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Abstract

Spintronic technologies have emerged as promising candidates for ultralow
power and CMOS-compatible technology. In addition, spintronics can have a
role in facing the von Neumann architecture bottlenecks.
The main potential applications of spintronics are microwave detec-
tion/generation, biomedicine, energy harvesting, memories – with solutions
where the information can be stored in topological magnetic textures (i.e. skyr-
mions) –, neuromorphic computing, and unconventional computing applications
such as probabilistic computing.

This thesis deals with two main topics:

1) the design and modeling of magnetic tunnel junctions (MTJs), one of the
key spintronic devices, which are characterized by compact size, high-speed
operation (up to tens of GHz), and versatility;

2) the exploration of the static and dynamic properties of topological textures
(i.e. magnetic skyrmions) for their potential use in many applications and
for the development of skyrmionics as a promising technology for hybrid
skyrmionics-CMOS technology.

Chapter 1 introduces the micromagnetic formalism, fundamental for the un-
derstanding of the magnetization behavior in ferromagnetic materials at the
nanoscale. This chapter describes a micromagnetic solver developed in C/C++
language able to efficiently perform data-driven tests of MTJ designs. In addi-
tion, a user-friendly interface has been developed and benchmarked. The main
outcomes of this chapter include solutions for the development of MTJ-based
electromagnetic energy harvesting, verified with experimental activities imple-
mented in the laboratory of Prof. Yang at National University of Singapore, and
spintronic accelerometers.

Chapter 2 presents static and dynamic properties of magnetic skyrmions stabi-
lized in different magnetic materials and heterostructures. In particular, we iden-
tified a protocol for the characterization of the type of skyrmion, pure Neel vs
Hybrid skyrmion. This activity has been implemented in collaboration with Prof.
Wanjung Jiang’s group at Tsinghua University of China. The last part of the chap-
ter deals with skyrmion manipulation driven by temperature gradients.
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Chapter 3 introduces the main concepts of neuromorphic computing and deep
learning, with a particular focus on how spintronics can be used to develop the
field of neuromorphic spintronics. In particular, we show how to use intrinsic
nonlinearity of time nonlocality to implement different types of neurons and op-
erations, including the extraction of dark knowledge.

Chapter 4 provides a brief introduction on the idea behind the Ising model and
its use in facing combinatorial optimization problems. The primary focus is the
implementation of probabilistic Ising machines based on the idea of probabilis-
tic computing with p-bits (PC). We present a PC solver developed in C/C++ with
CUDATM acceleration that incorporates several energy minimization algorithms,
such as standard annealing and parallel tempering. Many potential solutions of
probabilistic bits with MTJs are also explored and an experimental implementa-
tion of PC achieved in collaboration with Prof. Pedram Khalili Amiri at North-
western University (USA) is presented.
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Chapter 1

Spintronic devices: fundamental and
applications

There are different ideas on how to use spintronic technology in biomedical ap-
plications. The most challenging is the use of magnetoresistive sensors based on
magnetic tunnel junctions (MTJs) to measure the magnetic activity of the brain.
This can be achieved with several device solutions. Here we have explored the
basic properties of MTJs working as spintronic diodes. We have developed a
general purpose numerical code able to perform a fast search in the enormous
phase space of the parameters that are necessary for the design of MTJs. An-
other category of sensors which are very useful in biomedical applications are
the accelerometers. For example, accelerometers can be used for physical activ-
ity monitoring, Parkinson disease monitoring, and vibration analysis for bone
health. Here we have designed a spintronic accelerometer that can potentially
have a smaller size (sub-micrometer) and a simpler reading scheme than current
state-of-the art solutions. The last study of this chapter is linked to the develop-
ment of applications of MTJs that can be useful for size reduction of implantable
devices. In particular, we have explored the potential use of spintronic technol-
ogy for the development of electromagnetic energy harvesting, which can be used
for the design of battery-less implantable devices.
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1.1 Introduction to micromagnetic modeling

The spontaneous magnetization observed in ferromagnetic materials is a quan-
tum phenomenon that emerges at the atomic level [1]. However, employing a
quantum model becomes computationally intractable when dealing with real sys-
tems. To address this bottleneck, various mesoscopic models have been proposed
to approximate the behavior of ferromagnetic materials above the nanometric
scale. Depending on the assumptions introduced by a given model, it can accu-
rately describe the system only within a certain length scale. At the mesoscopic
level, micromagnetic models are still required while at larger scale, systems can
be approximated with macromagnetic models, as illustrated in Figure 1.1.

FIGURE 1.1: Overview of established models for describing ferromagnets at different
length scales.

The studies developed within this thesis are based on the micromagnetic the-
ory. Originating in 1935 with Landau and Lifshitz’s calculations of domain walls
[2], micromagnetism garnered substantial attention from researchers, such as W.
Brown, in 1960. Micromagnetism analyzes materials on a scale large enough to
define a continuous magnetization vector rather than individual spins but is still
sufficiently small to describe the transition between different domains [3]. This
allows the study of spin textures such as DWs and skyrmions.

In the late 1950s, Brown was the first to propose solving micromagnetic models
through numerical integration methods rather than analytically [4]. However, in
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the mid-1980s this approach experienced a significant improvement thanks to the
availability of larger computational power. This progress enabled the implemen-
tation of powerful micromagnetic tools such as GPU-based solvers [5], facilitating
the investigation of realistic systems, making calculations more easily comparable
with experimental data, and creating tools for data-driven design of technologies
based on micromagnetic systems, such as spintronics and magnonics.

This section introduces the micromagnetic formalism with the derivation of the
dynamical equation that characterizes the ferromagnetic behavior – the Landau-
Lifshitz-Gilbert equation. The latter part focuses on introducing and modeling
the state-of-the-art of spintronic devices based on MTJs. The developed C/CUDA
solver for MTJ design is described in detail. The chapter concludes by presenting
two main results achieved during this PhD program.

1.2 Assumptions of the micromagnetic theory

Ferromagnetic materials exhibit spontaneous magnetization in absence of an ex-
ternal magnetic field. The individual magnetic moments µi are strongly coupled
through the exchange interactions, promoting the alignment of neighboring mo-
ments along the same direction. This alignment results in a local magnetization
that can be expressed as a continuous vector field, function of the space and time,
M (r, t), with constant magnitude, called saturation magnetization MS. As a re-
sult, the ferromagnetic material can be idealized as a set of infinitesimal volumes
dV, each containing a number of spins N that is large enough to guarantee a con-
stant magnetization MS, and has to be small enough to guarantee the continuous
nature of the magnetization. The size of this volume is strongly linked with the
exchange interactions. In other words, the magnetization represents the density
of magnetic moments µi in a ferromagnetic volume dV:

M (r, t) =
1

dV

N

∑
i=1

µi (1.1)

The direction of the magnetization is determined by the unit vector m (r, t) =

M (r, t) /MS, which smoothly varies between each element of volumes. Figure 1.2
illustrates the main assumptions of the micromagnetic theory.
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FIGURE 1.2: Illustration of the main assumptions of the micromagnetic theory. Mag-
netization vector M is the sum of all magnetic moments µi inside the volume dV. The
magnetization smoothly varies between each element of volumes, in accordance with

the continuous nature of the magnetization.

From a computational point of view, the continuous problem is spatially dis-
cretized for numerical solutions by using, for example, finite differences or finite
elements approaches. Variables in the discretized system represent the magneti-
zation values at each cell of the computational mesh in 3D space (x, y, z). Finite
elements use a non-uniform mesh, while finite differences use a uniform regular
mesh. Here, we focus on the finite differences.

From a modeling point of view, the size of the volumes dV is the size of the
computational cells in which the magnetic material sample is spatially dis-
cretized. The micromagnetic theory deals with parameters defining the character-
istic lengths, representing the scale at which magnetization varies substantially.
Therefore, numerically, the smallest size of the computational cells (∆x, ∆y, ∆z)
must be smaller than these characteristic lengths. Two characteristic lengths re-
sulting from the competition between different energy terms are derived in para-
graph 1.3.1 and 1.3.3.

Although the exchange interaction is one of the main contributions in ferromag-
netic materials, other physical mechanisms are essential to fully describe their
energy.

1.3 Energy contributions

Micromagnetic theory takes into account energy contributions of both quantum
nature and classical nature. Quantum contributions include interactions like ex-
change and anisotropy, while classical ones involve magnetostatic and Zeeman



Chapter 1. Spintronic devices: fundamental and applications 5

energies. In the following sections, we will describe free and thermal energy con-
tributions.

1.3.1 Exchange energy

As discussed previously, the exchange energy is a short-range interaction respon-
sible for the type of alignment between neighboring spins. It arises from the Pauli
exclusion principle and the electrostatic Coulomb interaction. The Heisenberg
Hamiltonian that describes the exchange interaction between two neighboring
spins Si and Sj is given by:

Hexch = −2 ∑
⟨i,j⟩

JijSi · Sj (1.2)

The sum is over all pairs of first-neighboring spins, where Jij is the exchange in-
tegral between the ith and the jth spins. The value of Jij decreases rapidly with
the distance between spins, and it is positive for ferromagnetic materials (favor-
ing parallel alignment) and negative for antiferromagnetic materials (favoring
antiparallel alignment). At micromagnetic scale, it is a good assumption to con-
sider that the exchange integral is the same for every pair of neighboring spins
Jij = J, and the spin operators are replaced by vectors with constant spin mod-
ulus |Si| =

∣∣Sj
∣∣ = S, Si,j = Ssi,j. The equivalent continuum expression of the

Heisenberg Hamiltonian is:

Uexch = −2JS2 ∑
⟨i,j⟩

cos θij (1.3)

where θij is the angle between ith and jth spin. For the assumptions of con-
tinuity of the model, this angle is very small, allowing the approximation
cos θij = 1−

(
θ2

ij/2
)

:

Uexch ≈ JS2 ∑
i

∑
j

θ2
ij (1.4)

In micromagnetic theory, the unit spin vector si of each magnetic moment µi is
replaced by the unit vector of the magnetization mi = Mi/MS, as illustrated
in Figure 1.3. The small angle can be expressed as the difference between two
neighboring magnetization vectors: θij ≈

∣∣mi −mj
∣∣ ≈ ∣∣(rij · ∇

)
m
∣∣ where rij is
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the position vector between the ith and jth magnetizations.

