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A B S T R A C T   

Based on the prediction of the equipment residual useful life, important decisions are made in oil industry to ensure a safe and profitable management. Atmospheric 
storage tanks are particularly critical from the safety point of view as their bottom is affected by localised corrosion (pitting), which is not easy to be monitored. The 
prediction of the useful lifetime defines the time up to which the equipment can continue to be in-service before the formation of holes where the greatest thinning is 
observed. In this study, the thickness data collected in subsequent inspections of the bottom of twenty-three large storage tanks of petroleum products has been 
processed by adopting an improved probabilistic approach. The method is unconventional and combines the consolidated extreme value theory and Bayes’ formula 
to quantify the probability of thinning below a fixed limit and, thus, predict the remaining useful lifetime, as well as the optimal time for the next full inspection. Data 
collected allowed the validation of the forecast model.   

1. Introduction 

Atmospheric storage tanks (ASTs) are essential for the containment 
of hazardous substances in major accident hazard establishments. Since 
they are expected to operate over long periods, ASTs are particularly 
critical from the safety point of view if appropriate integrity monitoring 
and management plans are not adopted. In refineries, oil terminals, 
depots, and petrochemical plants, a serious problem is the corrosion of 
the bottom of ASTs containing hydrocarbons, especially for tanks that 
have been in service for more than 40 years. The phenomenon could 
cause the release of substances with adverse consequences for humans 
and the environment due to both their flammability and eco-toxicity 
(Argyropoulos et al., 2012; Laurent et al., 2021; Ikwan et al., 2021). 
Major releases of hydrocarbons fall under both the European Seveso III 
Directive for the prevention of major accidents (Directive, 2012/18/EU 
– EU Council, 2012), whilst minor leakages, prolonged over time, are 
under the Industrial Emission Directive for the integrated prevention 
and control of pollution (Directive, 2010/75/EU – EU Council, 2010). 
The release of flammable vapours is, furthermore, ruled by the European 
Directive for the protection of workers potentially at risk from explosive 
atmosphere (Directive, 1999/92/EC – EU Council, 1999). 

To control corrosion, the thicknesses of the bottom of ASTs are 
usually measured every 10 years or more, as part of a comprehensive 
inspection of the entire tank based on widespread standards (EEMUA, 
2014; API, 2016a). Accurate bottom integrity measurements can only be 

made during the scheduled stops, when the tank is put out-of-service, 
emptied, carefully reclaimed, and visually inspected. Currently, the 
use of the Magnetic Flux Leakage (MFL) technique is the best available 
technique (EU Council, 2006), but the Ultrasonic Thickness Measurements 
(UTM) are still common and necessary for the thickness detection in 
difficult points. Acoustic Emissions (AE) could be useful to verify the 
presence of ongoing degradation for in-service tanks, however, they are 
absolutely complementary to direct thickness measurements. In addi-
tion to the criticalities discussed above, there are also problems related 
to the occupational safety as inspections involve the worker enters into 
the tank and has to remain for a long time in a highly dangerous envi-
ronment while executing the measurements. Currently, the corrosion 
monitoring of in-service tanks is not easy, although some researchers 
investigated the potential of the AE technique for the estimation of the 
corrosion rate at the bottom and annular plates of ASTs (Park et al., 
2006; Sakamoto et al., 2013). In Europe AE is classified as the “Best 
Available Technology” for monitoring the conditions of the bottom of an 
in-service AST (EU Council, 2006), whereas Guided Waves (GW) are a 
further promising technique to control corrosion for in-service tanks 
(Cobb 2018). Some operators have experimented bottom testing for 
in-service tanks by using specialised robots, which have shown a great 
potential to perform these tasks remotely and efficiently (Tu et al., 2016; 
Anvo et al., 2018; Acar, and YaŞar, 2019; Slaughter 2019). Robots 
integrate technologies for visual analysis, ultrasonic scanning, other 
sensors, and functionalities that make easier to obtain accurate data. 
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These solutions allow the operator gaining access in confined spaces, 
under the harshest conditions, cleaning surfaces and carrying out in-
spections (internal, external and even underwater), therefore it is 
possible to perform tasks that are complex and imperative for the safety 
and maintenance of facilities. Nevertheless, available prototypes need 
further improvements to make them reliable in practical operations. 

