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1. Introduction 

In medical imaging, artificial intelligence (AI) can be described as the system's ability to 

precisely interpret data, learn from them, and acquire knowledge to achieve specific goals and 

complete tasks with flexible adaptation. The strength of AI models is the ability to analyze a 

huge amount of data and generate predictions. Also, in molecular imaging, AI may potentially 

improve several technical aspects of the daily workflow enabling automatic 

radiopharmaceutical’s synthesis, and improving target delineation/segmentation, images 

registration, and attenuation correction procedures. Most AI systems are analytical, classified 

as machine learning (ML) or deep learning (DL) techniques [1-3]. Through a process of 

“training”, these algorithms improve in using and mapping the observed variables (“features” 

or “predictors”) to subdivide the data sample into sets of outcome variables (“labels” or 

“targets”). Based on “labels”, ML can be classified into three broad subsets: supervised, 

unsupervised, and semi-supervised learning.  

1) Supervised learning based on explicit datasets that have been labeled by the operator; in 

this case, the algorithms measure the difference between the predicted labels and the known 

labels (called “ground truth”). Linear and logistic regression, support vector machines 

(SVMs), random forests, and naive bayesian classification belong to this group of ML 

techniques. 

2) Principal component analysis, k-means clustering, and autoencoders instead belong to 

unsupervised learning. Here, the algorithm optimally separates samples into different classes 

based on characteristics of the training data alone, without the operator having first defined 

labels. 

3) In semi-supervised (reinforcement) learning, a computer (“agent”) learns to perform a task 

through repeated trial-and-error interactions with a dynamic environment, without being 

explicitly programmed and without human intervention. 
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Based on features extraction, ML techniques can be divided into handcrafted (in which the 

features are explicitly extracted and selected by an operator) and non-handcrafted approaches, 

in which the process of features extraction and selection is implicitly incorporated into the ML 

algorithm. ML algorithms can be successfully applied to the vast amount and promising data 

from radiomics [4]. Using advanced mathematics and statistics, radiomics aims to provide 

quantitative features that cannot be assessed by human eyes from biomedical images of 

different natures such as computed tomography (CT), magnetic resonance imaging (MRI), and 

positron emission tomography (PET). Radiomics assumes that any smallest constituent of each 

image (i.e., voxel and/or pixel) may encompass features (I order related to the histogram of 

grey level distribution; II order linked to adjacent pixel/voxel relationship, and so on) of 

tumor's phenotypes that may be potentially related to tumor's outcome, patients' response to 

therapy, and so on thus reflecting the pathophysiological process and supporting medical 

decisions. Radiomics' and machine learning processes can be simply resumed in five main 

steps as described in figure 1: a) acquisition/collection of images b) pre-processing 

(registration, deconvolution, de-noising, and so on) and volume of interest (VOI) delineation 

c) feature extraction d) radiomics features reduction and selection of the e) predictive model 

using AI-based classifiers [1, 2].  

 

Figure 1. Description of the main machine learning step (from [2]). 
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ML also encompasses more sophisticated DL techniques that can use both supervised and 

unsupervised learning. DL methods have a neural network's organization in multiple, 

progressive, and subsequent related layers (process) reproducing somehow the brain’s 

structure and organization. Each layer analyzes and processes the incoming data (input) from 

the previous layer, sending it to the next layer until the output is extracted, which usually 

identifies a classification label or another evaluable property of the dataset [4] thus resulting 

well suited for huge, diverse, complex data and tasks such as automatic image segmentation 

and classification (an example in figure 2).  

 

              

Figure 2. Example of DL U-Net organization in convolutional neural network (CNN) (from [5]). 
 

Despite the great potential of these methods, we must remember that the analysis of grey levels 

of neighboring voxels in PET depends largely on imaging parameters, especially filters, voxel 

size, and scatter correction. Strick imaging reconstruction standardization is therefore 

mandatory, and results need external validation to be meaningful. Also, in real-life, well-

annotated large data sets needed for the AI process are often unavailable, and too small datasets 

are a potential source of error. Furthermore, the harmonization of data from different centers 

is possible but difficult due to different protocols, equipment, and software.  

Before embarking on AI in clinical applications we need to produce, confirm, and reproduce 

as much data and results as possible following initial guidelines [6, 7]. 
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Accordingly, during my PhD, I learned [1-4, 8, 9] assessed, and applied several aspects, and 

new potential applications of AI in molecular imaging: from ML image classification [10, 11], 

prediction of disease outcome [12, 13], prediction of response to therapy [14], to DL 

segmentation [15]. Finally, during my period at the Universitatsspital of Zurich (USZ) I also 

accomplished, in collaboration with the Swiss Federal Institute of Technology (ETH), an 

innovative study (in submission) regarding the prediction of PET volumes from MRI images, 

assessing simultaneous PET/MRI. In this thesis, I will describe the main results of the 

abovementioned studies published during my PhD time following an anatomical and 

computational order.   
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2. Machine learning experiences 

2.1 Brain - SPM segmentation, Pyradiomics and ML analysis on [18F]FDG brain PET/CT to 

predict Alzheimer’s Disease in patients with positive amyloid PET [10] 

 

Background 

Alzheimer’s disease (AD) is the most common form of progressive and irreversible dementia. 

Early in-vivo diagnosis of AD is crucial for accurate management of patients, in particular, to 

select subjects with mild cognitive impairment (MCI) that may evolve into AD [16]. The 

importance of exploring associated biomarkers for the early diagnosis and prediction of AD 

progression is a major clinical issue. The National Institute on Aging- Alzheimer’s Association 

(NIA-AA) proposed A/T/N diagnostic criteria in 2018, including Aβ42, p-tau, and t-tau in 

cerebrospinal fluid (CSF), and PET [17]. However, the invasiveness of lumbar puncture for 

CSF assessment and the limited availability of PET with new radiotracers (for Tau and Aβ 

brain burden), represent a valid reason to develop new approaches with AI applied to the more 

easily available methods such as fluorodeoxyglucose (FDG) PET. In this setting, we proposed 

a radiomics analysis on FDG PET images based on Statistical Parametric Mapping (SPM) and 

Pyradiomics, in combination with a ML application, to predict Amyloid-PET positivity and 

diagnosis of AD. 

Methods 

From July 2016 to September 2017, 43 patients (median age 64.8 years, Range 53–83 years; 

females = 23; median Mini-Mental State Examination, MMSE = 19.3, Range 4–28) underwent 

brain PET/CT scans with FDG and [18F]Florbetaben (FBB), and at least 24 months of 

clinical/instrumental follow-up (FU). Patients were retrospectively evaluated by a 

multidisciplinary team (MDT = neurologist, psychologist, radiologist, nuclear medicine 

physician, and laboratory clinic doctor) at the Fondazione Istituto G.Giglio of Cefalù 

(Palermo, Italy). 
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The inclusion criteria were as follows: (a) neurological and neuropsychological suspicion of 

neurodegenerative disease, based on the NIA-AA and European Federation of Neurological 

Societies/European Neurological Society (ENS-EFNS) criteria [18]; (b) MRI brain imaging to 

rule out moderate or severe cerebrovascular defects; (c) FDG PET/CT performed for metabolic 

assessment; (d) availability of an FBB PET/CT within 6 months from conventional imaging 

and FDG PET/CT scan; (e) report of the positivity/negativity of FBB-PET and MDT meeting 

with the final diagnosis for each patient; (f) minimum duration of neurological and 

neuropsychological FU of 24 months after the first neurological evaluation for the cognitive 

defect, used to estimate the disease status, to allow the assessment of disease progression over 

time, and confirm/exclude the in-vivo diagnosis of AD. 