FIGURE 1.3: A schematic representation of the exchange interaction between first neigh-
bors in ux direction in (a) the atomic Heisenberg model using a simple cubic crystal and
(b) the micromagnetic model, where the spins are replaced by the magnetization vectors,
and the lattice parameter a is replaced by the size of the computational cell ∆x (∆y, ∆z).

In the continuous representation, the summation is replaced by an integral over
the volume of the ferromagnetic material. The exchange energy is:

Uexch =
∫

V
uexch dV =

∫
V

(
Aex (∇m)2

)
dV (1.5)

We use u to denote the energy density. (∇m)2 ≡ (∇mx)
2 +

(
∇my

)2
+ (∇mz)

2

and Aex is the exchange constant in J/m, a material-dependent parameter. For
a cubic crystal, Aex = JS2c/a, where a is the lattice parameter, i.e. the distance
between first neighbors, and c = 1, 2, and 4 for simple, body-centered, and face-
centered cubic lattices, respectively.

A characteristic length resulting from the competition between the exchange in-
teraction and the magnetostatic field is known as exchange length lex:

lex =

√
2Aex

µo M2
s

(1.6)

where µ0 is the magnetic permeability of vacuum and MS is the saturation mag-
netization. The length lex is relevant when the magneto-static dipolar interactions
are dominant over the anisotropy, like in soft magnetic materials.
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1.3.2 Dzyaloshinskii-Moriya interaction

The DMI is a chiral energetic term, introducing an antisymmetric exchange con-
tribution, resulting from the spin-orbit coupling (SOC) [6, 7]. In contrast to the
exchange interaction, which favors parallel alignment of neighboring spins, the
DMI promotes orthogonal alignment, facilitating the formation of rotational mag-
netization textures such as skyrmions. There are two types of DMI: bulk DMI
(bDMI) originating from a break of the crystal inversion symmetry and the pres-
ence of high SOC atoms in a ferromagnetic alloy (for instance B20 materials), and
the interfacial DMI (iDMI) occurring at the interface of non-equivalent layers,
typically an ultrathin ferromagnetic layer and an heavy metal with strong SOC,
like Pt [8]. At the atomic scale, the energy of the antisymmetric counterpart of the
exchange interaction is given by:

UDMI = ∑
⟨i,j⟩

dij · (Si × Sj) (1.7)

The sum is over all pairs of first-neighboring spins, where dij is the DMI vector
coupling the ith and jth spin, Si and Sj, respectively, and depends on the system
under study. For ultrathin isotropic ferromagnetic layers, dij = d uij × un where
uij is the unit vector between Si and Sj, and un is the unit vector normal to the
interface. Figure 1.4 illustrates an example of spin orientation for (a) bDMI and
(b) iDMI. In the assumption of an ultrathin layer, a constant DMI parameter d can
be considered.

FIGURE 1.4: A sketch of (a) bDMI generated in a ferromagnetic layer between two atomic
spins Si and Sj and an atom with a strong spin-orbit coupling (green sphere). (b) iDMI at
the interface between a ferromagnetic layer (gray) and a heavy metal with strong spin-

orbit coupling (green).
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In presence of a perpendicular magnetic anisotropy along the z-axis, the micro-
magnetic iDMI energy is given by:

UiDMI =
∫

V
uiDMI dV

=
∫

V
(D (m · ∇mz −mz · ∇m)) dV

=
∫

V

(
D
(

mx
∂mz

∂x
−mz

∂mx

∂x
+ my

∂mz

∂y
−mz

∂my

∂y

))
dV

(1.8)

Where D is a material-dependent parameter expressed in J/m2.

The bDMI energy is given by:

UbDMI =
∫

V
ubDMIdV =

∫
V
(D (m · ∇ ×m)) dV (1.9)

The DMI affects the boundary condition (BC) of the ferromagnet as following [9,
10]:

bDMI BC:
dm
dn

=
D

2Aex
(m× n)

iDMI BC:
dm
dn

=
D

2Aex
(ẑ× n)×m

(1.10)

Where n is an arbitrary orientation of the edge normal.

1.3.3 Anisotropy energy

Experiments have demonstrated that magnetic materials are not isotropic and
thus exhibit an energetically favored crystallographic direction, referred to as the
easy axis, along which they are easier to magnetize. On contrary, the direction
that is energetically unfavored is termed hard axis. This anisotropic behavior
arises from spin-orbit interactions at the atomic scale. The magnetocrystalline
anisotropy energy can be defined as the excess of energy required to magnetize a
material in a certain direction different from the easy one. In this thesis, we specif-
ically refer to materials with uniaxial anisotropy which are the most common
when dealing with spintronic devices. The expression of the uniaxial magne-
tocrystalline anisotropy energy, considering the first term of its Taylor expansion,
is given by:

Uani =
∫

V
uani dV =

∫
V

(
K0−K1 (m · uk)

2
)

dV (1.11)
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Where K0 and K1 (in J/m3) are coefficients determined experimentally, with
K1 ≡ Ku indicating the perpendicular anisotropy constant (easy axis along the
z-axis). uk is the unit vector along the anisotropy axis, either an easy or hard axis,
depending on the sign of Ku. A positive value of Ku corresponds to an energet-
ically favored axis (as illustrated in Figure 1.5 (a)), aligning the magnetization
vector parallel (P) or antiparallel (AP) to the easy axis. On the contrary, a nega-
tive value of Ku corresponds to an energetically unfavored axis (as illustrated in
Figure 1.5 (b)), promoting the magnetization to lie in the plane perpendicular to
uk.

FIGURE 1.5: Energy density of the uniaxial magnetic anisotropy for (a) Ku > 0 : uk
is the energetically favored axis, the magnetization tends to align parallel to it, and (b)
Ku < 0 : uk is the energetically unfavored axis, the magnetization tends to lie in the

plane perpendicular to it.

A characteristic length resulting from the competition between the exchange in-
teraction and magnetocrystalline anisotropy is known as wall width lw, and it is
computed as follow:

lw =

√
Aex

Ku
(1.12)

It is usually relevant in materials with large anisotropy.

1.3.4 Magnetostatic energy

The magnetostatic energy arises from the interactions between the magnetic
dipoles within a material. It leads to a magnetic field, opposed to the inter-
nal M, that tends to demagnetize the sample. From this, it takes the name of
demagnetizing field Hdmg (also known as magnetostatic field or stray field or
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dipolar field). Derived from the solution of the magnetostatic problem based on
Maxwell’s equations which can be expressed as follows:

∇ · B (r) = 0
∇×Hdmg (r) = 0

(1.13)

Here, B (r) is the magnetic induction field, representing the sum of the magneti-
zation M (r) (inside the material) and the demagnetizing field Hdmg (outside the
material), as illustrated in Figure 1.6. This relationship is defined as:

B (r) = µ0
(
M (r) + Hdmg (r)

)
(1.14)

where µ0 is the vacuum permeability.

FIGURE 1.6: A schematic representation of (a) the magnetic induction field B, sum of (b)
internal magnetic field M and (c) the demagnetizing field Hdmg generated by M.

By incorporating Eq. (1.14) into Eq.(1.13), they can be rewritten as:

∇ · µ0
(
M (r) + Hdmg (r)

)
= 0

∇×Hdmg (r) = 0
(1.15)

The general solution of the second equation of Eq.(1.15) is expressed as
Hdmg (r) = −∇Udmg (r). By substituting this into the first equation of Eq. (1.15),
the potential Udmg (r) inside the sample can be derived:

∇2Udmg (r) = −∇M (r) (1.16)
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The calculation of Hdmg (r) also involves the magnetic charges on the surface. To
fulfill the surface boundary condition that Hdmg(r) must obey, fictitious volume
and surface magnetic charge densities, respectively ρm(r) and σm (r), are defined
as:

ρm (r) = −∇M (r)

σm (r) = M (r) · n
(1.17)

Where n is the unit vector perpendicular to the surface S of the magnetic material.
Finally, the demagnetizing field at each point r of the sample is given by:

Hdmg (r) =
1

4π

[∫
V′

(r− r′) ρm

|r− r′|3
dV′ +

∫
S′

(r− r′) σm

|r− r′|3
dS′
]

(1.18)

Where V′ and S′ are, respectively, the volume and the surface of the sample, and
|r− r′| is the distance between the point in which the field is being calculated r
and all other field-creating magnetic moments at r′. The magnetostatic energy is
given by [1]:

Um =
∫

V
umdV = −1

2
µ0

∫
V

(
Hdmg (r) ·M (r)

)
dV (1.19)

The magnetostatic energy minimizes the presence of isolated magnetic charges.
This effect can be interpreted as an anisotropy contribution, known as shape ani-
sotropy. In simpler words, it implies that the orientation of magnetization can be
influenced by altering the geometry of the magnetic structure rather than modify-
ing the intrinsic material anisotropy. This contribution is energetically unfavored
from the exchange point of view. Therefore, the magnetization configuration is
a balance between the exchange and the magnetostatic energy. The trade off be-
tween these two terms is the main origin of domains in ferromagnets.