Due to the well-known ageing issue (Wood et al., 2013; Semmler, 
2016; Gyenes and Wood, 2016; OECD, 2017), the Seveso Directive 
explicitly requires the operators of major hazard accident establish-
ments to demonstrate the adoption of proper management plans to 
control deterioration processes, including the bottom corrosion of ASTs. 
There are established methods and tools to accomplish this task 
(EEMUA, 2014; API, 2016a), but their application sometimes could be 
burdensome. Other methods have been recently developed to verify the 
adequacy of ageing management plans, these are based on index 
methods (Milazzo and Bragatto, 2019; Yacine et al., 2020). In this 
context, it is also useful for the operators to be able to make predictions, 
to calculate the probability of release due to ageing and to know how 
long to safely extend the residual useful lifetime (RUL). The knowledge 
of the probability of leakage from the bottom and annular plate of ASTs 
allows integrating accidental scenarios caused by ageing into the safety 
report of major accident hazard establishments, but it is also needed to 
know the potential for the environmental contamination of the site. The 
knowledge of the actual residual lifetime and the interval before the 
subsequent inspection is essential to prevent releases and monitor the 
integrity of tanks. 

Based on popular standards (EEMUA, 2014; API, 2016a), the corro-
sion rate is estimated as the ratio between the thickness reduction and 
the time interval between two inspections. It is used to estimate the RUL 
and plan appropriate maintenance. Unfortunately, discrete thickness 
measurements cannot determine with certainty the maximum corrosion 
depth of the bottom of storage tanks, where materials are usually 
characterised by localised corrosion in the form of pits. For this reason, 
to assess the probability of leakage from the bottom, it would be useful 
to use a probabilistic approach with a stochastic modelling of the phe-
nomenon. The use of the extreme value theory is frequent (HSE, 2002; 
Bolzoni et al., 2006; Velázquez et al., 2009; Shibata, 2011) and several 
authors used the Gumbel distribution to describe the pitting corrosion 
(Shibata, 1991; Valor et al., 2007; Melchers and Ahammed, 2018); 
others researches questioned about the use of this distribution (Melch-
ers, 2005; Asadi and Melchers, 2017) and even proposed different al-
ternatives (Jarrah et al., 2011; Valor et al., 2013). The literature shows 

some applications of the extreme value theory to the bottom of tanks, e. 
g. Joshi (1994) analysed corrosion data obtained by UTM of plates of 
aboveground storage tanks containing crude oil; Shibata (1991) deter-
mined the optimal return period and predicted the maximum corrosion 
from a Gumbel diagram; Kasai et al. (2016) combined the analysis of 
extreme values and Bayesian inference to predict the maximum corro-
sion depth. 

Taking advantage of the available research on this topic and by 
referring to the bottom of ASTs containing hydrocarbons, this work aims 
at the use of the consolidated models for the statistical analysis of the 
pitting corrosion to achieve the following objectives:  

• to quantify the probability of the critical pit (i.e. the probability of 
reaching the threshold thickness according to common standards) 
and the probability of leakage to be used in the quantitative risk 
assessment;  

• to make predictions of the probability of the critical pit after a given 
time;  

• to make appropriate decisions for a safe extension of the in-service 
time, based on probabilistic predictions of the RUL obtained from 
inspection data of the AST. 

This article is structured as follows. After a short overview about 
safety issues and the basic concepts, Section 2 describes the methodol-
ogy adopted to achieve the above objectives. It is based on the use of the 
extreme value theory and the Bayesian inference to derive probabilistic 
predictions about the condition of the tank over the time by exploiting 
the knowledge acquired from the latest inspections and those for tanks 
of similar contexts. Section 3 presents applicative examples, including 
data sampling procedures, and two case-studies. Section 4 reports the 
data analysis made for 23 ASTs and a discussion about the main findings 
of the study. Finally, Section 5 gives the conclusions of the work. 

2. Methodology 

2.1. Overview 

Internal corrosion in ASTs (product side) can be caused by (i) the 
presence of aggressive substances or contaminants in the stored product, 
and (ii) the entry and accumulation of water in the tank due to its 
presence in the product, the condensation from the tank ventilation, and 
the infiltration of rainwater from the roof seals (Myers, 1997). 

Fig. 1. Catastrophic scenario of release from the bottom of a floating roof AST and migration pathways for the released substance.  
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Generalised corrosion of the bottom plates usually occurs where water 
collects; the most critical area is the one adjacent to the shell for bottoms 
sloping towards the outside (cone-up) and the central one when the 
slope is inwards (cone-down). Localised corrosion may occur in stagna-
tion areas, such as support feet of the drain or the heating coil, plates 
under the roof support struts, etc. Another form of corrosion is pitting, 
usually caused by acid salts, hydrogen sulphide, water, bacteria (mi-
croorganisms), etc. (Caines et al., 2013; Bhandari et al., 2015; Kannan 
et al., 2020). Corrosion phenomena could also affect the welds of the 
sheets of the bottom. 