Image Pre-Processing and ROI Selection 

The whole dataset was spatially pre-processed using SPM 12 software package 

(https://www.fil.ion.ucl.ac.uk/spm/). First, each FDG PET scan, comprising 47 Digital 

Imaging and Communications in Medicine (DICOM) images, was converted into a single 

NIfTI file, preserving the original spatial resolution. Then, the resulting 3D volume was 

spatially normalized to the Montreal Neurological Institute (MNI) 152 space, using the SPM 

unified segmentation normalization algorithm, which combines segmentation, bias correction 

and spatial normalization in a single process of optimization. This iterative method, which 

provides better results than simple serial applications of each step, allowed us to directly 

estimate the warping tensors that register the SPM standard spatial priors (i.e., tissue 

probability maps) in each individual subject space. The intensity distribution of each class of 

tissue has been modelled by at least a mixture of two Gaussians to consider the partial volume 

effect; furthermore, a smoothness level of 5 mm was set to derive a fudge factor related to the 

spatial correlation between neighbouring voxels, due to the assumption of independence of the 

unified model [19]. The default settings were used for all other parameters. Then, the estimated 

nonlinear spatial transformations were applied and the PET images were resampled in a 

bounding box with an isotropic voxel size of 2 mm, reflecting the MNI-152 spatial proportions 
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in a similar way to previous works [20]. After spatial normalization, we focused on four 

different regions of interest (ROIs) that were extracted from the brain fragmentation available 

in SPM, whose maximum probability tissue labels derived from the “MICCAI 2012 Grand 

Challenge and Workshop on Multi-Atlas Labelling” 

(https://my.vanderbilt.edu/masi/workshops). This neuro-anatomical classification was 

generated and made public by Neuromorphometrics, Inc. under an academic subscription and 

provides a precise subdivision of cortical and non-cortical structures, for a total of 138 labels 

throughout the brain. Each selected ROI included 8 to 12 brain areas labelled according to 

table 1, and, prior to mask extraction, their bounding box and voxel sizes were adapted to the 

template for alignment reasons. 

 

 
Table 1. ROI extracted from the cerebral segmentation using SPM (from [10]). 
 
 
Extraction of radiomics features and ML classification 

The ROIs described in table 1 were used to extract the FDG PET features through a certified 

and image biomarker standardisation initiative (IBSI) [20] compliant software, namely 

Pyradiomics [21]. Subsequently, an innovative descriptive-inferential mixed sequential 

approach for feature reduction and selection was used to identify a small set of radiomics 

features with a strong association with patient outcomes to obtain good predictive 
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performance, leading to the exclusion of non-reproducible, redundant and irrelevant features 

from the initial set [22]. Indeed, for each feature, the point biserial correlation (pbc) index 

between features and the dichotomic outcome (AD versus non-AD) was calculated, sorting 

the features in pbc descending order. Then, a cycle started to add one column at a time, 

performing a logistic regression analysis by comparing the p-value of each iteration and 

stopping in the case of a growing p-value. After this selection and reduction process, 

discriminant analysis (DA) was used as the predictive model [23]. The training phase was 

performed only once and, after being completed, the DA was able to classify new cases. Using 

the k-fold cross-validation strategy, the data was split into training and validation sets using a 

random partition. Specifically, the data were divided into k-folds: one of the folds was used as 

a validation set and the remaining folds were combined into the training set. The pooling was 

done so that both the training and validation sets maintained the same positive/negative 

percentage for beta-amyloid deposition compared to the original dataset. Then, the average 

error across all experiments was computed. In this way, (i) overfitting and asymmetrical 

sampling are avoided, thus increasing the accuracy of results; (ii) several models can be tested; 

(iii) the results averaged over all the folds are more robust. In our study, k = 5 was determined 

empirically by the trial-and-error method (range k: 5–15, a step of 5). Based on the above 

systems we defined the FDG features able to reach the best diagnostic performance in 

predicting amyloid deposition and the final diagnosis of AD. 

Performance evaluation 

The diagnostic performance was calculated including sensitivity, specificity, and accuracy. 

The sensitivity is the number of correctly classified positive samples divided by the number 

of true-positive (TP). The specificity is the number of correctly classified negative samples 

divided by the number of true-negative (TN) samples. The accuracy is defined as (TP + TN)/ 

(TP + FP + FN + TN) x 100, where FP is the number of false-positive, and FN is the number 

of false-negative. In addition, receiver operating characteristics (ROC) with 95% confidence 

interval (CI) and areas under the ROC curve (AUC ROC; 95% CI) were calculated to assess 
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the performance of the predictive models (DA) obtained considering (a) the individual features 

identified using the reduction and selection process, and (b) the combination of the same 

individual features. 

Results 

Following the MDT evaluation, based on the results of the neuropsychological tests, the 

dosage of the levels of specific proteins (amyloid and tau) in the CSF (if available), 

integration/comparison with MRI, and evaluation of the evolution of the disease until last 

neurological evaluation (> 24 months), 22/23 amyloid-PET positive patients were definitively 

classified as AD patients, while the remainder as non-AD. 

Radiomics’ features analysis 

As regards the performance in the prediction of the final clinical-instrumental diagnosis of AD 

defined by MDT evaluating all the available data, we obtained the best results considering the 

following higher-order feature from the second ROI (including the anterior and medial orbital 

gyri of the inferior frontal cortex and the medial frontal cortex, figure 3): original_glcm_MCC 

and original_glcm_MaximumProbability with a sensitivity of 75.2%, specificity of 80.5%, and 

accuracy of 78.05% (p = 0.002).  

