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Chapter 1

General Introduction

1.1 Introduction to the topic of the PhD thesis

Ethiopia continues to have a serious public health problem with persistent malnutrition,

which is like the larger problem that children under five experience throughout Africa

(Amare et al., 2020). There is a high likelihood of co-occurring pediatric comorbidities

with this sensitivity to malnutrition and alarmingly high rates of underweight, especially

among those who live in locations with minimal resources (S. H. Mohammed et al., 2020;

Raru et al., 2022), which exacerbates health issues (S. H. Mohammed et al., 2020). The

country also has an alarmingly high infant mortality rate, which is a result of the high

rates of underweight and co-morbidity that follow (Central Statistical Agency [CSA] ICF

International, 2019).

Ethiopia’s high rates of underweight children, comorbidities, and neonatal mortality

further impede the country’s development. These interconnected issues put considerable

pressure on the healthcare system and obstruct economic progress (Krishna Luhila, 2022).

According to research by Grantham-McGregor et al. (2007), children who suffer from

malnutrition and co-morbidities are more likely to develop long-term health problems

that will affect their productivity and academic performance in the future. The high

infant mortality rate causes a horrible number of deaths as well as a lot of mental distress

for families and communities (Bryce et al., 2006). These problems must be fixed to

safeguard the wellbeing of Ethiopian children and pave the way for the nation to enjoy

more prosperity in the future.

Despite Ethiopia’s progress, the country faces obstacles to achieving optimal child

health outcomes. The infant mortality rates in Ethiopia are still higher than average

according to the World Bank’s data for that year. These disparities are exacerbated

by differences in healthcare access and facilities across regions, impacting child health

outcomes differently based on location, as highlighted by the World Banks report from

2024 (USAID in 2023; World Infant Mortality Rate 1950-2024). Research conducted by

Seale et al., (2022) underscores these inequities by illustrating how the uneven distribution

of resources among regions leads to child illnesses. Children are vital to the future of

any nation, so ensuring their wellbeing is crucial. Thus, it is important to understand

the factors that affect child health to continue moving forward, and these concerning

literatures highlight the pressing need for efficient interventions to deal with the various

issues obstructing Ethiopian children’s health.

1



Our thesis on child health and mortality in Ethiopia utilizes a multifaceted approach.

We employ a generalized linear mixed model (GLMM) to explore child comorbidity de-

terminants using 2019 PMA-ET data, and a Bayesian semiparametric geoadditive model

(2016 EDHS data) to investigate geographic and sociodemographic factors influencing

underweight in children under five. Finally, structural equation modeling based on World

Bank data from 2000-2019 examines causal relationships between indicators and infant

mortality rates. This multi-model approach offers a comprehensive understanding of child

health determinants in Ethiopia.

1.2 The content of the PhD thesis and limitations of

existing researches

This dissertation explores the complex issue of child health and mortality in Ethiopia by

employing slice-edge statistical analysis. The exploration utilizes three distinct projects

labeled in three chapters, each focused on a specific aspect of this critical child health

concern.

Chapter 1: Neighbourhood-level heterogeneity of child comorbidity in a

generalized linear mixed model: Based on the Performance Monitoring for

Action Ethiopia (PMA-ET) community survey

While significant exploration exists on childhood morbidity in Ethiopia (Asresie et al.,

2023; Susuman, 2012a; Takele et al., 2019a; Teklemariam et al., 2000a; Yohannes et al.,

1992a), these studies primarily concentrate on factors associated with individual health

conditions, and focusing on single conditions fails to capture the full picture of nonage

health challenges in Ethiopia. By solely fastening on individual conditions, experimenters

miss the opportunity to explore these interrelated factors that contribute to the complex

reality of nonage comorbidity in Nigeria (M. Ezeonwu, 2014; Starfield, 1992). Existing

studies also frequently fail to account for implicit variations in health outcomes between

different groups of children, and children in different regions or communities may face

distinct health pitfalls due to varying factors like environmental conditions, access to

healthcare installations, and socioeconomic differences. This lack of consideration for im-

plicit clustering goods within the data can lead to inaccurate or deficient understandings

of childhood morbidity patterns.

Therefore, our exploration design investigates the factors impacting the socio-occurrence

of multiple health conditions (comorbidity) in children across different Ethiopian neigh-

borhoods. We employ a generalized linear mixed model (GLMM) to account for both

individual-position variations or between-subject variations and variations in regions of

child comorbidity (e.g., the child’s ID and region). The analysis utilizes data from Per-

formance Monitoring for Action Ethiopia (PMA-ET), a rich resource covering different
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aspects of child health and ménage characteristics. Then, you might examine more closely

at (Zimmerman et al.,2020a), who highlighted the importance of PMA-ET dataset for

Ethiopian public health research. In terms of parameter estimation, a likelihood-based

approach with Akaike’s information criteria serves as a tool for model selection (Akaike,

1973a). Moreover, we generate easily interpreted scaled (quantile) residuals for fitted

GLMMs using a simulation-based method with the DHARMa package in R for the fitted

model (Hartig, 2018). Our analysis of advanced current methodologic approaches with a

recent data set of interest will provide robust information for the best possible planning

of health services as well as a better understanding of the state of children’s health. The

article is developed in collaboration with Prof. Kasahun Alemu, Maria Gabriella Campolo

and Prof. Angela.

Chapter 2: Bayesian semiparametric geoadditive modeling of underweight

among under-five children in Ethiopia.

In the second study, we utilize a Bayesian semiparametric geoadditive model that

incorporates both social and demographic factors alongside the spatial effects on under-

weight prevalence. The model leverages data from the 2016 Ethiopian Demographic and

Health Survey (EDHS) and employs statistical techniques like P-splines and Gaussian

processes to model non-linear relationships and spatial trends. Our approach is informed

by the work of Brezger Lang, (2008a); Dong Harris, (2015a); Eilers Marx, (1996a); and

Kammann Wand (2003a) who have made significant contributions to the development

and application of these methods.

Thus, even though a substantial body of research exists on child malnutrition in

Ethiopia (Agho et al., 2019; Fenta et al., 2020; Hébuterne et al., 2014; Liben et al.,

2016; Mulugeta et al., 2010; Rowhani et al., 2012; Tesema et al., 2021; Workie et al.,

2020), a closer examination reveals limitations in the methodologies employed. Frequen-

tist approaches often assume linear relationships between anthropometric measures factors

(e.g., mother and child age, mother’s BMI) and underweight, neglecting potentially non-

linear patterns. Additionally, existing studies that utilize Bayesian-Gaussian regression

to explore sociodemographic influences (Bacha Tadesse, 2019; S. Mohammed Asfaw,

2018a; Takele, 2013) often fail to analyze anthropometric, geographical, and sociodemo-

graphic effects simultaneously. This creates an incomplete picture, as spatial effects can

significantly influence malnutrition rates. These limitations leave a critical gap in our

understanding of how underweight manifests in Ethiopia. To address this, we propose

a novel Bayesian geoadditive regression model that captures non-linear relationships be-

tween variables, allows for simultaneous analysis of spatial and sociodemographic effects,

and provides a more flexible framework for modelling the complex interplay of factors

contributing to underweight in Ethiopian children under five. The article is developed in

collaboration with Prof. Maria Gabriella Campolo and Prof. Angela Alibrandi, and the

article is under review at international journal of Public health.
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Chapter 3: The causality of infant mortality in Ethiopia: A Structural

Equation Modelling Approach

Finally, we employ structural equation modelling (SEM) to examine the causal re-

lationships between various indicators and infant mortality rates. Understanding the

complex interplay of factors contributing to the infant mortality rate burden is crucial

for designing effective interventions. Furthermore, previous studies often fall short of

capturing these intricate causal relationships. Thus, our research addresses this gap by

employing SEM, a powerful multivariate technique, and allows for the simultaneous anal-

ysis of multiple variables and causal paths, enabling the estimation of both direct and

indirect effects on IMR (Meydan Şeşen, 2011). This approach surpasses other statistical

methods by providing a more comprehensive understanding of the mechanisms underlying

the relationships between various factors influencing IMR (Nelson et al., 2020). We utilize

data from the World Bank’s Health Nutrition and Population Statistics spanning the pe-

riod 2000-2019, enabling us to assess progress and identify potential areas of intervention.

Our work builds upon the call by Tu, (2009), for increased use of SEM in epidemiological

research, and leverages the advancements made in software like AMOS, EQS, and Mplus

(Byrne, 2013). Furthermore, SEM offers a confirmatory approach, allowing researchers to

test pre-established hypotheses about the causal structure (Hair Jr. et al., 2021).This is a

significant advantage over exploratory methods that simply identify relationships within

the data without necessarily revealing the causal direction. The article is developed in

collaboration with Prof. Maria Gabriella Campolo and Prof. Angela Alibrandi, and it is

published in MDPI, Children 2023, 10(2), 397; https://doi.org/10.3390/children10020397

1.3 Research questions

Research questions act as a roadmap for addressing a specific knowledge gap within any

investigation (Polit Beck, 2008). Crucially, precisely formulated research inquiries help

to offer novel insights by addressing unresolved issues in the current scholarly discourse

(Rudolph, 2015). Thus, we tried to develop the appropriate research questions that

guide the entire structure of this PhD thesis and provide a framework for data analysis,

discussion of findings, and the formulation of conclusions.

The first chapter of our study dissects child comorbidity in Ethiopia. It asks how much

a child’s characteristics and their region influence comorbidity risk and to what extent the

failure to examine interconnected factors contribute to our understanding of childhood

comorbidity in Ethiopia. This explores the interplay between individual and regional fac-

tors by analyzing national data. The research will inform interventions targeting specific

regional needs and child vulnerabilities.

Similarly, the second chapter of our research tackles childhood malnutrition in Ethiopia

by addressing limitations in prior studies. Existing research often overlooks potential
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non-linear relationships between anthropometric measures and underweight, and neglects

geographical variations. This creates a gap in understanding the interplay between these

factors and underweight prevalence in children under five. Therefore, this study aims to

answer key questions like: 1) How do sociodemographic factors and geographical location

interact to influence underweight prevalence? 2) Are there non-linear relationships be-

tween specific anthropometric variables and underweight that haven’t been captured by

previous models? 3) Does underweight show spatial clustering across Ethiopian regions?

This study with a Bayesian geoadditive regression model allows for a more thorough un-

derstanding of the factors that lead to underweight and, in turn, helps to inform targeted

interventions to improve nutritional status and address regional disparities.

Finally, our last research project employed structural equation modeling (SEM) from

World Bank datasets (2000-2019) to investigate the causal relationships between vari-

ous health, nutrition, and population indicators and the infant mortality rates (IMR) in

Ethiopia. The core question was: What are the direct and indirect causal influences of

these indicators on IMR? By elucidating these causal relationships, the study seeks to

provide valuable insights for policymakers to develop targeted interventions for reducing

infant mortality in Ethiopia.

1.4 Overall Significance

These three projects collectively contribute to a deeper understanding of the factors influ-

encing child health and mortality in Ethiopia. By employing advanced statistical meth-

ods, this research provides valuable information for policymakers, stakeholders, and public

health professionals working to improve child health outcomes in the country. The find-

ings can ultimately guide the development of more effective strategies for ensuring the

well-being of children in Ethiopia.

1.5 Conclusion

This dissertation has undertaken a thorough investigation of Ethiopian child health and

mortality, making use of comprehensive statistical models to the light on important vari-

ables affecting these vital outcomes. According to the findings, child health and mortality

in this rapidly changing country are complicated and varied.

The first study, employing a Generalized Linear Mixed Model (GLMM), delved into

the intricate child comorbidity of Ethiopia in children under one year old. This approach

proved invaluable in unravelling the hierarchical nature of the data, where socioeconomic

background and healthcare use varied based on each child. The analysis revealed a clear

association between a child’s health and factors such as cooking fuel type, wealth level,

maternal education, and access to electricity. Notably, the study identified a crucial

role for maternal socioeconomic standing, suggesting that targeted interventions aimed

5



at uplifting mothers’ economic and educational opportunities can significantly reduce the

prevalence of childhood illnesses. Despite initial results suggesting minimal overall vari-

ation, including random effects helps the model account for potential regional and indi-

vidual differences. This leads to a more comprehensive understanding of how child illness

patterns might vary across locations and for specific people. These findings contribute

to the global discussion on the importance of social determinants of health, highlighting

their profound impact on child well-being even in early infancy.

The second study, leveraging a Bayesian geoadditive model, tackled the pressing is-

sue of underweight in children under five. This flexible model excelled in capturing the

intricate relationships between various factors and a child’s weight status. The analysis

yielded crucial insights, pinpointing significant associations between a mother’s educa-

tion level, a child’s history of diarrhea or anemia, and access to electricity. Interestingly,

the study found minimal influence of the child’s household head’s sex, prompting further

investigation into the specific dynamics within Ethiopian households that may influence

child health outcomes. The anthropometric variables like mother and child age, and moth-

ers BMI have a nonlinear relation with underweight. Furthermore, the model identified

geographic hotspots of underweight, emphasizing the need for targeted interventions in

these areas. The study advocates for the development of comprehensive social programs

designed to address childhood underweight, focusing specifically on areas with the highest

burden. These results support national efforts to improve development in young children

and show that focusing interventions on specific areas is crucial for addressing public

health issues.

Finally, a structural equation model path analysis delved into the complex web of

factors influencing infant mortality rates (IMR) in Ethiopia. This powerful approach fa-

cilitated the examination of both direct and indirect effects on IMR, providing a more

holistic understanding of the underlying mechanisms. The study revealed a significant

impact of maternal mortality ratio, national fertility rate, and GDP per capita on IMR.

Notably, a higher GDP was associated with a lower IMR, highlighting the critical role

of economic development in improving child health outcomes. This finding aligns with

existing literature on the association between economic prosperity and child well-being.

However, the research yielded surprising results regarding the limited influence of govern-

ment health expenditure and the BCG vaccination. These unexpected findings warrant

further investigation and exploration of alternative explanations. Based on the study’s

comprehensive analysis, the study argues that the most crucial strategies for lowering IMR

in Ethiopia are reducing national fertility rates, enhancing the quality of maternal care,

and increasing GDP. These recommendations provide valuable guidance for policymakers

and healthcare professionals in Ethiopia, directing resources and efforts towards the most

impactful interventions.

While this dissertation has yielded significant advancements in our understanding of
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child health and mortality in Ethiopia, limitations remain. Data availability for periods

before 2000 presented a challenge, restricting the analysis of historical trends. Addition-

ally, the studies focused on a specific set of factors. Future research can significantly

benefit from incorporating a broader range of variables, including environmental factors,

paternal health, and access to specific healthcare services. By expanding the scope of

investigation, researchers can create an even more comprehensive picture of the factors

shaping child health and mortality in Ethiopia.

In closing, this dissertation has utilized advanced statistical models to unveil the com-

plexities of child health and mortality in Ethiopia. The findings provide valuable insights

for policymakers, healthcare professionals, and researchers. By addressing the identified

limitations and continuing research efforts, we can contribute to a brighter future for chil-

dren in Ethiopia, ensuring their optimal health and well-being. Future research holds the

promise to further refine our understanding and inform targeted interventions, leading to

a healthier and more vibrant future for all Ethiopian children.

7



Chapter 2

Neighborhood-level heterogeneity of

child comorbidity in a generalized

linear mixed model: Based on the

Performance Monitoring for Action

Ethiopia (PMA-ET) community

survey
Abstract

Child morbidity affects a child’s development, growth, and the overall well-being of so-

ciety. This study aimed to examine the comorbidity of children in a sample of Ethiopian

children based on the Performance Monitoring for Action Ethiopia community survey

(PMA-ET), as well as the existence of child-specific, regional variation in children’s co-

morbidity and its relationship to socioeconomic and demographic variables in families.

We enrolled 2581 children suffering from different illnesses from six different regions of

the country. Maximum likelihood estimates in Generalized linear mixed models (GLMMs)

were used to assess children’s comorbidity status. We used the Diagnostics for Hierarchical

Regression models (DHARMa) package in R to provide readily interpretable scaled resid-

uals and test functions for typical model misspecification problems for the fitted GLMMs.

GLMMs with two random intercept models show the presence of child morbidity varia-

tions. Cough, fever, and diarrhea were found to be the most frequent types of children’s

illnesses among the main illness categories that were recorded. Cooking fuel, wealth quar-

tiles, mothers’ marital status, mother age, parity, residence, mother’s education status,

and availability of electricity were significantly associated with children’s morbidity. These

data show that variations in children’s comorbidity were associated with both regional and

child-specific characteristics. Thus, general principles for designing policies and interven-

tions are required to reduce child comorbidity.

KEYWORDS

AIC; Children Comorbidity; DHARMa; GLMMs; Laplace Approximation; Random Effect
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2.1 Introduction

Child morbidity remains a major health challenge, and its rate of decline is dawdling [1].

According to [29], approximately five million children under the age of five passed away.

These deaths were mostly from preventable and treatable causes. The leading causes of

such child deaths include preterm birth difficulties, congenital abnormalities, injuries, and

non-communicable illnesses such as Acute respiratory infection (ART), acquired heart dis-

orders, diarrhea, cough, fever, pediatric cancers, malaria, vomiting, diabetes, and obesity

diseases [23, 55, 6]. Furthermore, even in 2016, 15,000 children lost their lives each day

globally, amounting to 5.6 million annually. Although this marks a significant decline from

the 35,000 daily deaths (12.6 million annually) in 1990, there is still much progress to be

made to achieve target 3.2 of the Sustainable Development Goals, which aims to reduce

under-5 mortality to fewer than 25 deaths per 1,000 live births in all countries. Many of

these children suffer from preventable or treatable conditions such as fever, diarrhea, and

malaria. [68]. Although Ethiopia’s infant mortality rate fell from 34.010 deaths per 1000

live births in 2020 to 29.524 deaths per 1000 live births in 2023 [49], child morbidity was

still significant, particularly among children under the age of one [25, 63].

Therefore, to successfully formulate a national policy for childhood morbidity inter-

vention, it is necessary to identify determinants in a local context. Hence, several earlier

studies suggested that environmental, socioeconomic, demographic, and health-associated

factors lead to childhood morbidity globally [1, 31, 34, 41, 61, 66]. Some of the following

variables, for instance, mother’s age, mother’s education, children’s food status, family

wealth, handwashing, sanitation, gender of the child, child’s anemia level, husband’s ed-

ucation level, mother’s employment status, mother’s marital status, breastfeeding status,

and exposure to morbidity information have been found to have an impact on child mor-

bidity [5, 15, 19, 18, 24, 31, 36, 41, 44, 38, 65, 71]. Two-parent families have more stable

family structures and stronger social support networks for their children to improve their

child health [7, 46, 74]. Likewise, the rate of children’s illness also differs across geo-

graphical regions, their residence, and high-parity-births, and availability of electricity

[57, 1, 34, 37, 65, 77, 69].

Furthermore, previous studies in Ethiopia have identified a wide range of risk factors,

including socioeconomic, environmental, demographic, and other elements that influence

childhood morbidity [3, 18, 52, 67, 70, 77]. Due to the lack of access to healthcare and the

low socioeconomic conditions of Ethiopian households, children in Ethiopia typically have

various health issues. However, most researchers focused on predicting the characteristics

of a single health condition. Besides, understanding the cause and expected outcome of

morbidity in children will be insufficient if the focus is on specific diseases or categories of

illnesses [27, 66]. Moreover, previous studies also did not account for potential variation

among clusters of individuals or groups. Thus, to account for this source of variability,

we propose a generalized linear mixed model (GLMMs) that can be used to analyze data

9



collected from multiple subjects within different clusters or clustered data and handle

random effects that are used to model the variability in the response variable due to the

grouping structure of the data [47] . In comparison to pure time series or cross-sectional

data, GLMMs are more efficient, include more information, have more variability, and

can represent both common and individual behaviours [20].

Therefore, in this paper, we specifically focus on studying within-subject variation

and between-subject effects in GLMMs considering the presence of two or more health

conditions or diseases simultaneously in a child and potential variation among clusters

of individuals or groups to understand how child comorbidity varies within and between

subjects by considering the child’s id and region as random effects and identifying the

factors associated with this heterogeneity in Ethiopia. The study also utilizes diverse po-

tential predictors for comorbidity sourced from the 2019 Performance Monitoring for Ac-

tion Ethiopia Performance Monitoring for Action Ethiopia (PMA-ET) community survey

datasets. These datasets systematically gather information on child health and household

characteristics, drawing from a nationally representative sample of households. It’s worth

noting that this dataset captures valuable information that is presently underutilized by

other extensive surveys, such as Demographic and health surveys (DHS) [78]. In terms of

parameter estimation, a likelihood-based approach is often recommended, with Akaike’s

information criteria (AIC) serving as a tool for model selection in likelihood-based esti-

mation [4]. Moreover, we generate easily interpreted scaled (quantile) residuals for fitted

GLMMs using a simulation-based method with the DHARMa package in the R for the

fitted model [35]. Our analysis of advanced current methodologic approaches with a re-

cent data set of interest will provide robust information for the best possible planning of

health services as well as a better understanding of the state of children’s health.

2.2 Materials and methods

The study makes use of data from the 2019 Ethiopian Performance Monitoring for Action

(PMA-Et) community survey, which collects details on mothers’ characteristics and child

health from a nationally representative sample of households.

