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Abstract: We introduce a family of hypergroups, called weakly complete, generalizing the con-
struction of complete hypergroups. Starting from a given group G, our construction prescribes the
β-classes of the hypergroups and allows some hyperproducts not to be complete parts, based on a
suitably defined relation over G. The commutativity degree of weakly complete hypergroups can
be related to that of the underlying group. Furthermore, in analogy to the degree of commutativity,
we introduce the degree of completeness of finite hypergroups and analyze this degree for weakly
complete hypergroups in terms of their β-classes.
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1. Introduction

We refer to hypercompositional algebra as the branch of algebra concerned with
hypercompositional structures, that is, algebraic structures where the composition of two
elements is a nonempty set rather than a single element [1]. Although hypercompositional
algebra differs from classic algebra in its subjects, methods, and goals, the two fields are
connected by certain equivalence relations, called fundamental relations [2,3]. Through the
fundamental relations, hypercompositional algebra can make use of the wealth of tools
typical of traditional algebra.

A fundamental relation is the smallest equivalence relation defined on a hypercomposi-
tional structure such that the corresponding quotient is a classic structure whose operational
properties are analogous to those of the original structure [4,5]. For example, the quotient of
a hypergroup modulo the equivalence β is isomorphic to a group [6–8]. On the other hand,
given a group G and a family F = {Ak}k∈G of nonempty and pairwise disjoint sets, the set
H =

⋃
k∈G Ak equipped with the hyperproduct x ◦ y = Aij, for all x ∈ Ai and y ∈ Aj, is a

hypergroup. Hypergroups built in this way are called complete [4] and have the property
that the β-classes are the sets Ak. For any nonempty subset A of a hypergroup (H, ◦), the set
C(A) =

⋃
a∈A β(a) is the complete closure of A. Hence, a hypergroup (H, ◦) is complete if

and only if x ◦ y = C(x ◦ y), for all x, y ∈ H. Complete hypergroups have been the subject
of many studies, see, e.g., [9–12], because they have a variety of group-like properties.
Notably, in [13], the authors define the commutativity degree of complete hypergroups and
characterize it with an identity that is analogous to the class equation for groups. Recall
that the commutativity degree of a finite group G was defined by W. Gustafson in [14] as
the probability that two randomly chosen elements commute,

d(G) =
|{(x, y) ∈ G2 | xy = yx}|

|G|2 .
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Inspired by this concept, in [13] the commutativity degree of a finite hypergroup (H, ◦)
is defined as

d(H) =
|{(x, y) ∈ H2 | x ◦ y = y ◦ x}|

|H|2 .

The probabilistic interpretation of this number is completely analogous to that for
groups. In this paper, we define the completeness degree of a finite hypergroup (H, ◦) as
the number

∆(H) =
|{(x, y) ∈ H2 | C(x ◦ y) = x ◦ y}|

|H|2 ,

and determine some formulas which allow us to compute the previous numbers for a
special class of hypergroups, called weakly complete, that include complete hypergroups.

The plan of this paper is the following: In Section 2, we introduce definitions, notations,
and fundamental facts to be used throughout the paper. In Section 3, we give the definition
of product-free relations on a group G and study their main characteristics. In particular,
we characterize product-free relations that are maximal with respect to inclusion. In
Section 4, we present a new construction of hypergroups. These hypergroups are called
weakly complete and are defined using a product-free relation I on a group G, a family
{Ak : k ∈ G} of nonempty and pairwise disjoint sets and a special family of functions
{ϕi,j : (i, j) ∈ I}. The main features of these hypergroups are discussed in this section. The
completeness degree ∆(H) of finite weakly complete hypergroups is defined and analyzed
in Section 5. There, we prove lower bounds for ∆(H) that depend only on the size of
the β-classes of H. Finally, in Section 6, we discuss the commutativity degree d(H) of
finite weakly complete hypergroups, and establish relations between d(H) and ∆(H). In
particular, in our last theorem we prove that, if the cardinality of Ak does not depend on k,
then |d(H)− ∆(H)| ≤ 1

4 .

2. Basic Definitions and Notations

We adopt from known texbooks [1,4,5] standard definitions of basic concepts in
hypercompositional algebra, such as semihypergroups and hypergroups. For the reader’s
convenience, we present below a few concepts that are needed in this work.

Given a semihypergroup (H, ◦), the relation β ⊆ H × H is defined as β = ∪n≥1βn,
where β1 is the diagonal relation in H and, for every integer n > 1, βn is defined as follows:

xβny ⇐⇒ ∃z1, . . . , zn ∈ H : {x, y} ⊆ z1 ◦ z2 ◦ · · · ◦ zn, (1)

see, e.g., [2,3]. This relation is one of the main fundamental relations alluded to in the
Introduction. For some special families of semihypergroups, β is transitive; see, e.g., [15,16].
In particular, if (H, ◦), is a hypergroup then β is an equivalence relation, see [7,8], and we
have the chain of inclusions

β1 ⊆ β2 ⊆ β3 ⊆ · · · ⊆ βn · · · . (2)

Moreover, the quotient set H/β equipped with the operation β(x)⊗ β(y) = β(z) for
all x, y ∈ H and z ∈ x ◦ y, is a group. More precisely, β is the smallest strongly regular
equivalence on H such that the quotient H/β is a group [2]. The canonical epimorphism
π : H 7→ H/β fulfills the identity π(x ◦ y) = π(x)⊗ π(y) for all x, y ∈ H, and the kernel
ωH = π−1(1H/β) of π is the heart of (H, ◦).

Let (H, ◦) be a hypergroup. We say that a nonempty subset A ⊆ H is a complete part
if for every n ≥ 1 and x1, x2, . . . , xn ∈ H,

(x1 ◦ x2 ◦ · · · ◦ xn) ∩ A 6= ∅ =⇒ x1 ◦ x2 ◦ · · · ◦ xn ⊆ A.
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The complete closure of A is the intersection of all complete parts containing A and is
denoted with C(A). Using the canonical projection π : H 7→ H/β∗, the complete closure of
A can be characterized as follows:

C(A) = π−1(π(A)) = A ◦ωH = ωH ◦ A.

A hypergroup (H, ◦) is complete if x ◦ y = C(x ◦ y) for all x, y ∈ H. In other words,
(H, ◦) is a complete hypergroup if x ◦ y = C(a) = β(a) for every (x, y) ∈ H2 and a ∈ x ◦ y.

Finally, let G be a group and let I ⊆ G× G be a binary relation on G. We denote IT the
transpose relation of I ⊆ G× G, that is, (a, b) ∈ I ⇔ (b, a) ∈ IT . Furthermore, we associate
with I the span and support sets defined below:

Span(I) = {ij : (i, j) ∈ I},
Supp(I) = {i ∈ G∗ : ∃j ∈ G∗ : (i, j) ∈ I or (j, i) ∈ I}.