 

 

Figure 3. AUC ROC of FDG-PET higher order features original_glcm_MCC and 
original_glcm_MaximumProbability in the prediction of AD (from [10]). 
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Discussion 

The first objective of our study concerned the application of AI on FDG PET/CT brain images 

in predicting PET-Amyloid positivity, eventually avoiding the additional execution of an 

amyloid-PET as a diagnostic method not widely diffuse compared to FDG-PET/CT, ultimately 

reducing the social and economic impact on the health system. Secondly, the opportunity to 

select those patients who can benefit from the diagnostic use of amyloid-PET and to evaluate 

how the integration of the functional and pathophysiological information of the two 

investigations can improve the diagnostic accuracy for AD through the help of AI. In our 

analysis for the prediction of AD, the best values were obtained for two higher-order features 

(original_glcm_MCC and original_glcm_MaximumProbability). The regions from which 

these features were extracted concerned the ROI 2, including the anterior and medial orbital 

gyri of the inferior frontal cortex and the medial frontal cortex. The population studied was 

characterized by a median age of 64.8 years and a median MMSE value of 19.27, thus 

configuring a good number of patients with MCI and early onset supporting the possible 

metabolic involvement of the frontotemporal synaptic connections in early-onset AD (EOAD) 

forms. Some authors in the literature assessed the risk factors more associated with the 

conversion from MCI to AD [24], also through radiomics [25, 26] and DL [27] reaching 

similar or slightly superior results than our model. However, none of them assessed the 

amyloid-PET information integrating these data to create a reference standard for predicting 

the diagnosis of AD. Despite limitations (heterogeneous population, uneasy reproducibility in 

clinical practice), this new automated learning approach based on the extraction and selection 

of higher-order radiomics “features” obtained from FDG PET/CT brain images resulted 

promising for predicting the presence of beta-amyloid deposition and the final diagnosis of 

AD. Such data sustain the potential role of specific radiomics FDG PET features to improve 

the prognostic stratification of patients who could obtain real diagnostic benefits from 

amyloid-PET.  
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2.2 Gastrointestinal - Morpho-functional ML radiomics classification of restaging 

[18F]FDG PET/CT for outcome prediction in metastatic colorectal cancer [11] 

 

Background 

Colorectal cancer (CRC) is the third most common cancer and the second leading cause of 

death worldwide. Almost 20% of such patients will develop metastatic disease, with about 

one-third of patients already presenting liver metastases at the time of diagnosis [28]. 

Alongside traditional imaging (e.g., ultrasonography, CT, MRI), [18F]FDG PET/CT is 

routinely used as a tool for accurate staging and restaging after therapy in metastatic CRC, and 

it represents a valuable ally for risk assessment, prognosis evaluation, and treatment strategy 

decisions making. The further integration of [18F]FDG PET/CT data with radiomics features 

could reach new insightful information also regarding tumor biology. Radiomics’ literature in 

CRC is highly limited in PET imaging, but nonetheless, it holds promise for genetic mutation 

status assessment [29] and the prediction of outcomes. The present experience aimed to 

investigate the potential application of texture analysis on restaging [18F]FDG PET/CT images 

in metastatic CRC, proposing a radiomics model able to select PET and CT imaging features 

for global disease status prediction. 

Methods 

Between November 2008 and December 2018, 63 metastatic lesions from 52 CRC patients 

were retrospectively considered following these inclusion criteria: (a) pathology confirmed 

diagnosis of primary colorectal adenocarcinoma; (b) clinical-instrumental (contrast 

enhancement CT – ceCT -, MRI, histopathology, and/or clinical report) confirmed metastatic 

disease status; (c) [18F]FDG PET/CT performed at Fondazione Istituto G.Giglio of Cefalù 

(Palermo, Italy) for restaging after first adjuvant therapy (1 patient treated by radiotherapy – 

RT -, 49 patients by chemotherapy, and 2 patients by both); (d) [18F]FDG PET/CT positive for 

lymph-nodal/metastatic disease; (e) minimum FU duration of 12 months after [18F]FDG 
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PET/CT; (f) complete clinical (clinical case notes and multidisciplinary meeting reports), 

laboratory, pathological and imaging data available (ceCT, MRI); (g) [18F]FDG PET/CT 

findings retrospectively confirmed at clinical FU with biopsy and/or through other imaging 

modalities. The study was approved by the institutional review board. The internal procedures 

provided informed consent also regarding the potential scientific use of all nuclear medicine 

examinations. Therefore, written informed consent was available for each patient. 

Radiomics analysis 

Two board-certified nuclear medicine physicians evaluated and segmented FDG PET/CT 

lesions by consensus and were blinded to the purpose of the study and to the pathology 

information. Signal intensity on PET images was judged as hyperintense when the signal 

intensity of the tumor was higher than the signal intensity of non-tumoral tissue. Maximum 

standardized uptake value SUVmax was used as a PET parameter to select the most avid lesion 

for the global evaluation of disease status and for the most avid liver lesion in every patient. 

The same volume was transposed in the same region on CT images for extraction of 

morphological features. Successively, 105 and 66 features were automatically extracted using 

the IBSI-compliant software LifeX [30] from each lesion VOI in PET and CT images, 

respectively. Successively, the mixed descriptive-inferential sequential approach followed by 

DA with k-fold validation (already described in [22, 23], page 7, figure 4), were used to 

identify a small set of radiomics features (only from PET and then from PET and CT) with 

valuable association with patients’ outcomes for better predictive performance, leading to the 

exclusion of non-reproducible, redundant, and non-relevant features from the initial features 

dataset. 
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Figure 4. Description of the main machine learning steps (from [11]). 

 

Results 

At the first [18F]FDG PET/CT scan, 43 patients (82.7%) were PET-positive for a single lesion 

and 9 (17.3%) for 2 or more lesions. Sites of metastasis were distributed as follows: 23 liver 

(36.5%), 12 lymph nodes (19%), 8 lungs (12.7%), 7 presacral lymph nodes (11.1%), 4 

peritoneum (6.3%), 3 rectum (4.8%), 2 spleen (3.2%), 2 bones (3.2%), 1 thorax (1.6%), and 1 

anastomotic tissue (1.6). At the last FU, 32 (62%) patients showed progression of the disease, 

9 (17%) stable disease, and 11 (21%) responded to therapy with a regression of the disease. 

At lesion level analysis, GLRLM-based feature grey-level non-uniformity (GLZLM_GLNU) 

was selected considering the only PET data set obtaining a sensitivity of 90.1%, specificity of 

36.8%, accuracy 66.7%, and AUC ROC of 56.5%;  the addition of two CT features (GLZLM_ 

Zone Length Non-Uniformity—GLZLM_ ZLNU, and GLRLM_Short Run High Gray-Level 
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Emphasis—GLRLM_SRHGE) reached the following results (PET/CT): sensitivity 78.2%, 

specificity 51.75%, accuracy 66.6%, and AUC ROC 65.2% (figure 5).  

 

 

Figure 5. AUC ROC of FDG-PET/CT features in the prediction of patients’ outcome (from [11]). 
 
 

Discussion 

Prediction of outcome in patients with CRC is challenging because of the lack of a robust 

biomarker and heterogeneity between and within tumors to modulate treatment strategies. In 

this scenario, a study conducted on third-line treatment patients with metastatic CRC showed 

that high tumor heterogeneity, volume, and low sphericity on baseline [18F]FDG PET were 

related to reduced survival [31]. Similarly, textural parameters as the coefficient of variation, 

kurtosis of the absolute gradient (GrKurtosis), and other features on [18F]FDG PET images 

have been proposed in other papers as predictive and prognostic factors in the assessment of 

therapy response and survival outcomes in patients with rectal cancer [32]. Differently from 

other studies in the literature, we demonstrated the potential predictive value of FDG PET/CT 

radiomics features using an innovative ML model considering the disease status at follow-up 

as the gold standard for the performance analysis. Namely, in the per-lesion analysis, the most 

accurate FDG PET feature was GLZLM_GLNU that with the addition of 2 low-dose CT 
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features (GLZLM_ZLNU and GLRLM_SRHGE) reached an AUC ROC of 65.2%. The 

apparent sub-optimal results obtained in the present study need to be interpreted with caution 

because we are not presenting the performance on the identification of disease but the ability 

of some radiomics features to predict the disease status outcome of metastatic CRC after the 

standard first adjuvant therapy.  