2.2.1 Data sources, sampling, and study design settings

Data from the Performance Monitoring for Action Ethiopia project, a national survey

conducted from August 2019 to September 2020, were used. It measures key reproduc-

tive, maternal and newborn health (RMNH) indicators. Pregnant women through one

year postpartum are collected in the cohort of 2019 in five large, predominantly agrarian

regions: Tigray, Oromiya, Amhara, and Southern Nations, Nationalities, and Peoples’ Re-

gion, and one urban region, Addis Ababa. We receive a permission to download PMA-Et

2019 data from https://www.pmadata.org/data after making a reasonable request.
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Using multistage stratified sampling, PMA-ET selects households in sampled clusters

or enumeration areas Enumeration areas (EAs) based on a probability proportionate to

their size within strata. Women between the ages of 15 and 49 were all screened, and those

who were pregnant or had just given birth were eligible to participate in the survey. By

interviewing the required number of women for each EA, PMA-ET was able to produce a

sample that was representative at the national and regional levels. During the interview,

women were asked about the socioeconomic characteristics of their households and the

health status of their children. You may find additional details on the informed consent

processes as well as other information on the PMA-ET survey at [78]. We consider a total

of 2581 children under the age of one among 2871 mothers in six sample regions.

2.2.2 The variables

Our study includes a range of potential predictors of child comorbidity (see Table 2.1),

such as the mother’s age, educational background, parity, region, residence, types of cook-

ing fuel, sanitary classification, availability of electricity, and wealth. To identify the most

significant associations with childhood illnesses, we utilized data from the 2019 women’s

survey. The outcome variable considered is binary, taking a value of 1 if a child developed

at least one complication (namely cough, fever, diarrhea, vomiting, eye infection, skin

rash, poor feeding, difficulty breathing, etc.) during the postpartum interview. Other-

wise, it takes a value of 0:

y =

1 if the child suffers from at least one major complication

0 otherwise

Considering the random effect data utilized in this study: Children’s identification,

labeled as ”Child ID,” represents between-subject variation or interclass correlation. It

captures variation in child comorbidity due to differences between individual children and

is not shared by any other children. The region represents within-subject variation or

intraclass correlation. It captures the variation in child comorbidity due to differences in

the slope of the relationship between child comorbidity and fixed effects for each child. We

grouped samples by six different regions in the country: Afar, Amhara, Oromia, Tigray,

SNNP, and Addis Ababa. Each region contributes to child morbidity due to the random

slope effect, which is shared by all observations within each child.

In the GLMM model of a categorical variable, one of the categories is used as a refer-

ence category, and the other categories are then measured against the reference category

[47]. Besides, region and child ID are uniquely labeled; we can specify random effects as

(1|region) and (1|child ID).
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Table 2.1: Sociodemographic covariates and their labeling for child comorbidity study

Variable Labelling

Cooking fuel Electricity = 1, kerosene = 2, charcoal = 3, and wood = 4
Wealth Lower quartiles = 1, middle quartiles = 2, and higher quartiles = 3
Sanitation classification Improved but not shared facilities = 1, shared facilities = 2,

non-improved facilities = 3, and open defecation = 4
Residence Urban = 1, and rural = 2
Education Never attended = 0, primary education = 1, secondary education = 2,

and above secondary education = 3
Marital status Married or with a partner = 1, widowed or divorced = 2,

and never married = 3
Age Age between 15 and 24 = 1, age between 25 and 34 = 2, and

age above 34 = 3
Parity Zero parity = 0,parity between 1 and 2 = 1,parity between 3 and 4 = 2,

and parity above 4 = 3
Electricity availability No = 1, and yes = 2
Region Addis Ababa, Tigray, Afar, Amhara, Oromia, and SNNP

2.2.3 Methods

2.3.1 Generalized Linear mixed models and the specification of the models

Generalized Linear mixed models (GLMMs) combine the features of Generalized Lin-

ear models (GLMs) (which handle non-normal response variables) and mixed-effects mod-

els (which account for random effects due to clustering or data from different study sites).

It effectively incorporates three essential elements: the linear predictor, which combines

fixed and random effects; the exponential family, which symbolizes the dependent vari-

able’s distribution (e.g., normal, binomial, Poisson); and the link function, which connects

the linear predictor to the expected response value [11, 50, 79]. Random effects in the

context of cluster data capture unexplained variability beyond what fixed effects account

for. Each cluster (e.g., subject or study site, in our case, regions) has its own unique

random effect, allowing for subject-specific or study area-specific variation [14, 16],[30].

GLMMs are used for fully parametric, subject-specific inference for clustered or repeated

measurement responses in the exponential family [33]. These models are powerful tools

for analyzing complex data structures and are commonly used in various fields of research

and statistical analysis. It is particularly useful in biomedical studies as they can account

for the correlation between observations that arise from the hierarchical structure of the

data. In recent years, GLMMs empower biomedical researchers by providing a unified

framework for modeling complex data, capturing subject-specific variation, and address-

ing correlation structures. Their flexibility and interpretability make them a valuable tool

for advancing medical knowledge [76, 58].

Model specification of GLMMs

Let yij be the binary response measure for the i-th cluster, where i = 1, 2, . . . , N and
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j = 1, 2, . . . , ni. The vector xij represents the i-th row of the matrix for the fixed effect.

The vector yi is an ni-dimensional vector of all measurements available for the i-th child,

conditional on the random vector bi with q dimensions. It is supposed to be drawn

independently from a distribution belonging to the exponential family. Furthermore, bi

captures unobserved factors specific to each cluster that affect child comorbidity and

is assumed to be drawn independently from a normal distribution with mean zero and

variance σ2
b , i.e., bi ∼ N(0, σ2

b ), where σ2
b represents the population distribution variance

and indicates the degree of subject heterogeneity [17, 47, 53].

Thus, the probability density function of the response yij, which is independent of the

distribution of yi, is given by:

fi(yij|bi, β, ϕ) = exp

(
yij(θij −Ψ(θij))

ϕ
+ C(yij, ϕ)

)
(2.1)

Here, θij is the linear predictor (θij = xTijβ+ zTijbi), Ψ(θij) is the link function, ϕ is the

parameter for dispersion, and the normalizing constant is C(yij, ϕ).

The function g(µij) is the inverse of the link function Ψ(θij). The relationship between

g(µij) and fi(yij|bi, β, ϕ) is given by the following equation:

g(µij) =

∫
fi(yij|bi, β, ϕ) dyij (2.2)

Using Laplace approximation, equation (2) approximates to the function:

g(µij) = g[ϵ(yit|bi)] = xTijβ + zTijbi (2.3)

The function g(·) is a known link function that belongs to the GLMM framework, used

to map the expected values of the response variable to the linear predictor xij.

The function g(·) is a known link function that belongs to the GLMM framework. It

is used to map the expected values of the response variable to the linear predictor. Here

are the relevant terms: xij is the i-th row of the matrix of fixed effects, zij is the i-th row

of the matrix of random effects associated with bi, β is the parameter vector of unknown

fixed effects and ψ is the scale parameter or cumulant generating function.

Under this GLMMs settings, the logit link function is defined as:

g(µij) = logit(µij) = log

(
µit

1− µij

)
= ηij = xTijβ + zTijbi (2.4)
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In vector or matrix terms, we can rewrite it as,

and can be simplified as

= xiβ + zibi (2.5)

Note that µij = e
x′ijβ+z′ijbi

1+e
x′
ij

β+z′
ij

bi
is is a conditional probability on bi. In this case, the con-

ditional expectation equals the conditional probability of a response given the random

effects( and covariance values), i.e., µij = ϵ(yij|bi, xi) = P (yij|bi, xij). The model can be

expressed as:

P (yij|bi, xij, zij) = g−1(ηij) = g−1(xTijβ + zTijbi) (2.6)

Where the inverse link function g−1(ηij) is the logistic cumulative distribution function

(CDF), which is used to quantify the binary response, namely:

g−1(ηij) =
1

1 + eηij
(2.7)

In GLMMs, the logistic distribution can facilitate the process of estimating the distri-

bution’s parameters by maximum likelihood estimation or other techniques and has the

advantage of making a straightforward parameter estimation [32].

Estimation

Likelihood-based approaches rely on the likelihood function to estimate the parameters

in Generalized Linear Mixed Models (GLMMs). This provides opportunities such as

consistent and efficient estimates of fixed and random effects, likelihood-based inference

methods, model comparison with different assumptions and links, and prediction of ran-

dom effects and conditional responses. With this model, the joint distribution of both the

vectors of response and the vectors of random effects is fully specified. We can use similar

methods to estimate these models [10, 42, 50]. Given the above model specification for

the GLMMs based on the assumption that the binary responses yij (conditioned on the

random effects bi) are conditionally independent, the joint probability of the response

vector (yi) and the random effect vector (bi) for the distribution of the ith random effect

can be explained as follows:

f(yi, bi) = f(yij|bi)f(bi) = f(yi1|bi)f(yi2|bi) . . . f(yini
|bi)f(bi) (2.8)
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Then the likelihood function of the parameters β and σ2
b is given by :

L(β, σ2
b ) =

n∏
i=1

f(yi) =
n∏

i=1

∫
f(yi, bi), dbi =

n∏
i=1

∫
f(yi|bi)f(bi), dbi =

n∏
i=1

∫ n∏
i=1

f(yij|bi)f(bi), dbi

(2.9)

Since yij is a binary response, having a value of 0 or 1, a logit link function links the

conditional mean of yij to the linear predictors. Consequently, for every i = 1, 2, . . . , 2581

and every j = 1, 2, . . . , ni, the linear predictor of equation (4) was equivalent to:

ηij = x′ijβ + z′ijbi = x′ijβ + bi (2.10)

Thus, equation (8) can be put in the form of:

L(β, σ2
b ) =

n∏
i=1

∫
exp

(
β

n∑
i=1

yijx
′
ij + yibi

)
n∏

j=1

1

1 + exp(x′ijβ + bi)

1√
2πσ2

b

exp

(
− 1

2σ2
b

b2i

)
, dbi

(2.11)

The values of β and σ2
b that maximize this likelihood function are the Maximum

Likelihood (ML) estimates of β and σ2
b . However, from equation (11), it is not possible

to use the entire likelihood function since there are no closed-form solutions. Thus, it

is necessary to employ estimates of the probability function to find a solution for this

problem. Laplace’s approximation methodology serves as the basis for several likelihood-

based statistical procedures. When estimating parameters for Generalized Linear Mixed

Models (GLMMs), the ‘glmer‘ function from the ‘lme4‘ package in R is used to estimate

the likelihood. This approach enables us to make informed inferences about the model

parameters [9, 72].

Laplace’s approximation

The Laplace approximation is a quadrature method for estimating integrals of this kind

was developed by Laplace and published in 1774,∫ b

a

f(t)eλg(t)dt (2.12)

Where both g(t) and f(t) are continuous smooth functions, f(t) is nonzero at t0, and

g(t) is a twice-differentiable function on (a, b) with a maximum in the interval (a, b). The

underlying principle of Laplace’s approach is that, for large λ, the integral’s bulk will come

from the integral’s contribution around a certain point, t0. That resulting integral may be

proven to represent the kernel of a normal distribution, which can then be integrated using

second-order Taylor series expansions for g(t) and f(t). The integrand in the function

is comparable to the likelihood of Generalized Linear Mixed Models (GLMMs), which

contains exponential functions from the exponential family of probability distributions,

as can be seen by examining the form above [9, 72].

Akaike information criterion
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The Akaike information criterion (AIC) is a widely used likelihood-based model criterion.

The model that minimizes the AIC is considered the best model. It is frequently em-

ployed in combination with the Bayesian Information Criteria (BIC) and the Deviance

Information Criteria (DIC), as noted by Akaike (1973b). For data set D = {(yi, x′ij)},
where yi is the outcome vector and x′ij is a set of fixed effects, and for the maximum

likelihood estimator β̂ under the computing model for (p) dimension of β, the AIC can

be formulated as:

AIC = −2L(β̂, D) + 2p (2.13)

The likelihood ratio test for variance component in GLMMs

GLMMS are used to describe responses from an exponential family with a combination

of fixed and random effects, and the variance component of GLMMs comes from ran-

dom effects. (Sinharay and Stern, 2003). This is equivalent to testing that the variance

component equals zero and the hypothesis of interest is:

H0 : σ2
b = 0 Vs H1 : σ2

b > 0

For the maximized log-likelihood under the null hypothesis l1 and the variance com-

ponent estimated l0, the test statistics for variance components of the likelihood ratio test

are given by:

G2 = 2(l1 − l0) (2.14)

Here G2 follows a chi-square distribution with 1 degree of freedom. Thus, if the null

hypothesis (simpler model) is correct, we can use the chi-square distribution to calculate

the likelihood of finding a value of G2 as severe as the one we computed [75].
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2.3 Results and Discussion

2.3.1 Results

3.1.1 Explanatory Data Analysis

Our exploratory analysis of clustered data aims to identify characteristics of random

variation that differentiate individual children or patients, as well as patterns of system-

atic variation across geographical variation in the geographical location of children. 2871

women from 6 survey regions were interviewed, and 2581 children (0–1 year old) were con-

sidered. Their morbidity status and information about the disease pattern were collected

based on the PMA 2019 survey [78].

Considering broad category distributions of illness among children (see Table 2.2),

cough, fever, and diarrhea were found to be the most frequent types of children’s ill-

nesses, with percentages of 25.67, 18.52, and 14.08, respectively. Moreover, fast birthing,

no stool, difficulty in birth, and swelling occurred at all lower rates under one year of

age. A total of 2322 episodes of any illness, in which children reported having at least

one illness, were noted among the children who were considered in the PMA 2019 survey.

Table 2.2: Distribution of the broad categories of illness among children

Broad Illness Category Total Episodes Percentage of Episodes Mean S. D.

Any illness 2322 1.148 0.036
Cold/cough 596 25.67 0.43 0.136
Fever 430 18.52 0.322 0.109
Diarrhea 327 14.08 0.244 0.082
Vomiting 195 8.4 0.139 0.043
Difficulties feeding/unable to suck 178 7.67 0.131 0.043
Skin rash/skin lesion 170 7.32 0.122 0.038
Red eye/passage of pus from eyes 153 6.57 0.121 0.045
Sore throat/Tonsillitis 68 2.93 0.046 0.013
Fast birthing 42 1.81 0.033 0.012
No stool 40 1.72 0.032 0.012
Unconscious 32 1.38 0.005 0.02
Difficulty in birth 31 1.34 0.02 0.005
Reduced alertness (lethargy) 29 1.25 0.025 0.01
Convulsion 11 0.47 0.009 0.004
Abdominal/body swelling 9 0.39 0.007 0.003
Other 11 0.47 0.008 0.003

Furthermore, the subsequent graph (see Figure 2. 1) displays the distribution of

illnesses by disease types (left side of plots) as well as children’s disease status by survey

region (right side of plots). Oromia, SNNP, and Amhara regions account for the highest

frequency of morbidity illness episodes in the country, followed by Addis Abeba, Afar, and
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Tigray, based on the PMA 2019 survey. Furthermore, cough, fever, and diarrhea were

the most common types of disease in the country that were seen during the survey. The

Figure 2.1: The distribution of illness types among children (see plot A) and the distribution of illness
among survey regions (see plot B)

density of residuals and distribution of responses give insight into how the responses and

predictors are related to one another [48, 60]. The distribution of responses is shown on

the bottom right of Figure 2.2, whereas the density of residuals is shown on the bottom

left (refer to Figure 2.2). With these distributions, non-normally distributed responses

are possible accommodated, including non-linear links between the mean of the child

morbidity and the predictors, as well as some form of correlation in the data. Thus,

GLMMs with logit link functions are an ideal method of detecting child morbidity for the

given datasets.
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Figure 2.2: Predicted distribution of residuals and response for child comorbidity study

A bivariate study using Pearson’s chi-squared test has been carried out to examine

the association between a few chosen variables [21]. The following table (see Table 2.3)

represents the contingency table of the morbidity status of children, along with Pearson’s

chi-square value to determine if a particular regression coefficient is significant. Mother’s

age is the only variable that is not significantly (p-value = 0.632) related to child mor-

bidity among all the factors that were taken into consideration. According to this table,

cooking fuel, marital status, education, place of residence, sanitation classification, wealth

quartiles, electricity availability, and parity were strongly related to childhood morbidity

at the 5% significance level.

Furthermore, morbidity is predominant among children whose mothers use charcoal

for fuel (37.16%), never attended education (30.20%), live in rural areas (47.77%), and

have lower quartiles of wealth (32.70%). Compared to children from lower-quartile fami-

lies, children from middle- and upper-quartile households had reduced rates of childhood

illness, and comparable situations were also observed for other covariates.
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Table 2.3: Characteristics of the study participants by morbidity and their mother’s
sociodemographic status

Characteristics W.Freq No, n (%) Yes, n (%) χ2 (p-value)

Cooking Fuel
Electricity 435 (16.85) 203 (7.87) 232 (8.99) χ2(3) = 104.06, p < 0.001
Kerosene 10 (0.39) 1 (0.04) 9 (0.35)
Charcoal 1764 (68.35) 408 (15.81) 1356 (52.54)
Wood 372 (14.41) 130 (5.04) 242 (9.38)

Mothers’ Marital Status
Married or with partner 442 (17.13) 155 (6.01) 287 (11.1) χ2(2) = 10.36, p = 0.006
Widowed or divorced 810 (31.38) 217 (8.41) 593 (22.9)
Never married 1329 (51.49) 370 (14.34) 959 (37.16)

Mothers’ Age
15-24 877 (33.98) 264 (10.23) 613 (23.75) χ2(2) = 1.19, p = 0.632
25-34 1312 (50.03) 369 (14.30) 943 (36.54)
35+ 392 (15.19) 109 (4.22) 283 (10.96)

Mothers’ Education
Never attend 986 (38.20) 205 (7.94) 781 (30.20) χ2(3) = 83.80, p < 0.001
Primary 924 (35.8) 258 (10) 666 (25.8)
Secondary 393 (15.23) 158 (6.12) 235 (9.10)
Higher or TVET 278 (10.78) 121 (4.69) 157 (6.08)

Residence
Urban 1001 (38.78) 395 (15.30) 606 (23.48) χ2(1) = 90.22, p < 0.001
Rural 1580 (61.22) 347 (13.44) 1233 (47.77)

Wealth Quartiles
Lower quartile 842 (32.62) 148 (5.73) 844 (32.70) χ2(2) = 101.79, p < 0.001
Middle quartile 400 (15.50) 99 (3.84) 694 (26.89)
Higher Quartile 1339 (51.88) 495 (19.18) 301 (11.66)

Parity
0 518 (20.17) 192 (7.44) 326 (12.63) χ2(3) = 49.08, p < 0.001
1-2 1031 (39.95) 326 (12.63) 705 (27.31)
3-4 566 (21.93) 132 (5.11) 434 (16.82)
5+ 466 (18.06) 92 (3.56) 374 (14.49)

Sanitation Classification
Improved or shared 119 (4.61) 52 (2.01) 67 (2.60) χ2(3) = 70.64, p = 0.006
Shared Facility 416 (16.12) 180 (6.97) 236 (9.14)
Non-improved facility 1170 (45.33) 311 (12.05) 859 (33.28)
Open defecation 876 (33.94) 199 (7.71) 876 (33.94)

Electricity Availability
No 1386 (53.70) 310 (12.01) 1076 (41.69) χ2(1) = 59.53, p = 0.012
Yes 1195 (46.30) 432 (16.74) 763 (29.56)

W.Freq = Weighted Frequency,NO= no Morbidity status, Yes= yes Morbidity status
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Furthermore, in the GLMMs, the plots of fixed effects an outcome variable can offer

important information about how the predictors and the result are related [20, 51], and it

supports the direction of the coefficients and the significance of the effects. From Figure

2.3 of the following sample plots, we can see that the fixed effects of residence, marital

status, and parity are positively associated with child comorbidity, while the mother’s

wealth index is negatively associated with morbidity.

Figure 2.3: Interaction and Fixed Effects Plots in Child Morbidity Study

General linear mixed model analysis

Type III test for fixed effects

In GLMMs, Type-III tests are applied to evaluate each term’s significance while taking

into consideration the effect of every other term. Type III tests rely on each predictor’s

main effect, in contrast to Type I or Type II tests, which consider the predictors’ order

of entry. A significant Type III test indicates that the fixed effect has a statistically

significant influence on the response variable [45].Table 2.4 of the Type III analysis of the

likelihood ratio test of all the fixed effects (except sanitation class) significantly affects

child morbidity.
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Table 2.4: Type III tests of fixed effects from GLMMs of child morbidity

Fixed Effects DF F-values Pr(¿F)

Cooking fuel 3 18.8098 0.0005***

Wealth 2 19.3282 0.0003***

Sanitation Class 3 0.6979 0.812

Residence 1 4.8428 0.0044**

Mother Education 3 6.9747 0.0016**

Marital status 2 4.4209 0.0119*

Mother’s Age 2 1.9634 0.018*

Parity 3 2.7513 0.044*

Electricity Availability 1 6.0684 0.014*

Mother education: mother’s age 6 1.4051 0.209

Tables 2.3 and 2.4 provide the regression estimates of the child comorbidity model

using the ‘glmer‘ function of the ‘lme4‘ package in R [8]. The model formula in ‘lme4‘

syntax for sets of fixed effects, interaction effects, and random effects was as follows:

Logit(µit) =β0 + β1Cooking fuelij + β2Wealthij + β3Sanitation Classificationij

+ β4Residenceij + β5educationij + β6maritalij + β7ageij

+ β8parityij + β9Electricity availabilityij

+ β10interaction between education and mother ageij + γi + γij

Where β1 to β10 are cluster odds ratios of children morbidity (unknown regression co-

efficients of the main and interaction effects for fixed effects), while γi and γij are the

subject-specific and regional level random intercepts, respectively.