Here and in the following, G∗ denotes the set G \ {1G}.

3. Product-Free Relations on a Group

The class of complete hypergroups is among the best known in hypergroup theory,
and is characterized by the fact that the hyperproduct of any two elements is a β-class.
These hypergroups were introduced by P. Corsini in [4] and can be built by considering
a group G and a family F = {Ak}k∈G of nonempty and pairwise disjoint sets. The set
H =

⋃
k∈G Ak is endowed with the product x ◦ y = Aij for x ∈ Ai and y ∈ Aj. Then,

(H, ◦) is a complete hypergroup and the β-classes of (H, ◦) are the sets Ak. In this section,
we introduce a special family of binary relations in a group G. These relations will allow
us to define in the next section the class of hypergroups that generalize that of complete
hypergroups and is the main subject of this work.

Definition 1. Let G be a group. A binary relation I ⊆ G×G is called product-free or PF-relation
if, for all i, j, k ∈ G,

(i, j) ∈ I =⇒ (ij, k) /∈ I and (k, ij) /∈ I.

PFG denotes the family of all PF-relations in the group G. If I ∈ PFG and (i, j) ∈ I,
then the elements i, j are different from 1G. Otherwise, if, for example, i = 1G, then we
have the contradiction (i, j) = (i, 1G j) = (i, ij) 6∈ I. As a consequence, if |G| = 1, then PFG
reduces to the empty relation. Hence, if I 6= ∅, then |G| ≥ 2 and I ⊂ G∗ × G∗.

Our first result provides a characterization of PF-relations in terms of support and
span sets. Subsequently, we analyze the structure of PFG and provide some examples.

Lemma 1. Let I ⊆ G× G. Then, I ∈ PFG if and only if Supp(I) ∩ Span(I) = ∅.

Proof. If x ∈ Supp(I) ∩ Span(I), then (x, y) ∈ I or (y, x) ∈ I for some y ∈ G∗ and there
exists (i, j) ∈ I such that ij = x. We obtain (ij, y) ∈ I or (y, ij) ∈ I, a contradiction.
Conversely, if I /∈ PFG, then there exists (i, j) ∈ I and y ∈ G such that (ij, y) ∈ I or
(y, ij) ∈ I. However, then we have ij ∈ Supp(I) ∩ Span(I).

Below we provide a couple of examples of how PF-relations can be built.

Example 1. Let G be a group. For any subset S ⊆ G∗, let IS be the relation

IS = {(i, j) : i, j ∈ S, ij /∈ S}.

It is can be seen that Supp(IS) ⊆ S and Span(IS) ⊆ G \ S. Hence, IS ∈ PFG by Lemma 1.
For example, IG∗ is the relation consisting of the pairs (x, x−1) for x ∈ G∗. On the other hand, I1G
is the empty relation.
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Example 2. Let G and G′ be groups. Moreover, let I ∈ PFG and I′ ∈ PFG′ . Then, the direct
product relation

I ⊗ I′ = {((a, a′), (b, b′)) | (a, b) ∈ I, (a′, b′) ∈ I′}

is a PF-relation on the direct product G× G′. Indeed, Supp(I ⊗ I′) = Supp(I)× Supp(I′) and
Span(I ⊗ I′) ⊆ Span(I)× Span(I′), so the claim follows from Lemma 1.

The following features of PF-relations are self-evident, so we refrain from including
a proof.

• Every subset of a PF-relation is a PF-relation.
• If I1, I2 ∈ PFG, then I1 ∩ I2 ∈ PFG.
• Let G be abelian. Then, I ∈ PFG if and only if IT ∈ PFG.

Hereafter, we show that no PF-relation can contain more than a quarter of all possible
pairs of elements in the group. This result will play an important role in the forthcom-
ing sections.

Theorem 1. Let G be a finite group and I ∈ PFG. Then, |I| ≤ |G|2/4.

Proof. For notational simplicity, let S = Supp(I). For any element i ∈ S, let S(i) = {j ∈ G :
(i, j) ∈ I} andR(i) = {ij : j ∈ S(i)}. Obviously, S(i) andR(i) have the same cardinality,
since the application fi : S(i) → R(i) such that fi(j) = ij is bijective. Since R(i) ⊆ G \ S,
we have

|R(i)| ≤ |G \ S| = |G| − |S|.

Moreover,

|I| =
∣∣∣∣⋃

i∈S
S(i)

∣∣∣∣ ≤ ∑
i∈S
|S(i)| = ∑

i∈S
|R(i)| ≤ |S|(|G| − |S|).

To maximize the rightmost quantity, we set |S| = |G|/2, and we have the claim.

The following example shows that the inequality in the preceding theorem is the best
possible, since it can hold as an equality.

Example 3. Let G = (Zm,+), where m ≥ 2 is even. Consider the following relation I ⊂ G× G:

(i, j) ∈ I ⇐⇒ i ≡ j ≡ 1 (mod 2).

It is easy to see that Span(I) = {i ∈ Zm : i ≡ 0 (mod 2)} and Supp(I) = {i ∈ Zm : i ≡ 1
(mod 2)}. Hence, I ∈ PFG by Lemma 1. Finally, |Span(I)| = |Supp(I)| = m/2 and |I| =
|G|2/4.

Maximal PF-Relations

PF-relations can be semi-ordered by inclusion; hence, it is worth considering maximal
elements in PFG, with regard to their existence and characterization. The existence of
maximal relations is shown in the forthcoming result.

Proposition 1. The family PFG of PF-relations on G has at least one maximal element.

Proof. The family PFG is nonempty because it contains the empty relation. Moreover,
for each chain {Rj}j∈J in the partially ordered set (PFG,⊆), the relation R̂ = ∪j∈J Rj is
product free. Indeed, if (x, y) ∈ R̂ and by chance there exists z ∈ G such that (xy, z) ∈ R̂,
then there exist j1, j2 ∈ J such that (x, y) ∈ Rj1 and (xy, z) ∈ Rj2 . Since {Rj}j∈J is a chain,
we can assume that Rj1 ⊂ Rj2 , and so {(x, y), (xy, z)} ⊆ Rj2 , which is impossible because
Rj2 ∈ PFG. Hence, R̂ is a upper bound of {Rj}j∈J . By Zorn’s Lemma, in PFG there exists a
maximal element.
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Using an argument similar to the previous one, we also have that every PF-relation I
on a group G is contained in a maximal PF-relation M. It suffices to apply Zorn’s lemma to
the family of PF-relations that contain I. Hence, we have the following result:

Proposition 2. Let I ∈ PFG. Then, there exists a maximal PF-relation M ∈ PFG such that
I ⊆ M.