Typical release scenarios to be investigated for ASTs containing hy-
drocarbons (Myers, 1997; Topalis, 2017) include: the floor leakage and 
the floor catastrophic rupture, the shell leakage and the shell cata-
strophic rupture, and the roof vapour leakage. The modelling of the 
consequences depends on the amount of the released substance. In case 
of scenarios associated with the bottom of the tank, the following events 
should be accounted for: (i) minor losses from holes in the bottom plates, 
(ii) releases inside the containment basin (small and medium leakages) 
(iii) overflow of the substance collected in the containment basin 
(catastrophic release). In the first case, if the loss is not detected in 
advance, the liquid could pass through any cracks in the concrete basis 
and contaminate the soil and the groundwater. The second case could 
result in a pool fire in case of ignition, but the flammable vapours, 
trapped between the basin and the tank, could cause even a flash fire or 
an explosion; in case of defects in the bottom of the containment basin, 
soil and groundwater contamination is also possible. The worst case is 
associated to a catastrophic release and results in a contamination of the 
surface water, sub-surface soil and the groundwater. Fig. 1 shows the 
migration pathways for the substance in case of catastrophic release. 

The Risk-Based Inspection (RBI) approach is widespread for risk 
assessment in the oil & gas, refining, petrochemical and chemical in-
dustries (API, 2016a; API, 2016b). The risk is calculated as the combi-
nation of the probability of failure (PoF) and the consequence of failure 
(CoF). The PoF is the product of the generic failure frequency (GFF) for a 
given type of tank, the management factor (MF) and the damage factor 
(DF). Fig. 2 illustrates the process to determine next inspection date. The 
user sets a maximum acceptable risk level, and then the risk is calculated 
as a function of the time; if it exceeds the maximum acceptable level, an 
inspection is suggested. Next inspection date is obtained as the 

intersection of the risk curve and the maximum acceptable risk line. 
The API recommended practices require a large amount of infor-

mation to be able to exploit the knowledge about damage mechanisms 
and is generally applied through the support of proper software. These 
standards are suitable for large establishments, but for small ones, 
including fuel depots, they require many resources and can be too costly. 
In addition, results are based on the knowledge of the damage mecha-
nisms which, although respectable, can never be specific for the context 
under study. The approach proposed in this work for the quantification 
of the probability of the critical pit and the residual lifetime is condition- 
based, therefore it is less conservative than the standard approaches. The 
methodology is based on the use of the well-known extreme value the-
ory. To make predictions about the equipment condition, aimed at the 
estimation of the residual lifetime, this theory has been combined with 
the Bayesian inference. 

2.2. Basic concepts 

Pioneering studies about the statistical nature of corrosion and its 
relationships with inspections are due to several researchers (Gumbel, 
1954; Hawn, 1977). Amongst various works, Joshi (1994) used the 
extreme value theory to extrapolate statistical information about pitting 
corrosion from small inspection patches to a whole AST. The concept the 
author applied is based on the evidence that a statistical sample which 
obviously contains less than an entire population of data may follow the 
distribution of the whole dataset. This means that, when an entire 
population of pits is available by a detailed surface scan, covering the 
entire tank, the statistical analysis of data produces the same distribu-
tion pattern of a limited sample. This is extremely important given that a 
complete dataset rarely is available. The use of these methods for the 
analysis of corrosion data of the bottom of ASTs is widespread in Japan 
since the 1980’s, while it is not common in other countries (HSE, 2002). 

Localised corrosion is a stochastic process that can assume different 
forms whose statistics could be different. The choice of the probability 
distribution is crucial for the following use as well as for the accuracy of 
the distribution parameters; the confidence limits depend on the number 
of data points. By referring to the set of maximum corrosion depths of 
the bottom of an AST (x), as the number of the measures (n) in the set 
grows, the statistical behaviour of the variable becomes insensitive, and 

Fig. 2. Identification of the time to next inspection.  
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the distribution of the extreme values tends to some limit forms (Gum-
bel, 1954; Berretta, 2009). These limit distributions are classified into 3 
types according to the shape of their tails: 

FI(x)= exp
[

− exp
(

x − β
α

)]

distribution  type  I (1)  

FII(x)=

⎧
⎪⎨

⎪⎩

0 x < β

exp
(

−

(
x − β

α

))− k

x ≥ β
distribution  type  II (2)  

FIII(x)

⎧
⎪⎨

⎪⎩

exp
(

−

(
x − β

α

))k

x ≤ β

0 x > β
distribution  type  III (3) 

where: α, β and k are parameters of the distribution. 
The type I distribution (so-called Gumbel distribution) is applied when 

the field of the parent distribution is unlimited at the top and the right 
tail of the density distribution exponentially decays (Gumbel, 1954). It is 
represented by Equation (1) as n approaches +∞. The type II distribution 
is given by Equation (2) and is valid when the parent distribution is 
defined in the range 0 < x <+∞. Finally, the type III distribution assumes 
the form of Equation (3) and is used when the parent distribution has an 
upper limit. 

