Quantitative thermographic method for fatigue life prediction under variable amplitude loading

Ensheng Feng | Xiaogang Wang | Chao Jiang | Vincenzo Crupi

Abstract
Quantitative thermographic methodology (QTM), which takes energy dissipation as a fatigue indicator, has been successfully applied to predict the fatigue life of materials and welded joints under constant amplitude loading. This study advances the QTM approach for predicting the fatigue life under variable amplitude loading in both low and high cycle fatigue regimes. Experimental data, obtained by fatigue tests under variable amplitude loading, were used in order to apply the developed QTM approach and to demonstrate that it is able to take into account the loading sequence effect. Good predictions of the fatigue life were achieved.

KEYWORDS
energy dissipation, fatigue, S-N curve, thermographic method, variable amplitude loading

1 | INTRODUCTION

A variety of approaches for fatigue strength and life assessment of metallic materials and welded joints have been developed and reported in the literature. The most common approaches include notch stress intensity factor (N-SIF) approach,1–3 averaged strain energy density (SED) approach,4–6 critical distance methods (CDMs),7–9 notch strain approach,10 structural strain approach,11–13 crack propagation approach,14 and thermal methods,15–29 which are based on the self-heating effect of a metallic specimen subjected to fatigue loading. It is known that the fatigue failure of metallic materials is caused by cyclic plasticity, which produces heat dissipation and...
temperature increment. Based on this self-heating mechanism, the thermal methods can be broadly classified into the following categories:

a. the thermal methods that adopt the temperature directly measured on the surface of the specimen as the fatigue indicator;
b. the thermal methods processing the thermal signal in order to assess its components;
c. the thermal methods based on entropy considerations derived from surface temperature measurements;
d. the thermal methods using the specific heat loss.

The thermographic method (TM) is based on the assumption that the fatigue strength can be evaluated as the highest stress level that produces no temperature increment on the surface of a specimen subjected to fatigue loading. It allows a reliable and rapid prediction of the fatigue strength and the S-N curve by applying a very limited number of fatigue tests. At present, most of the TMs are limited to high cycle fatigue (HCF) conditions, and only a few are applicable to low cycle fatigue (LCF) conditions, which occur during the service life of certain structures. The TM was applied for the first time to the LCF regime by Crupi et al.

A new concept of quantitative thermographic methodology (QTM) was initially proposed by some of the authors in the work. This new method was successfully applied to smooth and notched (with artificial holes) A36 mild steel specimens and butt welded AH36 steel joints. It was further developed in Wang et al. by using energy dissipation instead of temperature increment as the fatigue indicator. The temperature increment is directly related to the heat dissipation from the strain energy, but it also depends on the heat exchange conditions with the environment. Typically, the temperature manifests a three-stage evolution trend during the fatigue process. In the initial Stage I, the accumulated plastic deformation at the beginning of the test can cause a rapid temperature growth. This temperature growth will be limited by the heat lost due to the heat exchange between the specimen and the surrounding environment. When the heat lost is equal to the net heat produced by the plastic deformation, the temperature will reach a steady state, namely, Stage II. In most metallic materials, Stage II will be predominant in the fatigue lifespan. In the final Stage III, the temperature suddenly rises due to macroscopic fatigue cracking, which is a sign of fatigue failure.

The temperature reaches the thermal steady state because the dissipated energy and the heat loss caused by the heat exchange between the sample and the environment have reached equilibrium. Affected by the heat exchange conditions, the temperature evolution of the specimen surface may not have a stable stage. In addition, even if the heat exchange conditions are unchanged, there will be cases where the temperature rises significantly without a stable phase. This situation is usually caused by unstable generation of dissipated energy when the load level is high. De Finis et al. studied this atypical behavior and proposed three thermal indexes (the slope of the first temperature data series, the mean value of the same series, and the maximum temperature reached in the loading step) to replace the stable state temperature to estimate the fatigue limit. De Finis et al. concluded that when there is no steady-state temperature, these three thermal indicators can also be successfully used to predict the fatigue limit and the slope of the first temperature has the best prediction accuracy. Similarly, the dissipated energy under these temperatures can also be used to evaluate the fatigue behavior under unsteady-state conditions.

Here, it can be noted that the variation of the apparent temperature is controlled by the energy dissipation mechanism of the material behind. Indeed, the fatigue damage phenomenon is an energy dissipation process. The dissipated energy can be regarded as an intrinsic indicator of fatigue damage, which can be sensitively detected by thermographic technique. Based on this understanding, the improved QTM is based on the assumption that, when the dissipated energy accumulation in the material reaches a critical value, that is, the energy tolerance of the material (denoted by E_C), fatigue failure occurs.

The fatigue assessment becomes more complex in the presence of a multiaxial stress state, and several approaches based on the critical plane have been developed in the literature. Thus, the QTM was, recently, successfully extended to some more complicated fatigue conditions, such as multiaxial fatigue and fatigue crack propagation and provided reliable fatigue life predictions.