Table 2.5 illustrates the estimates for fixed effects using maximum likelihood estima-

tion in fitted GLMMs (see Table 2.5), and the estimates indicate that a one-unit increase

(moving from one category to another) in the predictor would be expected to predict an

increase in the estimated log odds of comorbidity equal to one when all other predictors

are held constant [26, 40]. Moreover, the log odds are the probability of an event (like

comorbidity) occurring expressed as its natural logarithm. The odds ratio is obtained

by exponentiating the calculated log odds. In this case, an odds ratio of one denotes no

change, but a ratio of more than one shows a rise in the likelihood of comorbidity [11, 2].

Based on the results, wealth status significantly affects the child morbidity status,

and it is observed that children from middle quartiles (OR = 0.47, P = 0.002; 95% CI:

−0.766,−0.167) and higher quartiles (OR = 0.62, P = 0.001; 95% CI: −1.05,−0.415) are

less likely to suffer illness than children from lower quartiles. Our study also demonstrated

that children from a mother with primary, secondary, and higher education are 41%, 52%,

and 51% respectively, less likely to be ill than mothers who never attended school.

22



Similarly, children who lived in rural areas (OR = 1.66, P = 0.004; 95% CI: 0.158, 0.858)

are 1.66 times more likely to get affected by morbidity than children who lived in urban

areas, and using wood as a fuel is 1.14 times more likely than using electricity to get

child morbidity. Likewise, the absence of electricity (OR = 1.49; P = 0.014; 95% CI:

0.079, 0.718) is more likely for children’s illness as compared to children who can access

electricity. This study’s findings also suggest that a woman with a parity of 3–4 and 5+,

never married, and divorced or widowed mothers’ marriage statuses are more likely to

have comorbidity than their counterparts.

Table 2.5: Estimates of fixed effects from GLMMs for children’s comorbidity

Covariates Coef. SE Z P> |Z| OR 95% CI[Coef.]

(Intercept) 0.79 0.33 2.4 0.016* 2.21 (0.146, 1.44)

Cooking Fuel (Ref. = Electricity)
Kerosene 1.62 1.11 1.46 0.144 5.02 (-0.556, 3.78)
Charcoal 0.14 0.20 0.68 0.499 1.14 (-0.258, 0.528)
Wood 0.40 0.16 2.5 0.013* 1.48 (0.081, 0.712)

Wealth (Ref. = Lower Quartile)
Middle Quartile -0.47 0.15 -3.1 0.002** 0.62 (-0.766, -0.167)
Higher Quartile -0.74 0.16 -4.5 0.001*** 0.47 (-1.05, -0.415)

Sanitation Classification
(Ref. = Improved, Not Shared Facility)

Shared Facility -0.11 0.22 -0.53 0.603 0.89 (-0.548, 0.318)
Non-Improved Facility 0.06 0.15 0.40 0.693 1.06 (-0.234, 0.351)
Open Defecation -0.03 0.19 -0.14 0.891 0.97 (-0.380, 0.338)

Residence (Rural) 0.51 0.18 2.8 0.004** 1.66 (0.158, 0.858)

Mother Education (Ref. = Never Attended)
Primary Education -0.52 0.22 2.9 0.001** 0.59 (-0.946, -0.085)
Secondary Education -0.71 0.25 -2.4 0.018* 0.48 (-1.21, -0.218)
Higher Education -0.69 0.32 -2. 2 0.033* 0.49 (-1.34, -0.055)

Marital (Ref. = Married/Partner)
Widowed Or divorced 0.38 0.14 2.8 0.004** 1.46 (0.120, 0.648)
Never Married 0.32 0.13 2.6 0.010* 1.37 (0.073, 0.559)

Mother’s age (Ref. = 15–24)
25-34 -0.27 0.23 -1.2 0.243 0.76 (-0.719, 0.183)
35+ -0.72 0.27 -2.5 0.010* 0.49 (-1.26, -0.169)

Parity (Ref. = 0)
1-2 0.10 0.13 0.80 0.426 1.10 (-0.146, 0.344)
3-4 0.39 0.17 2.3 0.023* 1.48 (0.055, 0.733)
5+ 0.53 0.24 2.5 0.013* 1.70 (0.111, 0.954)

Electricity Availability (NO) 0.40 0.17 2.5 0.014* 1.49 (0.079, 0.718)

Signif.codes: ‘***’= 0.001, ‘**’ = 0.01, ‘*’ = 0.05, ‘.’ = 0.1 and ‘’= 1
OR = odds ratio, CI = confidence interval, SE = standard error, and SD = standard

deviation.
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Interaction effects

The interaction between a mother’s age and education can be either synergistic or mitigat-

ing, as presented in Table 2.6, which shows the interaction between a mother’s education

(never attended, primary education, secondary education, or higher education) and a

mother’s age (between 15 and 24, between 25 and 34, and above 35). As the results

indicated, children from mothers above 35 years of age have a lower risk of being ill com-

pared to children whose mother’s age is less than 34 for the secondary and higher mother

education groups (OR = 2.3, P-value = 0.022, OR = 1.67, P-value = 0.015), respectively.

Well-educated elder mothers who combine their experience and health skills can lead to

better health outcomes for their children [64].

Table 2.6: Estimates of the two-way interaction effects and the variance parameter of the
random effect models

Covariates Coef. SE Z P> |Z| OR 95% CI(Coef.)

Education and age (Ref. = Never Attended:

Age between 15-24)

Primary Education: Age Between 25-34 0.39 0.28 1.5 0.149 1.47 (-0.142, 0.923)

Secondary Education: Age Above 25-34 0.24 0.32 0.76 0.449 1.27 (-0.379, 0.854)

Higher Education: Age Between 25-34 0.03 0.36 0.08 0.935 1.03 (-0.692, 0.751)

Primary Education: Age Above 35+ 0.24 0.35 0.67 0.501 1.27 (-0.453, 0.926)

Secondary Education: Age Above 35+ 1.26 0.55 2.3 0.022* 3.53 (0.176, 2.34)

Higher Education: Age Above 35+ 0.43 0.65 1.67 0.015* 1.65 (0.831, 1.69)

Random Effects: Variance SD

Region 5.318e-02 0.231

Subject-specific (ChildID) 4.598e-07 0.006

Residual 0.123 1.045

Signif.codes: ‘***’= 0.001, ‘**’ = 0.01, ‘*’ = 0.05, ‘.’ = 0.1 and ‘’= 1

Note: OR = odds ratio, CI = confidence interval, SE = standard

error, and SD = standard deviation.

Model comparison and diagnosis

Comparing the models is an important step in the modeling process to see which ones best

fit the data [13, 54]. Akaike information criterion (AIC) is a widely used model selection

criteria based on the maximum likelihood estimator [4]. Results of the AIC, log-likelihood

likelihood test (LRT), BIC, and other information on the fit of the model are presented

in Table 2.7. Accordingly, the model with two random intercepts (the random intercept

of region and subject-specific) has a lower AIC (AIC = 2929.9) and is statistically signifi-

cant (P < 0.001) in comparison to one random intercept model (AIC = 2942.6). It is also

supported in the log-likelihood ratio test (LRT) with a significance P-value (P < 0.001).

This suggests that two random intercept models from GLMMs permit data correlation
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and provide more effective overall performance compared to one random intercept model.

Table 2.7: The Likelihood-Ratio-Test (LRT) and Akacia information criteria for random
intercept models comparison

Information Criteria for Model Comparison Likelihood-Ratio-Test (LRT)

AIC BIC loglik deviance Pr(¿Chisq) df Chi2 Pr(¿Chisq)

ONE RIM 2942.6 3106.6 -1443.3 2886.6 28

TWO RIM 2929.9 3099.7 -1435.9 2871.9 P < 0.001249 ∗ ∗∗ 29 14.72 P < 0.001 ∗ ∗∗

Signif.codes: ‘***’ = 0.001, ‘**’ = 0.01, ‘*’ = 0.05, ‘.’ = 0.1, and ‘’ = 1
ONE RIM: One random intercept model, TWO RIM: Two random intercept model

In GLMMs, random intercept plots are employed to illustrate the distribution of ran-

dom effects [14, 73]. Figure 4 displays the diagnostic plots for random intercepts (see

Figure 4) corresponding to two random effects, providing a visual representation of re-

gional and subject-specific variability in child morbidity, and allowing for different baseline

values (intercepts) for two groups or clusters. From the plots (see plots A and B of Figure

2.4), the dot on the horizontal line shows the estimated random intercept for each level

of grouping variable, and the horizontal line represents the overall mean of each random

effect [51, 10]. Thus, these plots might tell us about the presence of regional and subject-

specific level variability for child morbidity. Therefore, even if the estimated variance in

the intercept for each region and the subject-specific effect was found to be quite near

zero, including random effects is a good modeling choice as there is a fair amount of

variation in the estimations of regional and subject-specific effects.
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Figure 2.4: Random intercept plots study for regional and subject-specific (Child ID) (see plots A and
B), respectively

Residuals diagnosis in GLMMs

Residuals in GLMMs have a coarse structure due to random effects and grouping of data.

As a result, these models should not use techniques like QQ plots or Shapiro-Wilk tests

to verify residual normality as standard linear models [12, 22, 43]. Therefore, we use the

“Diagnostics for Hierarchical Regression models (DHARMa)’ package to provide easily

interpreted scaled residuals(quantiles) for fitted GLMMs [35] and binned residual plots in

dividing the data into bins based on fitted value [30]. Therefore, Figure 2.5 displays the

plots of residuals versus fitted values for fitted GLMMs (binned residuals). Hence, most

of the residuals fall within the error bound (indicated in blue points), and fewer residuals

are outside of the error boundaries (indicated in red points). Thus, most of the binned

residual fell within the 95% confidence interval of error bounds, which indicates that the

model is a good fit for the data.
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Figure 2.5: Binned residual plot for the children’s comorbidity study

Likewise, the DHARMa nonparametric dispersion test evaluates a statistical model’s

goodness of fit, considering both the fitted model and the simulated values. It is frequently

used for count data or other non-Gaussian data. The DHARMa nonparametric dispersion

test graph combines a histogram (blue bars) with a kernel density estimate (KDE) plot

(red line) which shows how well the model fits the data. The blue bars show the simulated

values (perhaps residuals or predicted probability) inside certain bins and each bar’s

height indicates how frequently the simulated data fall into that category [35, 30]. The

frequency (density) is plotted on the y-axis, and the simulated values are plotted on the

x-axis between 0.80 and 1.00. In Figure 2.6, the standard deviation of residuals from

the fitted model and the simulated values are compared. Therefore, our data exhibits

low dispersion and good alignment with the model, as indicated by the p-value of 0.88

(dispersion = 0.99696; p-value = 0.88; alternative hypothesis: two-sided). The high p-

value indicates a strong fit.
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Figure 2.6: DHARMa nonparametric dispersion test with the residuals fitted vs. simulated standard
deviation for child comorbidity

Furthermore, in the DHARMa package in R, the QQ plot compares the observed

residual to the expected under the assumptions of normality, and the points in the QQ

plot fall along a straight line for normally distributed residuals [30, 35]. The plot also

displays the Kolmogorov-Smirnov test (KS test), dispersion test, and outlier test [62].

From Figure 2.7, the points on the QQ plot fall along a straight line which indicates

that the model can account for the variation in child morbidity, and the model is not

systematically overestimating or underestimating child morbidity (see the left of Figure

2.7). Moreover, the insignificant values of the KS test, dispersion test, and outlier test

(P = 0.6764, P = 0.88, P = 0.82485, respectively) suggest that the residuals of the model

are normally distributed, homoscedasticity variance, and no influential observations in the

data. Similarly, the right of Figure 2.7 depicts a plot of the residual against the predicted

values. The red solid line at y = 0.5 represents the median of the residual, while a dashed

red line represents the theoretical median of the residual under the assumption of uniform

distribution [35]. Therefore, the two lines are close together at y = 0.5 indicating that

the residuals are uniformly distributed.
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Figure 2.7: DHARMa nonparametric dispersion test with the residuals fitted vs. simulated standard
deviation for child comorbidity

2.3.2 Discussion

We tried to check the presence of variability in child morbidity and determine major pre-

dictive factors for child morbidity using the GLMMs. We used PMA datasets in STATA-17

and the 4.3.0 version of R for our data analysis. Based on AIC and the likelihood ratio

test values, a two-random intercept model was found to be more favorable in illustrating

the presence of child morbidity variability between children and within regions. From our

study using GLMMs, based on the likelihood chi-square and Type III test, we found that

the factors that significantly affect the children’s comorbidity were cooking fuel, wealth

quartiles, mothers’ marital status, mother age, parity, residence mother’s education sta-

tus, and availability of electric city. However, sanitation classification is not influential

for the presence of children comorbidity in Ethiopia.

Children from divorced and never-married families are at high risk of suffering illness

and experiencing more health problems than children from two-partner families. Like

studies carried out [7, 46, 74], our result suggests that a lack of a stable family structure

and the absence of one of her or his family members contribute to the negative effects on

children’s health. Similarly, our findings demonstrated that children with high parity had

a higher risk of morbidity than children with low parity, based on PMA-ET datasets. The

study found that increased parity is associated with higher odds of child morbidity, and

our result is in accordance with [44], and [65] that higher child morbidity is associated

with high parity.
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Furthermore, the results showed that children who live in rural locations and lack

electricity are more likely than their counterparts to experience morbidity difficulty. It

demonstrates that living in rural areas and not having access to electricity are positively

connected with child morbidity and this result is in accordance with [1, 41, 59]. Moreover,

the household wealth index has a negative correlation with morbidity in children and it

is a significant socioeconomic determinant influencing children’s health in Ethiopia. The

lower quartile families had bad nutrition, limited education, poor cleanliness, and poor

hygiene. This suggests that compared to children from middle and high quartiles, children

from lower households are more likely to experience children’s illness. The findings align

with those reported by [15, 36], and [69], indicating that an increase in household income

is associated with a reduction in the incidence of illness among children.

The results we found also showed a negative correlation between childhood morbidity

and the age of the mother. This suggests that children whose mothers were younger than

24 have a higher rate of illness. Our findings support the findings of [39], who noticed

that children of mothers 35 years of age and older had lower rates of child morbidity

than children of younger mothers. However, our results also contradict those of [56],

who found that children of mothers 35 years of age and older had higher rates of child

morbidity than children of younger mothers. Another significant risk factor for children’s

comorbidity is the mother’s academic achievement. The risk of morbidity is higher in

children whose mothers have not received any education compared to children whose

mothers have completed at least primary education. It implies that educated mothers

are also more likely to have an income and better access to child health care and have

access to information about the health, eating habits, and development of their children,

which can enhance the health of their children. These results confirm the results obtained

from previous studies [19, 24, 38]. likewise, maternal age is linked to better child health

outcomes, especially for mothers with high levels of education Mothers with higher levels

of education frequently have increased access to healthcare, are more health-literate, and

are more aware of preventative measures. Furthermore, older mothers may make healthier

lifestyle choices when pregnant as a result of their experience [28, 38].

In conclusion, according to our result, GLMMs are better suited to handle complex

data structures like hierarchical data. This model also offers more precise estimates of

random effects on this child comorbidity study to capture heterogeneity and look at how it

relates to different variables like socioeconomic status, use of health services, and health

outcomes. Cooking fuel, wealth quartiles, mothers’ marital status, mother age, parity,

residence mother’s education status, and availability of electric city were significantly

associated with children’s morbidity. Improving the socio-economic standings of mothers

through socio-economic and education reduces the prevalence of child morbidity.

In our study, the utilization of general linear mixed models (GLMMs) possess the

remarkable capacity to delve deeper into the complexities inherent within hierarchical data
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structures, where individual children are nested within specific regions. By leveraging the

power of GLMMs, researchers gain the ability to conduct more comprehensive analyses

that simultaneously account for both individual-level and group-level factors influencing

child development. This enhanced analytical approach allows researchers to not only

identify significant associations within the data but also to elucidate the potential presence

of regional variations in child development across Ethiopia.

Our analysis considered several variables, but factors like health insurance, access

to healthcare, and family structure might also significantly influence children’s comor-

bidity. Examining these influences through future empirical research could be valuable.

Additionally, a longitudinal study could be particularly interesting to see how children’s

comorbidity patterns change over time.

2.3.3 Limitations of the study

Although Ethiopia has nine regional states (Afar, Amhara, Benshangul-Gumuz, Gambela,

Harari, Oromia, Somali, Southern Nations, Nationalities, and Peoples’ Region (SNNPR),

and Tigray) and two administrative cities (Addis Ababa and Dire Dawa), the PMA-Et

2019 dataset includes information from only six regions. This limitation in the data

presents challenges for conducting a comprehensive comorbidity study across the entire

country. The findings derived from the six regions may not be entirely representative

of the national context, thereby complicating our ability to draw generalized conclusions

and formulate comprehensive recommendations. The exclusion of data from five regions

means that critical sociodemographic and environmental variables unique to these areas

are not reflected in the study. This geographical limitation could result in an incomplete

understanding of the factors affecting child comorbidity across Ethiopia. Furthermore,

because longitudinal datasets were lacking, we were unable to stabilize throughout child-

hood, even though longitudinal studies provide a distinct advantage in understanding

childhood morbidity by monitoring changes in health over time, identifying early predic-

tors, and establishing causal relationships between factors and health outcomes.
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Chapter 3

Bayesian semiparametric geoadditive

modelling of underweight among

under-five children in Ethiopia

Abstract

Children’s malnutrition can have long-term and irreversible effects on a child’s health

and development. This study uses the Bayesian method with spatial variation to inves-

tigate the flexible trends of metrical covariates and identify communities at high risk of

injury. Cross-sectional data on underweight were collected from the 2016 Ethiopian De-

mographic and Health Survey (EDHS). The Bayesian geoadditive model is performed.

Appropriate prior distributions were provided for scall parameters in the models, and the

inference is entirely Bayesian, using Monte Carlo Markov Chain (MCMC) simulation.

The results show that metrical covariates like mother age, child age, and body mass index

(BMI) affect a child’s underweight non-linearly. Lower and higher maternal BMIs seem to

have a significant impact on the children underweight. There was also significant spatial

heterogeneity and based on IDW interpolation of predictive values, the western, central,

and eastern parts of the country are hotspot areas. Our analysis supports the flexible mod-

eling of mother age, child age, and body mass index (BMI) of the mother. In addition to

fixed effects and covariates, there is also considerable evidence of a residual influence on

underweight.

KEYWORDS:

Spatial distribution; Underweight; Semi-parametric Bayesian analysis; P- splines; BayesX;

MCMC; Ethiopia.
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3.1 Introduction

The state of malnourished is characterized by an imbalance between the intake and need

of nutrients, which leads to cumulative shortfalls of energy, protein, or micronutrients.

These deficiencies can have adverse effects on several outcomes, including growth and

development [58, 78]. It is often used synonymously with ‘undernutrition’. For children

under five, malnutrition continues to be a leading cause of illness and death, especially

in developing countries [52, 65]. Malnourishment, especially throughout a child’s first

two years of life, causes nearly irreversible harm to their mental and physical health,

poor school performance, decreased future income, frequent illness, and poor cognitive

development. It also traps them in a never-ending cycle of disease [45, 41].

According to [73], malnutrition is the largest global health opportunity forfeited, caus-

ing serious risks to children’s health, particularly in low- and middle-income countries and

one of the biggest threats to world health is combating it in all its manifestations. The

Global Strategy for Children’s Health, to meet the need to eradicate malnutrition, diet-

related goals from the 2030 Agenda for Sustainable Development and the Goal Action

Plan for the Prevention and Control of Noncommunicable Diseases must be accomplished

[55]. Severe acute malnutrition is the most severe form of malnutrition that ends many

early childhood lives in countries facing nutrition crises, including Afghanistan, Somalia,

Ethiopia, Kenya, Burkina Faso, Mali, Niger, and Yemen [51, 22]. Hence, improvements

in the nutritional status of young children require a broad range of nutrition and health

interventions [28], and understanding the factors that can lead to malnutrition also guides

possible interventions by governments and development partners.

Based on the World Health Organization (WHO) Child Growth Standard, the three

manifest indices of undernutrition are wasting, stunting, and underweight [72]. Stunting,

which results from chronic or recurrent undernutrition, is characterized as low height for

age, whereas wasting is described as low weight for height (severe weight loss). Further-

more, an underweight child may be wasted, stunted, or both. Underweight is described as

having a low weight for age [72]. The Z-scores, which show how many standard deviations

a child’s anthropometric index deviates from the median of the global growth reference

population argued by the World Health Organization, are used to quantify these three

anthropometric characteristics [89].