Alternatively, a generalised extreme-value distribution (GEV) can be 
also used (Jenkinson, 1955): 

FGEV(x)= exp

{

−

[

1 +
γ(x − β)

α

]1/γ
}

γ ⋅ x≤α+ β⋅γ (4)  

where: α = scale parameter; β = location parameter; γ = shape 
parameter. 

The shape parameter could be used to understand the best fitting 
with respect to the limit forms of the distribution given above. This can 
be done according to the following rules: type I if γ = 0, type II if γ > 0, 
and type III if γ < 0. To this scope, three additional criteria can be used 
(VOSE, 2017; Akaike, 1974; Hannan and Quin, 1979; Schwartz, 1997): 

SIC= ln(n)⋅j − 2⋅ln(Lmax) information  criterion  I  (Schwarz, 1997) (5) 

Fig. 3. (a) Probability of bottom perforation; (b) Residual Useful Lifetime.  

Table 1 
Characteristics of the ASTs used in this investigation.  

ID Tank Substance No. plates Commissioning year 

TK01 Diesel fuel 203 1965 
TK02 Gasoline 59 1965 
TK03 Gasoline 122 1972 
TK04 Crude oil 84 2012 
TK05 Fuel oil 16 1954 
TK06 Diesel fuel 64 1972 
TK07 Diesel fuel 305 1975 
TK08 Diesel fuel 39 2000 
TK09 Gasoline 51 2000 
TK10 Gasoline 65 1997 
TK11 Diesel fuel 91 1997 
TK12 Diesel fuel 82 2006 
TK13 Diesel fuel 83 1984 
TK14 Diesel fuel 80 1965 
TK15 Diesel fuel 79 1965 
TK16 Gasoline 76 1965 
TK17 Gasoline 89 1965 
TK18 Naphtha solvent 59 1962 
TK19 Diesel fuel 209 1972 
TK20 Gasoline 209 1973 
TK21 Diesel fuel 231 1990 
TK22 Diesel fuel 88 1974 
TK23 Diesel fuel 120 1965  
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AIC =

(
2⋅n

n − j − 1

)

⋅j − 2⋅ln(Lmax) information  criterion  II  (Akaike, 1974)

(6)    

where: n = total number of measures; j = number of parameters to be 

estimated; 2 ln (Lmax) = estimate of the deviance from the model fit. 
The rule to use of these criteria is that the lower an information 

criterion, the better the fit. After the choice of the distribution type and 
its transformation to the type I, in case the best fitting is given by a type II 
or III distribution, the plot position can be constructed by introducing a 
reduced variate (y), which allows the linearization of the equation of the 

extreme value distribution: 

F(x)= exp
(

− exp
(

−
x − β

α

))

(8)  

y=
x − β

α (9)  

y= − ln
[

ln
(

1
/F(y)

)]

(10)  

where: F(x) = cumulative probability function (Gumbel distribution). 
By plotting y as a function of x, a straight line (plot position or Gumbel 

diagram) is obtained, whose slope and intercept respectively are 1/α and 
– (β/α). The cumulative probability is simply calculated by means of the 
following equation: 

F(y)=
i

n + 1
(11)  

where: i = rank of the measure; n = total number of measures. 

Fig. 4. Data collection from the bottom of a tank to produce extreme values: (a) by ultrasonic technique, and (b) by magnetic flux leakage technique.  

HQIC = 2 ⋅ ln[ln(n)] ⋅ j − 2⋅ln(Lmax) information  criterion  III  (Hannan  and  Quinn, 1979) (7)   

Table 2 
Characteristics of the investigated atmospheric storage tanks.  

Information Tank A Tank B 

Type Fixed roof tank External floating roof tank 
Substance Diesel fuel Gasoline 
Diameter 30 m 22 m 
Material bottom plates Carbon steel Carbon steel 
Number bottom plates 64 59 
Bottom area 707 m2 380 m2 

Nominal thickness 7.5 mm 7.7 mm 
Year of commissioning 1972 1965 
Year of inspection 1 2002 1997 
Technique for inspection 

1 
Visual inspection 
Ultrasonic Thickness 
Measure 

Visual inspection 
Ultrasonic Thickness 
Measure 

Year of inspection 2 2018 2019 
Technique for inspection 

2 
Visual inspection 
Ultrasonic Thickness 
Measure 

Magnetic Flux Leakage  
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2.3. Probability of the critical pit and predictions 

The plot position can be used to read the probability of a pit having a 
depth lower than a given value. As shown in Fig. 3a, a corrosion depth 
less or equal to 2.8 mm occurs with a probability of 0.94 (y = 2.9), hence 
a corrosion depth higher than 2.8 mm has a probability of 0.06. The 
probability of tank perforation, i.e. the probability of the pit, having a 
depth equal to the thickness of the tank bottom, can be directly read on 
the plot position or calculated by using the distribution parameters. 