Among limitations, this is a retrospective single-center study, with a relatively small number 

of patients. All patients who underwent [18F]FDG PET/CT after the first adjuvant therapy were 

at different disease stages, treated with different chemotherapy combinations following Italian 

oncological guidelines (5FU or oral capecitabine in combination with either oxaliplatin or 

irinotecan in various schedules) and a different number of cycles based on patients clinical 

conditions. All these variables might affect the patient’s outcome. In addition, radiomics 

features were extracted only according to the [18F]FDG-positive tumor to construct the model, 

and the remaining normal tissue in the image may still contain invisible but useful data. To 

properly analyze the entire images, 3D DL methods will be necessary. Nevertheless, our 

preliminary ML model on restaging [18F]FDG PET/CT demonstrated to be feasible and 

potentially useful in the predictive evaluation of disease progression in metastatic CRC after 

third-line therapies. This experience suggests that PET texture analysis is feasible and could 

be used as an independent indicator for the prognosis of patients with a high risk of disease 

progression, thus supporting clinicians for a more accurate selection of patients that may 

benefit from tailored therapies. 
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2.3 Neuroendocrine tumor and radioligand therapy - [68Ga]DOTATOC PET/CT ML 

radiomics to predict the response in GEP-NET undergoing [177Lu]DOTATOC radioligand 

therapy: the “theragnomics” concept [14] 

 

Background 

Neuroendocrine tumors (NETs) are heterogeneous and rare neoplasms, even if their incidence 

rate has increased consistently during the last decades, mainly represented by the 

gastroenteropancreatic (GEP) subtype (up to 70% of all NET). Targeted somatostatin receptor 

2 (SSTR 2) molecular imaging with PET/CT or PET/MRI plays a significant role in this 

scenario, especially for therapeutic decisions including radioligand therapy (RLT) which is an 

effective treatment for metastatic/inoperable NET, recently approved in Europe, USA, and 

Canada for GEP forms [33]. RLT represents an application of theragnostics enabling, through 

a unique radiopharmaceutical administration for multiple cycles, a molecularly targeted 

therapeutic procedure (i.e., beta minus emission of 177Lu) and biodistribution imaging (i.e., 

gamma emission of 177Lu). Although it is effective in most cases, approximately 15–30% of 

GEP NET patients will progress during RLT and can benefit from timely adjustments, therapy 

combinations, rapid sequencing, or alternatives. Furthermore, a Delphic consensus for GEP 

NET response to therapy assessment defined both the RECIST 1.1 criteria, PET parameters, 

and conventional biomarkers as suboptimal due to the high variability in SSTR expression, 

the different histological patterns related to disease heterogeneity, heterogeneous responses, 

and lack of standardized criteria for molecular imaging [34]. Therefore, the identification of 

new and reliable quantitative imaging parameters could be crucial to better address eligible 

candidates and assess the response to RLT, early selecting the best therapeutic opportunity, 

avoiding high-costly treatments and related toxicities [35]. Indeed, we aimed to develop a 

radiomics (“radiOMICS”) predictive model of response analyzing [68Ga]DOTATOC PET/CT 

images before and after complete [177Lu]DOTATOC RLT (“THERAGNOstics”) in well-
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differentiated, progressive, metastatic GEP NET, namely “Theragnomics” that can be applied 

in a clinical decision support system (CDSS). 

Methods 

In this retrospective study, we included all consecutive well-differentiated GEP NET patients 

who, between 1 April 2013 and 30 November 2019, underwent a baseline [68Ga]DOTATOC 

PET/CT within 2 months before beginning the RLT with [177Lu]DOTATOC performed at the 

nuclear medicine department of Policlinico G. Martino (University of Messina), and a FU 

[68Ga]DOTATOC PET/CT available within 9 months after the last RLT cycle. Chromogranin 

A (CgA) was also assessed before each RLT cycle and at the end of the treatment. Clinical, 

laboratory, and [68Ga]DOTATOC PET/CT FU data were collected for a period of at least 3 

months after the last cycle. In figure 6 we described the study workflow.  

 

 
Figure 6. Study workflow (from [14]). 

 

The study was approved by the institutional review board (668-18/20), conducted according 

to the Declaration of Helsinki principles and good clinical practice guidelines, and written 

informed consent specifying the potential use of anonymized data for research purposes was 

obtained for each patient. 

For each patient, all [68Ga]DOTATOC-positive lesions that were clearly discriminated, and 

non-confluent were selected. PET images were imported to LifeX [30] and a 2D-circular ROI 

was drawn around every lesion. ROIs had a minimum size of 0.443 cm3 (corresponding to at 

least 16 voxels) to allow for a consistent textural feature calculation. ROI size was adjusted to 

the size of the lesions, without incorporating adjacent tissue.  In this way, using an absolute 
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intensity rescaling factor of 0–60 of the SUV (64 bins, 0.95 fixed bin width), 65 radiomics 

features were automatically extracted for each lesion. In addition, five clinical features were 

also considered: grading (G1-G2-G3), number of RLT cycles, RLT cumulative activity, pre- 

and post-RLT CgA values. Therefore, all the features (imaging and clinical) were correlated 

with the response data through the mixed descriptive-inferential sequential approach followed 

by DA with k-fold validation (already described in [22, 23], page 7, figure 7). Accordingly, 

the features with valuable association with the outcome were identified and assessed 

(singularly and in combination) for response to RLT prediction.  

 

 
Figure 7. Description of the main machine learning step (from [14]). 

 

For the most significant features, we also assessed the percentage difference value before (T0) 

and after RLT (T1) in terms of delta radiomics, translating the pre-RLT [68Ga]DOTA-peptide 

PET/CT ROI in the same lesion area of the follow-up performed within nine months after 

RLT. The delta radiomics was then calculated using the following formula:      
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Δ = 100 ∗ (Feature T1 − Feature T0)/Feature T0 

Results 

A total of 38 well-differentiated GEP NET patients with a median age of 58 years (range 35–

79, 15/38 female) were retrospectively included and underwent a baseline [68Ga]DOTATOC 

