
space control improvements with training could be associated 72 
to the acquisition of novel muscular null space synergies, 73 
possibly encoded in the corticospinal pathways [79] and in the 74 
cortico-cerebellar circuits [80]. Investigation of the 75 
neuroplasticity associated to learning null space control may 76 
be necessary to test such a hypothesis. 77 

Another important finding that has been illustrated in 78 
literature is that, as for skill learning [81–83], feedback 79 
mechanisms integrated in an interface could help users 80 
improving their performance faster and to a higher level. It has 81 
been demonstrated that somatosensory feedback facilitates to 82 
learn controlling both prostheses [84] and augmenting devices 83 
[85]. Our protocol did not include any kind of feedback except 84 
visual one, and as a future perspective, it could be interesting 85 
to test the effect of somatosensory feedback in interfaces 86 
based on intrinsic muscular null space and study its effects on 87 
learning and control variability. 88 

In conclusion, we demonstrated the feasibility of a novel 89 
approach to control extra DoFs using muscular null space 90 
signals from many muscles directly involved in a task being 91 
performed concurrently. Participants in our experiment were 92 
able to reach targets and their performances improved with 93 
practice. Such an approach could be applied to control more 94 
sophisticated assistive or augmentative robotic devices (as 95 
extra limbs) in everyday life situations, for both able-bodied 96 
and disable-bodied people. Such approach is substantially 97 
different from the myoelectric control of exoskeletons, as they 98 
do not add additional DoFs [7,10,21]. We also developed an 99 
assessment framework based on information theory inspired 100 
by Fitts’ law, with two indices of difficulty, which could be 101 
useful to quantify a participant’s ability in reaching and 102 
holding a position independently from specific parameters of 103 
the assessment task. Further work is needed to understand the 104 
neural origin and mechanisms underlying learning of null 105 
space control. These results can be a starting point for the 106 
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investigation of muscular null space control for augmentation, 1 
and our information theory approach can provide a novel tool 2 
to assess the ability of individual participants to control a 3 
device through noisy signals such as EMG, considering not 4 
only spatial precision, but also temporal precision. 5 
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