Although QTM has made significant progress in recent years, there are still some challenges on its path to real engineering applications. One of the key issues is the variable amplitude loading (VAL) that occurs in most engineering structures and causes fatigue failure. The current design codes and standards generally recommend the Palmgren–Miner rule (commonly referred to as Miner’s rule), which represents a linear fatigue damage model for predicting the residual life of structures under VAL, because of its simplicity and ease of application. For instance, Meneghetti et al. successfully developed an energy-based fatigue life prediction model based on Miner’s rule and applied it to VAL fatigue. Nevertheless, there is a major shortcoming of Miner’s rule: It cannot consider the loading sequence effect, which may affect the fatigue life for the following effects: stress...
intensification effect, damage interaction effect, damage sequence effect, and crack opening effect.49 The state of the art of cumulative fatigue damage and life prediction theories50–55 were reviewed by Fatemi and Yang56 and by Jinescu.57 More than 60 fatigue models57 have been proposed in order to overcome this limitation, but they require either the determination of some material parameters, which are not easy to evaluate, or modifications to the S-N curve of the material. Therefore, the fatigue life prediction under VAL remains an open issue.

The objective of this study is to develop QTM approach for predicting the fatigue life under VAL in both LCF and HCF regimes. Experimental data, obtained by fatigue tests under VAL, were used to explore the ability of the developed QTM approach to deal with variable amplitude fatigue and to demonstrate that it is able to take into account the loading sequence effect. The fatigue tests involve three variable amplitude load spectra of two-step loading, repeating two-step loading, and periodical overloading.

The proposed QTM approach is an energy-based approach for variable amplitude fatigue life prediction, which uses thermography to estimate some pertinent thermal parameters (E_d and E_C). The proposed approach is still called QTM in order to maintain consistency and continuity with previous studies.

2 | METHODOLOGY

The fatigue life model based on the QTM for constant amplitude fatigue has been well established, which can be referred to previous works of the authors.36,44 In this work, before elucidating the developed model based on the energy dissipation evaluation for VAL life prediction, a brief introduction to QTM is given within the thermodynamic framework.

The time-dependent temperature response of an elastic–plastic, isotropic, homogenous material subjected to cyclic loading may be expressed using the first law of thermodynamics:

$$\dot{U} = \dot{W} - \dot{Q}$$ \hspace{1cm} (1)

where \dot{U} is the rate of internal energy accumulation in the material, \dot{Q} is the rate of energy dissipated as heat, and \dot{W} is the rate of mechanical work applied to the material.

Based on the first law of thermodynamics, Chrysochoos and other researchers37,58,59 proposed the following form of the heat diffusion equation to determine the heat sources from the temperature variation within the thermodynamic framework:

$$\rho C \frac{\partial \theta}{\partial t} - k \Delta \theta = S_{\text{the}} + d_1 + r$$ \hspace{1cm} (2)

where ρ represents the mass density, C the specific heat, k the isotropic thermal conductivity, t the current time, and Δ the Laplace operator.

The terms involved in the above equation have the following physical significance:

- $\rho C \dot{\theta}$ is the energy release rate due to temperature increase.
- $-k \Delta \theta$ is the heat rate loss by conduction.
- S_{the} is the thermodlastic term, which is generally neglected in the heat source estimation.
- d_1 is the intrinsic dissipation, which is the difference between the rate of mechanical work \dot{W}, the elastic energy variation rate \dot{U}_e, and the internal energy storage rate \dot{U}_D due to material damage.
- r is the external volume heat supply, which is due to the heat exchange with the surrounding environment.

The external heat source r characterizes the heat exchange between the specimen and the environment. For the fatigue test conducted at room temperature, it represents actually the heat loss into the environment. The accurate evaluation of the heat loss Q is a challenging issue,58 because it can operate in multiple ways through conduction, convection, and radiation. These elements are difficult to be accurately estimated as they strongly depend on the boundary conditions of the specimen and environmental factors.

Fatigue is manifested as an irreversible microstructure evolution, which causes the accumulation of stored energy in the material. Therefore, a portion of the plastic energy (i.e., U_D) is directly related to fatigue damage, but it is not easy to measure this stored energy directly, so the dissipated energy d_1 is usually measured to indirectly evaluate the internal stored energy U_D due to material damage. The plastic energy in the fatigue process is partially converted into stored energy, but the majority of it is dissipated as heat. Some studies60–64 have shown that for most metallic materials, the proportion of dissipated plastic energy, namely, β, is above 80%. The parameter β is therefore commonly assumed as a material constant, and for most metals $\beta \approx 0.9$,60 such as low-carbon steel Q235,61 medium-carbon steel SAE1045,62 aluminum alloy,63 and pure copper.64

Generally, a simple solution can be adopted by assuming a linear relationship between the heat loss and temperature variation:57,59,64:

$$r = -\rho C \frac{\partial \theta}{\tau}$$ \hspace{1cm} (3)
where \(\tau \) is a time constant characterizing local heat losses and can be estimated using the stage of thermal return to equilibrium after the fatigue test.