PET/CT (median 120.5 MBq, range 93–330) a mean of 1.4 ± 0.7 months before complete RLT 

with a median cumulative dose of 29 GBq (23.9–32.8), followed by [68Ga]DOTATOC 

PET/CT (median 128.5 MBq, range 93–330) a mean of 8.7 ± 1.1 months after the last RLT 

cycle. The primary sites originated from the pancreas in 17 out of 38, ileum 14 out of 38, colon 

three out of 38, stomach two out of 38, and jejunum two out of 38. Grading was distributed as 

follows: 9/38 G1, 27/38 G2, 2/38 G3. [177Lu]DOTATOC RLT was performed with a median 

of five cycles (5–7). Baseline median CgA was 277 ng/mL (17–1315), while follow-up CgA 

was 125.5 ng/mL (16–1630). At baseline [68Ga]DOTATOC PET/CT, we obtained 324 SSTR-

positive lesions with at least 16 voxels. Based on their location, lesions were divided as 

follows: 169 in 324 liver, 91 in 324 lymph nodal, 42 in 324 bone lesions, and 22 in 324 

parenchymal (different than liver). At the qualitative assessment of FU [68Ga]DOTATOC 

PET/CT, 133 in 324 lesions were classified as progressive disease (PD) and 191 lesions as 

responsive to therapy (stable disease – SD -, partial response – PR -, and complete response - 

CR). The best result for prediction of response to RLT was obtained for HISTO_Skewness 

with an optimal cut-off at 2.45 reaching an AUC ROC, sensitivity, and specificity of 0.745, 

80.6%, and 67.2%, respectively. Differently, the conventional parameter SUVmax was not 

significant (p = 0.49, AUC ROC 0.523, sensitivity 36.7%, specificity 63.3%) as shown in 

figure 8.   

 



20 
 

 
Figure 8. ROC curve analysis for significant features (alone and in combination with clinical variables) 
and SUVmax in the prediction of response to RLT (early FU status) in terms of PD vs. positive results 
(SD, PR, CR) (from [14]). 

 

Furthermore, HISTO_Skewness was significantly higher (p < 0.001) in non-responders than 

in responders’ lesions before and after RLT. Indeed, we also assessed the delta skewness 

observing in RLT responsive lesions a mean percentage reduction for ΔHISTO_Skewness 

(−3.31% ± 664.3%); differently, for PD, we observed a mean percentage increase for 

ΔHISTO_Skewness (112.54% ± 348.3%; p = 0.209). 

Discussion 

In our preliminary experience, we aimed to give weight to a predictive model of response to 

RLT based on the most significant [68Ga]DOTATOC PET/CT features. In the innovative but 

uncertain setup of radiomics applied to GEP-NET, we tried to reproduce a real-life scenario: 

well-differentiated GEP-NET who underwent [68Ga]DOTATOC PET/CT with different 

scanners before and after complete RLT. In this way, the feature “HISTO_Skewness” was able 

to predict the RLT response on lesion-based regardless of the origin/nature with an AUC ROC 

of 0.745 (cut-off 2.45), sensitivity of 80.6%, and specificity of 67.2%. Also, at Δradiomics 

analysis, we observed different lesions’ behaviour according to the presence of response, 
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observing in responsive RLT lesions a mean percentage reduction of the “asymmetry” 

(namely, Skewness) than non-responsive lesions. A few studies already assessed the potential 

application of ML in GEP-NET to predict response to RLT. However, such studies referred to 

very limited and heterogeneous cohorts, or considered only predefined features [36, 37]. 

Recently, Önner et al. assessed the value of two predefined first-order features, “skewness” 

and “kurtosis” (interestingly the same as our study, that we obtained in a non-predefined way), 

in the prediction of response to RLT in 22 GEP NET patients for a total of 326 lesions reaching, 

however, less significant results (AUC ROC of 0.619 for skewness vs. 0.745 in our paper) 

[37].  

Despite limitations (2D approach, missing external validation), the presented preliminary 

“theragnomics” model proved to be superior to conventional quantitative parameters to predict 

the response of GEP-NET lesions in patients treated with complete [177Lu]DOTATOC RLT, 

regardless of the lesion site. The opportunity to assess for each patient the single lesion’s 

heterogeneity and predict each lesion’s response to RLT would enhance physicians to early 

address patients to the best options of care, reducing costs and potential toxicities, improving 

quality of life and survival. 
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2.4 Prostate – ML features classification of [18F]Choline PET/CT in high-risk prostate 

cancer outcome prediction [12, 13] 

 

Background 

Despite the high success rates of primary definitive therapeutic options, the mortality rates of 

prostate cancer (PCa) remain high with about 20–50% of patients who experienced 

biochemical recurrence (BCR) during the FU [38]. In this regard, radiomics analysis of tumors 

may be useful also for outcomes evaluation by using statistical, shape-based, and/or textural 

features analysis, including first-, second-, and higher-order methods of increasing 

complexity. A few numbers of studies reported a correlation between PCa outcome and 

11C/18F-Cho PET/CT–derived semiquantitative parameters: recently, our group suggests in a 

preliminary report the additional and potential value of PET-derived radiomics features using 

a ML extraction approach in a sample of patients with high-risk PCa [12]. However, the use 

of PET image features extracted through AI in the evaluation of high-risk PCa patients has not 

yet been confirmed in an adequate sample size obtained considering fewer features than 

samples to avoid the “Large P (P = dimension of independent variables), small N (N = sample 

size)” problem, i.e., the number of features is much larger than the sample sizes [39]. Indeed, 

the aim of this study was to investigate the potential application of texture analysis on restaging 

[18F]Cho-PET/CT images and to propose a model incorporating a new ML radiomics model 

to select those features able to predict the disease progression in BCR PCa. 

Methods 

We retrospectively analyzed ninety-four high-risk PCa patients among 425 patients referred 

to the nuclear medicine department of Fondazione Istituto G.Giglio of Cefalù (Palermo, Italy) 

who underwent restaging [18F]Cho-PET/CT after first-line therapy between November 2013 

and May 2018. Inclusion criteria were as follows: (a) pathology confirmed diagnosis of 

primary high-risk PCa; (b) [18F]Cho-PET/CT performed at restaging for BCR PCa after 
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primary therapy resulted positive for local recurrence or lymph-nodal/metastatic disease; (c) 

minimum FU of 12 months (mean 22 months) after [18F]Cho-PET/CT including complete 

clinical (clinical case notes and multidisciplinary meeting reports), laboratory, pathological, 

and imaging data available (ceCT, MR, and bone scan – BS); (d) [18F]Cho-PET/CT findings 

retrospectively confirmed at clinical FU and/or by means of other imaging modalities. Based 

on such information, the disease status during the FU was defined as PD or SD. The study has 

been approved by the institutional review board. The internal procedures provide informed 

consent also regarding the potential scientific use of all nuclear medicine examinations 

performed at our institution. Therefore, written informed consent was available for each 

patient. 