In a discrete scenario, the magnetostatic field in each cell can be expressed as [11,
12]:

Hdmg (r) = −MS

Nc

∑
r′

N
(
r− r′

)
·m
(
r′
)

(1.20)

where the sum is over the total number of cells Nc, and N (r− r′) is the demagne-
tizing tensor, a 3× 3× Nc symmetric tensor that depends on the relative position
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between the cells and on the geometry of the sample. Therefore, it can be com-
puted one time for a given geometry, and Hdmg (r) can be calculated as a discrete
3D convolution of N with m. This can be more efficiently computed in the Fourier
domain [12].

The computation of this energetic field is the most time and resource consuming
among all contributions because, as discussed, it is a non-local term. This means
that the field at point r depends on the magnetization of all the other points r′

within the volume of the sample, as illustrated in Figure 1.7.

FIGURE 1.7: An illustration highlighting that the magnetostatic field computation at
each computational cell takes into account the contribution from all cells of the sam-
ple. Depicted are two representative computational cells with magnetization m (r) and

m (r′).

1.3.5 Zeeman energy

The Zeeman field is an external field Hext applied to the sample, enabling the
magnetization of the sample in any given direction, as illustrated in Figure 1.8.

It is characterized by a vectorial field with a known module and direction. The
Zeeman energy is defined as:

Uext =
∫

V
uextdV = −µ0

∫
V
(Hext (r) ·M (r)) dV (1.21)
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FIGURE 1.8: The magnetization m tends to align with the external applied field Hext.

1.3.6 Oersted field

The flow of electrical current within a conductor generates a magnetic field,
known as Oersted field HOe, as illustrated in Figure 1.9 (a).

FIGURE 1.9: (a) A current j flowing in a wire generates a magnetic field HOe and the field
lines form concentric circles around the wire. (b) The magnetization m tends to align

with the local direction of the Oersted field HOe.

The Biot-Savart law determines the magnetic field HOe generated by a distributed
current of density j (r) flowing in a wire:

Hoe (r) =
1

4π

∫
V′

(
j (r)× r− r′

|r− r′|3

)
dV′ (1.22)

where r− r′ is the distance between the position r at which the field is evaluated
and each position r′ within the sample volume V′. The Oersted field acts quali-
tatively as a non-uniform external field, causing the magnetization to align along
its direction, as illustrated in Figure 1.9 (b). Its energy is defined similarly to the
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Zeeman energy:

UOe =
∫

V
uOedV = −µ0

∫
V
(HOe (r) ·M (r)) dV (1.23)

1.4 Equilibrium states

Micromagnetic theory predicts the spatial configuration of the magnetization
under specific conditions, associating an energy value with each configuration.
In accordance with the variational principle, at equilibrium, the magnetization
configuration inside a sample {m (r, t) |r ∈ V, m (r, t)| = 1} satisfies the condi-
tions (energy minimization):  δutot(m) = 0

δ2utot(m) > 0
(1.24)

where δutot (m) = δutot (m + δm)− δutot (m) is the infinitesimal variation of the
energy density induced by a small variation of the magnetization δm. The total
energy of the system is the sum of the different energy contributions in each el-
ementary volume ∆V, described in paragraph 1.3. The total energy density of a
ferromagnetic sample is given by:

utot = uexh + uani + uext + . . . (1.25)

The equilibrium state is determined by the competition among these different en-
ergy terms. The energy landscape can have several local minima, satisfying the
conditions (1.24), corresponding to metastable states, and these states depend on
the initial configuration. Eventually, for t → ∞ the system can reach the ground
state, which is the global minimum. An illustrative example of an energy land-
scape is presented in Figure 1.10.
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FIGURE 1.10: Sketch of an energy landscape, featuring the initial state (gray sphere), a
local minimum (blue sphere), and a global minimum (red sphere).

The system can only feel the magnetic field that results from the energy change,
therefore we derive a total effective field, He f f , acting on the magnetization as a
functional derivative of the energy density of the volume, uV :

He f f = −
1

µ0MS

δuV

δm
(1.26)

Usually, we refer to the dimensionless effective field: he f f = He f f /MS.

At the equilibrium, from the Eq. (1.24) the derivative δutot (m) = 0, and the
Brown’s equations must be satisfied:

m×He f f = 0

m×
[
−∂us

∂m
− ∂uV

∂(∇m)
· n
]
= 0

(1.27)

The first expression, regarding the volume of the sample, states that the static
equilibrium is reached when the torque τ = µ0M×He f f vanishes at each point of
the volume while the second equation sets the boundary conditions at the surface.

The effective field components resulting from the derivative of the energy density
(described in paragraph 1.2) include the exchange Hexh, the iDMI field HiDMI, the
anisotropy field Hani:
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Hexh =
2Aex

µ0MS
∇ · (∇m)

HiDMI =
2D

µ0MS

[
∇ (m · un)− (∇ ·m) un

]
HbDMI =

2D
µ0MS

(∇×m)

Hani =
2Ku

µ0MS
(m · uk) uk

(1.28)

1.5 Dynamical equations: Landau-Lifshitz-Gilbert

equation

To describe the relaxation processes to the equilibrium point, it is necessary to
study the dynamical equation of the magnetization.

Let consider, the torque acting on a magnetic moment µ due to an external mag-
netic field H. It is expressed as:

τ = µ0µ×H (1.29)

This torque is equivalent to a change in the angular momentum J:

dJ
dt

= τ (1.30)

The total angular momentum J is the sum of the orbital angular momentum L
and the electron spin S: J = B + S. However, in most ferromagnetic materials,
the orbital contribution is small, making it reasonable to consider J ≈ S. The spin
S and the magnetic moment µ are related by the gyromagnetic ratio γ:

µ = −|e| g
2me

S = −γS (1.31)

where e is the electron change, me is its mass, and g is the Landé factor, approx-
imately g ≈ 2. The dynamic equation for magnetic moment can be expressed
as:

dµ

dt
= −γµ0µ×H (1.32)
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Since the micromagnetic theory considers the magnetization M as the volume
density of the uniform magnetic moments and treats the effective field He f f as an
external field that accounts all the interactions, the conservative dynamic equa-
tion for the magnetization becomes:

dM
dt

= −γ0M ×He f f (1.33)

Where γ0 = γµ0 = 2.21 × 105 m/(A s). The Eq. (1.33) implies that, in the
presence of a magnetic field He f f , the magnetization M rotates indefinitely per-
pendicularly to both magnetization and the field (precession mode) with angular
velocity given by γ0, as illustrated in Figure 1.11 (a).

FIGURE 1.11: Dynamic of the magnetization M in the presence of a magnetic field He f f .
(a) In absence of dissipation (αG = 0), the magnetization M rotates indefinitely around
the field He f f . (b) Adding damping (αG > 0) results in a damped precession of the

magnetization until it aligns itself with the field He f f .

However, real systems have dissipative mechanisms such as scattering and lat-
tice interactions, leading the magnetization to relax to an equilibrium state. In the
micromagnetic model all the dissipative processes are included phenomenologi-
cally by adding a dissipative term, called Gilbert damping parameter αG, in the
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dynamic equation. The resulting Gilbert equation is:

dM
dt

= −γ0M ×He f f +
αG

MS

(
M × dM

dt

)
(1.34)

This equation ensures modulus conservation because the dM/dt is perpendicular
to M. The second term, perpendicular to the magnetization and its time deriva-
tive, enables the final alignment of the magnetization with the field, as shown in
Figure 1.11 (b).

For the numerical computation, it is possible to derive an explicit form of the
Gilbert equation (Eq. (1.34)). Multiply both sides by M×:

M × dM
dt

= −γ0M ×
(
M ×He f f

)
+

αG

MS
M ×

(
M × dM

dt

)
(1.35)

The cross product in the second term on the right side of the equation can be
expressed using the vector triple product identity: A × (B× C) = (A · C) B −
(A · B)C:

M× dM
dt

= −γ0M×
(
M ×He f f

)
+

αG

MS

(
M · dM

dt

)
M− αG

MS
(M ·M)

dM
dt

(1.36)

Knowing that M ·M = |M|2 = M2
S and M · dM

dt
= 0 since dM/dt is perpendicular

to M, the Eq. (1.36) becomes:

M × dM
dt

= −γ0M ×
(
M ×He f f

)
− αG MS

dM
dt

(1.37)

Substituting Eq. (1.37) into the Gilbert equation (Eq. (1.34)):

dM
dt

= −γ0M ×He f f +
αG

MS

(
−γ0M ×

(
M ×He f f

)
− αG MS

dM
dt

)
(
1 + α2

G
) dM

dt
= −γ0M ×He f f −

γ0αG

MS
M ×

(
M ×He f f

) (1.38)

The resulting expression is known as Landau-Lifshitz-Gilbert (LLG) equation:

dM
dt

= − γ0

1 + α2
G

M ×He f f −
γ0αG(

1 + α2
G
)

MS
M ×

(
M ×He f f

)
(1.39)
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To express the LLG equation in terms of the normalized magnetization m, both
sides of the of the equation are divided by MS:

dm
dt

= − γ0

1 + α2
G

m×He f f −
γ0 αG

1 + α2
G

m×
(
m×He f f

)
(1.40)

It is also convenient to write the effective field in dimensionless form he f f =

He f f /MS. Thus, the final expression of the LLG equation is:

dm
dt

=
γ0MS

1 + α2
G

(
− m× he f f − αGm×

(
m× he f f

))
(1.41)

Each term in the form m× he f f , which induces a precessional mode of the magne-
tization, is referred to as a non-adiabatic term. On the other hand, the term in the
form m×

(
m× he f f

)
, which induces a relaxation dynamics of the magnetization

toward the direction of the effective field, is referred to as an adiabatic term.