Thus, by taking into account the above estimations of \(S_{the} \) and \(r \), the heat diffusion equation can be further simplified by removing the Laplacian term:

\[
\rho C \left(\frac{\partial \theta}{\partial t} + \frac{\theta}{\tau} \right) = d_1
\]

(4)

The QTM approach considers the stabilized Stage II of the specimen subjected to fatigue loading (described above in Section 1) as an asymptotic temperature increment stage where \(\theta = \theta_{AS} \), then the temperature variation rate \(\frac{\partial \theta}{\partial t} \) equals zero at this stage, and then an asymptotic (or stabilized) intrinsic dissipation \(d_{1,AS} \) can be obtained by

\[
\rho C \frac{\theta_{AS}}{\tau} = d_{1,AS}
\]

(5)

Equation 5 shows that the stabilized dissipation \(d_{1,AS} \) depends not only on the temperature \(\theta_{AS} \) but also on the heat exchange condition characterized by a time constant \(\tau \). It is thus interesting to adopt the energy term \(d_{1,AS} \) instead of temperature \(\theta_{AS} \) for the quantification of the fatigue damage level.

For the sake of convenience, the dissipation per cycle \(d_1/f \) (\(f = N/t \)) is adopted instead of \(d_1 \) the dissipation per second, so the dissipated energy per cycle \(E_d \) is defined as

\[
E_d = d_{1,\text{cycle}} = \frac{d_{1,AS}}{f} = \rho C \frac{\theta_{AS}}{f \tau}
\]

(6)

The dissipated energy per cycle \(E_d \) depends on the fatigue damage and is, therefore, regarded as the fatigue indicator. \(E_d \) can be evaluated by the asymptotic temperature \(\theta_{AS} \) of the specimen surface, which can be detected by the thermographic technique.

Because the dissipated energy is considered as fatigue indicator, it is necessary to define a relevant energy tolerance concept\(^{34}\) for the purpose of fatigue life evaluation by QTM. Here, it is considered that the cumulated energy dissipation can be used to characterize such an energy tolerance. The total cumulated dissipation during the fatigue process can be obtained through the integral of \(d_1 \) over the number of cycles to failure \(N_f \).

\[
E_{C} = d_{1,cum} = \int_{0}^{N_f} d_1 dN
\]

(7)

Because the stabilized Stage II is predominant in the fatigue lifespan as shown in Figure 1, the number of cycles to failure \(N_f \) can be then assumed equal to the span of Stage II \(\Delta N_{AS} (= N_{AS,f} - N_{AS,0}) \). Thus, by considering only the stabilized stage (to represent the whole fatigue process) and adopting Equation 7, the energy tolerance to failure \(E_{C}\) can be estimated through

\[
E_{C} = \int_{0}^{N_f} \frac{d_{1,AS}}{f} dN = \rho C \frac{\theta_{AS} N_f}{f \tau}
\]

(8)

Then, according to the dissipated energy per cycle \(E_d \) defined by Equation 6, one can obtain

\[
E_{C} = E_d \cdot N_f
\]

(9)

Thus, the QTM defines fatigue damage based on the linear accumulation of energy, that is, fatigue failure occurs when the accumulated energy reaches the energy tolerance \(E_{C} \).

A flow diagram of the fatigue testing procedure based on QTM is shown in Figure 1. A stepwise amplitude-increasing fatigue loading procedure is applied to the specimen block by block,\(^{65,66}\) and the temperature of the specimen surface is measured simultaneously using an infrared camera. In each loading block, fatigue loading is not suspended until the stabilized Stage II is reached, which usually requires thousands of cycles for steels.\(^{62,65,66}\) Then, the asymptotic temperature \(\theta_{AS} \) of Stage II used for fatigue damage evaluation can be assessed. It is important to note that the thermal images need to be smoothed in order to remove the thermal noises and increase the signal-to-noise ratio. In most cases, Gaussian filtering can achieve a satisfactory result.\(^{58}\) According to the QTM, the intrinsic dissipation \(E_d \) can be evaluated according to Equation 6 by taking into account the heat exchange with the surrounding environment at Stage II.\(^{36,44,58}\) And the energy tolerance \(E_{C} \) can be evaluated by Equation 8 or 9 by integrating the total energy dissipation until the fatigue failure of the specimen.\(^{65}\)

The previous studies\(^{36,44}\) have demonstrated that the energy tolerance \(E_{C} \) depends not only on material properties but also on the fatigue mechanism of the material. Thus, it is reasonable to assume that the energy tolerance of the material in the LCF regime is different from that in the HCF regime. In other words, two different \(E_{C} \) can be defined, that is, \(E_{C,LCF} \) representing the \(E_{C} \) in the LCF regime and \(E_{C,HCF} \) representing the \(E_{C} \) in the HCF regime. In order to distinguish the LCF regime and HCF
regime in the S-N curve, the concept of transition life N_t can be introduced to represent the fatigue life boundary between the two fatigue regimes LCF and HCF. The transition life N_t generally corresponds to a certain applied strain amplitude ε_a at ε_a, which can be used to distinguish between LCF and HCF. When the applied strain amplitude is higher than ε_a at ε_a, it corresponds to the LCF regime, in which case $E_{C,LCF}$ applies. But when the applied strain amplitude is lower than or equal to ε_a at ε_a, it corresponds to the HCF regime, in which case $E_{C,HCF}$ applies. Then, according to the QTM, the $E_{C,LCF}$ and $E_{C,HCF}$ can be estimated, respectively, by

$$E_{C,LCF} = E_d \cdot N_f, \text{ for } \varepsilon_a > \varepsilon_{at}$$

(10)

$$E_{C,HCF} = E_d \cdot N_f, \text{ for } \varepsilon_a \leq \varepsilon_{at}$$

(11)