The knowledge of the distribution of the scale and position param-
eters (which defines the pit depth probability distribution) over the time 
(a priori probability distributions) can be exploited to make a forecast of 
both parameters by means of the Bayesian inference. The Bayesian 
inference allows determining the posterior probability distribution of α 
and β after a certain time: 

χ′′(α|xmax)=
χ ′

(α)⋅f (xmax|α)∫
χ ′
(α)⋅f (xmax|α)⋅dα (12)  

λ′′(β|xmax)=
λ
′

(β)⋅f (xmax|β)
∫

λ′

(β)⋅f (xmax|β)⋅dβ
(13)  

where: χ′(α), λ′(β) = a priori probability distributions of α and β; χ” (α| 
xmax), λ” (β|xmax) = a posteriori probability distribution of α and β after a 
certain time; f (xmax|α), f (xmax|β) = likelihood functions; xmax =

maximum corrosion value detected during the last inspection. 
The prediction of the value of α and β at a given time is obtained by 

summing the products between the values of the parameter and related 
posterior probabilities. 

2.4. Residual useful lifetime 

The prediction of the parameters α and β at a given time allows 
elaborating a new plot position, which makes possible to determine the 
corrosion rate and the RUL. Once the probability of a corrosion depth (x) 
is higher than a given value is read on the current plot position, the 
corrosion associated with the same probability after a given period is 
obtained from the new plot position. 

For each probability, the corrosion depth can be plotted vs. time as 
shown in Fig. 3b. The trend is linear if it is extrapolated from two points, 
i.e. the current and predicted corrosion depths associated with the same 
probability. In case several previous inspections are available, the ten-
dence is not linear and can be represented by a curve that is the best 
fitting for the points associated with the past, current e predicted 
corrosion depths. The angular coefficient of the line/curve gives the 
corrosion rate, which will be constant in the case of a linear trend and 
variable for a no-linear one. By extrapolating the plot x vs. time (for a 
given probability), it is possible to determine tc that is the time when the 
critical thickness is reached with a probability P. The RUL is obtained by 
subtracting the current year from tc. 

3. Applicative examples 

3.1. Data collection 

As part of an agreement between INAIL and the association unem 
(Unione Energie per la Mobilità that is the Italian association of oil and 
associated industries), several inspections of the bottom of ASTs have 
been collected in 2020, these refers to the 23 tanks listed Table 1. The 
AST diameter ranges between 10 and 40 m and currently the average 
age is 42 years, even though most data was gathered a few years earlier. 
Some inspections have been performed by using the Ultrasound Tech-
nique (UTM) and others by means of the Magnetic Flux Leakage one 
(MFL). The investigation included the analysis of 2504 bottom plates. At 
least five measurements for each plate have been provided in the case of 
UTM, whilst MFL measurements could be basically considered contin-
uous and with a resolution of a few centimetres. Information about 
previous inspections and nominal thicknesses was available for most 
tanks. 

Two categories of liquid hydrocarbons were contained inside the 
ASTs, namely gasoline and diesel fuel. According to their typology, ASTs 
have been grouped into fixed and floating roof tanks, it must be pointed 
that internal floating roof tanks are unusual in Italy. Within each group, 
only those whose characteristics allow them being considered similar 
from the point of view of the corrosion mechanisms have been included. 
The main characteristics, accounted for during the selection, were the 
combination of stored product and bottom material, the size and con-
struction characteristics and the internal and external conditions. 

For the purposes of this study, the following classification has been 
possible:  

• group 1: fixed roof tank containing diesel fuel,  
• group 2: external floating roof tank containing gasoline. 

To show the application of the methodology illustrated in Section 2 
for the determination of the probability of perforation of the tank 
(current and predicted values) and the calculation of the residual useful 

Table 3 
Basic statistics for bottom inspections.  

Tank ID inspection Year Inspection technique Average thickness Standard deviation Maximum corrosion depth 

A 1 2002 UTM 7.11 mm 0.164 0.8 mm 
2 2018 UTM 6.63 mm 0.303 1.8 mm 

B 1 1997 UTM 6.38 mm 0.270 2.5 mm 
2 2019 MFL 4.73 mm 0.419 4.34 mm  

Table 4 
Scale and location parameters (first inspection).  