For a child ith, the Z-scores (Zi) for each anthropometric variable (e.g., the weight-

for-age) values are defined as follows:

Zi =
AIi −MI

σ
(3.1)

Where: Zi represents the Z-score for the ith child. AIi denotes an individual anthro-

pometric characteristic (such as weight at a certain age). (MI) stands for the reference

population’s median. σ represents the standard deviation.
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The World Health Organization (WHO) Child Growth Standard (WCGSM) defines

stunted children as those whose height-for-age z-score (HAZ) is less than the negative

two-standard deviation (-2SD) from the median. A weight-for-age z-score (WAZ) of lower

than two standard deviations (2SD) from the reference median indicates underweight

status as well [72]. While both stunting and wasting are indicators of malnutrition,

being underweight is often used as a broader measure of overall malnutrition because it

considers both chronic and acute forms of malnutrition. It refers to a child who has a

low weight for their age, which can be caused by both chronic and acute malnutrition

[6]. Underweight children are at risk of stunting, wasting, and other health problems

associated with malnutrition [70]. As well, weight can be measured more easily than height

or body composition, and weight changes can be observed more quickly [64]. Therefore,

underweight has been more widely used in surveys and studies aimed at assessing the

prevalence of malnutrition in children [80], and this most visible and immediate recognition

of underweight for malnutrition dedicated us to investigate it in our study rather than

stunting and wasting.

Approximately 45 percent of child deaths under five globally are caused by undernu-

trition. It remains an epidemic in many developing countries, especially in sub-Saharan

Africa [72, 5]. The prevalence of undernourishment in Ethiopia was 28.8 percent in 2015,

and the country’s prevalence is still higher than that in the region [1, 5]. Moreover, [75]

state that malnutrition is the primary cause of underweight. It was estimated that there

would be 101 million underweight children under five (16%) in the globe in 2011. Of those,

26.6% would be found in Africa. Additionally, 24% of Ethiopian children were under-

weight, according to the 2016 Ethiopian Demographic and Health Survey. Even though

the past 15 years’ chronic malnutrition trends indicate an improvement, 28 percent of

child deaths in Ethiopia are associated with undernutrition [84]. One of the sustainable

development objectives in the post-2015 development agenda is Goal 2, which is based on

the idea of ending hunger. Despite this, target 2.2 of malnutrition—which aims to end all

forms of malnutrition, including achieving targets on stunting, underweight, and wasting

in children under the age of five, as well as address the nutritional needs of adolescent

girls, pregnant and lactating women, and older persons—has not yet reached the end

values for 2030 [68]. This high prevalence is an indication for us to investigate possible

factors that could affect children underweight with a suitable statistical methodology yet.

There are many more causes of malnutrition than only dietary deficiencies. Poverty,

political upheaval, altered weather patterns, dietary practices, sickness, the COVID-19

pandemic’s effects on markets, services, and human movement, contaminated water sup-

plies, poor sanitation, and a host of other complicated challenges are all part of the

illustration [49]. Underweight malnutrition of under-five children in Ethiopia could be

attributed to many different factors [65, 78, 52, 48]. Researchers also realized a signif-

icant correlation between the prevalence of under-five malnutrition in communities and

metrical covariates like mother age, child age, and other body mass index. None of
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these seems reassuring in terms of the nonlinear (flexible) influence of metrical variables

on underweight. Furthermore, it was discovered that sociodemographic characteristics

and geographic location were also strongly linked to child malnutrition For this reason,

nutritional interventions need to be carefully tailored to the residential location of the

patients [48, 52] Favorable socioeconomic circumstances contribute to a decrease in urban

malnutrition, which in turn results in improved child and mother care practices [78].

Based on the different pieces of literature that have been done on malnutrition be-

fore, most of these researchers use a frequentist approach (e.g., generalized linear models

(GLMs) and other forms of regression) to determine the associated factors for underweight

[50, 89].In consequence, the frequentist approach solely relies on the data to make statis-

tical inferences and neglects prior knowledge about the parameter, which can make more

informed predictions about the parameter value than would be possible based on the data

alone [86]. According to [86], Bayesian inference works better than frequentist inference

because it allows prior experience and expert opinion to be used in formulating a prior

distribution. It eschews many of the difficulties encountered with classical inference and

is more directly predicated on what one is interested in [34]. Bayesian regression allows

for more flexible model specification, including the use of non-linear functions and more

complex models that can capture interactions between variables. This flexibility can help

to improve the accuracy of the model and provide better insights into the underlying

relationships between the variables [40] and a powerful approach to disease mapping [59].

Given the literature we deal with, there are also few works carried out on Bayesian-

Gaussian regression analysis of malnutrition. Even though [67, 7, 83] conducted a Bayesian-

Gaussian regression analysis of malnutrition in Ethiopia using EDHS data, they did not

consider geographical and sociodemographic effects of undernourishment among children

simultaneously. Most of the earlier research on malnutrition [4, 33, 61, 69] relied on a

frequentist approach for socio-demographic variables and assumed a linear relationship be-

tween the socio-economic variables (particularly the metrical covariates) and the outcome

of interest. These studies were not flexible enough, and they neglected to simultaneously

estimate the geographic association with underweight and the nonlinear effect of some

covariates.

However, in the Bayesian semiparametric model, more adaptable additive predictors

are employed instead of conventional linear predictors. The added flexibility enables

the estimation of nonparametric effects related to metrical variables and spatial effects

simultaneously. The significance of this approach is found in its ability to overcome a

limitation of parametric models, which calls for strong assumptions on the functional

structure of any nonlinear effects that are related to metrical variables [30, 57]. The

Bayesian geoadditive model, which fully embraces the Bayesian method and relies on

smoothness priors, has several advantages over other statistical models. First, it provides

a principal way to incorporate prior knowledge or beliefs into the analysis. Second, it
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allows for the propagation of uncertainty from the parameters to the prediction. Third,

it provides a way to quantify the evidence in favor of different models or hypotheses [88].

Thus, in this study, we looked into the application of the Bayesian approach to geo-

additive regression to analyze the complex factors contributing to underweight malnutri-

tion in children under five in Ethiopia based on the 2016 EDHS database. Unlike previous

studies that predominantly employed a frequentist approach, our research incorporates

more flexible and adaptive predictors, allowing for a simultaneous examination of geo-

graphic and sociodemographic effects within the Ethiopian context. Hence, the present

study intends to analyze the spatial distribution at more localized units and also illustrate

that assuming a linear effect for metrical covariates is always too rigid and can result in

misleading findings in analysing health indicators.. Additionally, the Bayesian geoad-

ditive model enhances the analysis by integrating prior knowledge and expert opinions,

providing a robust framework for understanding the multifaceted causes of malnutrition.

The smooth function captures the nonlinear relationship between the continuous covari-

ates (metrical covariates) and the response variable, modeled by using a P-spline, and

the spatial effect accounts for the spatial correlation, modeled using a Gaussian process

[21, 46, 57]. The inference is performed using full Bayesian inference and efficient Markov

chain Monte Carlo techniques (MCMC) techniques. The BayesX package in the R pro-

gramming language is used for the analysis. For better visualization of the nonlinearity

of metrical covariates on underweight, we use the Yeo-Johnson transformation, a power

transformation method used in statistics to normalize data that may not follow a normal

distribution, to improve the accuracy and reliability of models, especially when dealing

with non-linear models [30]. Moreover, for the model fit comparison, we employed the

deviation information criterion [79]. Overall, the Bayesian approach enhances our un-

derstanding of Ethiopia’s patterns of malnutrition by combining statistical rigor with

geographical context, and it also guides policymakers and stakeholder groups looking for

solutions and effective nutritional interventions in the country

3.2 Materials and Methods

3.2.1 Study variables, data sources, and geography of Ethiopia

The study was conducted in Ethiopia using the 2016 Ethiopian Demographic and Health

Survey data. EDHS 2016 was conducted from January 18, 2016, to June 27, 2016, based

on a nationally representative sample that provides estimates at the national and regional

levels as well as includes urban and rural areas. EDHS 2016 contains detailed informa-

tion on the background characteristics of the respondents, fertility, marriage, and sexual

activity, awareness, use of family planning methods, child feeding practices, nutritional

status of women and children, and adult and childhood mortality. We receive permis-

sion to download EDHS 2016 data from https://dhsprogram.com/Data/ after making a
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reasonable request.

in EDHS 2016, valid geographic coordinates, sociodemographic, and anthropometric

data were collected. In each selected household, mothers aged 15 to 49 were interviewed,

and anthropometric measurements were taken on all children under the age of five in

any family. 10,641 children with full anthropometric measures of underweight are in-

cluded in 645 clusters from 11 regions. A report on the comprehensive methodology of

the 2016 EDHS survey could have been found elsewhere [29]. Our study aims to develop

a comprehensive model that considers statistical uncertainty and the geographical set-

ting to better understand and manage underweight issues in early infants in Ethiopia.

We employed flexible regression approaches to predict the effects of several factors of

underweight. The geographic variance based on the child’s place of residency was also

considered, and the results indicate both nonlinear and linear relationships between these

variables. Underweight status was assessed using standard Z-scores.

Malnutrition in children can result from several causes. Based on earlier research,

we embarked on our study by looking at a wide range of covariates, including socioeco-

nomic, demographic, health, and environmental characteristics of childhood malnutrition

(see Table 3.1). One typical method in statistical modeling is to classify variables using

deviation codes and it provides insights into the effects of categorical variables and makes

it easier to include them in our models. Furthermore, one of the levels of the categorical

variable is chosen as a baseline level, and the remaining levels are coded as the devia-

tion from the baseline level [16]. Furthermore, to increase the quantity of data that was

available, underweight was employed as a continuous variable.

Ethiopia is a federal republic consisting of nine regional cities (Afar, Amhara, Benshangul-

Gumuz, Gambela, Harari, Oromia, Somalia, South African nationalities, and people

(SNNP), Tigray), and two administrative towns (Addis Ababa and Dire Dawa). The

capital city of the federal territory is Addis Ababa. The country, which has a total land

area of 1,104,300 km2 (426,372 m3), is in the Horn of Africa. Its longitude ranges from

33◦ to 48◦, while its latitude is between 3◦ and 14.8◦. The locations of each region are

shown in Figure 1 for those unfamiliar with Ethiopia’s terrain [29].
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Table 3.1: Socioeconomic and Demographic Characteristics of childhood underweight in
Ethiopia

Covariates Description

Child’s age (Cage month) Child’s age in months

Region Region where mother lives

Mother BMI Mother’s Body Mass Index (BMI)

Mother’s age (Mother age) Age of mother in years during childbearing age

Mother education Mother’s education level (categories: no education,
primary, secondary, higher)

Child’s sex Child’s sex (categories: male, female)

Availability of electricity Availability of electricity (categories: yes, no)

Sex of household headed Sex of the household head (categories: male, female)

Diarrhea level Child’s diarrhea level (categories: yes, no)

Anaemia level Anaemia level of child (categories: severe, moderate,
mild, not anemia)

Place of residence Place of residence (categories: urban, rural)

Figure 3.1: Maps of Ethiopia with its Regions
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3.2.2 Bayesian Geo-additive Models

Bayesian geoadditive hierarchical models can combine Bayesian inference with geostatis-

tical methods to model spatially varying relationships between a set of variables and a

response variable [11, 25]. In this model, all unknown parameters are treated as random

variables, and prior distributions are assigned to them based on available prior knowl-

edge or beliefs. Then, given the data set, the posterior probability distribution of the

parameter is updated using Bayes theorem [30], More settings for geoadditive models

within mixed models have been introduced by [46]. In addition, one of the main fields

of statistical research for modeling the non-linear components of a Generalized additive

model (GAM) is Bayesian geoadditive models. These models are required nowadays for

a variety of applications that can handle both nonlinear spatial effects and the nonlinear

effects of continuous covariates at the same time.[91].

Conventionally, the impact of sociodemographic variables on the response variable is

modeled using the linear model as follows:

ηi = Xiβ + ωiγ (3.2)

With a vector of categorical variables, ω = (ωi, . . . , ωp), and metrical covariates, X =

(xi, . . . , xp), for each of the values of i = 1, . . . , 10641. The nonlinear impacts of metrical

factors and categorical covariates on underweight childhood malnutrition were considered

in our analytical investigation, and the categorical variables were coded by deviation

coding.

Thus, for a set of observations (yi, xi, vi), i = 1, . . . , n, on a continuous response y,

a vector of continuous covariates (or metrical covariates) x = (x1, . . . , xp), and (vi) is a

vector of further variables associated with each observation and can be expressed as a

vector of additional covariates, ω = (ω1, . . . , ωp), the generalized additive model (GAM)

for the cross-sectional data, we have an additive predictor ηi for observation i, i = 1, . . . , n,

and j = 1, . . . , p component is given by [43]:

ηi = f1(xi1) + . . .+ fp(xip) + ωT
i γ (3.3)

Here, the linear combination ω′
iγ corresponds to the typical parametric part of the pre-

dictor, including the intercept term. The fj(xij) is a smooth function of the jth covariates

of the (xij), and f1 · · · fp are unknown smooth pth degree polynomial function of the con-

tinuous covariates. We suppose that, given the covariates and unknown parameters, yi

is the Gaussian family distribution, with a common variance σ2 for all individuals for

i, 1, . . . , 10641. For different function evaluations, the unknown function fj in equation

(2) is represented as fj = (f1(xi1) + · · ·+ fp(xip))
′ = Xjβj, where Xj is a design matrix,

and vectors of unknown regression coefficients βj can be expressed as such.
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fj = (f1(xi1) + · · ·+ fp(xip))
′ = Xjβj (3.4)

From Equation (3), fj represented a metrical product of a deterministic, non-random

design matrix Xj, and a vector of unknown regression parameters βj. The unknown

function f = (f1, · · · , fp) denotes the evaluation of the function at observed values of x.

By defining the n×M design matrix X with n observations and M covariates, where

the element in row i and column p is given by Xi,p = (xij), the matrix notation of equation

(2) can be rewritten as:

ηi = x1β1 + . . .+ xpβp + ωT
i γ (3.5)

In this case, βj =
(
βj1 . . . βjmj

)T
gives the representation of the unknown regression co-

efficient vectors, and ω is the matrix for the fixed effects design matrix. Since they are

random variables, the unknown parameters for βj, j = 1 . . . p and γ must be supplied

with the proper prior distributions[63]. The means of the unknown functions f1 . . . fp

are not identifiable for the pth degree polynomial smooth functions of continuous covari-

ates. Constraining the mean values of smooth functions is necessary for robust statistical

modeling to maintain identifiability [3], i.e

1/(range(x1)) =

∫
xj

f1(xj) dxj = 0 (3.6)

Throughout each sampler iteration, we center the functions fj about their means in

Bayesian estimation using Markov Chine Monte Carlo (MCMC) to preserve identifia-

bility while estimating the unknown parameters. We then add the subtracted means to

the intercept term (ωT
i γ [95].

To account for the spatial variation in response, we introduce a spatial effect denoted

as fspat into equation (2). This modification leads to the development of geoadditive

models, as proposed by [46]. In these models, we simultaneously consider the nonlinear

effects of metrical, categorical, and spatial covariates (specifically the child’s regions of

residence) in assessing underweight in childhood. Therefore, by replacing the strictly

linear predictive equation (2) with a more flexible geoadditive model, we arrive at the

general form of the Bayesian geoadditive model as:

ηi = f1(xi1) + . . .+ f1(xip) + fspat(si) + ωT
i γ (3.7)

Centered on its application, the spacial effect may be further split into an uncorrelated

(unstructured) and a spatially correlated (structured) effect [46] as:

fspat = fstr + funstr = Xstrβstr +Xunstrβunstr (3.8)

The function fspat represents the geographical effects of spatial variables s ∈ {1, . . . , S}
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indicating regions in a country. The rationale behind for incorporation of the spatial

effect functions was to surrogate of several unobserved impacting variables associated with

geographic data. While some of these components have a significant spatial structure,

others are more localized. To separate these two categories of relevant elements, we

estimate the structure and unstructured effect. Using Markov random field priors for the

regression coefficients is a typical method for simulating the linked spatial impact fstr

when working with data seen on an irregular or regular lattice [9].

Prior distribution

The prior distribution in Bayesian geoadditive models serves as a regularization and a

mechanism to incorporate prior knowledge or beliefs about the model parameters, which

can improve the model’s estimation and prediction performance [30]. The unknown pa-

rameters, f1 . . . fp, fstr, funstr, and an uncertain parameter γ and δ2 are regarded as random

variables, hence the proper prior distributions must be added to them[63]. This prior dis-

tribution represents information about f1 . . . fp, fstr. The posterior distribution is then

used to guide subsequent conclusions by combining the prior distribution with the proba-

bility distribution of the new data. Deciding an appropriate prior distribution is the main

issue for a particular application, and for any scenario, there is a prior distribution that

is justified by notions from decision theory [35].

Priori for metrical covariatesn

Specifying smoothness priors is important to avoid overfitting and improve the accuracy

and interpretability of statistical models. It encourages the model to fit the data in a

way that is consistent with prior knowledge or beliefs about the relationship between the

covariates and outcome [32].

A range of alternatives have been put out to defining smoothness prior to metrical

variables, including autoregressive priors (random walk priors), Bayesian P-splines, and

the Bayesian smoothing splines [30, 57, 42]. From these methods of smoothness prior

specification, Bayesian P-splines (the P-splines) are a powerful tool for nonparametric

regression analysis that offer advantages over other Bayesian methods such as Bayesian

smoothing splines and random walk priors in terms of computational efficiency, flexibility,

and interpretability [14, 57]. Then, we will focus on P-splines, the most parsimonious

parameterization in a Bayesian framework where inference is based on MCMC techniques.

Based on the definition of splines of degree l on the set of knots with equal spacing,

the P-splines assume that the unknown smooth function fj of the metrical variables xj

may be estimated as ζj ∈ [ζ0, ζr] in the domain of xj, i.e. (xjmin = ζj0 < ζj1 < . . . <

ζ(jrj−1) < ζ(jrj) = xjmax). Furthermore, the P-spline or penalized splines assume that the

influence of a covariate x may roughly be represented by a polynomial spline expressed

as a linear combination of the B-spline basis function. Subsequently, such a spline may

be expressed as a linear combination of Mj = rj + l B-spline basis functions βjp[21].
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fj(xj) =
m∑
t=1

βjpβjp(xj) (3.9)

The locally specified basis functions βjp are nonzero only in the domain encompassed by

2 + l knots. We take the number of knots in each notation to be the same, M = Mj, for

each function fj.

The choice of the number of knots in a P-spline is an important decision that can

have a significant impact on the resulting model’s performance. If the number of knots is

too small, the P-spline may not capture the underlying structure of the data adequately,

resulting in underfitting or bias in the model. However, if there are too many knots, the

P-spline may overfit the data, resulting in a model that performs well on the training set

but poorly on new, unproven data [77]. The knots divide the range of the input variable

into a series of intervals, and the spline function is defined by a set of basis functions

that are used to model the data within each interval [26] and the number of knots in the

P-splines fitting process should be between 20 and 40. This reasonable number of knots

is used to guarantee sufficient smoothness of the fitted curve by defining a roughness

penalty and overcoming the challenge of regression splines based on first or second-order

differences of neighboring B-spline coefficients. Furthermore, knots may be automatically

calculated throughout the fitting process, negating the need for the user to specify them

directly.

From Equation (4), the unknown regression coefficients Coefficients βj =
(
βj1 . . . βmj

)T
and γ can be estimated by penalized likelihood.

L = l(y, β1 . . . βp, γ)− λ1
mj∑

m=k+1

(
∆kβ1l

)2 − . . .− λp mj∑
m=k+1

(
∆kβpl

)2
(3.10)

.

From this equation, λj, j = 1, . . . , p is the smoothing parameter, a trend of smooth-

ness and flexibility, and ∆k is the difference operator of order k. This function should

be maximized for unknown regression coefficients β1 . . . βp and γ to find the unknown

regression coefficients. However, it becomes challenging to find an optimal solution when

the model has a large number of smoothness functions [56].

For a given effect parameter γ, we assume an independent diffusion prior, and for

j = 1, . . . , p, we assume that γj ∝ constant. Under the assumption of distinct diffusion

priors, we allow for independent parameter development, which may lead to more flexible

and understandable models [96]. The characterization of priors for the nonlinear function’s

regression parameter βj involves substituting the various penalties with their stochastic

equivalent in Equation (8). We employ stochastic difference penalties, such as first- or

second-order random walks, as priors for regression coefficients in Bayesian modeling.

The first-order difference, βjm − β(j,m−1), penalizes abrupt jumps between consecutive
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parameters; the second-order difference, 2βjm − β(j,m−2), penalizes deviations from the

linear trend. These random walks give modeling flexibility, and they are specified as:

βjm = β(j,m−1) + ujm or β(j,m−1) = 2β(j,m−1) − β(j,m−2) + u(j,m) (3.11)

Where p(βj1), p(βj2) are diffusion errors, ujm is the Gaussian error, which follows ∼
N(0, τ 2), and the α constant denotes for initial values. As a specific situation, first

and second random walk processes may be thought of as P-spline degree l = 0 [30]. As a

product of the conditional densities, the joint distribution of the regression parameter may

be simply determined. Thus, in equation (4), the parameter vector β’s prior distribution

may thus be expressed in terms of globally smoothness priors as:

P (βj|τ 2j ) ∝ exp

(
− 1

2τ 2j
βT
j Kjβj

)
(3.12)

Where the penalty matrix Kj is used in regularization techniques such as ridge regression

and smoothness priors. In many instances, the values of kj tend to fall short of the ex-

pected rank, resulting in partially inappropriate priorities for βj. This suggests that βj|τ 2j
adheres to a certain improper Gaussian prior, βj|τ 2j ∼ N(0, τ 2K−), where the generalized

inverse of the penalty matrix K is denoted by K−. The inverse smoothing parameter,

or variance parameter τ 2j , regulates the trade-off between the smoothness and flexibility

parameters. Smoother solutions are encouraged by the term βT
j Kjβj, which penalizes the

complexity of the model [23].