Here, it is worth noting that the above definition of $E_{C,LCF}$ and $E_{C,HCF}$ is a simplification of a complex fatigue phenomenon. In practical applications, whether to choose $E_{C,LCF}$ or $E_{C,HCF}$ can be determined by the specific applied strain amplitude of a given loading spectrum, which may contain both LCF-level and HCF-level load components. In the following model construction, a unified E_C is used for the simplicity of expression.

The conventional QTM treats VAL by using an energy form of Miner’s rule,34,48 which cannot consider nonlinear damage accumulation and loading sequence effects. In this study, a new QTM-based model has been developed to take into account these effects, which uses an exponential form to describe nonlinear fatigue damage evolution.

Considering a load spectrum composed of multiple block loads with different stress (or strain) amplitudes, the cumulative fatigue damage of the loaded material at a given time in its service life can be expressed by

$$D_i = 1 - \left[1 - \frac{(n_{i-1,c} + \Delta n_i) \cdot E_{d,i}^{q_i}}{E_C} \right]^{q_i}$$

(12)

where D_i represents the cumulative fatigue damage at the end of the ith block load, $E_{d,i}$ represents the dissipated energy per cycle under the ith block load, n_i represents the cumulative number of cycles at the end of the ith block load, Δn_i represents the number of cycles of the ith block load, $n_{i-1,c}$ represents the equivalent number of cycles of n_{i-1} corresponding to the ith block load, and q_i represents the exponent of the nonlinear model.

The above equation shows that the cumulative fatigue damage D_i can be composed into two parts. The first part is the damage accumulated in the previous ($i-1$) blocks, that is, from the first block to the ($i-1$)th block. This part is dependent on the parameter $n_{i-1,c}$ that represents the equivalent number of cycles of n_{i-1} corresponding to the ith block load under the principle of equivalent transformation of fatigue damage. Then, it can be determined by $n_{i-1,c}$ in combination with the damage level of the ith block load characterized by the thermal parameter $E_{d,i}$. The second part of the cumulative fatigue damage is the damage accumulated in the ith block. This part can be determined directly by Δn_i and $E_{d,i}$.

It can also be noted that the proposed model adopts an exponential form, which is commonly used to describe...
the evolution of nonlinear fatigue damage.67–69 The difference is that it uses dissipated energy to quantify fatigue
damage instead of directly using the number of cycles. The advantage is that it only requires a few stepwise loading
tests to efficiently acquire the relevant parameters (i.e., E_C and E_d) instead of extensive time-consuming
fatigue tests to obtain a complete S-N curve.

The exponential term of the nonlinear model q_i is
defined as

$$q_i = \frac{\delta_i}{\mu_i}$$

(13)

where the parameter δ_i describes the nonlinearity of
fatigue damage accumulation in terms of dissipated
energy. It can be expressed by

$$\delta_i = \frac{3}{2} \left(\frac{\ln \frac{E_C}{E_{d,i}} - 1}{\ln \frac{E_C}{E_{d,i-1}} - 1} \right)$$

(14)

This formula is inspired by the original definition of δ_i by
Aeran et al.,68 which defines δ_i as a nonlinear function of
fatigue life, that is, $\delta = -1.25/\ln N_F$. In this work, the
parameter δ_i depends only on the two thermal parameters
of E_C and $E_{d,i}$, without involving other material
parameters.

In order to further consider the effect of the loading
sequence, another parameter μ_i is added to the exponential
term. It describes the influence of the interaction of
two adjacent blocks with different load levels on fatigue
damage evolution, which is defined as

$$\mu_i = \left(\frac{E_{d,i-1}}{E_{d,i}} \right)^{\frac{1}{2}} \text{ (i} \geq 2 \text{)}$$

(15)

It can be noted from the above equation that the parameter
μ_i represents the influence of the previous $(i - 1)$th
block load on the current ith block load. This definition
is also a variant of the original definition of μ_i by Aeran
et al.,68 where μ_i is defined as the function of the ratio of
two adjacent load levels, namely, $\mu_i = (\sigma_{i,1}/\sigma_i)^{2}$. Here,
the influence parameter μ_i is quantified using the dissi-
pated energy evaluated under two adjacent load levels,
\textit{i.e.}, $E_{d,i-1}$ and $E_{d,i}$. The exponential term in Equation 15
is a measure of the intensity of the interaction between
the two adjacent block loads. It is usually considered as
an empirical parameter. Here this parameter is set to 1/4
because this investigation has shown that this value is
suitable for the proposed QTM approach. Here, it is
worth noting that for the first block load without previ-
ous load history, μ_1 is equal to 1 (i.e., no interaction).