ID Tank Substance Distribution parameter Inspection time (year) 

α β 

TK01 Diesel fuel 0.152 1.194 25 
TK02 Gasoline 0.243 1.185 32 
TK03 Gasoline 0.276 0.229 14 
TK04 Crude oil 0.038 0.089 7 
TK05 Fuel oil 0.496 1.005 51 
TK06 Diesel fuel 0.143 0.307 30 
TK07 Diesel fuel 0.187 0.839 44 
TK08 Diesel fuel 0.061 0.203 16 
TK09 Gasoline 0.081 0.320 19 
TK10 Gasoline 0.062 0.160 44 
TK11 Diesel fuel 0.321 0.521 22 
TK12 Diesel fuel 0.076 0.204 13 
TK13 Diesel fuel 0.258 0.428 33 
TK14 Diesel fuel 0.128 0.639 54 
TK15 Diesel fuel 0.334 0.714 51 
TK16 Gasoline 0.282 0.359 44 
TK17 Gasoline 0.118 0.528 52 
TK18 Naphtha solvent 0.261 2.041 48 
TK19 Diesel fuel 0.127 0.824 25 
TK20 Gasoline 0.189 0.182 42 
TK21 Diesel fuel 0.215 0.718 23 
TK22 Diesel fuel 0.246 2.282 30 
TK23 Diesel fuel 0.298 1.123 46  
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Fig. 5. Cumulative distribution curves for the inspection of (a) Tank A in 1990; (b) Tank A in 2019; (c) Tank B in 1997; (d) Tank B in 2019.  

Fig. 6. Plot positions: (a) Tank A and (b) Tank B.  
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lifetime, two cases have been selected, i.e. a fixed roof tank containing 
diesel fuel and a floating roof tank storing gasoline. The ASTs of Table 1 
have been used to investigate the temporal trend of the distribution 
parameters in order to include the knowledge derived from inspections 
in similar contexts within the forecast model. 

3.2. Data sampling 

According to the guidelines of HSE (2002) for the use of statistics in 
the analysis of corrosion, each bottom of tank must firstly be divided 
into sample areas to be inspected (areas with similar corrosion proper-
ties) and within each area a few samples (so-called patches) must be 
identified. 

Before 2011, the inspections made for the tanks of Table 1 have been 
made by ultrasonic thickness gauging from the topside, which also 
determined if there was underside corrosion at each measured location. 
Through this sampling technique, only a small percentage of the floor 
has been gauged, therefore, to reduce the possibility that significant 
corrosion could be undetected, a careful visual inspection has been al-
ways performed before and after these measurements. The visual in-
spection also allowed the distinction between topside and underside 
corrosion. When UTM measurements of the bottom are available, the 
sample areas are the plates, but a rigorous subdivision into patches is 
usually not carried out and the number of measures per plate is very 

small. However, it should be noted that the visual inspection allows 
identifying the areas where there are the highest levels of corrosion and 
therefore the points where the measurements should be carried out 
(Fig. 4a). These points represent the locations where the minimum value 
of thickness is detected for each hypothetical patch and, thus, the 
maximum corrosion depths. Generally, at least 5 random readings are 
performed per patch. 

The most recent inspections (after 2011) have been performed by 
monitoring the changes in magnetic flux. The technique cannot be used 
to inspect welded areas or those immediately adjacent to the shell. The 
use of these techniques permits to inspect much larger percentages of the 
bottom by means of several scrapings per plate made by the movement 
of the device (Fig. 4b). The effective scanned area is ~100% and the loss 
of thickness is reported in a scale of 20%, 40%, 60% and 80% of material 
loss. All areas should be further investigated by visual inspection to 
assess whether the corrosive attack is topside of underside of the bottom 
plates. 

3.3. Case-studies 

The case studies are two large atmospheric storage tanks. Their 
characteristics are given in Table 2: Tank A is representative of group 1 
and tank B of group 2. The basic statistics for the bottom inspections are 
summarised in Table 3. 

The sets of the maximum corrosion depths were extracted from the 
data collected during each inspection. The corrosion depth is the dif-
ference between the nominal thickness of the plate and the measured 
thickness: 

x= so − s (14)  

where: x = corrosion depth; so = nominal thickness of the plate; s =
measured thickness. 

4. Data analysis and discussion 

For each inspection of the bottom of the ASTs of Table 1, the ex-
tremes value theory has been applied as indicated in Section 2.2. After 

Table 5 
Parameters of the distributions and probability of the critical pit.  