We employ Gamma distribution hyperpriors for variance τ 2j in complete Bayesian in-

ference. These hyperpriors are weakly informative, so we may keep our flexibility while

including prior information. Specifically, we assume that τ 2j will have an inverse Gamma

distribution with parameters αj and bj: τ
2
j ∼ IG(αj, bj). The normalization’s impact is

minor when αj = bj is set to its default value of 0.001. This decision integrates the effect

of the prior with the likelihood of the data, ensuring that the distribution of posteriors

incorporates information from both sources. In Empirical Bayes Inference, we use τ 2j as

an unknown constant instead of defining a hyperprior. The value of τ 2j is extracted di-

rectly from the data using methods such as restricted maximum likelihood (REML). A

more data-driven approach to computing variance is provided by REML estimates, which

also take the uncertainty in the fixed effects into account. The penalty matrix Kj is used

in regularization techniques such as ridge regression and smoothness priors. Kj = DTD

is the formula for Kj, in which D represents the difference matrix of first or second or-

der. This matrix captures the smoothness or sparsity assumptions on the parameters [36].

Prior Dispersion for the spatial effect

In geoadditive models, the prior can be used to incorporate spatial dependence into the

model parameters, where neighboring regions are assumed to have similar effects. The
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spatial prior can be based on distance, adjacency, or any other form of spatial relation-

ship, and can help improve the model’s estimation accuracy and prediction performance

[46]. Prior to the spatial effect of Bayesian spatial analysis, which is based on the Markov

random field (MRF), the spatial effect at each location depends on the spatial effects at

neighboring locations. Moreover, the advantage of the Markov random field is its flexi-

bility in modeling spatial dependence. The MRF prior is specified using a neighborhood

structure, which describes the relationships between neighboring locations. The prior as-

sumes that the spatial effects at neighboring locations are dependent on each other and

that the dependence decays with distance. The strength of the dependence is controlled

by a spatial parameter, which can be estimated from the data [20].

We selected Markov random field priors Markov random field priors (MRFs) for spa-

tially correlated effects, fstr(s), s ∈ {1, . . . , S}, These priors reflect spatial neighborhood

relationships and represent the probability distributions of a variable modeled as a product

of local conditional probabilities that depend only on the values of neighboring variables

[60]. With spatial analysis and modeling techniques, including spatial clustering, spa-

tial autocorrelation analysis, and spatial regression, two areas, r, and s, are considered

neighbors if they have a common border. This is based on the idea that neighboring

regions tend to have more similar characteristics and may interact more frequently than

non-neighboring regions [39].

Every observation in the random walk model is a function of the one before it and

the random error term. However, in a spatial context, observations that are close to each

other are likely to be correlated due to spatial dependence. Hence, previous observations

and random error terms may not be sufficient to explain the current observation. To

account for spatial dependence, the conditional and spatial autoregressive specifications

include spatial lag terms in the model. These spatial lag terms capture the influence

of neighboring observations on the current observation, and this specification allows for

the spatial dependency to be modeled, which can improve the accuracy of the model

prediction [24].

The model can be written be as:

fstr(s)/funstr(r), r ̸= s, τ 2 ∼ N

(∑
r∈∂s

fstr(s)
Ns

,
τ 2

Ns

)
(3.13)

Where the conditional means, fstr(s) are an average of the functional evaluation fstr(s)

in neighboring regions, τ 2 is the variance that determines the degree of smoothness, and

Ns is the sum of adjacent sites. r ∈ ∂s represents the set of neighbors of site s.

The Gaussian distribution with independent and identical distribution (iid) is a com-

mon prior assumption for spatially uncorrelated effects funstr, because Gaussian (iid) is

more flexible and a more popular choice for modeling uncorrelated data [57]. With spa-

tially uncorrelated effects, the model can be written as:
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funstr|τ 2unstr ∼ N(0, τ 2unstr) (3.14)

For j = 1, . . . , p, str, and unstr, the variance and smoothness parameter for complete

Bayesian inference τ 2j are unknowns that are estimated concurrently with the correspond-

ing unknown function fj. As a result, at the second level of the hierarchy, they are given

hyperpriors using a dispersed inverse gamma distribution, P (τ 2) ∼ IG(aj, bj) with known

hyperparameters. The conventional values of these hyperparameters are b = 0.005 and

a = 1 or a = 0.001 = b, which is close to Jeffrey’s noninformative prior [81].

Posterior inferences

The posterior inference in fully Bayesian models, such as Bayesian geo-additive models, is

usually carried out through the use of Monte Carlo Markov Chain (MCMC) techniques,

which provide a sample based on the posterior distribution [8]. Using Monte Carlo Markov

Chain (MCMC) simulations techniques, we may utilize the posterior distribution of the

parameter of interest to compute a credible interval in Bayesian geoadditive regression

models. The credible interval in Bayesian geoadditive regression models provides a range

of values for a model parameter, such as a regression coefficient or a variance compo-

nent, that is likely to contain the true value of the parameter with a certain degree of

probability, typically expressed as a percentage [40]. These credible intervals rely on the

posterior distribution of the parameter which considers both the observed data and any

prior information [18].

In MCMC sampling, we can compute the statistical properties of a posterior distribu-

tion as long as we have a sufficient number of simulated samples from that distribution.

i.e.

E(fj)p =
1

N

N∑
i=1

(fj)
(i) (3.15)

In this case, fj is the intended expectation, P is the posterior likelihood distribution of

desire, and (fj)
(i) is the ith simulated sample from P

The stationary distribution of the Markov chain is the goal of the posterior distribution

in these MCMC techniques, which are iterative algorithms that thrive in a Markov chain.

The chain converges to a target distribution once a sufficient number of iterations of the

method are performed, and the sample that results may be used to estimate posterior

summaries such as the median, mean, quartiles, standard deviation, and credible interval

[57].Let τ and α be all unknown parameters in the model and the vector of variance

components, respectively (for α = (f, fstr)). Considering independent conditions, the

Bayesian inference relies on a posterior distribution, and it seems like:

P (α) ∝ L(y, β1, . . . , βp, fstr, funstr, γ, σ
2)

p∏
j=1

(
p(βj |τ2j )p(τ2j )

)
p(fstr|τ2str)p(τ2str)p(funstr|τ2unstr)p(τ2unstr)p(γ)p(σ2)

(3.16)

The vector βj = (βj1, . . . , βjmj
)′ corresponds to unknown regression coefficients vectors for
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fj. For all unknown parameters, the full conditionals of the vectors fstr, funstr, and fixed

effect parameter γ, as well as the full parameter vector conditionals β1, . . . , βj, have known

distributions. Since the variance component’s marginal probability depends intricately on

the data, it lacks a straightforward family of conjugate prior distributions. However, the

inverse gamma family is conjugate, and the inverse gamma distribution may be observed

in the full conditionals τ 2j of j = 1, . . . , p, str, unstr, and δ2 [36].

Modell goodness of fit criteria

As part of any modeling exercise, it is usually of interest to assess how well a given

model describes given data. To this end, several measures have been devised to help in

this regard. The first of these is a deviance-based measure called Deviance information

criteria (DIC). Second the WAIC or Watanabe Akaike information criteria and posterior

predictive loss, and cross validatory measures [37]. The device information criteria (DIC)

The device information criteria have been proposed by Spiengel halter et al., (2000), and

widely used in Bayesian modeling is defined as

DIC = 2Eθ/y(D)−D(2Eθ/y, (θ)) (3.17)

Where D(.) is the deviance of the model and y is the observed data while DIC is based

on a comparison of average deviance (D̄) = −2
∑G

g=1 l(y|θg)/G, and then deviation of the

posterior expected parameter estimated posterior distribution θ̂, D̂θ = −2l(y|θ̂). For any

sample parameter value θg, the deviance is D̄(θg). The effective number of parameters

(pD) is estimated as ˆpD = D̄ − D̂θ.

DIC = D + (p̂D̂) = 2D − D̂θ̂ (3.18)

An estimator (̃pD) proposed by [35], is used to calculate the effective number of parameters

in the model, and it serves as a proxy for its complexity. This counts the number of factors

that influence the models that fit the Bayesian model and can benefit from the use of this

estimator. The estimator contains the following terminology:

(̃pD) =
1

2(G− 1)

G∑
g=1

(θg −D)2 (3.19)

Where G signifies the quantity of chains (samples derived from the posterior distribution),

θg indicates the values of the parameters in each chain, and D is the average deviation over

every chain. A higher (̃pD) value denotes more complexity as a result of more significant

parameters. It improves our comprehension of the model’s deviation from a more basic

model (one with fewer parameters).

As an alternative, we may compute (̃pD) directly from sample output obtained from

the chains using tools such as R2WinBUGS. Additionally, DIC is a useful tool for model

evaluation and selection since it achieves a compromise between completely informative
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and noninformative priors. This estimator can shed light on the parameter contribution

and overall model complexity in Bayesian models. Data analysis and graphics were done

using R program v4.3.0 in BayesX and R2BayseX packages, and The QGIS v1.8 was used

for the generation of maps.
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3.3 Results and discussions

3.3.1 Results

3.1.Descriptive statistics

Our study in Bayesian semiparametric geoadditive modeling of underweight among under-

five children in Ethiopian attempts to explore demographic and socioeconomic factors,

the presence of regional variation in Ethiopia regions, and to contribute result-based

nutritional interventions for policymakers and health practitioners to develop effective

strategies for the under-five children in Ethiopia. In this study, metrical covariates with

a nonlinear trend, covariates with a fixed effect, and spatial effects were considered. All

are treated by the Bayesian framework to assign appropriate priors with various forms

and levels of smoothness. To summarize the characteristics of the covariates (see Table

3.2), the mean of underweight (weight-for-age z-score) was 1.28 in standard deviation. In

our settings, based on the child’s and mother’s lives, 81.45% of these children live in rural

and the remaining 18.55 of them live in urban areas. Among the mothers who were of

childbearing age, about 6838 (64.27%) of them had no education, 2678 had completed

their primary education, 734 of them had secondary education and 391 of them had

completed their secondary education. Besides, from all the children we consider from

2016 EDHS data, 8826 developed diarrheal and the number of children who did have not

diarrheal during the survey was only 1090. .

55



Table 3.2: Description of socioeconomic,demographic and metrica variables for under-
weight

Factors Frequency Percentage Coding

Mother education

No education 6838 64.27 1

Primary 2678 25.7 2

Secondary 734 6.89 3

Higher 392 3.68 4

Child’s sex

Male 5483 51.53 1

Female 5158 48.43 2

residency

Rural 8667 81.45 1

Urban 1974 18.55 2

Availability of electricity

Yes 2367 22.53 1

No 8141 77.48 2

Anaemia level

Severe 311 3.99 1

Moderate 2531 32.47 2

Mild 1849 23.73 3

Not anaemia 3104 39.83 4

Diarrhea level

Yes 8826 89.01 1

No 1090 10.9 2

Sex of household headed

Male 8383 78.78 1

Female 2258 21.22 2

Metrical covariates Min. Max. Sd Mean

Child’s age in months 0 59 16.65 28.58

Mother age 15 49 29.23 6.65

Mother’s BMI 11.73 83.85 3.43 20.73

Underweight -5.92 4.92 1.28 -1.045

Apart from the descriptive statistics, the Yeo-Johnson transformation (see Figure 3.2)

visualizes a range of values that are used to group data into categories for the purpose of

detail visualization [90]. For example, by taking the bin visualization between the child’s

age and underweight, underweight is not constantly decreasing against the child’s age (see

the left plot of Figure 3.2). The plot undergoing the oscillation moves back and forth from

the child’s age between 20-40 months and then remains constant to the right. Similarly, as

a mother’s BMI increases, underweight will improve, but there is a threshold point. Any

increase in BMI will worsen underweight. At low levels of maternal BMI, underweight

is low (see the right plot of Figure 3.2). Furthermore, underweight will decline when

the values of the mother’s BMI increase for longer. This is evidence that the effects of
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children being underweight are not a constantly increasing or decreasing trend for each

value of mothers’ BMI. Therefore, from the Yeo-Johnson transformation visualization,

the metrical covariates like the mother’s BMI, the child’s age, and the mother’s age at

birth are good candidates for the nonlinear effects on children underweight based on the

EDHS 2016 dataset.

Figure 3.2: Yeo-Johnson transformation visualization of metrical covariates on underweight

In the Bayesian geoadditve model, the histogram of the model parameter estimates

is expected to show a smooth and center distribution, while the density plot shows the

posterior distribution of the parameter [10]. As shown in Figure 3, the smoothness of the

histogram indicates that the model is well-calibrated, and the data is well-represented

by the chosen model and the assigned prior’s distribution. Besides, the distribution is

roughly symmetric, centered around the posterior mean (see Figure 3.3). Hence, these no

more discrepancies between the histogram and density plot to the model prediction tell

us that the Bayesian geoadditive model is a feasible alternative for our inference.

57



Figure 3.3: Distributions of underweight A) Histogram; B) Kernel Density Estimate

Bayesian geo additive model

We employed the Bayesian geoadditive statistical procedure that worked together with

the BayesX stepwise selection method to identify various covariates that have an impact

on underweight. The fixed effects and smooth term variance of the geoadditive Gaussian

model are given in Table 3-4. From the tables, the value of 50% represents the median or

most probable estimate of the coefficient, while the 2.5% and 97.5% quartiles represent

the lower and upper bounds of a 95% credible interval [66]. A 95% credible interval can

be used to estimate the statistical importance of variables in the Bayesian framework.

If a parameter’s credible interval excludes zero, then the parameter is likely statistically

significant [37].

As shown in Table 3.3, the results of the fixed effect are as expected. Female children,

absence of electricity, severe diarrhea, moderate anemia, and primary, secondary, and

higher education were statistically significant at the 5% level. However, living in an urban

area and being the female head of a household are not statistically significant. Therefore,

the findings suggest that female children are at a higher risk of being underweight than

male children. Children born to mothers with secondary and higher education levels, who

had electricity in their house during their pregnancies are at lower risk of underweight

malnutrition compared to children born to mothers with a primary and lower education

level and who couldn’t obtain electricity.

Furthermore, in comparison to the reference group of male children, the estimated

mean of the effect of female children on underweight is 0.0837 with an estimated standard
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deviation of 0.023 (see Table 3.3). These results suggest that the effect of the female

children on underweight malnutrition is likely positive and relatively precise and estimated

to be around 0.0837 units higher than the male children’s on average with a 95% credible

interval lies between 0.0371 and 0.1293 units. Furthermore, the quantile values of 2.5%,

50%, and 97.5% the posterior distribution of the effects of female children are 0.0371,

0.0840, and 0.1293, respectively. Similarly, the effect of the absence of electricity on

underweight is likely negative and is estimated to be around -0.1976 units higher than the

reference level (the presence of electricity) on average, with a 95% probability that the

true effect lies between -0.2746 and -0.1158 units.

Table 3.3: Posterior estimate of the fixed effect parameter for underweight in Ethiopia

Covariates Mean SD 2.5% quartiles 50% quartiles 97.5% quartiles

Intercept -1.1037 0.3060 -1.7565 -1.0935 -0.5333

Sex of child (Ref = Male*)

Female ® 0.0837 0.0225 0.0371 0.0840 0.1293

Residence (Ref = Rural*)

Urban 0.0296 0.0451 -0.0610 0.0302 0.1160

Availability of electricity

Yes*

No ® -0.1976 0.0418 -0.2746 -0.1977 -0.1158

Sex of the household headed

Male*

Female -0.0521 0.0294 -0.1098 -0.0525 0.0074

Diarrhea level

No*

Yes ® 0.2161 0.0317 0.1534 0.2174 0.2780

Anaemia level

Not anaemic*

Severe ® -0.5319 0.0533 -0.6323 -0.5343 -0.4189

Moderate ® 0.2998 0.0239 0.2529 0.2988 0.3456

Mild ® 0.0139 0.0276 -0.0421 0.0146 0.0663

Mother education

No*

Primary ® -0.0946 0.0265 -0.2796 -0.0941 -0.0424

Secondary ® 0.1232 0.0375 0.0441 0.1241 0.1939

Higher ® 0.2277 0.0265 0.2796 0.2272 0.1754

*: reference group, ®: significance
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Likewise, Table 3.4 represents the degree of smoothness of the function being esti-

mated, typically referring to the variance parameters associated with the smooth terms

in an additive model of metrical covariates. It shows the estimated mean of the vari-

ance, the estimated standard deviation of the variance, the 2.5% and 97.5% quartiles

of the posterior distribution of the variance, the estimated the estimated median (50%

quartile) of the posterior distributions of the variance for spatial and metrical covariates.

Thus, the child’s and mother’s age, and mother’s BMI are significant predictors of being

underweight in Ethiopia. The spatial effects are also quite significant suggesting that

the socioeconomic variables are unable to account for the consideration portions of this

regional spatial effect.

When considering the metrical variables, the estimated mean of the variance, the

estimated standard deviation of the variance, and the 50% quantile of the posterior dis-

tribution of the variance of children’s age are 1.6961, 1.2180, and 1.3796, respectively.

Besides, the 2.5% and 97.5% quartiles of the posterior distribution of the variance for the

child’s age are 0.05 and 0.15, respectively. The estimated mean of the spatial random

effect variance (sx (spatial effect)) is 0.3047. This shows that there is spatial variation

in underweight that is not explained by the other covariates in the model, and there is a

95% probability that the true variance for the spatial random effect lies between 0.0721

and 0.7589 based on the data and the model. This table also shows the hyperparameter

of error variance (Sigma2), which is the amount of variation in the response variable that

is not explained by the covariates and the spatial effects. A smaller value of error variance

indicates that the model can explain large proportions of the variation in the response

variable, while a larger value of error variance indicates that there is more random vari-

ability in the response variable that is not explained by the model [13]. In conclusion,

this output indicates that the estimated posterior mean value of Sigma2 is 1.3511, with

a relatively small standard deviation of 0.0187 and a 95% credible interval. The scale

parameter Sigma2 is also likely statistically significant.

Table 3.4: Posterior estimate of the Smooth term’s variances and Scale estimate for
underweight malnutrition

Smooth term variances Mean SD 2.5% 50% 97.5% Min Max
sx(Child age/month) ® 1.6961 1.2180 0.4691 1.3796 4.8556 0.3018 14.9313
sx(spatial effect) ® 0.3047 0.1819 0.0721 0.2690 0.7589 0.0392 1.7381
sx(Mother’s age) ® 0.0114 0.0181 0.0007 0.0055 0.0604 0.0003 0.1588
sx(mother’s BMI) ® 0.4226 0.9056 0.0322 0.1890 2.1381 0.0142 11.4281

Scale estimate
Sigma2 1.3511 0.0187 1.3154 1.3510 1.3892
N = 10641, burn in = 2000, method = MCMC, family = Gaussian, Iteriation = 1200,

steps = 10, SD = standard deviation ®= significance
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The 95% credible interval indicates the range of values that the true variance is likely

to fall within with 95% probability, while the 80% credible interval will give a narrower

range of values with 80% probability [37]. The posterior means, together with the credible

intervals of metrical covariates (mother’s age, BMI, and child’s age), of underweight have

been shown in Figure 3.4. From these figures (see Figure 3.4), the shaded area for each

metrical covariate provides a way to visualize the uncertainty in our predictions for each

metrical covariate and the underweight in our analysis. The wider the shaded area, the

more uncertain our predictions are, while the steeper the black line, the stronger the

relationship between metrical covariates and underweight.

The top left in Figure 3.4 reveals that a child’s age has a large nonlinear impact on

underweight, particularly between the ages of 0 and 10 months. During this time, the

child’s underweight gradually worsens, following an almost linear pattern. This indicates

that the chance of being underweight increases progressively as the child grows older.

However, after 10 months, the tendency changes and stabilizes at a moderate level between

the ages of 15 and 25 months. This means that, while the danger of malnutrition remains,

it does not grow as fast as it did previously, and the child’s nutritional status stabilizes

to some extent. This might occur if younger children are more sensitive to underweight

malnutrition owing to a lack of access to proper food and healthcare, while older children

are more likely to be influenced by social and environmental variables such as poverty

and food insecurity [84]

A mother’s BMI and her child’s weight for age have a nonlinear relationship, as seen

in Figure 4’s bottom left panel. According to the graph, the association between the

mother’s BMI and her child’s weight-for-height for the z-scores appears to be an inverted

U shape. This suggests that when BMI rises above the minimum of 12, the child’s weight-

for-height in Z-score rises as well (i.e., there is less underweight). However, a higher

maternal BMI above 50 seems to have a significant impact on the child’s underweight

(high underweight). According to our result, maternal BMI between 12 and 50 is an

optimal range of maternal BMI (between 12 and 50) that is associated with lower levels

of underweight in children. A BMI of less than 20 may have a lower Z-score of weight-for-

height for their children compared to mothers with a higher BMI, which could indicate

that the child maybe undernourished or not growing properly. Furthermore, a BMI of less

than 18.5 is considered underweight, and it indicates acute undernutrition in the mother.