Remark 1. Every maximal PF-relation M in an abelian group G is symmetric. Indeed, if (x, y) ∈
M and (y, x) 6∈ M, then M ∪ {(y, x)} is a PF-relation and M ⊂ M ∪ {(y, x)}. The same fact is
not true if the group is not abelian, as shown in the following example. Let G be a noncommutative
group with two elements a, b ∈ G − {1G} such that ab 6= 1G, a2 = 1G and ab 6= ba, e.g.,
the symmetric group S3. In these hypotheses, a 6= b and the relation I = {(a, b), (a, ba)} are
product free. If M ∈ PFG is maximal and I ⊆ M, then we have (b, a) 6∈ M since (a, ba) ∈ M.

The empty relation is maximal if and only if G is trivial. In the next result, we give a
necessary and sufficient condition for a PF-relation to be maximal.

Theorem 2. Let G be a group and let I ∈ PFG. Moreover, let

I = {(x, y) : xy ∈ Supp(I) or {x, y} ∩ Span(I) 6= ∅}.

Then, we have

1. I ∩ I = ∅;
2. I is maximal if and only if I ∪ I = G∗ × G∗.

Proof. If I = ∅ then the claim is trivial, so suppose I 6= ∅. Note that I admits the
alternative definition

I = {(x, y) ∈ G∗ × G∗ | ∃ (i, j) ∈ I : xy ∈ {i, j} or ij ∈ {x, y}}.

1. Let (x, y) ∈ I ∩ I. By hypotesis, there exists (i, j) ∈ I such that xy ∈ {i, j} or
ij ∈ {x, y}. If xy = i (resp., xy = j), then (xy, j) ∈ I (resp., (i, xy) ∈ I), which contradicts
(x, y) ∈ I. Similarly, if ij = x (resp., ij = y) then (ij, y) ∈ I (resp., (x, ij) ∈ I), which
contradicts (i, j) ∈ I.

2. By point 1, if I ∪ I = G∗ × G∗, then I is maximal. On the other hand, let I be
maximal and (x, y) ∈ G∗ × G∗ with (x, y) 6∈ I. Since I ∪ {(x, y)} is not a PF-relation, two
cases are possible:

(a) There exist (i, j) ∈ I and k ∈ G∗ such that (x, y) = (ij, k) or (x, y) = (k, ij).
(b) There exists k ∈ G∗ such that (xy, k) ∈ I or (k, xy) ∈ I.

In the first case, we obtain x = ij or y = ij; hence, (x, y) ∈ I. In the second case, we
have (x, y) ∈ I because xy ∈ {xy, k}. In both cases, we obtain I ∪ I = G∗ × G∗.

Remark 2. We observe that if I and I′ are maximal PF-relations, then the tensor product relation
I ⊗ I′ is not necessarily maximal. For example, let G = {1G, a} and G′ = {1G′ , a′, b′} be groups
isomorphic to (Z2,+) and (Z3,+), respectively. Moreover, let I = {(a, a)} ⊂ G × G and
I′ = {(a′, b′), (b′, a′)} ⊂ G′ × G′. The relations I and I′ are maximal PF-relations. However,
the tensor product relation I ⊗ I′ = {((a, a′), (a, b′)), ((a, b′), (a, a′))} is not maximal because it
is contained in the following PF-relation on G× G′:

T = I ⊗ I′ ∪ {((1G, a′), (1G, a′))}.

4. Weakly Complete Hypergroups

In this section, we introduce a new class of hypergroups, whose construction is
fundamentally based on PF-relations. We introduce a few auxiliary concepts and notations



Mathematics 2022, 10, 981 6 of 17

for background information. In what follows, we denote P∗(X) the collection of nonempty
subsets of the set X.

Definition 2. Let A, B, C be nonempty sets. A function ϕ : A × B 7→ P∗(C) is a double
covering, or bi-covering for short, if for all a ∈ A and b ∈ B we have⋃

x∈B
ϕ(a, x) =

⋃
x∈A

ϕ(x, b) = C. (3)

A bi-covering ϕ : A× B 7→ P∗(C) is called trivial if ϕ(a, b) = C for all a ∈ A and b ∈ B,
and proper if ϕ(a, b) ⊂ C for all a ∈ A and b ∈ B.

Example 4. Bi-covering functions can be constructed by considering a group G and three nonempty
sets A, B, C of size ≥ |G|. If α : A→ G, β : B→ G and γ : C → G are three surjective functions;
then, the function ϕ : A× B→ P∗(C) such that ϕ(a, b) = γ−1(α(a)β(b)), for all (a, b) ∈ A× B,
is bi-covering. Indeed, we trivially have

⋃
x∈B ϕ(a, x) ⊆ C, for all a ∈ A. Moreover, if c ∈ C, then,

taking b ∈ β−1(α(a)−1γ(c)), we have β(b) = α(a)−1γ(c) and we obtain

c ∈ γ−1(γ(c)) = γ−1(α(a)β(b)) = ϕ(a, b) ⊆
⋃

x∈B
ϕ(a, x).

Hence,
⋃

x∈B ϕ(a, x) = C for all a ∈ A. Analogous arguments prove that
⋃

x∈A ϕ(x, b) = C,
for all b ∈ B. Thus, ϕ is a bi-covering. We note in passing that in the previous construction the role
of the group G can be played by an arbitrary hypergroup.

Let G be a group and let I be a relation on G. Consider a family F = {Ak}k∈G of
nonempty and pairwise disjoint sets, and let I = {ϕi,j}(i,j)∈I be a family of bi-coverings
ϕi,j : Ai × Aj 7→ P∗(Aij). In particular, if I = ∅, then I = ∅. In the set, H =

⋃
k∈G Ak

introduce the hyperproduct ◦ : H × H 7→ P∗(H), defined as follows:

x ◦ y =

{
Aij if x ∈ Ai, y ∈ Aj and (i, j) 6∈ I
ϕi,j(x, y) if x ∈ Ai, y ∈ Aj and (i, j) ∈ I

(4)

for all x, y ∈ H. This hyperproduct is well defined because the sets in the family F =
{Ak}k∈G are nonempty and pairwise disjointed. The hyperproduct is naturally extended
to nonempty subsets of H as usual: For X, Y ∈ P∗(H) let

x ◦Y =
⋃

y∈Y
x ◦ y, X ◦ y =

⋃
x∈X

x ◦ y, X ◦Y =
⋃

x∈X,y∈Y
x ◦ y.

In particular, for every i, j ∈ G and x ∈ Aj, we have

Ai ◦ x = Aij, x ◦ Ai = Aji. (5)

Indeed, if (i, j) 6∈ I then Ai ◦ x =
⋃

y∈Ai
y ◦ x = Aij. Otherwise, if (i, j) ∈ I, then from

(3) we obtain Ai ◦ x =
⋃

y∈Ai
ϕi,j(y, x) = Aij. Analogously we can deduce that x ◦ Ai = Aji.