Tank A 

Parameter Inspection 2002 Inspection 2018 

scale parameter α 0.143 0.258 
location parameters β 0.307 0.723 
probability critical pit (x > 5 mm) 5.11⋅10− 15 6.32⋅10− 8  

Tank B 
Parameter Inspection 1997 Inspection 2019 
scale parameter α 0.242 0.364 
location parameters β 1.181 2.768 
probability critical pit (x > 5.2 mm) 6.34⋅10− 8 0.001  

Fig. 7. A priori and posteriori distributions for the scale and location parameters used for the validation.  
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the identification of the probability distribution that best fit the corro-
sion depths, the values of the scale and position parameters have been 
estimated (Table 4). By using past inspections, an approximate temporal 
dependence has been obtained for both parameters by interpolating the 
data as suggested by Shibata (1991) and choosing the best fitting curve. 
By overlapping all temporal trends of the scale and position parameters 
of the tanks that belong to the same group, it was possible to determine 
the distribution of the parameters at any given time (a priori probability 
distribution). These curves are given in the Supplementary materials 
(Figure S1 and S2). 

4.1. Application of the extreme values theory and selection of the best 
fitting distribution 

The sets of maximum corrosion depths, collected during the in-
spections 1 and 2 of the bottom of the tank A and B, have been analysed. 
The data fitting, made with the ModelRisk (VOSE, 2017), gave the cu-
mulative distribution curves of Fig. 5 (the parameters of each distribu-
tion obtained with the ModelRisk are given in the Supplementary 
materials – Table S1). The data of both inspections of Tank A fits the type 
I distribution, even if there is a small overlap for higher x with type II in 
2002; whereas the inspection data of Tank B overlaps the type I for both 
inspections, except a small overlap with type III in 1997 for higher x. The 

application of the information criteria confirms the type I as the best 
fitting distribution for Tank A and Tank B. The values of SIC, AIC and 
HQIC are shown in the Supplementary Materials (Table S1). 

4.2. Probability of the critical pit and predictions 

By using the most recent plot positions (defined as in Section 2.3), it 
was possible to determine the current probabilities of having a pit’s 
depth less or equal to the critical value. The critical depth has been 
assumed to be the nominal thickness of the plate subtracted by 2.5 mm, 
which is the threshold value proposed by EEMUA (2014). It must be 
emphasised that this is a very conservative value, i.e. the precautionary 
depth. Unlike the shell of the tank, there is no structural damage risk for 
the bottom but only the risk of perforation. 

The parameters of the distribution have been obtained through a 
linear regression of the plot y vs. x. These have been compared with 
those obtained from the ModelRisk. The probabilities of the pit having a 
depth less or equal to the critical value cannot be read from Fig. 6a and 
b, these have been numerically calculated by using the parameters of the 
distributions and Equation (9). Table 5 gives the values of α and β and 
the probability of the critical pit for each inspection of Tank A and Tank 
B. By comparing the evolution of the phenomenon over the time, the 
mode of the Gumbel distribution (β) became greater during the last in- 
service period, as well as the scale parameter (α). The change of α is 
due to the increase of the variances of the maximum depth caused by the 
evolution of the localised corrosion. The probabilities are absolutely 
negligible for both ASTs, expect for the second inspection of Tank B 
when the value 0.001 is reached, therefore interventions are required to 
make safe the bottom and prevent releases of dangerous substances. 

The application of the EVT combined with Bayesian inference to the 
data collected during the inspection 2 of both tanks (as indicated in 
Section 2.3) has been used to predict the trend of corrosion maxima and 
the probability of the critical pit after 10 years. The forecast model has 
been firstly validated by comparing the predictions at the time of the 
second inspection, obtained with the data of first ones, and the results of 
the application of the EVT to the data of the second inspections. 

To apply the Bayesian inference, the a priori distributions of α and β 
were needed, thus, to obtain them the dataset of Table 1 has been used as 
described in Section 4. The best fitting for the curves α vs. t and β vs. t 

Fig. 8. Actual plot positions and forecast: (a) Tank A and (b) Tank B.  

Table 6 
Parameters of the distributions and probability of the critical pit.  

Tank A 

Parameter Forecast value (2018) Actual value (2018) 

scale parameter α 0.297 0.258 
location parameters β 0.762 0.723 
probability critical pit (x > 5 mm) 6.35⋅10− 7 6.32⋅10− 8  

Tank B 
Parameter Forecast value 

(2019) 
Actual value 
(2019) 

scale parameter α 0.463 0.364 
location parameters β 2.693 2.768 
probability critical pit (x > 5.2 

mm) 
0.004 0.001  
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was given by a power function with two parameters. By overlapping all 
temporal trends of the scale and position parameters it was possible to 
determine the a priori probability distributions of α and β respectively 
after 16 years for Tank A and 22 years for Tank B i.e. the year of the 
second inspections. The posteriori distributions have been obtained by 
means of Equations (12) and (13) and are shown in Fig. 7, together with 
the a priori distributions. In these figures each value of α and β is 
representative of a class as indicated each legend. Table 6 shows the 
expected values of α and β at the time of the second inspection for both 
tanks. 