This can lead to negative health outcomes for both the mother and the child, such as an

increased risk of complications during pregnancy and childbirth, low birth weight, and a

higher risk of developmental delays for the child.

The effect of the mother’s age is also quite slight (see the top right panel of Figure

3.4). It shows the weight-for-height Z-score is low for mothers aged between 15 and 35

years. The Z-score of weight-for-age decreases (and underweight increases) after the age

of 35. After this age, the effects of mother age increase with an almost linear trend on
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underweight. It shows that their children are worth their nutrition status as compared

with children whose mothers are in the younger age group. This is because as women age

gets an increase, they are more likely to have chronic health conditions such as diabetes,

hypertension, or heart disease, which can affect the health of the developing fetus and

increase the risk of being underweight at birth, and older mothers may be more likely

to have unhealthy lifestyle habits, such as smoking, drinking alcohol, or poor nutrition,

which can increase the risk of underweight in babies [54, 92]. Moreover, the plotted line

corresponds to the average predicted response across the predictor value, and the x-axis

tick marks on the plot represent the unique predictor values in the selected dataset.

Figure 3.4: Nonlinear effects of metrical factors on underweight in Ethiopia: posterior mean with the
80% and 95% credible interval
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The posterior spatial effect in the fitted model is shown in Figure 3.5, and the signifi-

cance of spatial effects is shown by the posterior probability maps. In this map, the colors

red and blue signify significant positive and negative effects on the Z-score, respectively,

while grey shows no significance. The findings indicate strong support for incorporating

geospatial analysis due to the substantial variation in child underweight observed in the

Gaussian model. Moreover, a significant spatial influence on children’s underweight was

evident across most regions in Ethiopia. Furthermore, in Bayesian geoadditive models,

centering spatial effects around zero increases computing efficiency, stability, and interpre-

tation and it ensures that the model converges effectively. Positive values indicate areas

where the effect is stronger (higher risk) than the spatial effects around zero ( reference),

while negative values indicate weaker effects (lower risk) [62, 87, 94].

Figure 3.5: he Gaussian model’s posterior mean of the spatial effect in underweight

Figure 3.6 displays the residual spatial pattern (left panel) and the IDW-interpolated

surface of predicted values (right panel) following a Gaussian model fit. The left panel

displays how the model deviates from the observed data, while the right panel uses IDW

interpolation to reveal spatial patterns within the predicted values. This observed resid-

ual spatial pattern in underweight children may be ascribed to unobserved factors not

represented by the covariates in the model and identifying them is an issue of hypoth-

esis. Furthermore, the IDW interpolation of predictive values provides estimates of the

underweight, and identifies areas of high, and low risk or abundance at each unsampled lo-
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cation, and evaluates the effectiveness of different management or intervention strategies,

and identifies areas where further data collection or monitoring is needed. The predicted

values are then mapped to make it easier to interpret [85]. Therefore, the yellow color

in the IDW interpolation of predictive values in the figure indicates the higher value of

underweight and that area is the hotspot area (the left plot). The prediction of this

unsampled location was done by using the observed values of the nearest ones.

Figure 3.6: Posterior means of the residual spatial effects in underweight for the Gaussian model (left)
and IDW Interpolation Predicted Values (right)

The goodness of fit of a Bayesian geo-additive model.

The goodness of fit of a Bayesian geo-additive model can provide insights into the accuracy

and precision of the model’s predictions, as well as identify potential sources of bias

or model misspecification. Tracking plots, autocorrelation plots, and residual plots are

important diagnostic tools for Bayesian geo-additive modeling [13].

By using the P-spline penalty, which can be used to control the smoothness of the

estimated function, the series of samples from the posterior distribution can be used to

obtain estimates of the linear function of our nonlinear covariates (mothers and child’s age,

BMI of mothers) and the spatial components where the child lives. Each corresponds to a

different set of model parameters sampled from the posterior distribution. The functions

of a series of samples from the posterior that are generated from a P-spline penalty is to

provide estimates of model parameters, a smooth estimate of the function, and a basis

for inference on quantities of interest and model comparison [13].
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According to Monte Carlo sampling [44], we can take a sampling from a probability

distribution and use those samples to approximate the desired quantity. Thus, the fol-

lowing figure, (see Figure 3.7) represents a series of samples generated from the posterior

distribution, which can be used to make inferences and predictions. Likewise, the posterior

samples obtained from MCMC algorithms are consistent with the observed data and prior

information, and these give evidence to estimate the distribution of model parameters as

well as measures of uncertainty or credible intervals.

Figure 3.7: Sample posterior distributions from MCMC stimulation

Furthermore, in this Bayesian inference, we employ a tracking plot to visualize the

behavior of Markov Chain Monte Carlo (MCMC) simulations. These MCMC chains are

derived from sampling a probability distribution and are subsequently used to approxi-

mate desired quantities. The tracking plot could help assess the reliability and precision

of the estimated quantity as well as spot any problems such a poor convergence or mixing

[15]. The x-axis of the plot represents the iteration number, and the y-axis represents

the values of the parameter. Thus, the tracking plot of a graphical representation of the

MCMC chains (see Figure 3.8) shows the values of the model parameters at each itera-

tion of the MCMC algorithm, and it has stabilized after the first 200 iterations, indicating

that the MCMC algorithm has converged to a stationary distribution. Furthermore, the

plot suggests that the MCMC algorithm has done a good job of exploring the posterior
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distribution and has converted it to a stable distribution for the model parameters.

Figure 3.8: MCMC tracking plot of underweight malnutrition in the Bayesian geoadditive model in
Ethiopia, P-spline with different penalties

Conjugation with other diagnostic tools, such as tracking plots, autocorrelation can

be a useful tool for assessing the goodness of fit of a Bayesian geoadditive model to gain

a compressive understanding of the model’s performance [19, 46]. It is a measure of the

correlation between a parameter value at time t iteration and a parameter value at time

t+k iterations [10]. The plot depicted in Figure 3.9 is used to check for autocorrelation in

the chain and it shows a rapid decay in autocorrelation as iteration k increases. Hence, a

slight autocorrelation is visible in the plot, as evidenced by the slight correlation between

the current and previous iterations. However, this is not a major concern as it does not

appear to be having a significant impact on the mixing or convergence of the chains.

Moreover, the autocorrelation drops off quickly, indicating that the MCMC algorithm is

efficiently exploring the posterior distribution. This suggests that the MCMC algorithm

is mixing well, and we may run it for a shorter time. This low autocorrelation is an

indication of shorter convergence times and unbiased inference, and it is important for

achieving efficient and accurate inference in Bayesian geoadditive models [19, 46].

The scale-location plot and residual plot diagnostic tools can also help to identify po-

tential issues with a model’s fit and convergence and guide model selection and improve-

ment [10, 46, 76]. The plot presented on the right is a scale-location plot, a diagnostic tool

used to assess the goodness of fit of the model. This plot shows the standard residuals

(the residual divided by their deviation) against the square root of the estimated variance
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Figure 3.9: Maximum autocorrelation of model parameter for underweight malnutrition

of the response variable, which is also known as the scale parameter. The residuals are

randomly scattered around zero (see the left plot of Figure 3.10), and if the spread of the

residuals is constant across the range of the response variable, is not systematically above

or below zero, or if the spread of the residuals varies across the range of the response

variable, then the model is a good fit to the data.

Likewise, the plot depicted on the left is the residual plot or the fitted values versus the

residuals. The fitted values represent the predictions made by the model for the response

variable at different locations or spatial units, while the residuals represent the differences

between the observed and the predicted values (see Figure 3.10). The plot of fitted

values versus residuals is a commonly used diagnostic tool to assess the adequacy of the

model fit and to identify any patterns or trends in the residuals that may suggest model

misspecification or violations of model assumptions. If the model is correctly specified

and the assumptions are met, we expect to see a random scatter of points, indicating

that the model is capturing the variation in the data adequately. However, if there are

any systematic patterns in the plot, this may suggest that the model is mis-specified. For

example, if the residuals show a systematic increase or decrease as the predicted values

increase, this may suggest that the model is underestimating or overestimating. If the

residuals show a U-shape or a curved pattern, this may suggest that the model is missing

a nonlinear component [30, 93]. Thus, the residuals (see the right plot from Figure 10),

have not experienced any pattern or trend indicating a good fit of the model. There are

no visible patterns or trends in the data that would suggest a poor fit.
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Figure 3.10: The residual and the scale-location plots

3.3.2 Discussion

According to our results, urban children are less likely than their rural counterparts to

be underweight, and these results are credible. Better quality of the healthy environment

and sanitation is present in urban regions. However, living in rural locations was thought

to have numerous problems, such as poor health, a lack of access to clean water, a lack

of charcoal as a fuel, a lack of milk intake, and poor personal cleanness or cleanliness.

According to the findings of the study, the place of living has a major influence on being

underweight. This result contradicts with [2], finding that where a mother resides (urban

or rural), there is no statistical relevance for a child’s weight-for-height; however, it is

concise with [47, 78] findings that urban regions have a statistical significance for a child’s

underweight in Tanzania and Malawi. Similarly, female children were less likely than male

children to be underweight. This outcome validates the findings from the earlier research

[47, 53, 82]. Gibson, however, noted that there were no considerable gender discrepancies

in underweight in Papua New Guinea [38].

Maternal education is a basic stimulus for child-care knowledge and behaviors. In our

studies, mothers’ educational attainment had a substantial influence on a child’s under-

weight, and it lowered the risk of children being malnourished. This study favors the idea

that a mother who has received an education is more responsible for delivering a sick child

to medical treatment. In addition, the amount of time mothers spend discussing their

children’s sickness with a doctor is proportionate to their level of education. Uneducated

women with their ill children benefit less from going to the doctor than educated women.

Our findings suggest that maternal education has a significant impact on children’s un-

derweight which is consistent with studies conducted in underdeveloped countries [12, 17].

likewise, past research carried out in developing nations has demonstrated that several
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African governments prohibit females from going back to school after giving children.

Hence, a girl who abandons her studies would feed her kid poorly and perpetuate the

cycle of poverty [74, 27, 31]

The BMI of a woman influences her capacity to effectively carry, give birth to, and care

for her children. Malnutrition occurs when a non-pregnant woman’s BMI falls below the

recommended cutoff point (approximately 18.5 kg/m2). Women who are malnourished

may deliver an underweight child. It implies that there is a link between the mother’s

BMI and her child’s nutrition. According to our result, the relation between the BMI

of a mother’s and her weight-for-age z-score appears to be an inverted U shape for BMI

between 12 and 50. Higher and lower maternal BMIs seem to have a significant impact on

high underweights. This result contradicts [52], with all metrics exhibiting roughly linear

trends with positive slopes.

The effects of maternal age on underweight are quite slight. It shows the weight-for-

age of the Z-scores is high for mothers aged between 15 and 35 years. After the age of 35

years, the Z-score of weight-for-age decreases (underweight increases). It shows that their

children are worth more in terms of nutrition status as compared with children whose

mothers are in the younger age group. This is because as women age gets an increase,

they are more likely to have chronic health conditions such as diabetes, hypertension, or

heart diseases, which can affect the health of the developing fetus and increase the risk

of being underweight [52, 71], and older mothers may be more likely to have unhealthy

lifestyle habits, such as smoking, drinking alcohol, or poor nutrition, which can increase

the risk of being underweight in babies [54, 92]. Therefore, our result contradicts the

study conducted by [52], which found that mothers under the age of 20 have a greater

effect on their underweight children.

A child’s age also has a nonlinear trend towards underweight. Particularly, the child’s

underweight gradually worsens in an almost linear pattern at an age of less than 10

months. However, after 10 months, the tendency changes and then stabilizes at a moderate

level in between the ages of 30 months. This means that, while the danger of malnutrition

remains, it does not grow as fast as it did previously. This might indicate that younger

children are more sensitive to underweight malnutrition owing to a lack of access to proper

food and healthcare, while older children are more likely to be influenced by social and

environmental variables such as poverty and food insecurity [84]. Hence, the results are

consistent with other researchers’ findings that child age affects underweight malnutrition

non-linearly [47, 50, 67]. The study also found that children living in western, central, and

eastern Ethiopia, as well as some other regions in the north, have underweight problems.

Furthermore, latent factors such as genetic predispositions, latent socioeconomic sta-

tus, or environmental exposures can play crucial roles for child’s underweight. Future

research may include latent variable modelling for this the Bayesian geoadditive model-

ing approach which may capture unobserved heterogeneity and underlying factors, that
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may not be directly measurable but significantly influence the children’s underweight. It

may allow for a more nuanced understanding of spatial dependencies and interactions

between observed and latent variables, and it may also lead to more accurate and robust

predictions and inferences about the factors affecting children’s underweight. Our anal-

ysis also did not consider variables like household income, household size, and a child’s

birth weight, which might also significantly influence children’s underweight. Therefore,

in addition to the metrical covariates that we used, future researchers will try to check

the existence of non linear relationship between the household income, household size,

and child’s birth weight metrical covariates and the underweight in Ethiopia.

In conclusion, this study addresses underweight in under-five children using a Bayesian

geoadditive model. According to this analysis, factors such as the mother’s education, the

current mother’s and child’s residence the child’s diarrhea, and anemia status, the sex of

the child, and the availability of electricity were found to be significant based on the EDHS

2016 survey. However, the effects of sex on household heads are negligible. Our analysis

also supports the flexible modeling of metrical factors (the mother’s age, BMI, and child’s

age), and attention should also be given to unmeasured factors on childhood underweight

at the community level, especially in central and eastern Ethiopia, which have indicated

hotspot spatial impacts. Socio-demographic and community-based program development

should be considered compressively in Ethiopian policy to combat childhood malnutrition.

3.4 Limitaions of the study

The current study has limitations despite its use of an innovative statistical method. First,

it adopts a cross-sectional design, which means we cannot control for major confounders or

make causal inferences, despite the analysis’s robustness. Second, the study focuses solely

on pertinent variables from our dataset, overlooking significant factors like breastfeeding

practices, healthcare access, and breastfeeding practices.
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Chapter 4

The causality of infant mortality in

Ethiopia: The application of

Structural equation Modelling
Abstract

Infant mortality rate (IMR) serves as a proxy measure of population health. Previous

studies have primarily focused on IMR in Ethiopia, considering only measured variables

and one-directional effects. However, little attention has been given to simultaneously test-

ing several causal paths. Data for the study were extracted from the World Bank Health

Nutrition and Population Statistics between 2000 and 2019. We used structural equation

modeling (SEM) to better understand the direct, indirect, and total effects relationships

among causal variables in a single model. Path analysis was part of an algorithm that pro-

vided equations relating the variances and covariances of the indicators. GDP per capita

(GDP) and out-of-pocket expenditure on health as a percentage of GDP (OOP) are ex-

ogenous variables, while immunization BCG (BCGI), maternal mortality ratio (MMR),

fertility rate (FR), infant mortality rate (IMR), and domestic health expenditure as a

share of GDP (GHE) are endogenous variables. The directed effects of OOP on MMR

(β = −0.071, p = 0.003) and on BCGI (β = 0.327, p = 0.024), as well as the directed ef-

fects of GDP on FR (β = −0.959, p < 0.001), GHE (β = −0.683, Σ = −0.69, p < 0.001),

and IMR (β = −0.941, p < 0.001), were significant. MMR significantly mediated the in-

fluence of OOP on IMR (β = −0.012, p = 0.034), and FR significantly mediated the

influence of GDP on IMR (β = 1.168, p < 0.001). The discrepancy between the sample

and the implied covariance matrix obtained from the five structural equation models was

minimal. In conclusion, this study revealed that although IMR was declining, health and

population variables remained the root cause of IMR in Ethiopia. MMR and FR were

identified as mediating indicators, with FR having the highest standardized coefficients

for increasing IMR. We recommend strengthening existing programs and interventions to

reduce FR.

KEYWORDS

infant mortality rate; Ethiopia; path analysis; structural equation model; standardize es-

timate
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4.1 Introduction

The infant mortality rate (IMR), is defined as the number of deaths in children under a

year of age one per 1000 live births in the same year [36], and it is an important indicator

of the health of a nation, regarded as a highly sensitive measure of population health

[7, 19, 52, 18, 45]. Infant mortality rate (IMR) is more than a marker of maternal and

child health; it is a symbolic benchmark of a society’s overall health, and recent studies

highlight the health inequities experienced by this population and subsequent effects on

infant morbidity and mortality [4].

The health of children improved dramatically over the twentieth century in the world

[5, 9]. The infant mortality rate has declined across countries occupying very different

positions in the world system, However, considerable cross-national variation in infant

mortality remains at the beginning of the twenty-first century and Ethiopia’s commit-

ment to significantly reduce child mortality rates by two-thirds by 2015 (Goal 4) under

the Millennium Development Goals (MDGs) ultimately fell short of this target [2]. This

highlights the challenges faced in achieving ambitious development objectives. UN mem-

ber states, instead of Millennium Development Goals, set out Sustainable Development

Goals (SDGs) in 2015 as part of the 2030 agenda to end preventable deaths of new-borns

and children under 5 years of age, with most of the countries directing to reduce neonatal

mortality to at least as low as 12 per 1,000 live births and under-5 mortality to at least

as low as 25 per 1,000 live births (SDG 3.2). Ethiopia’s National Health Care Quality

Strategy for 2016-2020 placed Maternal, Newborn and Child Health as a priority with

the ambitious goals of reducing the maternal mortality ratio (MMR) from 412 to 199 per

100,000 live births by 2020; to reduce the neonatal mortality rate (NMR) from 28 to 10

per 1,000 live births by 2020 and reduce stillbirth rate from 18 to 10 per 1000 births by

2020 (WHO, 2019). Despite that, overall action to meet the goals is not yet advancing at

the speed or scale required [2].

According to a 2021 report by the Institute for Health metrics and Evaluation (IHME).

An estimated 5.2 million children under the age of 5 died globally, mostly from preventable

d causes and 1.5 million of these deaths occurred within the first month [46] . Despite

the burden of those death decreasing globally, Sub – Sahara Africa and southern Asia

account for the maximum proportion of child deaths [46, 40]. Four out of every five

deaths of children under age five occur in these regions, compared to children in high-

income nations, children in sub-Saharan Africa face a staggering 15 times higher chance

of dying before the age of five [40]. Afghanistan has the highest infant mortality rate of

110.6 and Monaco has the lowest infant mortality rate of 1.8 [10]. In Ethiopia, the infant

mortality rate was 56.9 in the year 2009 and it was 36.5 in 2019 per 1,000 live births [66].

The country’s IMR declined from 97 per 1000 live births in the year 2000, to 59 in the

year 2011, and neonatal deaths per 1,000 live births showed a decline over time from 54

in the year 1990 to 37 in the year 2011, but it is unlikely that the MDG target of 31 per
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1,000 live births in the year 2015 [13].

In countries where infant mortality is high, several factors are attributed to necessitat-

ing these deaths. Among these are poverty, malaria, malnutrition, undeveloped infrastruc-

ture, and poor health facilities conditions [10]. High infant mortality signifies demographic

and socioeconomic, exposures and morbidity during pregnancy [49, 6]. Scholars confirm

that there were different predictors of infant mortality rate. The study conducted by [41]

in the UK, revealed that fertility rate domestic general government health expenditure

(%GDP), and GDP per capita, significantly affect infant mortality rate. Furthermore,

fertility and GDP per capita were the most influential variables in the infant mortality

rate from all explanatory variables used in the analysis. Real GDP has a negative rela-

tionship with fertility, and in return, fertility is positively correlated with infant mortality

rate [56].

The variables like coverage of the Bolsa Famı́lia program (BFP), per capita income,

and fertility rate are associated with infant deaths [54, 43, 48]. A woman in a high

fertility setting has a higher risk of maternal death than a low fertility setting, and the

maternal mortality ratio was strongly associated with infant mortality [58]. Analogous to

the maternal mortality ratio, the risk of maternal death varies largely across countries.

woman in Sub-Saharan Africa has the highest risk of maternal death (1 in 38), followed

by South Asia, 1 in 240 [39].

Out-of-pocket (OOP) health expenditure significantly drops maternal health as it

leads to a decline in skilled birth attendance and enlarges the maternal mortality ratio

[35, 16]. Population in low-income countries are often exposed to out-of-pocket (OOP)

and related indirect costs for their illness for health care, and this infers that household’s

health expenditure reduces infant and maternal mortality across low-income countries to

reach a goal of ensuring health lives and people’s well-being [16].

The Calmette-Gue´rin bacillus (BCG)- vaccine is given soon after birth to infants to

decrease the incidence of TB disease and TB-associated mortality [34, 63], and lack of

BCG- vaccination in the first week of life of new birth was highly associated with infant

mortality rate [24]. WHO currently suggests about Calmette-Gue´rin bacillus (BCG)-

vaccination at birth for developing countries except for preterm infants who should be

vaccinated when they reach the age of 40 weeks [10]. The infant mortality rate was lower

for Calmette-Gue´rin bacillus (BCG) -vaccinated than for unvaccinated [47].