From this observation, it is not difficult to derive that if I = ∅ or all functions ϕi,j are trivial;
for every (i, j) ∈ I, then (H, ◦) is a complete hypergroup. The following result shows that
(H, ◦) is always a hypergroup under the sole condition that I ∈ PFG.

Theorem 3. Let I ∈ PFG. Then, in the previous notations,

(a) for every i, j, k ∈ G, x ∈ Ai, y ∈ Aj and z ∈ Ak, we have

(x ◦ y) ◦ z = Aijk = x ◦ (y ◦ z);

(b) for every integer n ≥ 3 and for every z1, z2, . . . , zn ∈ H there exists i ∈ G such that
z1 ◦ z2 ◦ · · · ◦ zn = Ai;
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(c) (H, ◦) is a hypergroup such that β = β2;

Proof. (a) Let i, j, k ∈ G, x ∈ Ai, y ∈ Aj and z ∈ Ak. If (i, j) 6∈ I and (j, k) 6∈ I, then we
have x ◦ y = Aij, y ◦ z = Ajk. Consequently, by (5) we obtain

(x ◦ y) ◦ z = Aij ◦ z = A(ij)k = Ai(jk) = x ◦ Ajk = x ◦ (y ◦ z).

If (i, j) ∈ I and (j, k) 6∈ I, we have (ij, k) 6∈ I, x ◦ y = ϕi,j(x, y) ⊆ Aij and y ◦ z = Ajk.
Moreover, for every a ∈ Aij we have a ◦ z = A(ij)k. Hence,

(x ◦ y) ◦ z =
⋃

a∈ϕi,j(x,y)

a ◦ z = A(ij)k.

Moreover, by (5), we obtain x ◦ (y ◦ z) = x ◦ Ajk = Ai(jk). Therefore, (x ◦ y) ◦ z =
x ◦ (y ◦ z). We obtain same result also when (i, j) 6∈ I and (j, k) ∈ I. Finally, if (i, j) ∈ I and
(j, k) ∈ I, we have x ◦ y = ϕi,j(x, y) ⊆ Aij and y ◦ z = ϕj,k(y, z) ⊆ Ajk. Since I is product
free, we have (ij, k) 6∈ I and (i, jk) 6∈ I. Thus,

(x ◦ y) ◦ z =
⋃

a∈ϕi,j(x,y)

a ◦ z = A(ij)k,

x ◦ (y ◦ z) =
⋃

b∈ϕj,k(y,z)

x ◦ b = Ai(jk).

Hence, also in this case (x ◦ y) ◦ z = x ◦ (y ◦ z) = Aijk.
(b) It suffices to apply (5) and the previous part a) and proceed by induction on n.
(c) To prove that (H, ◦) is a hypergroup, we only need to show that ◦ is reproducible.

Let x ∈ H and x ∈ Ai. Clearly, iG = G for all i ∈ G and, by Equation (5), we obtain

x ◦ H = x ◦
( ⋃

j∈G
Aj

)
=
⋃
j∈G

x ◦ Aj =
⋃
j∈G

Aij = H.

The identity H ◦ x = H follows analogously for every x ∈ H, so (H, ◦) is a hypergroup.
Finally, let xβy. By (2), there exists n ≥ 3 such that xβny. By point b), there exists i ∈ G such
that {x, y} ⊆ Ai. Now, let a ∈ A1G . Since (i, 1G) /∈ I, by (4) we have {x, y} ⊆ Ai = x ◦ a
and we deduce xβ2y.

Example 5. Let G be a group and let I ⊂ G × G be a relation on G. Consider a family F =
{Ak}k∈G of nonempty and pairwise disjoint sets such that |Ak| ≥ |G|, for all k ∈ G. Moreover,
let { fk : Ak → G}k∈G be a family of surjective functions. Proceeding as in Example 4, we obtain
a family of bi-covering functions I = {ϕi,j : Ai × Aj → P∗(Aij)}(i,j)∈I . If I ∈ PFG, then
Theorem 3 provides a hypergroup (H, ◦).

Remark 3. Product-free relations have a kind of optimality with respect to the rule (4). As shown
in Theorem 3, every hyperproduct defined in terms of a PF-relation is associative and reproducible,
independent of families F = {Ak}k∈G and I = {ϕi,j}(i,j)∈I . The same property does not hold in
general if the relation I is not a PF-relation. For example, consider the group (Z3,+), the relation
I = {(1, 1), (2, 2)}, the sets A0 = {a, b}, A1 = {c, d, e}, A2 = { f , g, h} and the bi-coverings
ϕ1,1 : A1 × A1 7→ P∗(A2), ϕ2,2, ϕ′2,2 : A2 × A2 7→ P∗(A1) defined as follows:

ϕ1,1 c d e
c A2 A2 f , g
d A2 f , g A2
e A2 A2 f , g

ϕ2,2 f g h
f A1 A1 c, d
g d, e A1 A1
h d, e A1 d, e

ϕ′2,2 f g h
f A1 A1 c
g d, e A1 A1
h d, e A1 d, e

Considering the functions ϕ1,1 and ϕ2,2, definition (4) returns the following hypergroup:
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◦1 a b c d e f g h
a A0 A0 A1 A1 A1 A2 A2 A2
b A0 A0 A1 A1 A1 A2 A2 A2
c A1 A1 A2 A2 f , g A0 A0 A0
d A1 A1 A2 f , g A2 A0 A0 A0
e A1 A1 A2 A2 f , g A0 A0 A0
f A2 A2 A0 A0 A0 A1 A1 c, d
g A2 A2 A0 A0 A0 d, e A1 A1
h A2 A2 A0 A0 A0 d, e A1 d, e

On the other hand, considering the functions ϕ1,1 and ϕ′2,2, we have the hyperproduct

◦1 a b c d e f g h
a A0 A0 A1 A1 A1 A2 A2 A2
b A0 A0 A1 A1 A1 A2 A2 A2
c A1 A1 A2 A2 f , g A0 A0 A0
d A1 A1 A2 f , g A2 A0 A0 A0
e A1 A1 A2 A2 f , g A0 A0 A0
f A2 A2 A0 A0 A0 A1 A1 c
g A2 A2 A0 A0 A0 d, e A1 A1
h A2 A2 A0 A0 A0 d, e A1 d, e

which is not associative since ( f ◦2 h) ◦2 e 6= f ◦2 (h ◦2 e). This example reveals a specific quality
of PF-relations: If a hyperproduct defined as in (4) is associative and reproducible, independent
of families F = {Ak}k∈G and I = {ϕi,j}(i,j)∈I , then the relation I is product free. This fact is
formalized in the following result.

Theorem 4. Let G be a group and suppose that I ⊂ G× G is not product free. Then, there exists a
family F = {Ak}k∈G of nonempty and pairwise disjoint sets and there exists a family of bi-coverings
I = {ϕi,j}(i,j)∈I such that the hyperproduct defined in (4) is not associative.