The previsions can be considered acceptable and, almost in all cases, 
do not underestimate the parameters of the distribution. It can be stated 
that the model slightly overestimated the phenomenon; however, the 
overestimation is about 0.05 mm in corrosion depth, corresponding to a 
value that is not detected during the inspections. These errors are re-
flected in the predictions of the probability of the critical pit and are 
negligible. 

After verifying the validity of the forecast model, it has been applied 
to predict the conditions of both tanks 10 years later the second in-
spection (i.e. 56 years for Tank A and 64 years for Tank B). The results 
are shown through the plot positions of Fig. 8, while the values of α and β 
and the probabilities of the critical pit are shown in Table 7. For Tank A, 
it is observed that the 99% of pits have depth minor or equal to 2 mm in 
2018, with the same probability it is expected the depth increases to 
3.60 mm in 2028; whereas for Tank B the 99% of pits have depth minor 
or equal to 4.60 mm in 2019 and with the same probability it will 

increase to 5.10 mm in 2029. 

4.3. Residual lifetime and time to next inspection 

The plot positions for the second inspection of Tank A and B and the 
expected trend after 10 years (Fig. 8) have been used to estimate the RUL 
(this parameter is calculated by referring to the bottom of the tank). The 
evolution of the corrosive phenomenon is given in Fig. 9 by plotting the 
values of the corrosion depth associated with the probabilities 0.99 and 
0.95 (read from the plot positions of Fig. 8) against the time i.e. the 
inspection year. Since it is not possible to define the evolution trend of 
the phenomenon because only three points per tank are available, it has 
been conservatively assumed linear based on the data of the last in-
spection and the expected trend after 10 years. The corrosion rate has 
also been derived as the slope of the line. The value of the RUL and the 
corrosion rates are summarised in Table 8. By referring to the date of the 
second inspection, the conditions are favourable for an extension of 19 
years for Tank A and 12 years for Tank B with a probability of 99%. 

5. Conclusions 

The operators of major hazard establishments in managing ASTs 
must balance two opposite needs: on one side more frequent inspections 
are desirable to prevent leakages from the bottom, on the other one 
numerous inspections lead to excessive costs and unnecessary occupa-
tional risks, related to the tank reclamation and to the entrance of 
workers inside the vessel. The results of this study show that a more 
accurate assessment is possible in order to get the maximum time in-
terval that can be applied between successive inspections, with a very 
low risk of bottom leakages. The proposed method has been developed 
by exploiting a significant and representative sample of the typical ASTs, 
collected in Italy in refineries and oil terminals. The robustness of the 
used maths has been demonstrated in the detail in the two case studies. 
The results make the managers confident in the method as well as the 
authorities that have the duty to assure ASTs’ integrity according to the 
aforementioned European Directives. 

With the new “green deal”, some tanks could be used for the storage 
of new low-carbon fuels, while others could continue operating with 
traditional ones, which will survive for a few years. Furthermore, some 
ASTs will be out of service in a short time, due to the decreased demand 

Table 7 
Forecasts (parameters of the distributions and probability of the critical pit).  

Tank A 

Parameter 2028 

scale parameter α 0.454 
location parameters β 1.310 
probability critical pit (x > 5 mm)a 0.114  

Tank B 
Parameter 2029 
scale parameter α 0.382 
location parameters β 3.213 
probability critical pit (x > 5.2 mm) 0.005  

a Value obtained by means of equation (3). 

Fig. 9. Trend of the corrosive phenomenon and RUL: (a) Tank A and (b) Tank B.  
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for liquid fuels that are replaced by fuels not suitable for ASTs or directly 
by electricity. These circumstances imply that many old equipment will 
still have to be in-service for long time and accurate safety assessments 
of their operating will become important. 

The double exponential fitting, discussed in this paper, could be 
suitable to describe localised corrosion for further items, including roofs 
and shells, annular rings and connected piping. Thus, even for those, the 
use of Bayesian prediction function could be essential for a more 
detailed evaluation of the likelihood of rupture and consequent optimal 
decision about time and mode for planning integrity inspection and 
monitoring. In the current Seveso practice, the mandatory quantitative 
risk assessment deals with random ruptures of tanks and pipes and uses 
frequency taken from the API standard or other technical sourses and 
correction factors (management factor and damage factor). The use of 
double exponential and Bayes formula could lead to a much more 
realistic and precise frequency evaluation and, consequently, to more 
effective actions to control the hazard of major accident in chemical and 
petrochemical industry. 
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