Accordingly, Infant mortality in Ethiopia could be attributed to many different fac-

tors [28, 55, 60, 61], and previous studies have mostly employed only variables that are

measured and one directional effect to discover relationships through the data set in a

difference-in-differences (Diff in Diff) analysis, spatial patterns of infant mortality, mul-

tiple linear regression and/or correlation analyses, multiple logistic analyses and other

multivariate statistical models to explore the factors associated with Infant mortality

rate. Even though, research conducted on infant mortality rate [1, 38] by using structural
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equation modelling based on economic indicators, and these studies pass over the most

influential variables mediating variables, model identification and validation which are the

basic determinant for structural equation modelling.

In this paper, we examine the causality of IMR in Ethiopia between 2000 and 2019

based on the World Bank health nutrition and population statistics variables. We use

Structural equation modelling (SEM), and multivariate statistical methods, for a better

understanding of both direct, indirect, and total effects of the given variables. This

approach improves the understanding of mechanisms of the relationships among various

factors and allows to testing of the research hypotheses in a single process by modelling

complex relationships among many observed and latent variables [37, 64]. Structural

equation modelling or analysis of covariance structure is a confirmatory approach, more

suitable for testing the hypothesis than other multivariate statistical methods, most of the

statistical methods other than structural equation modelling try to discover relationships

through the data set [26, 53].

While traditional statistical methods can identify relationships between these factors

and infant mortality, Structural Equation Modelling (SEM) offers a more robust approach.

SEM is a confirmatory technique that allows researchers to test pre-defined hypotheses

about the complex interplay between these variables. This approach goes beyond simply

identifying correlations. It allows researchers to estimate the direct and indirect effects

of each factor on infant mortality while accounting for potential measurement errors and

interrelationships between variables [59, 68].

Given that, in a recent commentary, scholars expressed concern about the scarcity of

SEM models in epidemiological research even if there is the availability of user-friendly

software (e.g., SPSS AMOS, EQS, Mplus) and urged epidemiologists to use SEM models

more frequently [22, 62]. In our study, we thoroughly examine the diverse factors influenc-

ing infant mortality in Ethiopia through a methodological lens that critiques conventional

approaches. The existing researchers focused on straightforward statistical analyses, ne-

glecting pivotal mediating factors and forgoing rigorous model validation. To address

these limitations, we used of Structural Equation Modelling (SEM) as a leverage alterna-

tive. SEM offers a confirmatory approach that empowers us to systematically test intricate

hypotheses regarding the complex interactions influencing infant mortality in Ethiopia.

Unlike conventional methods, SEM enables us to discern both direct and indirect effects

while accommodating measurement errors and interdependencies among variables. This

methodological advancement goes beyond mere correlation, allowing us to establish causal

relationships with greater precision by estimating the parameters in the interest of ob-

taining minimal residual covariance from World Bank health nutrition and population

statistics between 2000 and 2019. Furthermore, analyzing the entire system simultane-

ously, SEM provides a more comprehensive understanding of the underlying structure

driving high infant mortality rates, and it is expected that findings from our study will
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improve planning and intervention to measure infant mortality in Ethiopia.

Hypothesis Development

Developing hypotheses is important in SEM. Constructing a theoretical framework goes

beyond data investigation. Researchers suggest that factors can have an impact on an

outcome both directly and indirectly (e.g., infant mortality). These hypotheses then

inform the construction of the SEM model and enable statistical testing of accepted

theories [22]. In SEM, the development of hypotheses is guided by a robust theoretical

framework that relies on previous research [20, 21]. The direction and strength of the

direct and indirect effects among the factors that eventually affect the result (such as

infant mortality rate) are specified by these hypotheses. Path analysis, an essential part

of SEM, then visually depicts these suggested relationships by using arrows to show the

direction and thickness to show the strength of the effect. The theoretical framework

simply lays forth testable hypotheses that determine the modeled relationships; route

analysis provides visual assistance to illustrate these ideas.

Based on these scholarly results and literature, we have developed the following hy-

potheses, and the hypothesized value of each path is included in the following directed

diagram (see Figure 4.1). The hypotheses of this study are stated as:

H1: There is a direct effect of Out-of-pocket expenditure on health(% Gross domestic

per capita (GDP) on maternal mortality ratio and Immunization Calmette-Guérin

bacillus (BCG)

H2: Both BCG Immunization and Maternal mortality ratio mediate the influence

of out-of-pocket expenditure on health (% GDP) on infant mortality rate.

H3: A higher level of fertility rate is associated with a higher level of maternal

mortality ratio.

H4: Government health expenditure has a direct effect on fertility rate, BCG im-

munization, maternal mortality ratio, and infant mortality rate.

H5: GDP per capita has a direct effect on government health expenditure (percent-

age of GDP), Immunization (BCG), fertility rate, and Infant mortality rate

H6: Government health expenditure, fertility rate, and Immunization BCG mediate

the influence of GDP on Infant mortality rate.

4.2 Materials and Methods

4.2.1 Data sources, and covariates

The study used pooled panel data from 2000 to 2019 in Ethiopia. The source of data for

this study was the World Bank Development Indicators (World Bank Health Nutrition
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and Population Statistics). We used the infant mortality rate as an outcome variable. The

infant mortality rate is measured as the death of a child less than 1 year old per 1000 live

births. The analyses were performed using SPSS AMOS and STATA 14. The dataset used

is freely available at http://data.WorldBank.org. The variables in a structural equation

model (SEM) are categorized as either endogenous or exogenous variables [29]. Moreover,

endogenous and exogenous variables can be distinguished through the arrows that connect

them within the model [11, 14]. Specifically, GDP per capita and out-of-pocket expen-

diture on health (as a percentage of GDP) are considered exogenous variables, while the

infant mortality rate, immunization vaccination BCG, maternal mortality ratio, fertility

rate, and domestic health expenditure (as a share of GDP) are endogenous variables and

are explained within the model (see Table 4.1).
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Table 4.1: List of endogenous and exogenous variables and their abbreviation

Variables World Bank Definition Abbreviation

Infant mortality rate Number of deaths among infants (¡1 year of
age) per 1000 live births in a given year.

IMR (y5)

Immunization, BCG
(% of one-year-old children) Child immunization rate, BCG is the per-

centage of children ages 12-23 months who
received vaccinations before 12 months or at
any time before the survey for BCG. A child
is considered adequately immunized after one
dose.

BCG (y3)

Out-of-pocket expenditure
on health Share of out-of-pocket payments of total cur-

rent health expenditures. Out-of-pocket pay-
ments are spending on health directly out-of-
pocket by households.

OOP (x2)

Maternal Mortality Ratio Maternal mortality ratio is the number
of women who die from pregnancy-related
causes while pregnant or within 42 days
of pregnancy termination per 100,000 live
births.

MMR (y4)

Domestic general government
health expenditure (% of GDP) Public expenditure on health from domestic

sources as a share of the economy as mea-
sured by GDP.

GHE (y1)

The fertility rate represents the number of children that would
be born to a woman if she were to live to the
end of her childbearing years and bear chil-
dren in accordance with age-specific fertility
rates of the specified year.

FR (y2)

GDP per capita Per capita GDP is typically expressed in local
current currency, local constant currency, or
a standard unit of currency in international
markets, such as the U.S. dollar (USD).

GDP (x1)
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4.2.2 Statistical Analysis

Path diagram/ Causal graphs

Path analysis represents a methodological improvement regarding multivariate techniques

used in modelling indicators and it allows the investigation of more complex models [65].

Furthermore, the path analysis rule involves tracing paths in the graph as part of an

algorithm giving equations relating the variances and covariances of the indicators, and

it is represented by a diagram called a directed graph or path diagram [67]. In directed

graphs, the vertices represent continuous variables, the edges some notion of correlation

and causation, and the relations in the diagram are the parameters of the equations to be

estimated, called path coefficients, which present the responses of endogenous variables

to other endogenous or exogenous variables, while other variables in the model were held

constant [17, 67].

Each node in path analysis was defined by the variables y1 to yn, and there was a

directed edge from yi to yj if the coefficient of yi in the equation for yj was distinct from

zero [8]. Besides, there is mediation where one variable (exogenous) causes variation in

another variable (endogenous), and the mediator hypothesis is supported [3, 22].

From Figure 4.1, all indicators are represented by rectangles, and it indicates that no

latent variable in the model, and all arrows flow one way, with no feedback looping (recur-

sive model). The measurement errors for the endogenous variables are uncorrelated. Our

directed graph, set out all the causal linkages between variables to evaluate the possible

hypothesis and βij and γij are the coefficients. Thus, the following figure (Figure 4.1) is

the path diagram for based on our setting that shows the cause and effect relationship

between based on the theoretical framework.
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Figure 4.1: The directed cyclic graph or the path diagram of the theoretical model

Model Identification

Model identification also is critical in structural equation modelling path analysis, and

no reliable quantitative conclusion can be derived from non-identified models (Carlos

Brito and Judea Pearl, (2002). The process of model identification in structural equation

modeling (SEM) establishes whether there is sufficient data to estimate the parameters

of the model in a unique way. A just-identified model has all variables interconnected

(Df = 0). Under-identified models (Df < 0) lack sufficient information, while over-

identified models (Df > 0) have too many restrictions, potentially causing convergence

issues [42].

According to [32]for the path analysis model, let P be the total number of exogenous

and endogenous variables in the model, and let t be the number of free parameters.

Then, the t-rule is p(P+1)
2
≥ t. The difference gives the number of degrees of freedom

for the model:

Df =
P (P + 1)

2
− t (4.1)

From the observed covariance matrix of the given model, we have five endogenous and

two exogenous variables, that is, seven observed variables (seven rectangles from the path

diagram depicted above).

∑
7× 7 =

7(7 + 1)

2
= 28 variances, and, covariances.

87



Thus, we have 22 free parameters (8 non-zero from β; 6 non-zero from γ, 3 variances-

covariances in Φ, and five residual variances in the diagonal of ψ). Therefore, the model

Df = 28 − 22 = 6 is overidentified. This implies that the model has more constraints

(equations) than unknowns (parameters). This excess constraint can potentially lead to

convergence issues during estimation as the model searches for a solution that satisfies all

the conditions simultaneously.

4.2.3 Structural equation Models

Structural equation model consists of a set of multivariate techniques that are confirma-

tory rather than exploratory in testing models that fit data [11]. It is used to examine

linear causal relationships among variables; each equation describes the dependence of one

variable in terms of the others. SEM incorporates stochastic error terms(residuals) into

its equations to account for the influence of unobserved variables and measurement errors,

providing a more nuanced understanding of the relationship between variables [11, 12].

SEM has three major advantages over traditional multivariate techniques: First, ex-

plicit assessment of measurement error; second, estimation of latent (unobserved) variables

via observed variables; and third, model testing, where a structure can be imposed and

assessed as to the fit of the data. SEMs allow for a joint analysis of multiple exposures

with several outcome variables, a series of endogenous variables are related to each other

as well as to a series of exogenous variables [51, 29].

The process of estimating SEM parameters determines the ideal values to represent

relationships inside the model by taking observed data into account. Among these are

route coefficients, factor loadings, and error term variances. OLS is not suitable for es-

timating path coefficients, factor loadings, and error term variance of SEM, despite its

seeming simplicity, as it cannot handle latent variables, error terms, and multiple asso-

ciations [29]. Thus, Maximum Likelihood (ML) is a prominent approach that effectively

addresses these shortcomings in comparison to Ordinary Least Squares (OLS) [44], each

indicator should follow Multivariate normality for each value of each other indicator.

Moreover, to examine the causal relationships between different determinants and in-

fant mortality in Ethiopia (2000–2019), the model is constructed using the structural

equation modeling (SEM) framework, and the specification of the model is as follows:

Let: y be a p×1 vector of endogenous variables (Infant mortality rate, Immunization,

BCG, Maternal Mortality Ratio, Fertility rate, and Domestic health expenditure as a

share of GDP), x is a q × 1 vector of exogenous variables, β is a p × p matrix giving

the regression coefficients of endogenous variables (y) on other endogenous variables (i.e.,

the matrix of beta regression path coefficients between endogenous to endogenous), γ

is a p × q matrix giving the regression coefficients of the exogenous variables (x) on

endogenous variables (y), where the i-th row indicates the endogenous variable and the
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j-th column indicates the exogenous variable, and ϵ is a p × 1 vector of errors in the

equations (i.e., regression residuals), representing the model errors associated with each

endogenous variable.

The variances and covariances of the endogenous variables are being modeled as a

function of the exogenous variables. Then, the general form of a SEM path analysis

model is expressed in the matrix equation

y = βy + γx+ ς

y = (I − β)−1γx+ (I − β)−1ς (4.2)

Then the variance of the endogenous variables (y variables) is looks like:

V (y),= E(yy′),= E
[(

(I − β)−1γx+ (I − β)−1ς
) (

(I − β)−1γx+ (I − β)−1ς
)T]

V (y),=
(
(I − β)−1

)
[γΦγ′ + ψ]

(
(I − β′)−1

)
(4.3)

Provided that the variances of exogenous variable, x variables are defined as

V (x),= E(xx′) = Φ, V(ς)= E(ςς ′)= ψ . Similarly, the covariance between exogenous

variable, x variables and endogenous variables (y variables) (covariance between x and y)

is:

Cov(x,y) = E(xy’) = E
[
x ((I − β)−1γx+ (I − β)−1ς)

′

Σ = Φγ′(I − β′)−1 (4.4)

Assumptions

• (ς) is uncorrelated with ( x ), i.e., ( covς, x)= 0

• (|I − β| ≠ 0)andisinvertible(i.e.,( I ̸= β))

• E(ς)= 0)

• (E(x) = E(y) = 0)

Therefore, Putting all the variance - covariance together,

Here, x, y, and ς are Gaussian random vectors:x ∼ N(µx,Σx) and y ∼ N(µy,Σy).

The stochastic error has a multivariate Gaussian distribution with a mean of the

zero vector and a covariance matrix that is a diagonal matrix: Cov(ς) = Ψ = diag(ψ11,

ψ22, ψ33, ψ44, ψ55). The model acknowledges the inherent covariation of exogenous vari-
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ables, determined outside the modeled system, through a variance-covariance system.

This enhances the robustness of our causal inference by mitigating potential biases aris-

ing from untreated correlations among these external factors influencing infant mortality

rate (IMR) in Ethiopia (2000-2019).

The causality of infant mortality based on the given indicators of exogenous variables,

GDP per capita and Out-of-pocket expenditure on health (as percentage of GDP); and

for endogenous variables, Domestic health on expenditure (as a share of GDP), Fertility

rate, Immunization (BCG), Maternal Mortality Ratio and Infant mortality rate, can be

expressed as a single matrix as:

This implies that some of the elements of β and γ re fixed to zero by hypothesis and the

zeros on the diagonal of β implies that a variable cannot cause itself. So, from the above

directed cyclic graph.

The hypothesized model is comprised of five linear regressions like:

GHE = γ11GDP + ς1

FR = β21GHE + γ21GDP + ς2

BCG = β31GHE + γ31GDP + γ32OOP + ς3

MMR = β41GHE + β42FR + γ42OOP + ς4

IMR = β51GHE + β52FR + β53BCG + β54MMR + γ51GDP + ς5.

And the parameters pertaining to variances and covariances of the exogenous variables

GDP and OOP and the error terms (ς1, ς2, ς3, ς4, and, ς5).

The variance-covariance matrix of the exogenous variables is given by:

Φ=

[
var(GDP)

Cov(GDP, OOP) var(OOP)

]
Similarly, the variance-covariance matrix of the error terms (ς1, ς2, ς3, ς4, and, ς5)isgivenby :

Typically, these variances and covariances of the exogenous variables GDP and OOP

and the error terms the error variances are free parameters, but the covariances of error
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variances are fixed to zero.

Model Fit Statistics

Model Fit Statistics measures how closely the (population) model-implied covariance

matrix Σ(θ) matches the (population) observed covariance matrix Σ. Since SEM is also

known as covariance structure analysis, the hypothesis of interest is regarding the co-

variance matrix. In SEM, relying solely on numerous fit indices can increase the risk of

rejecting valid models. Using a combination of at least two fit indices is recommended

for a more robust assessment of a model fit [15, 23]. Table 4.2 provides the information

about goodness of fit indexes selected for this study and their cut-off values for model

evaluation, based on the scholars [30].

Table 4.2: The Model Goodness of Fit Indices and Cut-Off Values

Indices Cut-Off Scholars

χ2 ≥ 0.5 Wan (2002); Schermelleh-Engel et al. (2003);

SRMR ≤ 0.05 (good) Garson (2009); Wan (2002)

0.05 < value ≤ 0.08 (acceptable)

RMSEA 0.05 < value ≤ 0.08 Browne and Cudeck (1993);

CFI 0.90 ≤ value < 0.95 (acceptable) Hu and Bentler (1999); Schreiber, Stage,

≥ 0.95 (good)

TLI 0.90 ≤ value < 0.95 (acceptable) Hoe (2003); Hu and Bentler (1999)

≥ 0.95 (good)

RMSEA = Root Mean Square Error of Approximation, TLI = Tucker-Lewis Index, CFI
= Comparative Fit Index, SRMR = Standardized Root Mean Square Residual, χ2 p=

chi-square with p-value.

Assessment of multivariate normality

In SEM, each indicator should follow multivariate normality for each value of each other

indicator and maximum likelihood estimation (MLE) is the dominant method for esti-

mating structure (path) coefficients [29]. If we have a p x 1 random vector X that is

distributed according to a multivariate normal distribution with population mean vector

µ and population variance-covariance matrix, Σ, then this random vector X could have

the joint density function in the form of:

ϕ(x) =
1

(2π)
p
2 |Σ|−1

2

exp

{
−1

2
(x− µ)TΣ−1(x− µ)

}
, X ∼ N(µ,Σ) (4.5)

Where |Σ| is the determinant of the variance-covariance matrix Σ and Σ−1 is the inverse

of the variance covariance matrix Σ.
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4.3 Results and discussions

4.3.1 Results

The main purpose of our study is to develop and test a hypothesized model that uses SEM

for a better understanding of both direct and indirect effects of the given indicators on

IMR by estimating the parameters so that the discrepancy between the sample covariance

matrix and the implied covariance matrix is minimal from the data of world Bank: health

nutrition and population statistics between 2000 and 2019. Accordingly, the analysis is

carried out in SPSS AMOS and STATA 14.

Descriptive statistics were used to summarize the baseline characteristics of the pop-

ulation. As shown in the following table (Table 4.3), the mean infant mortality rate was

58.16 in the sample of 20 years for World Bank data from 2000 to 2019 in Ethiopia. In

our settings, the maximum number of infants dying before reaching one year of age was

recorded in the year 2000 with a value of 87.2 and the minimum value has been recorded

in the year 2019 with a value of 36.6, per 1,000 live births each year. The maximum

value of the fertility rate was 6.543 in the year 2000, and 1030 was the maximum mater-

nal mortality ratio encountered in the year 2000. Thus, the fertility rate and maternal

mortality ratio declined from the year 2000 to the year 2019. The mean number of public

expenditures on health from domestic sources as a share of the economy as measured by

GDP was 1.18 and the means of out-of-pocket expenditure, GDP per capita, and BCG

immunization were given as 37.81, 67.8, and 395.23, respectively.

Checking for Multivariate normality

In the assessment of maximum likelihood estimation of loadings(parameters) for SEM,

it is important to determine whether the data follows Gaussian normal distribution or

not. From Table 4.3 of the assessment of normality column, the critical values of both

skewness and Kurtosis of Observed, endogenous variables, and exogenous variables lie

between -1.96 and +1.96 (all these p-values are ≥ 0.05) in the univariate case and the

critical values of the multivariate normality of the model were - 0.191, we retain the null

hypothesis and consider the sample as coming from a normal distribution.
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Table 4.3: Descriptive statistics of the causality of infant mortality study in Ethiopia

Variables N Min Max Mean SD Skew CR Kurt. CR

Fertility rate 20 4.15 6.54 5.26 0.75 0.180 0.328 -1.186 -1.082

Out-of-pocket expenditure 20 31.34 46.54 37.81 0.607 1.108 -0.028 -0.026 0.607

Maternal Mortality ratio 20 354.00 1030.00 663.35 231.94 0.281 0.513 -1.380 -1.259

Infant mortality ratio 20 36.60 87.20 58.16 16.09 0.347 0.634 -1.134 -1.035

Immunization (BCG) 20 56.00 80.00 67.80 6.79 -0.332 -0.606 -832 -0.759

Gov’t expenditure on health 20 0.38 2.28 1.18 0.54 0.672 1.227 -0.606 -0.553

GDP per capita 20 111.93 855.76 395.23 251.41 0.447 0.815 -1.160 -1.059

Valid N (listwise) 20

Multivariate -0.960 -0.191

CR = Critical ratio, SD= standard deviation,Min= Minimum,Max = Maximum,skew=
skewness and Kurt.= Kurtosis

Furthermore, World Bank data shows a clear downward trend in Ethiopia’s IMR

between 2000 and 2019 (see Figure 4.2). While Ethiopia has experienced a decline in IMR

[39], the country still faces challenging in achieving and the country did not achieve the

extent of the sustainable development goals(SDGs) related to infant health. According

to the [39], the country’s IMR remained high at 34.5 percent. This falls short of the

SDGs targets within Goal 3: “Ensuring healthy lives and promoting the wellbeing of all”

with specific targets to “end preventive coverage (UHC), through access to quality, safe,

effective, affordable and essential health care services” and to “to end preventable deaths

of new-born and child under five years of age” [2].
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Figure 4.2: Trends of the different observed variables from 2000 to 2019

Structural equation model path analysis.