Proof. Firstly, note that we have I 6= ∅ as I /∈ PFG. The proof can be reduced to the
analysis of two cases: (a) there exists (i, j) ∈ I such that 1G ∈ {i, j}; and (b) there exists
i, j, k ∈ G∗ such that (i, j) ∈ I and (ij, k) ∈ I (or, equivalently, (k, ij) ∈ I).

(a) If i = j = 1G then it suffices to consider arbitrary families F and I where A1G =
{a, b} and the function ϕ1G ,1G is described by the following table:

ϕ1G ,1G a b
a b a
b a, b a, b

Then, associativity fails because (a ◦ a) ◦ a = {a, b} 6= {a} = a ◦ (a ◦ a). Otherwise,
without loss of generality, assume j = 1G and (1G, 1G) 6∈ I. Let F and I verify the following
conditions: |A`| = 2 for every ` ∈ G and |ϕp,q(x, y)| = 1 for all (p, q) ∈ I. Let x ∈ Ai and
y, z ∈ A1G . Then,

(x ◦ y) ◦ z = ϕi,1G (x, y) ◦ z = ϕi,1G (ϕi,1G (x, y), z).

Hence, |(x ◦ y) ◦ z| = 1. On the other hand, x ◦ (y ◦ z) = x ◦ A1G = Ai; hence
(x ◦ y) ◦ z 6= x ◦ (y ◦ z).

(b) Let F = {A` : ` ∈ G} and I = {ϕp,q : (p, q) ∈ I} be arbitrary families verifying the
following conditions: (b1) |A`| = 2 for every ` ∈ G; (b2) if (i, jk) ∈ I then ϕi,jk(x, y) = Aijk
for every x ∈ Ai and y ∈ Ajk; |ϕp,q(x, y)| = 1 in all remaining cases. Let x ∈ Ai, y ∈ Aj,
and z ∈ Ak. Then,

(x ◦ y) ◦ z = ϕi,j(x, y) ◦ z = ϕij,k(ϕi,j(x, y), z).



Mathematics 2022, 10, 981 9 of 17

Since 1G /∈ {i, j, k}, then (i, j) 6= (i, jk) and (ij, k) 6= (i, jk). Hence, |(x ◦ y) ◦ z| = 1 by
(b2). On the other hand, for some w ∈ y ◦ z ⊆ Ajk, we have

Aijk = x ◦ w ⊆ x ◦ (y ◦ z).

By (b1) we can conclude that (x ◦ y) ◦ z 6= x ◦ (y ◦ z). (The proof proceeds in a similar
way if (k, ij) ∈ I.)

Definition 3. The hypergroups (H, ◦) defined as in (4) with a PF-relation I are called weakly
complete. A weakly complete hypergroup is n-uniform if |Ai| = n for all i ∈ G; if the size n is not
relevant, then we simply call it uniform.

The term "weakly complete" originates from the following observations: Let (H, ◦) be a
weakly complete hypergroup built from families F = {Ak}k∈G and I = {ϕi,j}(i,j)∈I , and let
� be the hyperproduct obtained from the same set family F using only trivial bi-coverings.
Then, (H, �) is a complete hypergroup and x ◦ y ⊆ x � y for all x, y ∈ H. We also obtain the
same conclusion by replacing the given relation I with the empty relation. Furthermore,
both in complete hypergroups and weakly complete hypergroups, the fundamental relation
β coincides with β2, as shown in Theorem 3.

In the following, we use the notation (H, ◦) = W(G, I,F, I) to indicate a weakly
complete hypergroup whose hyperproduct ◦ is defined as (4) from I ∈ PFG and the
families F = {Ak}k∈G and I = {ϕi,j}(i,j)∈I . We callW(G, I,F, I) a representation of (H, ◦).
It is worth noting that a weakly complete hypergroup may have multiple representations.
Indeed, let (H, ◦) =W(G, I,F, I) and let (i, j) /∈ I. If the relation Ĩ = I ∪ {(i, j)} is product
free, then the same hypergroup admits the representationW(G, Ĩ,F, Ĩ) where Ĩ = I∪{ϕi,j}
and ϕi,j(x, y) = Aij for every x ∈ Ai and y ∈ Aj. However, all possible representations
of a given weakly complete hypergoup share the same group G and family F. This fact
should be evident from the following proposition, where we explain the algebraic role of
the parameters of a representation of a weakly complete hypergroup.

Proposition 3. Let (H, ◦) =W(G, I,F, I). Then, we have:

1. The sets Ai ∈ F are the β-classes of H, i.e, for every x ∈ H, x ∈ Ai ⇔ β(x) = Ai.
2. H/β ' G and ωH = A1G .
3. Every subhypergroup K of (H, ◦) is a complete part of H, that is, C(K) = K.
4. A subset K ⊆ H is a subhypergroup of (H, ◦) if and only if there exists a subgroup G′ of G

such that K =
⋃

i∈G′ Ai.

Proof. 1. Let x ∈ Ak and a ∈ A1G . Then, Ak = x ◦ a, and so y ∈ Ak implies yβ2x.
Conversely, if yβ2x, then there exist a, b ∈ H such that {x, y} ⊆ a ◦ b. By construction, there
exists r ∈ G such that a ◦ b ⊆ Ar. Therefore, since x ∈ Ak ∩ Ar and the sets of the family F

are pairwise disjoint, we obtain y ∈ a ◦ b ⊆ Ar = Ak. Hence, y ∈ Ak if and only if yβ2x. By
Theorem 3, we conclude Ak = β(x).

2. The map f : G 7→ H/β such that f (k) = Ak, for every k ∈ G, is a group isomorphism.
Moreover, we have ωH = A1G since 1H/β = f (1G) = A1G .

3. We must prove that β(x) ⊆ K, for all x ∈ K. By reproducibility of K, if x ∈ K
then there exists u ∈ K such that x ∈ x ◦ u. Considering the canonical epimorphism
π : H 7→ H/β, we obtain π(x) = π(x)⊗ π(u) and so π(u) = 1H/β. Hence, from point
2., we have u ∈ π−1(1H/β) = ωH = A1G . Consequently, ωH = A1G = u ◦ u ⊆ K and
β(x) = x ◦ωH ⊆ K ◦ K = K, for all x ∈ K.