1.6 Additional terms in the LLG equation

The LLG equation accounts for different interactions present in the sample
through the effective field. However, when an electrical current is applied, ad-
ditional torques need to be included in the LLG equation to describe phenomena
such as STT and SOT, as discussed in the following sections.

Furthermore, while the LLG equation provides the dynamics of the magnetiza-
tion described at zero temperature, simulating finite temperature effects requires
the addition of thermal effects. These effects are added into the effective field as
a stochastic field, as described in the paragraph 1.6.4

1.6.1 Spin-transfer torque

An efficient way to control the magnetization of a magnetic material is to leverage
the STT effect, which was theoretically predicted independently by Slonczewski
[13] and Berger [14] in 1996. The STT effect occurs when a spin-polarized current
(or spin current) flows through a magnetic material with a noncollinear magne-
tization direction. In a simplified description, part of the injected spin electrons
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is transmitted and becomes aligned with the magnetization direction of the mag-
netic material, and part is reflected with the same direction of the transmitted
ones but opposite polarity, as illustrated in Figure 1.12. Due to the conservation
of the angular momentum, a torque of equal magnitude but opposite sign is ex-
erted on the magnetization of the ferromagnet m, causing its rotation. This torque
is known as STT [15].

FIGURE 1.12: Representation of two spins Sin injected into a magnetic material, sub-
jected to a torque exerted by the magnetization m of the magnetic material. This torque
reorients the spins in the direction of m. The transmitted spin Str becomes parallel to m,

while the reflected spin Sre f becomes antiparallel to m (or to Str).

In this thesis, the focus is specifically on the spin current generated by a charge
current flowing perpendicular to the sample plane of a multilayer structure con-
sisting of two ferromagnetic (FM) layers sandwiching a spacer layer. One FM
layer is designed to have a fixed or pinned magnetization direction, and it is
called pinned layer (PL), while the other FM layer is free to rotate, and it is called
free layer (FL). When the spacer is an electrical conductor, the device is named
spin valve; when it is an insulator, the device is an MTJ. The latter usually exhibits
better properties, as discussed ahead in the text, especially in paragraph 1.7. The
STT contribution acting on the magnetization m due a charge current density JSTT

can be modeled as an additional damping term, known as Slonczewski torque or
STT, τSL, in the Gilbert equation:

dm
dt

= −γ0MS
(
m× he f f

)
+ αG

(
m× dm

dt

)
+ γ0MsσJSTTgT

(
m, mp

) (
m×

(
m×mp

)) (1.42)
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here the pre-factor σ is equal to
gµB

γ0 |e|M2
Stz

, where g is the Landé factor, µB is

the Bohr’s magneton, and tz is the thickness of the FL. mp = Mp/MSp is the
normalized magnetization of the PL, and gT

(
m, mp

)
is the polarization function,

whose expression depends on the relative orientation between the FL and the PL.
In particular, for the MTJ:

gT
(
m, mp

)
=

2P
1 + P2(m ·mp)

(1.43)

where P is the spin polarization, describing the degree to which the charge cur-
rent is spin-polarized. P = 1 means that all the electrons are spin-polarized.

The Slonczewski torque is an adiabatic (relaxational) torque, m×
(
m×mp

)
, lead-

ing the magnetization m to align along the magnetization mp. If mp is in the same
direction of the effective field, depending on the sign of the current, τSL can be
parallel or antiparallel to the damping torque, as illustrated in Figure 1.13 (a) (it,
of course, depends on the direction of mp).

FIGURE 1.13: Sketches of STT affecting the dynamic of the magnetization m. (a) Vector
diagram representing of all the torques acting on m in the presence of a magnetic field
he f f and a spin polarized current J. (b)-(c) STT in a MTJ device: (b) when a charge current
flows from the PL to the FL, the FL magnetization m tends to become parallel to the PL
magnetization mp due to the STT torque generated by transmitted spins. (c) When a
charge current flows from the FL to the PL, the m tends to become antiparallel to mp due

to the STT torque generated by the reflected spins.
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This results in the magnetization of the FL becoming either parallel or antiparallel
to the PL. In Figure 1.13 (b)-(c) these mechanisms are shown, where in the first
case (b) the STT torque is due to transmitted spins, aligning the FL magnetization
with the PL magnetization, whereas in the second case (c) the STT is due to the
reflected spins, resulting in an antiparallel configuration of the magnetization.

The obtain the explicit form of the Gilbert equation with the added Slonczewski
term, let us multiply both sides of the Eq. (1.42) by αGm×[16]:

αGm× dm
dt

=− γ0MSαGm×
(
m× he f f

)
+ α2

G m×
(

m× dm
dt

)
+ αGγ0MsσJSTTgT

(
m, mp

)
m×

(
m×

(
m×mp

) ) (1.44)

The cross product in the second term on the right side of the equation can be
expressed using the vector triple product identity: A × (B× C) = (A · C) B −
(A · B)C, with the same considerations made to obtain the Eq. (1.37):

m×
(

m× dm
dt

)
= −dm

dt
(1.45)

The vector triple product identity can also be exploited for the third term on the
right side of the equation, maintaining m×mp as a vector. Knowing that m ·m =

1 and m · (m×mp) = 0:(
m ·
(
m×mp

) )
m− (m ·m)

(
m×mp

)
= −

(
m×mp

)
(1.46)

Substituting Eq. (1.45) and Eq. (1.46) into the Eq. (1.44):

αGm× dm
dt

=− γ0MSαGm×
(
m× he f f

)
− α2

G
dm
dt

− αGγ0MsσJSTTgT
(
m, mp

) (
m×mp

) (1.47)
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By setting the Eq. (1.47) into the Eq.(1.42), and reorganizing the terms, the so-
called Landau-Lifshitz-Gilbert-Slonczewski (LLGS) equation is obtained:

dm
dt

=
γ0MS

1 + α2
G

(
− m× he f f − αGm×

(
m× he f f

)
+ σJSTTgT

(
m, mp

) (
m×

(
m×mp

)
− αG

(
m×mp

) )) (1.48)

In the explicit form of the LLG equation, a field-like torque term is also present.
This is a non-adiabatic or precessional damping torque−m×mp, τPT, which has
the same structure of the torque due to the effective field.

Experimentally, another term of the STT should be taken into account in MTJs:
the out-of-plane torque or field-like torque τFLTSTT, which can be very large
(τFLTSTT

≈ 30% of τSL) [17–21]. The LLGS equation can be then written as:

dm
dt

=
γ0MS

1 + α2
G

(
− m× he f f − αGm×

(
m× he f f

)
+ σJSTTgT

(
m, mp

) (
m×

(
m×mp

)
− αG

(
m×mp

)
+ qSTT

(
m×mp

)
+ qSTTαG

(
m× (m×mp)

))) (1.49)

Where qSTT is a phenomenological coefficient, expressed in terms of the amount
of field-like torque compared to the damping-like torque. Similarly to the
Slonczewski torque, in the explicit form of the LLG equation this torque has
two components: τ′FLTSTT ∝

(
m×mp

)
, and τ′′FLTSTT ∝ αG

(
m×m×mp

)
. It

can be added in the effective field of the LLGS equation: he f f = he f f +

qSTTσJSTTgT
(
m, mp

)
mp.

Figure 1.14 shows a comprehensive illustration of all the torques acting on m.
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FIGURE 1.14: Representative vector diagram of all the torque acting on the FL magne-
tization m in the presence of a magnetic field he f f and a spin polarized current JS, to
highlight the adiabatic τSL and non-adiabatic τPT and the component of τFLTSTT (in fig-

ure τ′FS and τ′′FS) contributions of the STT.

Examining the energy landscape of the FL magnetization m in a tri-layer device,
the damping-like torque terms of the STT

(
m ×

(
m×mp

) )
destabilize the FL

magnetization, bringing it toward either the P or AP state, while the field-like
torque terms modify the energy barrier, as shown in Figure 1.15.

FIGURE 1.15: A schematic representation showing the impact of the STT terms on the
energy landscape of the FL magnetization m as a function of different states. (a) The
damping like torque terms

(
m×

(
m×mp

) )
, τDL destabilizes m (b) the field-like torque

τFLT modifies the energy landscape.

1.6.2 Spin-orbit torque

The presence of an electrical current in systems with large SOC generates an ad-
ditional torque attributed to two mechanisms: the Rashba effect and the spin Hall
effect (SHE). The SOT acts on the magnetization of the FM material deposited on
a heavy metal (HM) strip, such as Pt or Co, i.e. an MTJ on top of HM, with its
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FL in contact with the HM. When unpolarized electrons (charge current density
JSOT) flow through the HM material, due to the large SOC, electrons with oppo-
site spins scatter in opposite direction, accumulating on opposite boundaries and
creating spin current JS in the HM, with transverse direction to JSOT and the in-
terface normal. This effect is called SHE [22]. The electron spin polarization σSHE

is transverse to the direction of both JSOT and JS:

JS = θSHE(σSHE × JSOT) (1.50)

where θSHE is the spin Hall angle, which represents the amount JSOT converted
into JS. JS is injected into the FL to exert a torque, known as SOT, on the FL
magnetization m, as illustrated in Figure 1.16.