Radiomics features extraction and machine-learning features classification 

For ROI selection, a semi-automatic and operator-independent segmentation system was used 

[40]. Accordingly, the user intervention is limited to drawing an initial contour around the 

tumor. Starting from this contour, all the following steps are automatically performed to 

identify an optimal, operator-independent, initial ROI around the tumor. This process is based 

on the SUVmax voxel that is used as a target speed for the region growing segmentation to 

obtain a rough estimate of the lesion boundary. This initial operator-independent ROI is the 

input to the next component of the system, an enhanced local active contour segmentation 

algorithm, as extensively reported in [40]. Accordingly, the proposed system identifies user-

independent volumetric segmentation. These segmentations are then imported into LIFEx 

toolbox [30] to extract features from each lesion by defining subgroups as follows: a) Primary 

tumor or local relapse (T); b) Lymph-nodal disease (N); c) Bone metastasis (M); d) Whole 

sample. Also, prostate-specific antigen (PSA) and Gleason score features were considered (51 

+ 2 = 53 features). Successively, the mixed descriptive-inferential sequential approach 

followed by DA with k-fold validation (already described in [22, 23], page 7, figures 4 and 

7), were used to identify a small set of radiomics features with valuable association with 
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patients’ outcomes for better predictive performance, leading to the exclusion of non-

reproducible, redundant, and non-relevant features from the initial feature data set. 

Results 

Ninety-four patients (mean age 75 years) with a mean PSA value of 74.2 ng/mL scanned 

between November 2013 and May 2018 met the inclusion criteria. As a first-line treatment, 

15 patients (16%) underwent radical prostatectomy (RPE) and pelvic lymph-nodal dissection, 

22 patients (23%) were treated with RPE followed by pelvic-prostate RT, 11 patients (12%) 

underwent RPE followed by hormone therapy, 14 patients (15%) with pelvic-prostate RT 

followed hormone therapy, 26 patients (28%) were treated only with hormone therapy, and 6 

patients (6%) with hormone therapy and zoledronate. At the qualitative assessment, 7/94 (7%) 

patients were PET-positive for T, N, and M; 10/94 (11%) patients were positive for T (6 

patients not surgically treated; 4 patients with local recurrence after surgery) and N (lymph-

nodal disease); 5/94 (5%) patients were positive for T and M (metastatic bone disease), 14/94 

(15%) patients for N and M, 16/94 (17%) patients were positive only for T, 15/94 (16%) 

patients only for N, and 27/94 (29%) patients only for M. After a median FU of 26 months 

(range 13– 52), 52 (55%) patients had PD, and 42 (45%) showed SD.  

The 134 most [18F]Cho-avid lesions in all 94 patients were selected (T = 38; N = 44; M = 52) 

for texture analysis and ML feature classification. After the statistical reduction and selection 

process, we identified the following features able to discriminate the occurrence of disease 

progression at follow-up: 

For the whole group (N = 94), 2 features (HISTO_Entropy_log10; 

HISTO_Energy_Uniformity) with sensitivity 47.1%, specificity 76.6%, and accuracy 67.7% 

(figure 9).  
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Figure 9. ROC curve analysis for significant features in the outcome prediction in BCR PCa (from 
[13]). 

 

We also obtained better results considering the T-only (accuracy 87%), N-only (accuracy 

82.5%) and M-only (accuracy 72.5%). However, such results may be misleading due to the 

samples’ reduction.  

Discussion 

The first aim of this study was to confirm [12] the potential application of texture analysis on 

[18F]Cho-PET/CT images in BCR PCa. We tried to obtain a more rigorous radiomics study 

through the following steps: (1) acquisition of image data, (2) segmentation of target regions, 

(3) feature extraction, (4) feature reduction, and (5) identification of the prediction model. 

Consequently, many challenges must be addressed. First, the quality of radiomics studies 

depends on the imaging characteristics and, for this reason, the degree of image 

standardization must be as high as possible. To solve this challenge, our study is based on a 

real-life scenario with a standardized mono-centric dataset of 94 patients undergoing [18F]Cho-

PET/CT imaging scans performed using the same scanner and the same standard whole-body 

oncological protocol. Second, an operator-independent segmentation method must be used to 

extract target regions. Although manual delineation seems like the most intuitive and easily 
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implemented way of obtaining target volume, it is operator-dependent thus producing less 

precise and, mainly, irreproducible results. Consequently, we used an innovative user-

independent segmentation algorithm based on active contours, as described in [40], where the 

segmentation is applied on separate 2D PET slices to obtain the whole 3D volume: this is a 

very convenient and efficient oversimplification. Nevertheless, a more powerful and coherent 

procedure could be performed on 3D slices simultaneously by evolving a single surface within 

the corresponding 3D space. Also, further improvements consist of combining a ML approach 

with the active contour to consider the tissue classification [41]. Then, we used an IBSI-

compliant software for feature extraction (Lifex [30]), and then we used the DA as solid 

statistical classifier to create the predictive model. Indeed, the DA seems to provide better 

results in the PET tissue classification with respect to other classifiers as already described 

[41]. Third, an ad hoc high-throughput analysis tool must be used to automatically extract 

features. 

So far and in a new scenario, only another study in the literature assessed the role of ML 

radiomics Cho-PET in the prediction of PCa patients’ outcome. The study was also from our 

group and included a smaller cohort of PCa patients (n = 38), reaching, however, similar 

accuracy confirming the suboptimal results of the presented study (66% vs 67.7%) but 

considering 13 features [12]. This experience contains some limitations (retrospective study, 

heterogeneous treatment, missing external validation). Nonetheless, we hope that our 

preliminary and suboptimal results will provide the basis for future prospective studies to 

provide new and crucial information on risk stratification of PCa patients independently to 

classic staging systems and/or clinical, radiological findings. 
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3. Deep learning experiences 

3.1 Brain - Unsupervised Brain Segmentation System Using K-Means and CNN [15] 

 

Background 

Voxel-Based Morphometry (VBM) is a technique able to further characterize the anatomy also 

of the brain [42]. Indeed, after the segmentation and differentiation of constituent parts, VBM 

aims to determine if a specific voxel has a different intensity more similar to one group instead 

of another, correlating morpho-volumetric variations and allowing to compare results between 

pathological subjects and healthy controls or longitudinal comparisons. VBM brain’s analysis 

is mainly based on MRI signal intensity (gold standard for dementia), usually weighted in T1 

or T2 sequences that can be affected by several issues, i.e. noise, the intensity of non-uniform 

tissue, and partial volume effect [43]. For this reason, a robust method of brain voxel 

classification is mandatory. Also, the radiomics feature extraction process from biomedical 

images depends on a reliable volume segmentation [13] which is, therefore, a prerequisite for 

obtaining accurate and reproducible parameters associated with the target tissue. Most of the 

used computer-aided design (CAD) tools for brain analysis are performed using the Functional 

brain MRI (FMRIB) Software Library (FSL) and SPM [44]. Such tools provide a satisfactory 

VBM analysis but are both related to the setup of a high number of parameters that can lead 

to different and/or inaccurate segmentation results. The search for the most accurate 

parameters able to obtain quantitative results more similar to the gold standard can be made 

through several manual attempts, representing a time-loss methodology with intra- and inter-

operator result variability.  

Therefore, the aim of this study was to present a novel VBM analysis system able to segment 

MRI 3D brain volume without user intervention and parameters setting, thus overcoming such 

limitations.  

Methods 
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Briefly, a CNN has been trained using the voxels classified by an unsupervised k-means 

algorithm using the different intensity distribution of tissue signals. brain Then, the trained 

CNN is employed for segmentation purposes to discriminate among white matter (WM), grey 

matter (GM) and CSF. The obtained segmentations are finally compared with FSL and SPM 

results. The proposed method aimed to segment a whole-brain T1 MRI study automatically, 

classifying each voxel in CSF, GM and WM as resumed in figure 10. 