Then, Equation 12 can be rewritten as the following
form with the expansion expression of the parameter q_i.

$$D_i = 1 - \left[\frac{(n_{i-1,e} + \Delta n_i \cdot E_{d,i})^{\delta_i}}{E_C} \right]^{\frac{1}{\mu_i}}$$

(16)

Another key parameter in the proposed model is $n_{i-1,e}$
that represents the equivalent number of cycles of n_{i-1}
 corresponding to the ith block load. The assessment of
$n_{i-1,e}$ depends on the knowledge of the previous cumula-
tive damage D_{i-1} before the current ith block load. And
these two parameters can be correlated by

$$1 - \left(1 - \frac{n_{i-1,e} \cdot E_{d,i}}{E_C} \right)^{\frac{1}{\mu_i}} = D_{i-1}$$

(17)

Equation 17 is based on a concept of equivalent transfor-
mation of fatigue damage, which assumes that the fatigue
damage accumulated in the previous blocks (i.e., from
the first block to the $(i - 1)$th block) can be equivalently
transformed to the current block (i.e., the ith block). This
equivalent transformation adopts an energy form. The
invariable is the energy dissipation level $E_{d,i}$ under
the ith block load, and the variable is the equivalent
number of cycles $n_{i-1,e}$, which needs to be estimated
to satisfy this transformation. Then, Equation 17 can be
further rewritten as the following form for the assessment of
$n_{i-1,e}$.

$$n_{i-1,e} = \left[1 - (1 - D_{i-1})^{\frac{1}{\mu_i}} \right] \frac{E_C}{E_{d,i}}$$

(18)

One can note that a significant feature of the proposed
method is that the assessment of the current cumulative
damage (at the ith block) requires knowledge of the pre-
vious cumulative damage (before the ith block). The lat-
ter is also a prerequisite for resolving the equivalent
number of cycles $n_{i-1,e}$ according to the above equation.
A special case is the assessment of the cumulative fatigue
damage of the first block D_1, where there is no previous
loading. Then, Equation 16 cannot be applied directly.
In fact, this can be considered as a special case of
Equation 16, where the first part presenting damage
accumulated in the previous block can be canceled and
then D_1 can be expressed as

$$D_1 = 1 - \left[\frac{\Delta n \cdot E_{d,1}}{E_C} \right]^{\delta_i}$$

(19)

After obtaining D_1, the $n_{i-1,e}$ of the second block load,
that is, $n_{1,e}$, can be calculated using Equation 18. And
then this parameter can be used for the estimation of D_2 according to Equation 16. By following this procedure, the D_i for a given VAL spectrum can be assessed through Equations 16 and 18.

The last important issue is the criterion of fatigue failure. In this work, the critical condition for fatigue failure is defined as

$$D_i = 1$$ \hspace{1cm} (20)

This is the same as the conventional Miner’s rule to keep the model as simple as possible. Figure 2 shows the flow chart of the developed model for fatigue analysis under VAL. It can be used to evaluate fatigue damage D_i and determine whether fatigue failure occurs for a given VAL spectrum. Then, the total fatigue life N_f at $D_i = 1$ can be evaluated.

Another important application of the proposed model is the residual fatigue life prediction. Considering a specimen subjected to a VAL spectrum composed of multiple blocks, it is assumed that fatigue failure will occur under the ith block load and Δn_i is an unknown to predict, that is, the so-called residual fatigue life (denoted by N_r). In this case, by substituting Equation 20 into Equation 16, the residual fatigue life can be obtained by

$$N_r = \Delta n_i = \frac{E_c}{E_{d,i}} - n_{i-1,e}$$ \hspace{1cm} (21)

Then, the residual fatigue life N_r can be predicted by Equation 21.

3 | MODEL APPLICATION

The first preliminary experimental campaign to apply the proposed model was carried out using the experimental data extracted from reference.\(^4\) It contained different types of VAL fatigue tests applied to a 316 stainless steel, namely, two-step loading, repeating two-step loading, and periodical overloading tests, which are summarized in Table 1. All these fatigue tests were performed in strain-controlled mode, and the loading ratio R was -1. Figure 3 shows the ε_a–N_f curve of the test material.
obtained under constant amplitude fatigue tests. In this diagram, the LCF regime and the HCF regime can be separated by the transition life N_t, which can be estimated to be about 50,000 cycles for the present material. Its corresponding strain amplitude ε_{at} is about 0.32%. This value can be used to distinguish between the LCF regime and the HCF regime.

In previous work of the authors, the energy dissipation behavior of a 316L stainless steel, which is very similar to the present 316 stainless steel, has been investigated. It allows the establishment of an $E_d-\varepsilon_a$ relationship as below.

$$
\log(E_d) = 1.26\varepsilon_a + 5.86
$$

The $E_d-\varepsilon_a$ relationship established above is shown in Figure 4. It was applied to the fatigue analysis of this work in view of the high similarity of fatigue properties between the 316 steel and the 316L steel, as shown in the literature. It is also assumed here that the established $E_d-\varepsilon_a$ relationship has general applicability to a wider range of strain amplitudes, which is able to cover the fatigue data reported in Figure 3. Then, for all the constant amplitude fatigue test data shown in Figure 3, their corresponding intrinsic dissipation E_d can be estimated. Based on the obtained data of E_d and N_f, the two energy tolerances $E_{C,LCF}$ and $E_{C,HCF}$ can be estimated in each fatigue regime through Equations 10 and 11, respectively. It provided an estimated $E_{C,LCF}$ of 2.66×10^{10} J/m3 and $E_{C,HCF}$ of 1.72×10^{11} J/m3 as the average value for each fatigue regime.