The SOT contribution in the LLG equation has an analogous derivation of the
STT, where gT(m, mp) is replaced by the θSHE and mp by σSHE:

dm
dt

=
γ0MS

1 + α2
G

(
− m× he f f − αGm×

(
m× he f f

)
+ σJSOTθSHE

(
m× (m× σSHE)− αG (m× σSHE)

)) (1.51)

Taking into account the field-like torque of the SOT, the LLG equation is given
by:

dm
dt

=
γ0MS

1 + α2
G

(
− m× he f f − αGm×

(
m× he f f

)
+ σJSOTθSHE

(
m× (m× σSHE)− αG (m× σSHE)

+ qSOT (m× σSHE) + qSOTαG
(
m× (m× σSHE)

))) (1.52)

Where qSOT is a phenomenological coefficient.
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FIGURE 1.16: Sketch of SOT. A charge current JSOT flowing through a HM is converted
into a spin current JS due to the SOC, generating the SHE. The directions of the spin
polarization σSHE, JSOT and JS are mutually perpendicular. The JS flowing into the FL

exerts a torque (SOT) on the FL magnetization m.

1.6.3 Voltage-controlled magnetic anisotropy

The VCMA enables the modulation of the magnetic anisotropy with an electric
field (or external voltage) enforcing potential low-power and high-speed switch-
ing of the FL magnetization of an MTJ [23–26]. This effect is observed at the
interface between an ultrathin FM layer and oxide (Ox) dielectric layer, such as
CoFeB|MgO, exhibiting strong interface perpendicular anisotropy. The electric
field induces an accumulation of electron charges, leading to a change in the oc-
cupation of atomic orbitals at the interface in conjunction with spin-orbit interac-
tion, resulting in a modification of the magnetic anisotropy [27]. However, other
possible mechanisms, including oxygen migration [28], and Rashba effect [29–31]
are also considered to account for the origins of the VCMA effect. The presence of
the VCMA effect models the energy barrier between the two out-of-plane stable
states of the FL magnetization in an MTJ as a function of the applied voltage Vb

[23, 32]:

∆ (Vb) =
Eb (Vb)

kBT
= ∆ (0)− ξAVb

kBTtox
(1.53)

Where ∆ (0) is the thermal stability factor at zero voltage, tox is the thickness of
the oxide layer, A is the sectional area of the MTJ, and ξ is the linear VCMA co-
efficient (in J/(Vm)) quantifying the change of the interfacial anisotropy energy
(J/m2) per unit electric field (V/m). By setting ∆ (Vb) = 0, it is possible to de-
rive the critical voltage Vc of the VCMA effect (Vc = ∆ (0) kBTtox/ξ A), which is
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the voltage required to reduce the energy barrier at zero. Figure 1.17 (a) illus-
trates the different energy profiles. For a voltage pulse of amplitude Vb ≥ Vc the
magnetic easy-axis is oriented along the in-plane direction, the energy profile is
then defined by the shape anisotropy. This results into an unstable state of the
FL magnetization, which precessionally oscillates between the P and AP states
(precessional switching regime), leading to a nondeterministic switching, as il-
lustrated in Figure 1.17 (b). For Vb < Vc the energy barrier is lowered, and the
FL magnetization can either be damped back to the initial state or flipped to the
other state, due to thermal activation (thermally-activated switching regime), re-
sulting in deterministic switching. For Vb < 0 the energy barrier is enhanced [23,
32].

FIGURE 1.17: (a) Illustration of the impact of voltage on the energy barrier of an MTJ
with out-of-plane FL magnetization m, in presence of the VCMA effect. At equilib-
rium (Vb = 0), the energy barrier separates the two stable states of m (P and AP). A
high a voltage (Vb > Vc) can eliminate the energy barrier, while a low positive voltage
(0 < Vb < Vc) reduces the energy barrier. A negative voltage (Vb < 0) enhances the
energy barrier. (b) Vectorial diagram of the FL magnetization of the MTJ for Vb > Vc

resulting in a precessional mode.

The VCMA effect is incorporated into the LLG equation as an additional term in
the effective field. Experimental observations often indicate a linear relationship
between the voltage-dependent magnetic anisotropy and the applied voltage, in
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the working range. In case of uniaxial perpendicular anisotropy, the voltage-
dependent anisotropy field can be expressed as [32–35]:

hVCMA = − 2ξVb
µ0M2

s tztox
(m× uk) ukz (1.54)

This field acts on the out-of-plane component of the anisotropy field, defined
by the unit vector uk. For convenience, in this thesis, we typically use a single

coefficient VCMA, expressed in Tesla, so that: hVCMA =
VCMA
µ0MS

(m× uk) ukz.

1.6.4 Thermal field

At zero temperature, in absence of external excitations, the magnetic configura-
tion remains unchanged indefinitely. However, in real-world scenarios, the tem-
perature effects cannot be neglected. Thermal fluctuations can provide enough
energy to the system to overpass the energy barrier and let the magnetization
evolves to another minimum. This phenomenon is particularly pronounced
in small samples, leading to what is known as superparamagnetic effect [36].
In micromagnetic modeling, the temperature effect is incorporated through a
stochastic field Hth added to the effective field acting on the magnetization:
He f f ← He f f + Hth. With this modification the LLG equation takes the name
of Langevin equation. The thermal field, at each cell i, is given by:

Hth,i (t) = ηi (t)

√
2αGkBT(

1 + α2
G
)

γ0µ0MSVdt
(1.55)

where dt is the simulation step, ηi (t) is a Gaussian stochastic process with zero
mean and unit standard deviation.

⟨Hth,α,i(t)⟩ = 0
⟨Hth,α,i(t)Hth,α,j(t′)⟩ = 2Dδijδαβδ(t− t′)

(1.56)

In Eq. (1.56) the angular bracket denoted the time average, i and j are the indices
of the cells, α, β = x, y, z refer to the Cartesian components of the field. The three
components of the thermal field are spatial and time uncorrelated. The constant
D representing the strength of Hth, D = αGkBT/(

(
1− α2

G
)

γ0µ0MSV) where V
is the volume of each cell [5]. Figure 1.18 shows a representative magnetization
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dynamics with (a) and without (b) the thermal field.

FIGURE 1.18: Effect of temperature on the dynamics of the magnetization m. A repre-
sentative vector diagram of the m dynamics in presence of an effective field He f f at (a)

zero temperature and (b) with the influence of a thermal stochastic field.

1.7 Magnetic tunnel junctions

The MTJ is a key and emerging device in spintronic technology, having several
important properties such as low power consumption, compact size, high-speed
operation, and compatibility with CMOS technology [37]. Such characteristics
make it a suitable device for logic and memory applications.

As previously mentioned, the MTJ is a nano-pillar of magnetic multilayers, with
an ultra-thin insulator sandwiched between a fixed or pinned layer (PL) with
fixed magnetization mp, and a free layer (FL) with magnetization m free to rotate.

Moreover, both the FL and the PL magnetizations can exhibit time-evolution be-
havior, and in such configuration, two coupled LLG equations (1.41) describe the
dynamics of the two coupled magnetizations. Throughout this thesis, unless ex-
plicitly stated, the PL magnetization remains fixed.

Based on the easy axis of the magnetizations m and mp, two primary configura-
tions can be identified:

• In-plane MTJ (i-MTJ): both magnetizations lie within the plane of the MTJ
(x-y plane).
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• Perpendicular MTJ (p-MTJ): the magnetizations are oriented perpendicular
to the plane of the MTJ (along z-axis).

The MTJ resistance depends on the relative orientation of the two magnetizations:
if m is in the same direction of/parallel to mp the MTJ offers a low resistance (RP),
if m is antiparallel to mp the MTJ exhibits a high resistance (RAP). Figure 1.19 (a)-
(b) shows these configurations. The two stable states (P and AP) are separated by
an energy barrier Eb (see Figure 1.19 (c)) which determines the thermal stability of
the MTJ. It is worth noting that hybrid configurations are also possible, where the
magnetizations are non collinear. In addition, larger MTJs can have non uniform
spin texture such as a vortex [38] or a skyrmion [39, 40] as a ground state.

FIGURE 1.19: Different configurations of an MTJ based on the absolute and relative ori-
entation of the FL magnetization m and the PL magnetization mp. (a) In-plane MTJ: m
and mp lie in the plane of the MTJ, (b) perpendicular MTJ: m and mp are perpendicular
to the plane of the MTJ. m in the same direction of mp (parallel) leads to a low resistance
state (left of (a)-(b)), while in the opposite direction (antiparallel) it leads to a high resis-
tance state (right of (a)-(b)) (c) An energy barrier Eb separates the two states of the MTJ

(in this example, a p-MTJ).

The tunnel magnetoresistance (TMR) ratio quantifies the resistance variation be-
tween these two states of the device:

TMR =
RAP − RP

RP
(1.57)

This parameter is crucial for high performance MTJ. TMR has achieved remark-
able values, reaching 631% at room temperature with an MgO tunnel barrier [41].
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In general, the resistance is a function of the angle θ between the magnetizations
of the two ferromagnetic layers [42, 43]:

R (θ) = RP +
RAP − RP

2
(
1−m ·mp

)
(1.58)

Several factors such as shape, size thickness and materials influence the resis-
tance, and thus the TMR value. In present of interfacial perpendicular anisotropy,
it is possible to control the easy axis of the MTJ with the thickness. In particular,
there exists a critical thickness of the FL above which the in-plane configuration
is favored. In thin films, the in-plane can be controlled also by an elliptical shape,
leveraging the shape anisotropy due to the demagnetizing field.

In paragraph 1.6 different methods for manipulating the magnetization have
been introduced, each requiring a different structure of the MTJ which can have
two terminals or three terminals, as illustrated in Figure 1.20.

FIGURE 1.20: Sketches of two different structures of MTJ: (a) 2-terminal MTJ (b) 3-
terminal MTJ.

The 2-terminal MTJ allows the STT and VCMA mechanisms, while the 3-terminal
MTJ can also be controlled with SOT, or with a combination of such effects [44].
The 2-terminal MTJ is more compact and scalable, but there is the risk of erro-
neously writing into the MTJ when the read current flows through it, because the
same path is used for both operations. On the other hand, the 3-terminal MTJ
has larger area occupancy, but it offers the advantage to have separate paths for
reading and writing.