 

 
Figure 10. The workflow of the proposed method (from [15]). 

 

The system considered as input an MRI dataset (hundreds of slices, generally 50~300, in 

DICOM format of 256 x 256 voxels). The dataset was then sampled considering a group of 

only 3 slices as training set: one slice was selected near the neck zone, where the brain starts 

and the presence of the CSF matter is predominant with respect to GM and WM; one slice in 

the middle of the sequence, where WM and GM are little predominant with respect to CSF; 

the last slice was chosen in the upper section of the brain, where the WM is more prominent 

than the other two. These slices are the input of the k-means clustering algorithm: with k = 3 
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clusters, the k-means assigns each voxel to a cluster, labelling it with the cluster number (1 = 

CSF, 2 = GM, 3 = WM). Because of the nature of the k-means, labels are randomly assigned 

to the clusters: each group is then re-labelled according to the centroid value of each cluster. 

As a matter of fact, in the T1 sequence, the CSF has small intensity values, the WM has the 

highest intensity values, and the GM has a mean intensity (between the CSF and WM). The 

CNN training set is the combination of the input set (voxel intensity values) and the target set 

(voxel labels). When the training phase is completed, the trained CNN can segment and 

classify each voxel of the whole brain volume. Each segmented voxel can be a:  

• TP: a voxel considered the same tissue (CSF or GM or WM) both in reference and in 

calculated segmentation;  

• FP: a voxel considered belonging to a tissue (CSF or GM or WM) but not considered as such 

in the reference segmentation;  

• FN: a voxel that is excluded from a tissue (CSF or GM or WM) but considered to belong to 

that tissue in the reference segmentation;  

• TN: a voxel excluded both from the reference and calculated segmentation.  

The performance was evaluated using the dice similarity coefficient (DSC) as follows:  

DSC = (2*TP)/(2*TP+FN+FP)  

The dataset has been segmented using the proposed methodology and the results have been 

compared with FSL and SPM results.  

Results 

In this experience we assessed a public MRI brain cohort from the Internet Brain Segmentation 

Repository (IBSR) dataset (v2.0) [45] composed of 18 brain T1-weighted acquisitions; 

volumes were already skull stripped, and the dataset is provided with a reference segmentation 
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made by expert radiologists, used to evaluate the precision of the segmentation methodologies. 

For each patient, a series of three slices have been sampled with the k-means algorithm and 

used as the training set for the CNN. The hidden layer of the proposed CNN was composed of 

30 neurons; the output layer was composed of 3 neurons, one for each output tissue. The 

training of the CNN needed less than a minute, while the segmentation of the whole volume 

needed just a couple of seconds. Then, the segmentations have been compared with the 

reference segmentations, also in terms of DSC. The segmentation has been carried out also 

using FSL and SPM with default parameters. The obtained DSC results for all segmentation 

methodologies are shown in table 2. 

             
Table 2. DSC for segmentations obtained using FSL, SPM, and the proposed system (from [15]). 
 

The DSC considered both corrected and uncorrected labelled voxels, showing a general 

improvement of the proposed system if compared to FSL and SPM, despite WM for FSL. 

Also, the proposed unsupervised system resulted faster and without the need to set any 

parameter: the segmentation of the whole dataset, composed of 18 x (256*256*128) voxels, 

needed 504 seconds for FSL, 652 seconds for SPM, and 162 seconds for the proposed method. 

Discussion 

The ability to segment brain tissues accurately from MRI can magnify the utility of this 

fundamental neuroimaging technique. Manual contouring is still a common choice in clinical 

practice despite limitations, and for this reason, several computer-aided segmentation systems 

supporting automatic or semi-automatic algorithms have been proposed [46]. In this study, a 

novel unsupervised system that uses a k-means classifier and a CNN has been proposed, 

resulting fast and reliable, also in comparison with other state-of-the-art segmentation systems 
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[44, 47]. Our system sampled a small amount of data from the whole volume that was 

classified using the k-means algorithm. Classified voxels were then used as the training set for 

the feed-forward CNN, which learned the segmentation phase. Each voxel of the whole 

volume was then segmented using the trained CNN, obtaining superior results if compared to 

FSL and SPM, as shown in table 2. Therefore, the proposed system could be used as a CDSS 

to help clinicians in treatment response evaluation of neurological diseases in terms of brain’s 

components volumes variations [48]. Indeed, despite limitations, our system reached 

reasonable segmentations of WM, GM and CSF based on standard MRI potentially 

representing a base for additional, more complex, and complete segmentation procedures for 

tasks such as the automated labelling of brain areas.  
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3.2 Prostate – Deep learning prediction of PSMA PET prostatic volume based on T2 MRI  

Background 

ML approaches in PCa have shown promising results with different tracers in molecular 

profiling [49], lesion characterization with disease outcome prediction [13, 50], and survival 

assessment [12]. Furthermore, AI has been used in several steps from technical, such as 

automatic segmentation [51], dose and scanning time reduction [52], to clinical applications 

for lesion detection [53]. Prostate-specific membrane antigen (PSMA) PET is a relatively new 

and game-changing modality able to improve PCa assessment, from diagnosis to restaging 

[54, 55]. Simultaneous PSMA PET/MRI enables the unique opportunity to assess the added 

value of multiparametric (mp) MRI (mpMRI) with this novel PET tracer for the detection of 

PCa. Indeed, several studies suggested an increase in accuracy detection for significant PCa 

(sig PCa) if PSMA PET data are combined with the morphological information from T2 

sequences compared to mpMRI alone [56]. This technology however is not widely available 

and is still limited to a few centers mainly due to high costs. The applications of ML and AI 

on simultaneous PSMA PET/MRI may further improve the use and the evidence of such a 

unique state-of-the-art technique in several aspects of PCa: from segmentation to accurate 

analysis and correlation through unconventional parameters. But how far can we go with AI? 

We asked ourselves if it is possible to further enhance AI applications in PCa molecular 

imaging improving the diagnostic confidence in mpMRI. Therefore, we preliminarily assessed 

the feasibility of CNN prediction of PSMA prostatic distribution based on T2-MRI images 

acquired from simultaneous PSMA PET/MRI.   

Methods 

In this retrospective study, we screened all PCa patients who, between 01.04.2016 and 

01.12.2020, consecutively underwent a staging (n = 177) or prospectively biopsy-guidance for 

PCa (n = 45) PSMA PET/MRI at the nuclear medicine department of the Universitatsspital 

Zurich (USZ, Switzerland). Then, we excluded patients who previously underwent 
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locoregional therapies (n = 34) or without any PSMA prostatic uptake (n = 11). The study was 

approved by the institutional review board (2020-02861); all staging patients signed a general 

informed consent for retrospective studies, while biopsy guidance patients signed the specific 

written informed consent of the prospective study.  