The proposed fatigue model was verified under three different VAL conditions, namely, two-step loading (Case 1), repeating two-step loading (Case 2), and periodical overloading (Case 3). The prediction results of the model in the three cases and its comparison with experimental data are presented below.

3.1 Case 1 of two-step loading

The first case focuses on a two-step loading spectrum composed of two block loads with different strain amplitudes, as schematically shown in Figure 5. According to this loading spectrum, 10 fatigue tests were carried out. The specific loading conditions and part of the experimental data are reported in Table 2. The 10 fatigue tests can be divided into two groups. The first group involves a
high load followed by a low load (Type H-L), and the second group is the opposite, which involves a low load followed by a high load (Type L-H). The purpose of using these different loading combinations is to test the applicability of the proposed model to any two-step VAL. The service life of the material under the first block load (i.e., the number of cycles Δn_1) has been given in Table 2, and now what needs to be predicted is the residual fatigue life N_r under the second block load (i.e., the number of cycles Δn_2). Their comparison is illustrated in Figure 6. The solid line represents the ideal prediction with $N_{r,p}$ equal to N_r in the lifespan involved, and the dashed lines represent the scatter band of fatigue life with an error factor of 2. The majority of the data points fall within the specified scatter band, confirming that there is a good agreement between the predicted residual lives and the experimental results.

The prediction accuracy of the proposed model can be quantified by introducing an error factor E_S, which represents the standard deviation of the predicted results from the experimental data. It can be defined as:

\[
E_S = \sqrt{\frac{1}{n} \sum_{i=1}^{n} \left[\log(N_{f,p}) - \log(N_f) \right]^2}
\]

The calculated error factor E_S of the proposed model is about 0.296. This value is lower than the E_S given by using the classic Miner’s rule (based on the ε_a–N_f curve of the test material), which is about 0.308. Here, it should be emphasized that this comparison is made under a very simple VAL condition, which involves only two block loads. In this case, Miner’s rule can generally provide satisfactory predictions, because both the nonlinear damage accumulation effect and the loading sequence effect are not significant. Hence, the applicability of the proposed model to more complex VAL conditions needs to be further tested and compared with Miner’s rule. They are Case 2 and Case 3 presented below.

3.2 | Case 2 of repeating two-step loading

The second case is concerned with a repeating two-step loading spectrum. It is composed of two block loads with

<table>
<thead>
<tr>
<th>Test no.</th>
<th>Loading type</th>
<th>$N_{r,p}$</th>
<th>N_r</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H-L</td>
<td>3837</td>
<td>6414</td>
</tr>
<tr>
<td>2</td>
<td>H-L</td>
<td>29,376</td>
<td>15,712</td>
</tr>
<tr>
<td>3</td>
<td>H-L</td>
<td>29,376</td>
<td>20,000</td>
</tr>
<tr>
<td>4</td>
<td>H-L</td>
<td>16,437</td>
<td>33,688</td>
</tr>
<tr>
<td>5</td>
<td>H-L</td>
<td>17,328</td>
<td>34,000</td>
</tr>
<tr>
<td>6</td>
<td>H-L</td>
<td>18,188</td>
<td>91,500</td>
</tr>
<tr>
<td>7</td>
<td>L-H</td>
<td>1025</td>
<td>1215</td>
</tr>
<tr>
<td>8</td>
<td>L-H</td>
<td>1749</td>
<td>1164</td>
</tr>
<tr>
<td>9</td>
<td>L-H</td>
<td>6648</td>
<td>8368</td>
</tr>
<tr>
<td>10</td>
<td>L-H</td>
<td>1562</td>
<td>1598</td>
</tr>
</tbody>
</table>
different strain amplitudes that are repeatedly applied during the fatigue test until failure occurs, as schematically shown in Figure 7. In this case, five fatigue tests were conducted, and their loading conditions and part of the experimental data are shown in Table 4. The reported experimental data only contain the applied number of cycles of the first and second steps, that is, Δn_1 and Δn_2. Their sum ($\Delta n_1 + \Delta n_2$) usually only accounts for a small portion of the total fatigue life. Hence, the prediction herein is for the total fatigue life N_f under the repeating two-step loading spectrum.