The different dynamic behavior of the FL magnetization in the MTJ opens the
door to a range of applications: for instance, current-induced switching offers
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promising applications in magnetic random access memory (STT-MRAM), spin-
tronic oscillators, diodes, etc..

1.8 Spintronic oscillators and diodes

As already discussed, a bias spin-polarized current can exert an STT on the FL
magnetization of an MTJ, i.e. an antidamping torque. When this torque is driven
by a DC current and it compensates the Gilbert damping, it is possible to excite a
persistent oscillation of the magnetization characterized by an oscillatory regime
(self-oscillation) of the MTJ resistance. This is the smallest self-oscillator know in
nature and has useful properties such as frequency tunability by DC current and
field, which make this device effective for a wide range of applications. On the
other hand, a dual effect is achieved in STD, where the magnetization is excited
by a spin-polarized AC current, generating an oscillating resistance. In this case,
the voltage across the MTJ is characterized by a rectified component (i.e. diode
effect) [45, 46].

1.8.1 Spin-torque nano-oscillators

As already anticipated, a large enough spin-polarized direct electric current IDC,
can cancel out the Gilbert damping losses of the FL, exerting an STT torque to
the FL magnetization and driving it into a steady-state precession [13, 14]. This
phenomenon is known as auto- or self-oscillation [47]. Due to the magnetoresis-
tance effect, the magnetization oscillation gives rise to a temporal variation of the
resistance, r (t) = Rm + ∆R cos (ωt)/2, where Rm is the average resistance value
(DC resistance), ∆R and ω denoted the amplitude and the angular frequency of
the resistance, respectively. This resistance variation results in a microwave (al-
ternating) voltage across the MTJ: v (t) = JDC r (t).

The MTJ operating in this mode is called spin-torque nano-oscillator or spin-
transfer nano-oscillator (STNO). Figure 1.21 shows a sketch of an i-MTJ device
working as STNO, accompanied by the experimental time traces of the voltage
oscillations observed at room temperature in devices characterized in Ref. [48].
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FIGURE 1.21: (a) A sketch of an STNO device with in-plane PL magnetization and tilted
FL magnetization. A large enough DC current density JDC can excite the magnetization
self-oscillation. (b) An example of experimental time domain voltage produced by the

steady-state precession of the FL magnetization for the STNO in (a) [48].

Two of the most important parameters of the STNOs are the output power Pout

and the linewidth ∆ f , where the linewidth is defined as the full width at half
maximum (FWHM) of the power spectra. Achieving devices with both high out-
put power and a narrow linewidth is currently a challenge [48–50]. In Figure
1.22, typical microwave emissions for an STNO device (sketched on the left side)
are presented as a function of the applied current IDC, revealing a red-shift of the
oscillation frequency. This shift is highlighted in the inset along with the FHVM
variation.

FIGURE 1.22: Experimental microwave emissions as a function of the bias current IDC,
for the sketched STNO devices. In inset: peak of the oscillation frequency and FHWD

as a function of IDC, highlighting the red-shift phenomenon [51].
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Considering an STNO connected through a bias tee to a load RL, the output volt-

age can be approximated as vout (t) ≈
IDC

2
∆R RL

Rm + RL
cos (ωt). The time-averaged

power delivered can be expressed as [48, 49]:

Pout =
V2

out
2RL

=
I2
DC
8

∆R2 RL

(Rm + RL)
2 (1.59)

From Eq. (1.59), it is evident that increasing the output power requires enhancing
the ratio RL/Rmas well as the value of ∆R, therefore increasing the current, in
agreement with the experimental observation in Figure 1.22.

1.8.1.1 Analytical model of the STNOs

Slavin et al. [47, 52, 53] have developed an analytical model based on the uni-
versal model of non-linear oscillators with negative damping, that we refer to
as Slavin model in the rest of the text, to describe the nonlinear dynamics of the
STNOs:

dc
dt

+ iω
(

c2
)

c + Γ+

(∣∣∣c2
∣∣∣) c− Γ−

(∣∣∣c2
∣∣∣) c = f (t) (1.60)

where c (t) =
√

peiϕ(t) is the complex amplitude of the oscillations, which mea-
sures the power p =

∣∣c2
∣∣ and the phase ϕ = arg (c) of the oscillations. ω (p)

is the frequency of the excited mode, Γ+
(∣∣c2

∣∣)accounts for the natural positive
damping of the system related to the energy dissipation, and Γ−

(∣∣c2
∣∣) repre-

sents the effective negative damping introduced by external or internal energy
sources, such as spin-polarized currents. The term f (t) incorporates the influ-
ence of external signals, including thermal fluctuations (in autonomous regime
of auto-oscillation f (t) = 0).

While a detailed explanation of this model is not the primary focus of this the-
sis, key information relevant to STNO are discussed herein. The computation
of ω (p) and Γ± (p) for real geometry is mathematically complicated, and in the
most case a weakly-nonlinear (p≪ 1) Taylor expansion is considered:

ω (p) ≈ ω0 + Np
Γ+ (p) ≈ ΓG (1 + Qp)
Γ− (p) ≈ σJ (1− p)

(1.61)



Chapter 1. Spintronic devices: fundamental and applications 35

Where ω0 is the resonance frequency of the frequency of the self-oscillation at the
critical current, N is the nonlinear frequency shift coefficient, Q is the nonlinear
damping coefficient, ΓG = αGω0, σ is the STT coefficient and J is the current. The
expression for the STNO in auto-oscillation with the approximation (1.61) is:

dc
dt

= i (ω0 + Np) c + ΓG (1 + Qp) c− σJ (1− p) c (1.62)

Examining the expression (1.62) a straightforward comparison with the LLGS
equation in the form of Eq. (1.42) can be made: the first term is the precessional
torque, the second one is the damping-like torque and the third term is the STT.

Knowing that c (t) =
√

peiϕ(t), the Eq. (1.60) can be rewritten as:

eiϕ

2
√

p
dp
dt

+ ieiϕ√p
dϕ

dt
= −iω (p)

√
peiϕ −

(
Γ+ (p)− Γ− (p)

)√
peiϕ (1.63)

Dividing by eiϕ√p, it becomes:

1
2
√

p
dp
dt

+ i
dϕ

dt
= −iω (p)−

(
Γ+ (p)− Γ− (p)

)
(1.64)

From this expression, the Slavin model can be reformulated as a system of two
real equations, one for the power and the other for the phase of the oscillations:

dp
dt

= −2
(
Γ+ (p)− Γ− (p)

)
p

dϕ

dt
= −ω (p)

(1.65)

There are two possible stationary (dp/dt = 0) solutions of the first equation.
The first is the trivial one for p = 0, representing an absence of oscillations. The
second is obtained from the equation:

−2
(
Γ+ (0)− Γ− (0)

)
p = 0 (1.66)

when Γ+ (0) > Γ− (0), and Γ+ (0) = Γ− (0) is the condition to determine the
threshold value for the generation of the self-oscillation. In detail, the threshold
current Jth for the microwave generation in a STNO, is obtained by substituting
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the Eq. (1.61):

Jth =
ΓG

σ
(1.67)

The nonzero solution of the stationary power is p = p0, and p0 can be derive from
the condition Γ+ (p0) = Γ− (p0):

p0 =
σJ − ΓG

ΓGQ + σJ
=

σJ
ΓG
− 1

Q +
σJ
ΓG

=
ζ − 1
ζ + Q

(1.68)

Where ζ is the dimensionless supercriticality parameter:

ζ =
J

Jth
(1.69)

The stationary power is zero for J = Jth (thus ζ = 1), increasing with current (or
ζ), until reaching the limit p∞ = 1 for ζ → ∞.

However, the maximum injected current is constrained by the MTJ barrier break-
down voltage.

1.8.2 Spin-torque diodes

An alternating current, iAC (t) = IAC sin(ωt + φI), injected into an MTJ can exert
a torque of the FL magnetization. If the frequency of the input current is close to
the precession frequency of the FL magnetization m, the resonance phenomenon
strongly amplifies the oscillations. Due to the magnetoresistance effect, these os-
cillations of the m lead to the resistance oscillations with the same frequency of
the input current: r (t) = ∆Rs sin(ωt+ φR). This process is explained considering
that for half of the period of the alternating current the FL magnetization is tilted
toward the PL magnetization, resulting in low resistance; in the next half of the
AC current oscillation, m is tilted in the opposite direction, resulting in high re-
sistance. In such a condition, a rectified voltage is generated across the MTJ. This
rectification phenomenon is known as spin-diode effect, and the corresponding
device as spin-torque diode [45, 54–56]. This process can be easily demonstrated
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as follows:

v (t) = iAC (t) r (t) = ∆RS IAC sin (ωt + φI) sin (ωt + φR) (1.70)

By leveraging the trigonometric identity: sin A sin B = (cos (A− B)+
− cos (A + B))/2, the expression can be rewritten as:

v (t) =
1
2

∆RS IAC cos (φI − φR)−
1
2

∆RS IAC cos (2ωt + φI + φR) (1.71)

The DC component of the voltage is VDC =
1
2

∆RS IAC cos (φS) where φS is the
intrinsic phase shift between the AC current and the oscillating resistance. Figure
1.23 provides a visual representation of the output voltage from the Eq. (1.71),
highlighting the DC component of the voltage.

FIGURE 1.23: A schematic explanation of the spin-diode effect. An AC current iAC (black
curve), with frequency close to the natural frequency of the oscillator, induces an oscil-
lating resistance (blue curve) with the same frequency of iAC. This resistance partially
rectified the input current, giving rise to an output voltage (red curve) characterized by

a DC component (dashed red line).