All patients underwent [68Ga]Ga-PSMA-11 or [18F]PSMA-1007 PET/MRI scans (SIGNA 

PET/3T MRI, GE Healthcare, Waukesha, WI, USA). Images were acquired starting with a 

whole-body MRI localizer scan. Subsequently, a 3D dual-echo, spoiled gradient recalled echo 

sequence (LAVA-FLEX) for attenuation correction, and a PET emission scan were acquired 

(60 and 90 min after the injection of [68Ga]Ga-PSMA-11 or [18F]PSMA-1007, respectively) as 

extensively described in [57]. 

For each patient, using 3D Slicer [58] I manually segmented the T2 MRI images of the 

prostatic gland including seminal vesicles. These volumes were then confirmed by a double 

board-certified radiologist and nuclear medicine physician with 12 years of experience. Then, 

the prostatic beds on PSMA PET scans were segmented through Lifex [30] and considered as 

the standard of reference: to increase the specificity of our predictive model, we considered an 

SUV threshold greater than 5 to generate positive and negative voxels. An SUV cut-off of 4 

was used in patients without PSMA prostatic uptake greater than 5 and considered as 

validation. Then, T2 weighted axial sequences were semiautomatically segmented to select 

the prostate volume. Finally, a CNN was trained on the T2 images to generate a predictive 

prostatic PSMA PET map. 

Results 

One hundred seventy-seven (177) patients (mean age 65.9 ± 7.9 years) with a median PSA of 

10.1 ng/ml (1.28 – 480) underwent [68Ga]Ga-PSMA-11 (154/177) or [18F]PSMA-1007 

(23/177) PET/MRI with an administered median dose of 124 MBq [76 – 198] or 239 MBq 

[135 – 303], respectively. Clinically sig PCa at biopsy was present in 145/177 of them (81.9%). 

34 patients had no PSMA uptake > 5; therefore, they were re-segmented with an SUV > 4 and 
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used as validation. In this way, the reached DSC by our model was 69.47± 15.62% as 

represented in figure 11. 

 

 
Figure 11. An illustrative representation of the proposed method. 

 

Discussion 

Despite several applications of AI in medical imaging, there is no data in the literature 

comparable to the presented preliminary DL experience. In my eyes, AI can also offer 

opportunities to reduce potential gaps between hospitals with and without high-level facilities, 

and among nations with different rules. Indeed, patients worldwide with suspicious PCa have 

easily access to pelvic MRI; however, we cannot affirm the same for PSMA PET which is a 

relatively new and game-changing modality able to improve PCa assessment, from diagnosis 

to restaging. The opportunity to consider also the PSMA prostatic distribution for each patient 

undergoing a prostate MRI could improve, in a futuristic vision, the physicians’ confidence 

potentially confirming/invalidating any unclear/doubtful MRI findings. Accordingly, we have 

shown that based only on the T2 MRI, increased prostatic PSMA uptake can be estimated in 

staging PCa reaching a DSC of 69.47 ± 15.62%. Further investigation with larger cohorts and 
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external validation are warranted to assess whether PSMA uptake can be predicted accurately 

enough to help in the interpretation of mpMRI.   
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4. Conclusion 

In my eyes, it is time to produce and deliver more robust evidence accelerating the use of the 

various facets of AI applications in clinical practice. Indeed, ML and DL can perform tasks 

that are normal characteristics of human intelligence, making autonomous decisions based on 

the collection of data and reducing the daily workflow timing. ML and DL can also help to 

reduce the fundamental but vast amount of radiomics data that may magnify the whole imaging 

assessment considering every single pixel/voxel features that are not assessable by the human 

eye. All these techniques are receiving growing attention from the scientific community 

worldwide in different pathologies. As we confirmed also in this thesis, there are several 

potential applications in the clinical scenario from image interpretation to outcome and 

response to therapy prediction. As demonstrated, AI also has the potential to optimize timing, 

potentially reducing costs, and interobserver variations. Furthermore, I preliminary showed 

that AI (DL) may also predict the results of a costly examination resulting useful in less-

advanced countries worldwide and potentially enhancing physicians’ confidence and patients’ 

quality of life (also reducing the radiation burden). However, data availability, privacy 

concerns, and lack of transparent, standardized, and universal procedural agreements are 

limiting the development of AI approaches. But there are preliminary attempts to override 

these limitations, and fully automated processing and high-level computer interpretation of 

imaging are nowadays becoming a reality. 

What should we expect then? 

Molecular imaging and AI are both growing faster. Building big databases containing clinical 

and image data is the next but essential step in creating and training automated 

diagnostic/prognostic models able to help clinicians to make unbiased and faster decisions for 

precision healthcare. Deep and multicentric collaborations are, therefore, warranted:  it is 

fundamental to deliver (and confirm) more evidence in the literature to further accelerate the 
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use of artificial intelligence applications as well as the diffusion of new diagnostic and 

therapeutic approaches. AI applications will be essential to handle and integrate the vast 

amounts of quantitative data generated for each exam with clinical data to facilitate a shift 

towards more personalized medicine. At the end of the path, medical doctors will probably 

play a role as supervisors of automatically generated data, given their capability to integrate 

data based on their clinical experience. Therefore, physicians will remain ultimately 

responsible for patient care and will need to acquire new skills to do their best for patients in 

the new AI ecosystem. 
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5. Abbreviations’ list 

AD Alzheimer’s disease 

AI artificial intelligence  

AUC ROC area under the receiver operating characteristics curve 

BCR biochemical recurrence 

CAD computer-aided design 

CDSS clinical decision support system 

ceCT contrast enhancement computer tomography 

CgA chromogranin A 

CI confidence interval 

CNN convolutional neural network 

CR complete response 

CRC colorectal cancer 

CSF cerebrospinal fluid 

CT computed tomography 

DA discriminant analysis 

DICOM digital imaging and communications in medicine 

DL deep learning 

DSC dice similarity coefficient 

EOAD early-onset Alzheimer’s disease 

FBB florbetaben 

FDG fluorodeoxyglucose 

FN false-negative 
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FP false-positive 

FSL Functional brain MRI (FMRIB) Software Library 

FU follow-up 

GEP gastroenteropancreatic 

GM grey matter 

IBSI image biomarker standardisation initiative 

MCI mild cognitive impairment 

MDT multidisciplinary team 

ML machine learning 

MMSE mini-mental state examination 

mpMRI multiparametric MRI 

MRI magnetic resonance imaging 

NETs neuroendocrine tumors 

PBC point biserial correlation 

PCa prostate cancer 

PD progressive disease 

PET positron emission tomography 

PR partial response 

PSA prostate-specific antigen 

PSMA prostate-specific membrane antigen 

RLT radioligand therapy 

ROI regions of interest 

RPE radical prostatectomy 
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RT radiotherapy 

SD stable disease 

sig PCa clinically significant PCa 

SPM Statistical Parametric Mapping 

SSTR somatostatin receptor  

SUVmax maximum standardized uptake value 

SVM support vector machine 

TP true-positive 

TV true-negative 

VBM voxel-based morphometry 

VOI volume of interest 

WM white matter 
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