Path analysis

In Figure 4.3, the directed graph was displayed for each variable to test the hypothesis

for IMR, and the diagram shows how one variable was associated with a subsequent

variable in the causal chain. The direct effects were dedicated to the straight influence of

one variable on another observed variable without any mediation and the effects of more

distance variables were mediated indirectly through intervening. Moreover, the numbers

written on the arrow are coefficients that show the influence of one variable on another

variable. The path coefficients and errors displayed were standardized estimates and

accordingly, the analysis is carried out in SPSS AMOS.
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Figure 4. 3: Path diagram, path standardized coefficients of the risk factors on IMR.

Parameter estimation for Structural equation modeling

Table 4.3 shows the values of the standardized parameter estimate (direct, indirect, and

total effects) of the structural equation model by employing maximum likelihood estima-

tion which gathers the loadings for each variable on the model.

This study found evidence that out-of-pocket expenditure (OOP) has directed effects

on maternal mortality ratio (MMR) (β = −0.071, p = 0.003) and BCG immunization

(β = 0.327, p = 0.024), and as OOP increases by one unit, MMR decreases by 0.071

unit, and immunization (BCG) increases by 0.327 unit, while other variables were held

constant. Besides, the coefficient for maternal mortality ratio (MMR) is a statistically

significant predictor of infant mortality rate in Ethiopia with (β = 0.141, p = 0.009),

while the coefficient of BCG immunization is insignificant for infant mortality rate with

(β = −0.0041, p = 0.774). Based on loading and p-values (see in Table 4.3), the indirect

path coefficient of OOP to IMR through MMR was negative and significant (β = −0.012,

p = 0.034). Thus, MMR was significantly mediating the influence of OOP on IMR,

and BCGI was not a mediator for OOP to IMR. In conclusion: H1: There is a direct

effect of out-of-pocket expenditure on health (percentage of GDP) on BCG immunization

and maternal mortality ratio was fully supported and H2: Both BCG Immunization and

Maternal mortality ratio mediate the influence of out-of-pocket expenditure on health

(percentage of GDP) on the infant mortality rate of the research hypothesis was partially

supported.
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Looking at the effects of GDP on endogenous variables, GDP has a significant total

effect on fertility rate with (β = −0.959, p < 0.001), part of which (β = −0.175 and

p = 0.004) was indirect through GGHE-D, and when GDP goes up by 1 unit, FR goes

down by 0.175 unit due to the indirect (mediated) effect of GDP on FR in addition to

any direct (unmediated) effect that GDP may have on FR. GDP was also a significant

predictor of infant mortality rate (β = −0.941, p < 0.001) and government expenditure

on health (β = −0.683, p < 0.001), respectively. The direct path coefficient from GDP

to BCGI was insignificant (β = 0.188, p = 0.260). Moreover, as GDP increases by one

unit, FR decreases by 0.959 units, and government expenditure on health decreases by

0.683 units, and IMR decreases by 0.941 units by 0.625, while other variables were held

constant. The research hypothesis H5: there is a direct effect of GDP on GGHE-D, BCGI,

FR, and IMR is partially supported.

Further, when we consider the direct effects of government expenditure on health for

other endogenous variables, the path coefficient was negative and significant for BCGI

(β = −0.640, p < 0.001), and positive and significant for FR (β = 0.256, p < 0.001), and

insignificant for MMR (β = 0.246, p = 0.386) respectively. The total effects of government

expenditure on health (GGHE-D) on IMR was significant (β = 0.306, p = 0.017), part

of which (β = 0.308, p < 0.001) was indirect through FR. There was also a significant

effect of fertility rate on maternal mortality ratio (β = 0.96, p < 0.001). In conclusion,

H4: there is a direct effect of GHE on FR, BCGI, MMR, and the IMR was partially

supported and H3: a higher level of FR is associated with a higher level of MMR was

supported.

Our model also revealed that there were direct positive effects between FR and IMR

(β = 1.168, p < 0.001), and between MMR and IMR (β = 0.156, p = 0.009). The direct

path coefficients from BCGI and GHE to IMR were insignificant with the standardized

beta coefficient and p-values of (β = −0.007, p = 0.774) and (β = −0.002, p = 0.915)

respectively. Based on the loadings or standardized coefficients, the FR has the highest

standard coefficient (β = 1.168, p < 0.001) for increasing infant mortality rate (IMR),

part of which was indirect through MMR (β = 0.136 and p = 0.009). As the fertility

rate increased by one unit, the Infant mortality rate increased by 1.168, through which

0.136 unit was indirect through the maternal mortality ratio while all other variables held

constant.
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Table 4.4: Standardized paths for direct, indirect, and total effects of each factor of the
causality of infant mortality

To ← From Direct Indirect Total

MMR ← OOP −.071∗ - −.071∗

MMR ← FR .96∗∗ - .96∗∗

MMR ← GGHE-D .246(P = 0.386) .032∗∗ .278∗∗

MMR ← GDP - −.861∗∗ −.861∗∗

BCGI ← OOP .327∗ - .327∗

BCGI ← GDP .188(0.260) .437∗ .625∗∗

BCGI ← GGHE-D −.640∗∗ - −.640∗∗

FR ← GGHE-D .256∗∗ - .256∗∗

FR ← GDP −.784∗∗ −.175∗ −.959∗∗

GGHE-D ← GDP −.683∗∗ - −.683∗∗

IMR ← MMR .141∗ - .141∗

IMR ← BCGI −.007(0.774) - −.007(0.774)

IMR ← FR 1.032∗∗ .136∗ 1.168∗

IMR ← GGHE-D −.002(0.915) .308∗∗ .306∗

IMR ← GDP .186∗∗ −1.126∗∗ −.941∗∗

IMR ← OOP - −.012∗ −.012∗∗

** Significant at 1% level of significance (p < 0.001) and * Significant at 5%
level of significance (p < 0.05).

In addition to the above-established relationships of the variables in the model, struc-

tural relationships between the set of variables taken into consideration, Table 4.5 rep-

resents the covariance of how much two variables move together. The relationship be-

tween MMR and IMR (Σ = 0.99), MMR and FR (Σ = 0.99), and MMR and GGHE-D

(Σ = 0.79) was positive and increasing, while the relationship between MMR and BCGI

(Σ = −0.75), MMR and OOP (Σ = −0.17), and MMR and GDP (Σ = 0.96) was nega-

tive and decreasing (see Table 4.5). The value of the covariance does not give any more

information further than directionality [33].
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Table 4.5: Fitted covariances of observed variables (standardized) for each factor of the
causality of infant mortality in Ethiopia

MMR BCGI IMR GGHE-D FR OOP GDP

MMR 1
BCGI -0.75 1
IMR 0.99 -0.73 1
GGHE-D 0.79 -0.79 0.81 1
FR 0.99 -0.72 0.99 0.80 1
OOP -0.17 0.39 -0.11 -0.07 -0.09 1
GDP -0.96 0.66 -0.95 -0.69 -0.96 0.09 1

Assessment of the overall Goodness of fit

The model summary (see Table 4.6) provides the equation-by-equation goodness of fit

statistics for the endogenous variable, which is displayed by equation-level variance de-

composition along with the coefficient of determination (R2), Bentler-Raykov squared

multiple correlation coefficient (mc2), and the correlation between them and their predic-

tors (mc). The values of the coefficient of determination (R2) and Bentler-Raykov squared

multiple correlation coefficient (mc2) are measures of goodness of fit statistics that are

equivalent in recursive structure equation modeling [6].

According to the results in Table 4.6 below, the correlation between MMR and its

predictors was 0.996, and the variance of MMR explained by its predictors is 0.993, or

99.3% of the variation explained by MMR in the equation for the endogenous variable

MMR. Similarly, the correlation between FR and its predictors was 0.978, and 95.5%

of the data fits the model for the endogenous variable FR. The model equation of the

endogenous variable IMR has explained 99.5% of the total variation of implied causality.

Further, because the χ2 goodness-of-fit criterion is very sensitive to sample size, often

other descriptive measures of fit are used in addition to the absolute χ2 test, and there

should be a combination of at least two goodness-of-fit [42, 50]. The overall model fit

for the structural equation model was adequate to good in terms of CFI (0.932) and TLI

(0.961).
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Table 4.6: Equation-level goodness of fit for the causality of infant mortality in Ethiopia

Dependent variables Fitted Predicted Residual R-squared mc mc2
variance variance variance

MMR 49877.49 49500.85 376.65 0.993 0.996 0.993
BCGI 36.63 27.65 8.98 0.755 0.869 0.755
IMR 244.65 244.51 0.14 0.999 0.996 0.999
GGHE-D 0.276 0.13 0.15 0.466 0.682 0.466
FR 0.544 0.52 0.025 0.955 0.978 0.955

Overall 0.995

mc = correlation between depvar and its prediction and mc2 =
Bentler-Raykov squared multiple correlation coefficient

Table 4.7 reveals residual covariances (i.e., the difference between the sample covari-

ances based on the sample data and the covariances implied by the fitted model) provide

a natural estimate of the fit of covariance structure models, and this covariance residual

value was smaller (all values are less than 1.96 in absolute value). The model is supported

as the implied covariance matrix did not differ significantly from the empirical covariance

matrix. this smaller value indicates the best fit of the covariance structure model). The

larger in absolute value of the residual covariance, the worse the fit [30].

Table 4.7: Covariance residuals for each factor of the causality of infant mortality

MMR BCGI IMR GGHE-D FR OOP GDP

MMR 0.076
BCGI 0.446 0.515
IMR 0.047 -0.445 0.016
GGHE-D 0.113 -0.472 0.020 0.000
FR 0.037 -0.370 0.007 0.000 0.000
OOP 0.731 1.034 -0.818 -1.841 -0.716 0.000
GDP 0.022 0.000 -0.003 -0.000 -0.000 0.000 0.000

The final structural equation modeling path analysis

Results presented in Table 4.8, indicate the parameter estimation of coefficients of ob-

served variables, the standard error, significant values, and the 95% confidence interval

for the final Structural equation model for infant mortality in Ethiopia. The estimated

coefficient for each observed variable represents the magnitude and direction of their in-

fluence in IMR. A positive coefficient indicates a positive relationship, while a negative

coefficient suggests a negative association. Additionally, the s standard error quantifies

the potential variability in the estimated coefficient due to sampling error. A p-value less

than a chosen significance level (e.g., 0.05) suggests that the observed effect is unlikely to

be due to chance alone. Finally, the 95% confidence intervals capture a range of plausible

values within which the true population value of each coefficient is likely to fall within

95% certainty [22].
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Table 4.8: The finalized and accepted Structural equation model for infant mortality

Coef. Std. Err. z P > |z| [95% Conf. Interval]

GGHE ←
GDP -0.6819305 0.1196231 -5.70 0.000 -0.9163875 -0.4474736
cons 3.343989 0.4232345 7.90 0.000 2.514464 4.173513

FR ←
GGHE 0.2547491 0.071664 3.55 0.000 0.1142903 0.3952079
GDP -0.7855652 0.0623844 -12.59 0.000 -0.9078363 -0.663294
cons 7.893804 1.260267 6.26 0.000 5.423727 10.36388

BCGI ←
GGHE -0.6394371 0.1900197 -3.37 0.001 -1.011869 -0.2670054
OOP 0.3266416 0.1577665 2.07 0.038 0.0174249 0.6358584
GDP 0.1888563 0.1671475 1.13 0.259 -0.1387468 0.5164595
cons 8.858733 2.392873 3.70 0.000 4.168789 13.54868

MMR ←
GGHE 0.0330499 0.0531217 0.62 0.534 -0.0710667 0.1371665
FR 0.9609476 0.0323262 29.73 0.000 0.8975893 1.024306
OOP -0.0707044 0.0289071 -2.45 0.014 -0.1273614 -0.0140475
cons -3.269208 0.5745308 -5.69 0.000 4.395268 -2.143148

IMR ←
MMR 0.1554458 0.0593495 2.62 0.009 0.0391229 0.2717687
BCGI -0.0041356 0.0144006 -0.29 0.774 -0.0323602 0.024089
GGHE -0.0012406 0.0420536 -0.03 0.976 -0.0836643 0.081183
FR 1.025088 0.0543037 18.88 0.000 0.9186548 1.131521
GDP 0.1912811 0.0313778 6.10 0.000 0.1297818 0.2527805
cons -4.382065 0.7871316 -5.57 0.000 -5.924815 -2.839315

Mean (OOP) 10.6367 1.696609 6.27 0.000 7.311404 13.96199
Mean (GDP) 1.612898 0.3391696 4.76 0.000 0.9481377 2.277658
Var (e.GGHE) 0.5349707 0.1631493 0.2942661 0.9725676
Var (e.FR) 0.0450516 0.0196886 0.01913 0.1060976
Var (e.BCGI) 0.2451441 0.0921224 0.1173679 0.5120277
Var (e.IMR) 0.0005578 0.0002494 0.0002322 0.0013399
Var (e.MMR) 0.0076 0.0033638
Var (OOP) 1
Var (GDP) 1
Cov(OOP,GDP) 0.095317 0.2215753 0.43 0.667 −0.3389626 0.5295965

e = error for each observed variable, cons = constant for each observed variable.

Therefore, based on tables 4.8 and Figure 4.3, the final structural equation model was:

GHE = −0.683 ·GDP + 0.0450516, R2 = 46.6%

FR = 0.256 ·GHE− 0.786 ·GDP + 0.0450516, R2 = 95.5%

BCG = −0.639 ·GHE + 0.189 ·GDP + 0.327 ·OOP + 0.2451441, R2 = 75.5%

MMR = 0.034 ·GHE + 0.961 · FR− 0.071 ·OOP + 0.0075514, R2 = 99.3%

IMR = −0.005 ·GHE + 1.03 ·FR−0.005 ·BCG + 0.156 ·MMR + 0.192 ·GDP + 0.0005578,
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R2 = 99.5%

4.3.2 Discussion

We use SEM to estimate the direct, indirect, and total effects of variables, to accredit

the presence of connections between them, and to test the hypothesized model based

on World Bank data on IMR. From the sample of 20 years of World Bank data, the

occurrence of IMR was decreasing and that could be justified by the advancement of

mother and childcare activity in Ethiopia. Although this represents an overall decline

in infant mortality between the years 2000 to the year 2019, Ethiopia accounts for the

highest infant mortality rate, it was reported at 35.4 % in 2020, and the country did

not achieve the extent of the sustainable development goals (SDGs) of target focuses on

“ensuring healthy lives and promoting the wellbeing of for all” [10].

From the study using path analysis (directed graph) and structural equation modeling,

we found that variables MMR, FR, and GDP significantly affect the IMR directly. Besides,

the indirect path coefficients from OOP and FR to IMR through MMR and indirect path

coefficients GGHE-D and GDP to IMR through FR were significant. However, the variable

BCGI was not influential for IMR. Consequently, the FR and MMR were the mediating

variables on IMR, and among all variables that had an influence on IMR, FR had the

highest standardized coefficient. Complementarily, OOP, and FR had an effect on MMR

directly, and GDP and GGHE-D affect MMR indirectly through FR. Besides, GGHE-D

affects FR directly while GDP affects FR directly and indirectly. In our analysis, residual

covariances of this SEM were smaller (all values are less than 1.96 in absolute value).

This smaller value indicates the best fit of the covariance structure model. The larger in

absolute value of the residual covariance, the worse the fit [23].

There were significant direct effects of OOP on MMR and BCGI. Moreover, MMR was

significantly mediating the influence of OOP on IMR, but no indirect effect of OOP on

IMR through BCGI. Ultimately, H1: There is a direct effect of OOP on BCGI, and MMR

was fully supported while H2: Both BCGI and MMR mediate the influence of OOP on

IMR of the research hypothesis was partially supported. This finding is also in line with

another previous study in Egypt [1]. Considering this result, BCGI was not significantly

associated with IMR. Contrary to our results, authors Roth et al (2004), revealed that

IMR was lower for BCGI vaccinated than unvaccinated. This variability could be better

BCGI vaccination coverage in Ethiopia, and it was 56 percent in 2000 and 90.27 percent

in 2019 [25, 57].

Looking at the direct effects of GDP on other endogenous variables, GDP has a signif-

icant and negative predictor of FR part of which, was indirect through GGHE-D, and this

is in addition to any direct (unmediated) effect that GDP may have on FR. This study

was in accordance with the study conducted in Pacific Island countries by [31], and the

study from the developed world by [56]. Our results in Ethiopia were entirely consistent
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with those from studies that observed GDP had a negative association with FR, and in

return, IMR was positively correlated with fertility [41, 31, 56]. This is because, in the

developing world, parents consider children as virility, they use their children for work

and to bring in an income for the family, and Ethiopia has a total fertility rate of 4.6

children per woman [66]. Lastly, our research hypothesis H5 was partially supported.

There had also been a significant effect of FR on MMR and this result was in line

with the study conducted in Nepal by [27]. In conclusion, H4: there is a direct effect of

government health expenditure on fertility rate, BCG immunization, maternal mortality

ratio, and infant mortality rate was partially supported, and H3: a higher level of fertility

rate is associated with a higher level of maternal mortality ratio was supported.

Furthermore, our results emphasize how important maternal mortality is. However,

the variables influencing maternal mortality in this study were not sufficiently highlighted.

Several factors, like as diet, care, prenatal vaccinations, and birth settings, may be con-

nected to the overall health of mothers. It is crucial to identify these variables and other

childhood vaccines in order to evaluate how they can impact the model for future study

in this field.

In conclusion, this structural equation model path analysis is used to examine the

different connections between observed variables (both endogenous and exogenous) and

recognize both direct, indirect, and total effects of IMR based on Health Nutrition and

Population Statistics indicators. The study found that maternal mortality ratio, fertility

rate, and GDP per capita do have a significant impact on the infant mortality rate in

Ethiopia and the study showed that there was a reverse association between IMR and

GDP. However, the model shows that both government expenditure on health and BCGI

were insignificant to the IMR. As we observed in the present study, reduction in fertility

rate, improve the general care of mothers, and increase the per capita GDP of the country

is the most important factors to decrease IMR. From the given mediators of GDP to

IMR and predictors MMR, FR has the highest standard coefficients for increasing infant

mortality rate (IMR) directly and indirectly through MMR. Moreover, OOP and FR were

significantly predicting the MMR, but GHE was insignificant for MMR. In line with this,

both government and stockholders should design and implement programs to decrease

the FR and MMR, and increase per capita GDP and OOP to decrease the rate of infant

mortality. Therefore, from our research hypotheses, H1 and H3 are fully supported while

the rest research hypotheses H2, H4: H5: and H6: were partially supported. From our

model, the covariance residual value is smaller (all values are less than 1.96 in absolute

value) and it shows a good estimate of the fit of covariance structure models.

4.3.3 Limitations of the study

The study was based on secondary pooled data. Although we attempted to examine the

causal relationships of variables over an extended period, many variables had missing
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or incomplete values. Additionally, various literature sources identify factors influenc-

ing the infant mortality rate in Ethiopia, such as sanitation facilities, maternal nutri-

tion (the mother’s nutritional status before and during pregnancy), health infrastructure,

malaria incidence, and urbanization. However, data on these variables were not available

in the World Bank Development Indicators (World Bank Health Nutrition and Population

Statistics), so these variables were not included in this study.
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[26] Kadir Karagöz and Rıdvan Keskin. Impact of fiscal policy on the macroeconomic

aggregates in turkey: Evidence from bvar model. Procedia economics and finance,

38:408–420, 2016.

[27] Joanne Katz, Keith P West Jr, Subarna K Khatry, Parul Christian, Steven C LeClerq,

Elizabeth Kimbrough Pradhan, and Sharada Ram Shrestha. Risk factors for early

infant mortality in sarlahi district, nepal. Bulletin of the World Health Organization,

81(10):717–725, 2003.

[28] Girmay Tsegay Kiross, Catherine Chojenta, Daniel Barker, Tenaw Yimer Tiruye, and

Deborah Loxton. The effect of maternal education on infant mortality in ethiopia:

A systematic review and meta-analysis. PloS one, 14(7):e0220076, 2019.

[29] Rex B Kline. Principles and practice of structural equation modeling. Guilford pub-

lications, 2023.

[30] S Kula. Statistical analysis criterias for structural equation modeling. Retrieved on

from: https://www. researchgate. net/publication/269808882, 2011.

[31] Sumeet Lal, Rup Singh, Keshmeer Makun, Nilesh Chand, and Mohsin Khan. Socio-

economic and demographic determinants of fertility in six selected pacific island

countries: An empirical study. PloS one, 16(9):e0257570, 2021.

[32] Kenneth C Land. Principles of path analysis. Sociological methodology, 1:3–37, 1969.

[33] Robert C MacCallum and Michael W Browne. The use of causal indicators in co-

variance structure models: some practical issues. Psychological bulletin, 114(3):533,

1993.

[34] Punam Mangtani, Ibrahim Abubakar, Cono Ariti, Rebecca Beynon, Laura Pimpin,

Paul EM Fine, Laura C Rodrigues, Peter G Smith, Marc Lipman, Penny F Whit-

ing, et al. Protection by bcg vaccine against tuberculosis: a systematic review of

randomized controlled trials. Clinical infectious diseases, 58(4):470–480, 2014.
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