4. Since iG′ = G′ = G′i, for all i ∈ G′, the proof of the implication⇐ is similar to the
one used in point 3. of Theorem 3 to prove that (H, ◦) is a hypergroup. Now, we prove
the implication ⇒. By point 1., the β-classes of (H, ◦) are the sets Ai, for all i ∈ G. Let
π : H 7→ H/β be the canonical epimorphism and f : H/β 7→ G be the isomorphism such
that f (Ai) = i, for all i ∈ G. If K is a subhypergroup of (H, ◦), then G′ = ( f ◦ π)(K) is a
subgroup of G. Moreover, if x ∈ K then there exists i ∈ G such that x ∈ Ai. By point 1.,
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we have Ai = β(x) and i = f (Ai) = f (π(x)) = ( f ◦ π)(x) ∈ G′. Hence, K ⊆ ⋃i∈G′ Ai. On
the other hand, if x ∈ ⋃i∈G′ Ai, there exists i ∈ G′ such that x ∈ Ai. Clearly, there exists
y ∈ K such that ( f ◦ π)(y) = i. If we suppose that y ∈ Aj, then we have Aj = β(y) and
i = ( f ◦ π)(y) = f (π(y)) = f (Aj) = j. Finally, by point 3., x ∈ Ai = Aj = β(y) ⊆ K.
Therefore,

⋃
i∈G′ Ai ⊆ K.

The following result, which follows from the definition of hyperproduct in (4) and point 1
in Proposition 3, describes all cases where a weakly complete hypergroup is complete.

Corollary 1. Let (H, ◦) =W(G, I,F, I).

1. If I = ∅, then (H, ◦) is complete;
2. if I 6= ∅, then (H, ◦) is complete ⇐⇒ ϕi,j is trivial, for every (i, j) ∈ I.

Example 6. Let (H, ◦) = W(G, I,F, I) such that |Ak| > 1 for some k ∈ G and |Ai| = 1 for
i 6= k. Then, (H, ◦) is complete, as a consequence of the previous corollary. Indeed, if (i, j) ∈ I and
ij 6= k, then |Aij| = 1 and ϕi,j is trivial. On the other hand, if k = ij then k 6∈ {i, j} because I is
product free. Thus, |Ai| = |Aj| = 1 and ϕi,j are trivial since it is a bi-covering.

The next example shows a weakly complete hypergroup that contains both complete
and noncomplete subhypergroups.

Example 7. Let G = {1, 2, 3, 4} be a group isomorphic to the Klein group Z2 ×Z2 where 1 = 1G.
Consider I = {(2, 2), (3, 3)}, A1 = {a, b}, A2 = {c, d}, A3 = {e, f } and A4 = {g}. In the set
H = {a, b, c, d, e, f , g, h}, define the hyperproduct represented in the following table:

◦ a b c d e f g
a A1 A1 A2 A2 A3 A3 A4
b A1 A1 A2 A2 A3 A3 A4
c A2 A2 a A1 A4 A4 A3
d A2 A2 b a A4 A4 A3
e A3 A3 A4 A4 b a A2
f A3 A3 A4 A4 a b A2
g A4 A4 A3 A3 A2 A2 A1

Then, (H, ◦) ia a weakly complete hypergroup. The subsets K1 = A1 ∪ A2, K2 = A1 ∪ A3,
K3 = A1 ∪ A4 are a subhypergroup of (H, ◦). Moreover, K3 is complete and K1 and K2 are not
complete.

The next theorem characterizes weakly complete hypergroups, in that it yields a
necessary and sufficient condition for a given hypergroup to be weakly complete, based on
the structure of its quotient group.

Theorem 5. Let (H, ◦) be a hypergroup, and let π : H 7→ H/β be the canonical projection.
Consider the following relation J ⊆ H/β× H/β:

J = {(i, j) : ∃x ∈ π−1(i), ∃y ∈ π−1(j) : x ◦ y 6= C(x ◦ y)}.

The following conditions are equivalent:

1. J is product free;
2. (H, ◦) is a weakly complete hypergroup.

Proof. Suppose that J is product free. For every i ∈ H/β, let Ai = π−1(i), and note that⋃
i Ai = H. For every (i, j) ∈ J
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introduce the function fi,j : Ai × Aj 7→ Aij such that fi,j(x, y) = x ◦ y. It is not difficult
to see that fi,j is a bi-covering. Indeed, for any fixed x ∈ Ai we have by construction

⋃
y∈Aj

fi,j(x, y) =
⋃

y∈Aj
x ◦ y = x ◦ Aj

= x ◦ (y ◦ωH)

= (x ◦ y) ◦ωH = C(x ◦ y) = Aij.

The identity
⋃

x∈Ai
fi,j(x, y) = Aij can be derived analogously, so fi,j is a bi-covering.

It remains to observe that (H, ◦) = W(H/β, J, {Ai}, { fi,j}), and we have the first part of
the claim.

Conversely, suppose that (H, ◦) is a weakly complete hypergroup, (H, ◦) =W(G, I,F, I).
Identifying G with H/β modulo an isomorphism, we have J ⊆ I. Indeed, let (i, j) ∈ J.
By hypotesis, there exist x, y ∈ H such that π(x) = i, π(y) = j and x ◦ y 6= C(x ◦ y).
Hence, (i, j) ∈ I by (4). This conclusion follows immediately from the fact that a subset of a
PF-relation is a PF-relation.

5. Completeness Degree of Finite Hypergroups

In this section, we introduce the notion of completeness degree of finite hypergroups
and analyze the completeness degree of finite weakly complete hypergroups.

Definition 4. Let (H, ◦) be a finite hypergroup. Define the set CH ⊆ H × H,

CH = {(x, y) ∈ H × H | C(x ◦ y) = x ◦ y}.

The rational number

∆(H) =
|CH |
|H|2

is the completeness degree of (H, ◦).

Thus, the completeness degree of a hypergroup is the probability that the hyperproduct
of two randomly chosen elements is a β-class. Clearly, ∆(H) ∈ [0, 1] and ∆(H) = 1 if and
only if (H, ◦) is complete. In the next lemma, we deduce an explicit formula for the
completeness degree of finite weakly complete hypergroups. For this purpose, we make
use of the following auxiliary notation. Let (H, ◦) =W(G, I,F, I). For every i, j ∈ G, let

Ci,j = {(x, y) ∈ Ai × Aj | x ◦ y = Aij}.

Lemma 2. Let (H, ◦) =W(G, I,F, I). Then,

∆(H) =
∑(i,j)/∈I |Ai||Aj|+ ∑(i,j)∈I |Ci,j|

|H|2 . (6)

Moreover, if (H, ◦) is uniform, then

∆(H) = 1− |I||G|2 +
∑(i,j)∈I |Ci,j|
|H|2 . (7)

Proof. Firstly, note that CH =
⋃

i,j Ci,j. From the definition of the hyperproduct ◦ in (4), we
deduce the alternative formula

Ci,j =

{
Ai × Aj if (i, j) /∈ I
{(x, y) ∈ Ai × Aj | ϕi,j(x, y) = Aij} if (i, j) ∈ I;
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hence,

CH =

( ⋃
(i,j)/∈I

Ai × Aj

)
∪
( ⋃

(i,j)∈I

Ci,j

)
.