Tulapurkar et al. in 2005 [55] provide the first measurement of the spin-diode
effect, shown in Figure 1.24. This figure illustrates the DC voltage generated by
the STD in response of the frequency of the AC current at a fixed amplitude value,
for different values of the field.
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FIGURE 1.24: Rectification response: DC voltage generated by the STD as a function of
the frequency of the AC current, for different external field [55].

One of the most important metrics for evaluating the STD performance is the
sensitivity, which is the efficiency in converting the AC input power Pin into a
rectified voltage VDC. It is expressed as:

ε =
VDC

Pin
(1.72)

For instance, the sensitivity of the diode characterized by Tulapurkar STD [55]
is ε = 1.4 V/W, which is very low compared to the nowadays devices, which
exceed 105 V/W [57]. Another parameter is the conversion efficiency, that in a
general formulation is defined as:

η =
Pout

Pin
(1.73)

where Pout is the output power. For the STD, Pout is the output DC power which
can be delivered to a load.

Based on their working regime, STDs can be classified into two main categories:
passive STDs (unbiased) and active STDs (biased) [56].

1.8.2.1 STDs working in passive regime

Passive STDs can exhibit either a resonant or non-resonant response.

The resonance response can be linear or nonlinear. Under low input power Pin

the resonance response of the STD can be described within a linear theory. An
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example of such STD response is found in the work of Tulapurkar [55]. Further
improvements have been done in order to improve the sensitivity, including the
use of VCMA [58] as well as the control of the interfacial perpendicular anisot-
ropy and the design of hybrid MTJs [46]. If the input AC current is increased
over a certain threshold, a transition from linear to nonlinear response occurs,
and the rectification voltage as a function of the AC current frequency becomes
asymmetric [59].

The nonresonant response of unbiased STDs can have different behaviors: broad-
band response [60, 61] and low-frequency tail response (where the rectified out-
put increases as the frequency of the AC input decreases) [62, 63]. Induced by a
large enough power in MTJs with a specific design, a broadband response char-
acterized by a flat rectified output across a wide range of input frequencies can be
observed. Figure 1.25 provides a comparison of the STD response at two different
input powers, showing for those MTJs the transition from resonant to broadband
response. This broadband response behavior is very useful for the development
of electromagnetic energy harvesting applications, a topic that will be further dis-
cussed in paragraph 1.10.1.

FIGURE 1.25: Rectified voltage as a function of the frequency of the AC current for two
distinct input powers PRF applied to the STD. (a) PRF = 0.1 µW induced a resonance

response. (b) PRF = 10 µW induced a broadband response of the STD [60].

1.8.2.2 STDs working in active regime

When a DC bias current able to drive self-oscillations is applied together with the
AC current to the STD, it can induce a nonlinear effect which enhances the STD
performance, opening the path for effective solutions in several applications such



Chapter 1. Spintronic devices: fundamental and applications 40

as compact microwave detection [45, 46, 64, 65]. This is because, in the presence
of the DC current, the rectified voltage is enhanced by an additional component
proportional to this DC current and to the variation of the DC resistance of the
MTJ, known as the nonlinear rectification effect [56, 64, 66]:

VDC =
1
2

∆RS IAC cos (φS) + IDC∆RDC (IAC) (1.74)

Where the ∆RDC (IAC) = RDC (IAC)− RDC (0) is the difference between the time-
averaged MTJ resistance (DC resistance) in the presence and in the absence of IAC.
The term IDC∆RDC can be generated with different phenomena. For instance,
Cheng et al. [66] employed both field and current to bias a superparamagnetic
MTJ achieving nonadiabatic stochastic resonance. Miwa et al. [64] worked at DC
currents which do not drive a self-oscillation of the FL magnetization (sub-critical
regime). However, in the active regime, the most efficient way to increase the
sensitivity of STDs is the injection locking. The DC current excites self-oscillation
of the FL magnetization (at IAC = 0) and when an AC current at a frequency
close to that of the auto-oscillator is injected into the MTJ, the FL magnetization
locks to it. Within this locking region, both ac current and ac resistance oscillates
at the same frequency ,and the rectification effect can be observed as in passive
STDs. Figure 1.26 reported the experimental observation of the injection locking
by Fang et al. [46].

FIGURE 1.26: Injection locking of the STD to an external AC current IAC visualized
through microwave emissions as a function of the DC bias current with amplitude en-
coded in the color. (a) Self-oscillation regime (IAC = 0) (b) Injection locking regime
(IAC ̸= 0) (c) Rectified voltage as a function of the DC current, with vertical lines in-

dicating the region of the injection locking [46].
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In this thesis we exploit the STDs in injection looking regime for an application in
neuromorphic computing [67] (paragraph 3.4.4), and for a spintronic accelerom-
eter [68] (paragraph 1.10.2).

1.9 Micromagnetic solver

The LLG equation (1.41) is a partial differential equation describing the dynam-
ics of the magnetization influenced by an effective field, comprising of long-
range (magnetostatic), short-range (exchange) and local (anisotropy, DMI, ex-
ternal field, spin torque) interactions. In this thesis, the full micromagnetic
computations are performed with PETASPIN, a well-established micromagnetic
GPU-based solver developed by the PetaSpin team (www.petaspin.com) [5, 69].
PETASPIN adopts a finite difference approach to discretize the magnetic mate-
rial into uniform computational cells, and Adams-Bashforth algorithms to nu-
merically integrate the LLGS equation associated with each magnetization within
the cells. While this model effectively captures diverse magnetization configura-
tions, including intricate spin textures such as skyrmions or vortex, it comes with
a trade-off of high computational costs.

For scenarios with weak anisotropy, where spins are tightly coupled by the ex-
change interaction, forming a huge macrospin, the so-called macrospin approxi-
mation is applied. Therefore, to analyze the dynamics of a uniform magnetization
configuration, we have implemented an efficient solver for the micromagnetic
model within the macrospin approximation.

The solver has been developed and used for the deliverable 1.1 of the SWAN-
on-chip project (www.swanonchip.eu) and for the Samothrace project (www.
samothrace.eu).

The solver integrates the LLG equation (1.41), with additional terms like STT and
SOT. Furthermore, it allows the investigation of the coupled dynamics of two
magnetic FM layers. Developed in C/C++ programming language, with a ver-
sion in CUDATM language for GPU-acceleration, this solver offers the advantage
of calculating, in a single simulation, the response of the MTJ under excitations
across a user-defined range of frequencies. This approach allows the study of
both linear and nonlinear response of the MTJ, such as resonance and broadband
response in a single run.

www.petaspin.com
www.swanonchip.eu
www.samothrace.eu
www.samothrace.eu
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A notable feature of the solver is its design geared toward a straightforward
benchmarking, allowing users to set simulation parameters using text files. In
particular, the configuration files required to setup the simulations and run the
solver are the following (shorthand notation in parenthesis):

• LayerFree_parameters.txt (fileLF).

• LayerPolarizer_parameters.txt (fileLP).

• ExternalExcitations_parameters.txt (fileExtExc).

• Output_settings.txt (fileOut).

• Run_parameters.txt (fileRun).

Each file name reflects the nature of the parameters it contains.

In the paragraph 1.9.1, a more user-friendly version of the solver is presented
through the development of a graphical user interface (GUI).

The pseudocode provided in Algorithm 1.1 outlines the main structure of the
code. To simplify the explanation, we will only focus on the scenario in which
the PL magnetization is fixed.

All simulation parameters are stored in variables and pointers, organized
into several structures (structs), defined at the beginning of the program
(DEFINESTRUCTS). To optimize memory usage, performance, and flexibility, we
have chosen to employ only 1D pointers. The variables in the structs are pop-
ulated with configuration parameters loaded from the text files (LOADINPUTS).
Subsequent setting of the inputs (SETINPUTS), which involves defining constants
(like µ0, µB, kB), the seed, converting input dimensional parameters into dimen-
sionless ones, and populating the pointers with the user-defined range of fre-
quency. Additionally, time domain excitations are loaded from text files. The
definition of the initial conditions of the magnetization is a crucial step in eval-
uating the dynamics of the magnetization, and these conditions are specified in
the configuration files. After normalization, they are set for each frequency under
examination (INITSTATE).

Based on the computation platform - CPU or GPU – used to perform
the LLG integration, two different functions are called - SOLVERLLG and
SOLVERLLG_CUDA, respectively. The results of the calculation at each time
step are stored in pointers with a frequency defined by the user. After a
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given number of saving operations (Nsave), the pointers are printed to text files
(WRITEOUTPUTS).

By setting FLAG_RES to 1, the amplitude of the magnetization for each Cartesian
component and frequency is computed (COMPUTEAMPLITUDE) and saved in text
files (WRITERES).

Algorithm 1.1: Main structure of macrospin solver
structs← DEFINESTRUCTS()

structs← LOADINPUTS(structs)

structs← SETINPUTS(structs)

m← INITSTATE(structs)

t← 0

while t ≤ ttot do

if FLAG_GPU ← 0 then

m← SOLVERLLG(t, structs) ▷ CPU computation

else

m← SOLVERLLG_CUDA(t, structs) ▷ GPU computation

end

if counter mod Nsave = 0 then
WRITEOUTPUTS(t, m, structs)

end

t← t + dt
end

if FLAG_RES← 1 then

for f ← 0 to N f do
Am ← COMPUTEAMPLITUDE(t, m, structs)

end

WRITERES(Am, structs)

end
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The LLG equation, with additional terms like STT and SOT, is numerically in-
tegrated using the Heun algorithm, in the SOLVERLLG function, as outlined in
Algorithm 1.2. A concise explanation of the Heun algorithm is provided below.
Given an ordinary differential equation with an initial condition y (t0):

dy
dt

= f (t, y) , y (t0) = y0 (1.75)

The value of the function y at the instant t + dt, can be calculated as:

y (t + dt) = y (t) +
dt
2
[ f (t, y (t)) + f (t + dt, ỹ (t + dt))] (1.76)

where
ỹ (t + dt) = y (t) + dt f (t, y (t)) (1.77)

where dt is the time step.