Table 4

<table>
<thead>
<tr>
<th>Test no.</th>
<th>First step</th>
<th>Second step</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ε_{a1} (%)</td>
<td>Δn_1</td>
</tr>
<tr>
<td>1</td>
<td>1.0</td>
<td>75</td>
</tr>
<tr>
<td>2</td>
<td>0.5</td>
<td>600</td>
</tr>
<tr>
<td>3</td>
<td>0.5</td>
<td>60</td>
</tr>
<tr>
<td>4</td>
<td>0.5</td>
<td>600</td>
</tr>
<tr>
<td>5</td>
<td>0.5</td>
<td>60</td>
</tr>
</tbody>
</table>

The predictions by the proposed model are reported in Table 5, where N_{fp} represents the predicted fatigue life and N_f represents the experimental fatigue life. Their comparison is shown in Figure 8. The dashed lines represent the scatter band of fatigue life with an error factor of 2. It exhibits that all the data points fall within the scatter band. Thus, it demonstrates that satisfactory predictions of the fatigue life for Case 2 are achieved by using the proposed model. The error factor E_S is estimated to be about 0.153, which is significantly lower the value 0.255 given by Miner’s rule based on the ε_a-N_f curve. Hence, it shows that the proposed model has better applicability to the life prediction under VAL than Miner’s rule.

Table 5

<table>
<thead>
<tr>
<th>Test no.</th>
<th>N_{fp}</th>
<th>N_f</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>31,526</td>
<td>22,991</td>
</tr>
<tr>
<td>2</td>
<td>34,343</td>
<td>38,400</td>
</tr>
<tr>
<td>3</td>
<td>34,772</td>
<td>33,415</td>
</tr>
<tr>
<td>4</td>
<td>92,487</td>
<td>175,550</td>
</tr>
<tr>
<td>5</td>
<td>96,014</td>
<td>131,301</td>
</tr>
</tbody>
</table>

3.3 Case 3 of periodical overloading

The third case is focused on a periodical overloading spectrum. In this case, an overload is applied periodically during the fatigue test, as schematically shown in Figure 9. Fatigue tests were performed under four different loading conditions, as reported in Table 6. The total fatigue life N_f is expected to be predicted.

The predictions by the proposed model and the experimental results are reported in Table 7, and their comparison is shown in Figure 10. The dashed lines in the figure represent the scatter band of fatigue life with an error factor of 2. It shows that three out of all four data points fall...
within the specified scatter band, demonstrating therefore the good predication ability of the proposed model for periodical overloading spectrum. The estimated error factor E_S is about 0.288. This is much lower than the E_S given by Miner's rule, which is about 0.502. Hence, it shows that the new QTM-based model developed in this work is superior to Miner’s rule in dealing with the effect of overloading on fatigue life.

4 | CONCLUSIONS

This study brings some important improvements on the original QTM approach for fatigue life assessment under VAL. The major improvement focuses on the establishment of a new energy dissipation-based model that is able to consider the nonlinear damage accumulation under VAL. This new model is based on experimental data for the evaluation of the critical energy to failure and applies to both LCF and HCF regimes. It takes into

TABLE 6 Loading conditions of fatigue tests in Case 3

<table>
<thead>
<tr>
<th>Test no.</th>
<th>Stable condition</th>
<th>Overload condition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ε_a (%)</td>
<td>Δn</td>
</tr>
<tr>
<td>1</td>
<td>0.3</td>
<td>400</td>
</tr>
<tr>
<td>2</td>
<td>0.5</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>0.2</td>
<td>5000</td>
</tr>
<tr>
<td>4</td>
<td>0.2</td>
<td>50</td>
</tr>
</tbody>
</table>

TABLE 7 Predicted fatigue life and comparison with experimental data in Case 3

<table>
<thead>
<tr>
<th>Test no.</th>
<th>N_{fp}</th>
<th>N_f</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>78,130</td>
<td>25,823</td>
</tr>
<tr>
<td>2</td>
<td>5900</td>
<td>4335</td>
</tr>
<tr>
<td>3</td>
<td>133,580</td>
<td>250,050</td>
</tr>
<tr>
<td>4</td>
<td>97,220</td>
<td>77,674</td>
</tr>
</tbody>
</table>
account the fatigue loading sequence effect that cannot be considered by the traditional cumulative damage model based on Miner’s rule.

The proposed model for fatigue life prediction under VAL was applied to three cases of step fatigue tests with different loading sequences, involving two-step loading, repeating two-step loading, and periodical overloading. The values of the fatigue life predicted by the developed QTM are in good agreement with the experimental data. Its prediction accuracy is superior to that of Miner’s rule in all the three study cases involved.

Further developments on the QTM are anticipated. The current test cases are relatively simple, involving only two amplitudes of strain; thus, further tests with more load amplitudes are necessary. The adopted fatigue tests were all carried at a fixed loading ratio $R = -1$, so the loading ratio effect was not considered. This needs to be further investigated by considering fatigue loading history with strain levels applied at different loading ratios. Moreover, different types of loading conditions (e.g., torsion and bending) and materials should be investigated.

ACKNOWLEDGMENTS
The authors acknowledge the support from the National Natural Science Foundation of China (No. 51975195), the National Science Fund for Distinguished Young Scholars (No. 51725502), the Special Funds for the Construction of Innovative Provinces in Hunan Province (No. 2019GK4006), and the National Defence Fundamental Research Foundation of China (No. JCKY2020110C105). Open Access Funding provided by Universita degli Studi di Messina within the CRUI-CARE Agreement.