Recalling that the sets of the family F are pairwise disjoint, we obtain

|CH | =
∣∣⋃

(i,j)/∈I Ai × Aj
∣∣+ ∣∣⋃(i,j)∈I Ci,j

∣∣
= ∑(i,j)/∈I |Ai||Aj|+ ∑(i,j)∈I |Ci,j|,

and Equation (6) follows. Moreover, if (H, ◦) is n-uniform, then |H| = n|G| and

∑(i,j)/∈I |Ai||Aj|
|H|2 =

∑(i,j)/∈I n2

|H|2 =
(|G|2 − |I|)n2

|G|2n2 = 1− |I||G|2 ,

and we also obtain (7).

Our next result provides two lower bounds on ∆(H) that depend only on the size of
the β-classes of H.

Theorem 6. Let (H, ◦) be a finite weakly complete hypergroup. Then,

∆(H) ≥ |ωH |
|H|

(
2− |ωH |

|H|

)
,

where ωH is the heart of H. Moreover, if (H, ◦) is uniform, then ∆(H) ≥ 3
4 .

Proof. Let {Ai}i∈G be the family of disjoint sets in the representation of (H, ◦). Then,

|CH | ≥ ∑
(i,j)/∈I

|Ai||Aj|

=
|G|

∑
i,j=1
|Ai||Aj| − ∑

(i,j)∈I
|Ai||Aj|

= |H|2 −∑(i,j)∈I |Ai||Aj|
≥ |H|2 − (∑i∈G∗ |Ai|)2

= |H|2 − (|H| − |A1G |)
2 = |A1G |(2|H| − |A1G |).

Recalling that A1G = ωH and using (6), we obtain the first inequality. Moreover,
from (7) we have ∆(H) ≥ 1− |I|/|G|2; hence, the second part of the claim is an immediate
consequence of Theorem 1.

The next example shows that the inequalities in Theorem 6 can hold as equalities.

Example 8. Let m ≥ 2 be an even number, and let G and I be the same as in Example 3. Let
(H, ◦) = W(G, I,F, I) be any uniform weakly complete hypergroup such that Ci,j = ∅ for all
(i, j) ∈ I; i.e., all bi-coverings are proper. A straightforward application of Lemma 2 proves that
∆(H) = 3/4. Moreover, if m = 2, then |H| = 2n and |ωH | = n. Thus, also the first inequality in
Theorem 6 holds as an equality.

In the forthcoming example, we construct uniform weakly complete hypergroups
where all bi-coverings are proper, that is, Ci,j = ∅, for all (i, j) ∈ I. According to Lemma 2,
these hypergroups achieve the smallest ∆(H) possible for a given PF-relation.
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Example 9. Let G be a group and I ∈ PFG. Let F = {Ak}k∈G be a family of finite, pairwise
disjoint sets such that |Ak| = n ≥ 2 for all k ∈ G. We assume Ak = Bk ∪ Ck, with Bk, Ck
nonempty disjoint sets. For every (i, j) ∈ I, let ϕi,j : Ai × Aj 7→ Aij be defined as follows:

ϕi,j(x, y) =

{
Bij if (x ∈ Bi and y ∈ Bj) or (x ∈ Ci and y ∈ Cj)

Cij else.

It is not difficult to verify that ϕi,j is a proper bi-covering. Moreover, the hypergroup (H, ◦) =
W(G, I, {Ai}, {ϕi,j}) is n-uniform. Owing to (7) and the finiteness of G, the completeness degree
of (H, ◦) is

∆(H) = 1− |I||G|2 ,

i.e., the smallest possible value for the given relation I.

6. Commutativity Degree of Weakly Complete Hypergroups

In a nonabelian group and, more generally, in any nonabelian algebraic structure, it
makes sense to compute the probability that two randomly chosen elements commute. This
problem was popularized by Gustafson in [14], who defined the commutativity degree
d(G) of a group G as the probability that two arbitrary elements commute,

d(G) =
|{(x, y) ∈ G2 : xy = yx}|

|G|2 , (8)

and proved that if d(G) > 5
8 then G is abelian. Moreover, we have d(G) = 5

8 if and only
if G/Z(G) ' Z2 × Z2, where Z(G) is the center of G. The basic technique adopted for
the proof relies on the relationship between d(G) and the number of conjugacy classes of
G, and can be traced back to a paper by Erdős and Turán [17]. Later on, there has been
considerable interest in the use of probabilistic techniques in group theory, and this concept
has had significant developments.

Recently, the concept of commutativity degree has been introduced also in hypergroup
theory [13,18]. In particular, in [13] the authors defined the commutativity degree of a finite
hypergroup (H, ◦) as

d(H) =
|{(x, y) ∈ H2 : x ◦ y = y ◦ x}|

|H|2 (9)

and characterized this index when (H, ◦) is complete by considering a partitioning of H
into suitably defined conjugacy classes. In this section, we study the commutativity degree
of weakly complete hypergroups. Our main tool is the partitioning of H into β-classes. To
begin with, we point out an important observation. For any i, j ∈ G and for any x ∈ Ai
and y ∈ Aj, a necessary condition for the identity x ◦ y = y ◦ x to be valid is ij = ji,
because x ◦ y ⊆ Aij, y ◦ x ⊆ Aji and Aij ∩ Aji = ∅ if ij 6= ji. Hence, we can restrict our
attention to pairs (i, j) belonging to the set

c(G) = {(i, j) ∈ G× G : ij = ji}.

This set is directly related to the commutativity degree of G, since d(G) = |c(G)|/|G|2.

Definition 5. We say that a relation I ∈ PFG is G-symmetric if its restriction to c(G) is
symmetric; that is, for every i, j ∈ G, if ij = ji then (i, j) ∈ I ⇐⇒ (j, i) ∈ I.

Equivalently, I ∈ PFG is G-symmetric if and only if I ∩ c(G) = IT ∩ c(G). It can
be observed that if G is abelian then a relation in PFG is G-symmetric if and only if it
is symmetric. The relevance of the previous definition lies in the fact that every weakly
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complete hypergroup admits a representation with a G-symmetric relation, as shown in
the following lemma.

Lemma 3. Let (H, ◦) be a weakly complete hypergroup. Then, there exists a representation
(H, ◦) =W(G, I,F, I) where I is G-symmetric.

Proof. Let (H, ◦) =W(G, Î,F, Î) be any representation of (H, ◦). If Î is G-symmetric, then
it is complete. Otherwise, Î ∩ c(G) 6= ÎT ∩ c(G) and we define the relation

I = Î ∪ ( ÎT ∩ c(G)).

We have I∩ c(G) = IT ∩ c(G), so I is G-symmetric, and I properly extends Î. Moreover,
from Lemma 1 we can deduce that I ∈ PFG, because both the support and the span of I
coincide with those of Î.

For every (i, j) ∈ I \ Î let ψi,j : Ai × Aj 7→ Aij be the trivial bi-covering, and define I =

Î∪ {ψi,j}. To conclude the proof, it suffices to show that the hypergroup (H, �) =W(G, I,F, I)
coincides with (H, ◦). Indeed, for arbitrary x ∈ Ai and y ∈ Aj, if (i, j) ∈ I \ Î , then

x � y = ψi,j(x, y) = Aij = x ◦ y.

Otherwise, if either (i, j) ∈ Î or (i, j) /∈ I then the identity x � y = x ◦ y follows trivially
from the construction (4). We can conclude that (H, ◦) =W(G, I,F, I).

In what follows, we obtain different characterizations of the commutativity degree
of a weakly complete hypergroup (H, ◦) =W(G, I,F, I) in terms of the parameters of its
representation. By virtue of Lemma 3, we can safely assume that I is G-symmetric. In this
case, for every pair (i, j) ∈ c(G) ∩ I the sets

Di,j = {(x, y) ∈ Ai × Aj : ϕi,j(x, y) = ϕj,i(y, x)} (10)

Ei,j = {(x, y) ∈ Ai × Aj : ϕi,j(x, y) 6= ϕj,i(y, x)} (11)

are well defined.

Theorem 7. Let (H, ◦) =W(G, I,F, I) where I is G-symmetric. Then,

d(H) =
∑(i,j)∈c(G)\I |Ai||Aj|+ ∑(i,j)∈c(G)∩I |Di,j|

|H|2 . (12)

Moreover, if (H, ◦) is uniform then

d(H) = d(G)− |c(G) ∩ I|
|G|2 +

∑(i,j)∈c(G)∩I |Di,j|
|H|2 (13)

= d(G)−
∑(i,j)∈c(G)∩I |Ei,j|

|H|2 . (14)

Proof. Let i, j ∈ c(G), x ∈ Ai and y ∈ Aj. Two cases are possible:

(a) (i, j) ∈ c(G) \ I. In this case, x ◦ y = Aij = Aji = y ◦ x; hence

{(x, y) ∈ Ai × Aj : x ◦ y = y ◦ x} = Ai × Aj.

(b) (i, j) ∈ I ∩ c(G). Owing to the G-symmetry of I, we have both x ◦ y = ϕij(x, y) and
y ◦ x = ϕji(y, x). By (10),

{(x, y) ∈ Ai × Aj : x ◦ y = y ◦ x} = Di,j.
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The first claim follows from the fact that the set c(G) is the disjoint union of c(G) \ I
and I ∩ c(G). Moreover, if |Ai| = n for all i ∈ G, then

∑
(i,j)∈c(G)\I

|Ai||Aj| = n2|c(G) \ I| = n2(|c(G)| − |c(G) ∩ I|).

Since |H| = n|G|, we also have

∑(h,k)∈c(G)\I |Ah||Ak|
|H|2 =

|c(G)| − |c(G) ∩ I|
|G|2 = d(G)− |c(G) ∩ I|

|G|2 ,

and (13) follows. Finally, using (11) we obtain

|c(G) ∩ I|
|G|2 −

∑(i,j)∈c(G)∩I |Di,j|
|H|2 =

∑(i,j)∈c(G)∩I(n2 − |Di,j|)
|H|2

=
∑(i,j)∈c(G)∩I |Ei,j|

|H|2 ,

which yields (14), and the proof is complete.

The previous theorem yields a few notable consequences. For example, taking I = ∅
we conclude that if (H, ◦) is complete and

d(H) =
∑(i,j)∈c(G) |Ai||Aj|

|H|2 .

In particular, if (H, ◦) is also uniform, then d(H) = d(G). More generally, d(H) ≤
d(G) for any uniform weakly complete hypergroup, and the equality holds if and only if
ϕi,j(x, y) = ϕj,i(y, x) for every (i, j) ∈ c(G) ∩ I.

Finally, the similarity between formulas (6) and (12) suggests that we should study
the relationship between the degrees of commutativity and completeness, at least in the
commutative case. We propose our result below. Before doing so, we recall that if G is
abelian, then G-symmetric relations are symmetric. Hence, by Lemma 3, every weakly
complete hypergroup built from an abelian group admits a representation whose PF-
relation is symmetric.

Theorem 8. Let G be abelian and let (H, ◦) =W(G, I,F, I), where I is symmetric. Then,

d(H) = ∆(H) +
∑(i,j)∈I(|Di,j| − |Ci,j|)

|H|2 . (15)

Moreover, if (H, ◦) is uniform then |d(H)− ∆(H)| ≤ |I|/|G|2 ≤ 1
4 .

Proof. Since G is abelian, we have c(G) ∩ I = I and the condition (i, j) ∈ c(G) \ I reduces
to (i, j) /∈ I. Therefore, subtracting (13) from (6) we obtain (15). Furthermore, for every
(i, j) ∈ I we have Di,j ∪ Ci,j ⊆ Ai × Aj. If H is n-uniform, then |H| = n|G| and |Ai × Aj| =
n2. Hence,

−n2 ≤ |Di,j| − |Ci,j| ≤ n2.

Thus, |d(H)− ∆(H)| ≤ n2|I|/|H|2 = |I|/|G|2. The rightmost inequality in the claim
comes from Theorem 1.

7. Conclusions

The class of complete hypergroups is among the best known in hypergroup theory.
Complete hypergroups have a variety of group-like properties and are characterized by the
fact that the composition of two elements is a β-class [9–12]. In this paper, we introduce
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a class of hypergroups (H, ◦) that includes complete hypergroups as a particular case.
The construction of these hypergroups, called weakly complete, is crucially based on
particular binary relations defined on the quotient group H/β. We call these relations
product free because no group element is in relation with the product of two elements that
are related to each other. Product-free relations are interesting by themselves, and we show
a number of their main properties on generic groups in Section 2. For example, we prove
an attainable upper bound on the cardinality of product-free relations in finite groups.

The main motivation of introducing weakly complete hypergroups lies in the pos-
sibility of measuring their “closeness” to complete hypergroups. Indeed, to every finite
hypergroup, we can associate a completeness degree, which quantifies how close to com-
pletion the hypergroup is. We introduce and analyze this concept in Section 5. More
precisely, the completeness degree of a hypergroup is the probability that the composition
of two randomly chosen elements is a β-class. For a weakly complete hypergroup whose
β-classes have the same cardinality, this probability is bounded from below by 3

4 . Indeed,
the completeness degree of weakly complete hypergroups admits simple closed formu-
las. Furthermore, it can be related to the commutativity degree, which has been recently
brought into hypercompositional algebra from group theory [13,18].

Completeness concepts and probabilistic methods are relevant topics nowadays not
only in classical algebra but also in hypercompositional algebra, and this discipline is
continually expanding with the introduction of structures with distinctive properties [19].
It would be interesting to discover more hypergroup classes, and more general hypercom-
positional structures, for which useful results can be found along these directions.
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