AUTHOR CONTRIBUTIONS
Ensheng Feng: Writing – original draft & editing, Analysis and interpretation of the data, Methodology. Xiaogang Wang: Writing – review & comment & editing, Conceptualization, Methodology, Supervision. Chao Jiang: Writing – review & comment, Supervision. Vincenzo Crupi: Writing – review & editing, Conceptualization, Analysis and interpretation of the data, Methodology, Supervision.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are not openly available.

NOMENCLATURE

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>specific heat</td>
</tr>
<tr>
<td>d_i</td>
<td>intrinsic dissipation</td>
</tr>
<tr>
<td>$d_{1,AS}$</td>
<td>asymptotic intrinsic dissipation</td>
</tr>
<tr>
<td>$d_{1,cum}$</td>
<td>total cumulated energy dissipation</td>
</tr>
<tr>
<td>D</td>
<td>fatigue damage</td>
</tr>
<tr>
<td>D_i</td>
<td>cumulative fatigue damage at the end of the ith block load</td>
</tr>
<tr>
<td>E_C</td>
<td>energy tolerance to failure (J m$^{-3}$)</td>
</tr>
<tr>
<td>E_{HCF}</td>
<td>energy tolerance to failure in the high cycle fatigue regime (J m$^{-3}$)</td>
</tr>
<tr>
<td>E_{LCF}</td>
<td>energy tolerance to failure in the low cycle fatigue regime (J m$^{-3}$)</td>
</tr>
<tr>
<td>E_d</td>
<td>dissipated energy per cycle (J m$^{-3}$)</td>
</tr>
<tr>
<td>$E_{d,i}$</td>
<td>dissipated energy per cycle under the ith block load (J m$^{-3}$)</td>
</tr>
<tr>
<td>E_S</td>
<td>error factor</td>
</tr>
<tr>
<td>k</td>
<td>thermal conductivity</td>
</tr>
<tr>
<td>n_i</td>
<td>cumulative number of cycles at the end of the ith block load</td>
</tr>
<tr>
<td>$n_{i-1,e}$</td>
<td>equivalent number of cycles of n_{i-1} corresponding to the ith block load</td>
</tr>
<tr>
<td>N_f</td>
<td>fatigue life</td>
</tr>
<tr>
<td>$N_{f,p}$</td>
<td>predicted fatigue life</td>
</tr>
<tr>
<td>N_r</td>
<td>residual fatigue life</td>
</tr>
<tr>
<td>$N_{r,p}$</td>
<td>predicted residual fatigue life</td>
</tr>
<tr>
<td>N_t</td>
<td>transition life</td>
</tr>
<tr>
<td>q</td>
<td>exponent of the proposed model</td>
</tr>
<tr>
<td>Q</td>
<td>rate of energy dissipated as heat</td>
</tr>
<tr>
<td>W</td>
<td>rate of mechanical work applied to the material</td>
</tr>
<tr>
<td>r</td>
<td>external heat source</td>
</tr>
<tr>
<td>R</td>
<td>loading ratio</td>
</tr>
<tr>
<td>S_{the}</td>
<td>thermoelastic source</td>
</tr>
<tr>
<td>t</td>
<td>time</td>
</tr>
<tr>
<td>\dot{U}</td>
<td>rate of internal energy accumulation in the material</td>
</tr>
<tr>
<td>\dot{U}_D</td>
<td>internal energy storage rate</td>
</tr>
<tr>
<td>\dot{U}_e</td>
<td>elastic energy variation rate</td>
</tr>
<tr>
<td>β</td>
<td>proportion of dissipated plastic energy</td>
</tr>
<tr>
<td>δ</td>
<td>parameter of the proposed model to describe the nonlinear effect</td>
</tr>
<tr>
<td>Δn_i</td>
<td>number of cycles of the ith block load</td>
</tr>
<tr>
<td>ε_a</td>
<td>strain amplitude</td>
</tr>
<tr>
<td>ε_{OL}</td>
<td>overload strain amplitude</td>
</tr>
<tr>
<td>ε_{at}</td>
<td>strain amplitude at the transition life N_t</td>
</tr>
<tr>
<td>μ</td>
<td>parameter of the proposed model to describe the loading sequence effect</td>
</tr>
<tr>
<td>ρ</td>
<td>mass density of material</td>
</tr>
<tr>
<td>τ</td>
<td>time constant characterizing the local heat losses</td>
</tr>
<tr>
<td>θ_{AS}</td>
<td>asymptotic temperature increment</td>
</tr>
</tbody>
</table>

ORCID

Xiaogang Wang https://orcid.org/0000-0001-7479-8869
Chao Jiang https://orcid.org/0000-0001-5421-9671
Vincenzo Crupi https://orcid.org/0000-0001-7498-4733
REFERENCES

37. Boulanger T, Chryssochoos A, Mabru C, Galtier A. Calorimetric analysis of dissipative and thermoelastic effects

References

How to cite this article: Feng E, Wang X, Jiang C, Crupi V. Quantitative thermographic method for fatigue life prediction under variable amplitude loading. *Fatigue Eng Mater Struct.* 2022;45(4):1199-1212. doi:10.1111/ffe.13658