Algorithm 1.2: SOLVERLLG function

for f ≤ N f do
he f f ← COMPUTEHEFF(t,m, structs)

dm← COMPUTEDERIVATIVE(t, m, he f f , structs) ▷ LLG equation

mTemp ← m + dt dm ▷ First estimate of Heun’s method

mTemp ← mTemp/ norm(m) ▷ Normalize m

tTemp ← t + dt

he f f ← COMPUTEHEFF(tTemp, mTemp, structs) ▷ Update h e f f

dmTemp ← COMPUTEDERIVATIVE(tTemp, mTemp, he f f , structs) ▷ Derivative

at the first estimate

m← m +
dt
2
( dm + dmTemp ) ▷ Heun’s method update

m← m / norm(m)

end
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Each Cartesian magnetization component is stored in a different pointer, con-
taining the magnetization values for each frequency. The Heun algorithm is em-
ployed to update the values of the magnetization at each time step for each input
frequency.

The COMPUTEHEFF function is responsible for calculating the effective field, and
its components are summarized in Algorithm 1.3.

The COMPUTEDERIVATIVE function performs the LLG equation.

Algorithm 1.3: Effective field components (COMPUTEHEFF)

hdmg ← −N m ▷ Demagnetizing field

hext ←
1

µ0MS
(hextDC + hextAC sin (2π fht +φh)) ▷ External field

hth ←
η

MS

√
2αGkBT

γµ0MSVdt
with η← N (0, 1) ▷ Thermal field

hVCMA ←
(

VCMADC

µ0MS
+

VCMAAC

µ0MS
sin (2π fVt + φV)

)
(m · uk) uk ▷ VCMA

field
hani ←

2Ku

µ0M2
S
(m · uk) uk ▷ Anisotropy field

hSTT ← σJSTTgT
(
m, mp

) (
m×mp

)
▷ STT field

hFLTSTT ← qSTTσJSTTgT
(
m, mp

)
mp ▷ Field-like torque STT field

hSOT ← σJSOTθSHE (m× σSHE) ▷ SOT field

hFLTSOT ← qSOTσJSOTθSHEσSHE ▷ Field-like torque SOT field

he f f ← hdemag + hext + hth + hani + hVCMA + hSTT + hFLTSTT + hSOT + hFLTSOT

In the CUDA version of the solver, individual kernels are dedicated to calculating
each field and for the computation of the LLG equation.

We want to point out that the structure of the code is highly scalable, paving the
way for the integration of future features and improvements.
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1.9.1 Graphical user interface of the macrospin solver

In order to create a user-friendly macrospin solver, a GUI has been developed
using the tkinter package in Python. This interface provides a clear visualization
of all the simulation parameters extracted from the text configuration files, and
it has received very positive feedback from members involved in the SWAN-on-
chip projects for which the macrospin solver was delivered.

Upon launching the interface, a preliminary GUI appears, providing options to
create a new project or open a previous one, as illustrated in Figure 1.27.

FIGURE 1.27: Welcome screen of the GUI, provides options to either create a new project
or open an existing one.

Figure 1.28 shows the main panel, featuring two tabs – one for the configuration
of all the simulation parameters and the other for the post-processing of results.
Four buttons on the top right side enable users to create a new project, open an
existing project, save and run the project, respectively. At the bottom of the GUI,
the current project folder is visible along with zoom in and zoom out buttons
on the right side. A sketch of the MTJ in the two main configurations – fixed or
dynamic PL magnetization – is presented, highlighting the coordinate system and
the external excitations. Each vertical configuration tab on the left side of the GUI
corresponds to a configuration text file, simplifying the parameter comparison
between text files and GUI settings.
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FIGURE 1.28: Main panel of the GUI, featuring several highlighted commands.

Specific conditions of the simulations are configured through a drop-down menu,
indicated by the underline blue word “FLAG” label followed by the correspond-
ing condition. A tooltip provides additional information when the cursor hovers
over the condition. In Figure 1.29, the configuration for the STT field is shown as
an example. The first FLAG activates the computation of the STT field and also
determines the nature of the current – DC, AC, DC+AC or user-defined through
a text file. To enhance visibility, active parameters are displayed in black font,
while inactive ones, not computed by the solver, are in gray font.
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FIGURE 1.29: Example of configuration setting of the STT field in the GUI.

One project can be set up at a time, however the solver, launched using a sep-
arate thread, allows the opening of different projects and running multiple in-
stances of micromagnetic simulations simultaneously. In the current version, the
post-processing includes two options. The first one involves the plotting of the
magnetization amplitude as a function of the frequency for the three Cartesian
components. The frequency range can vary for different excitations (but it is the
same in number), and a preliminary GUI allows the selection of the frequency
range to be considered in the plot, as illustrated in Figure 1.30. Additionally, a
tooltip displaying the coordinates of the data appears when the cursor hovers
over the data points. The resulting plot is automatically saved as a PNG image in
the output folder.
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FIGURE 1.30: Post-processing tab in the GUI: plotting the three Cartesian components of
the oscillating magnetization amplitude as a function of the input frequency of a selected

excitation.

The second option involves the plotting of the time trace of each Cartesian com-
ponent of the magnetization, as shown in Figure 1.31. A separate GUI enables
the selection of one or more frequencies to plot.



Chapter 1. Spintronic devices: fundamental and applications 50

FIGURE 1.31: Post-processing tab in the GUI: plotting the time trace of the three Carte-
sian components of the magnetization.

1.10 Applications of MTJs

As previously mentioned, MTJs can find applications in various domains. We
leveraged MTJs in neuromorphic computing [67, 70] (Chapter 3), probabilistic
computing [71, 72] (Chapters 4) and oscillator-based Ising machine [71]. This
section presents our results in utilizing MTJs for electromagnetic RF energy har-
vesting (paragraph 1.10.1) and accelerometers (paragraph 1.10.2) [68]. In these
applications, the devices are modeled using our micromagnetic solver within the
macrospin approximation.

1.10.1 Nanoscale STDs for harvesting ambient radiofrequency

energy

The extensive network of sensors and IoT devices worldwide demands a massive
number of radiofrequency (RF) source for data exchange. Unfortunately, a con-
siderable amount of the ambient RF energy from these source remains unutilized.
Properly harvesting this energy could provide an abundant source of energy use-
ful to supply electronic devices and sensors [60, 73–75]. The energy harvesting
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module (EHM) developed in collaboration with the group of Prof. Yang at the
National University of Singapore is composed of a receiver, an STD as rectifier, a
power management module and a load that utilizes the harvested power, as illus-
trated in Figure 1.32. The main element of the EHM is the rectifier. Up to now, the
challenge is to develop a device that can effectively capture the ambient RF power
PRF, which is typically less than −20 dBm, in range −82 < PRF < −20 dBm
(6.3 pW < PRF < 10 µW).

FIGURE 1.32: An illustrative example of the RF energy harvesting from environment
sources using STD, with in-plane polarizer and tilted out-of-plane FL magnetization.

We explore the potential application of the STD as a rectifier (or spin-rectifier,
SRs) element of the EHM, coupled with a properly designed matched antenna,
referred to as STD-rectenna. In particular, we demonstrated the technical fea-
sibility of STDs by designing two prototypes: (i) a single STD-rectenna for am-
bient energy harvesting (ii) a STD-array for broadband rectification, achieving
a record zero-bias sensitivity (≈ 34.5 V/mW), high efficiency (7.81%) and STD-
based EHM operational at PRF < −20 dBm.

The employed MTJs are composed of CoFeB for both the FL and PL, separated
by an MgO spacer layer. Through extensive experimental measurements, the best
rectification results have been consistently observed in devices with 40× 100 nm2

and 80× 200 nm2 (the first dimension corresponds to the hard axis (y-axis), while
the second corresponds to the easy axis (x-axis)), with 1.9 nm and 1 nm, thickness
of the FL and spacer layer, respectively, as illustrate in Figure 1.32.

The response of the devices under zero-bias and zero magnetic field condition
have been studied. In Figure 1.33 (a) the rectification response of the two devices
at PRF = −30 dBm is presented, showing a resonant behavior. These devices
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are specifically chosen to operate at frequencies close to WiFi (2.4 GHz), 4G (2.3-
2.6 GHz) and 5G (3.5 GHz). At PRF = −55 and −40 dBm, the 80 × 200 nm2

and 40 × 100 nm2 respectively achieved a maximum sensitivity ≈ 2.4 and ≈
1.0 V/mW, surpassing the reported zero-bias sensitivity [46, 64, 75] and the state-
of-the-art zero-bias Schottky diode (which is state-of-the-art RF rectifier). As the
PRF is reduced to −20 dBm, the two STDs exhibits different responses, as shown
in Figure 1.33 (b) and (c) for 40× 100 nm2 and 80× 200 nm2 STDs, respectively.
While the 80 × 200 nm2 STD shows a resonant behavior similar to the one ob-
served at PRF = −30 dBm, the 40× 100 nm2 STD shows a broadband response
(from 0.1 to 3.5 GHz).

FIGURE 1.33: Experimental rectification curves for 40× 100 nm2 and 80× 200 nm2 STDs
at different input powers. (a) Resonant response for both STDs (blue line 40× 100 nm2

and red line 80× 200 nm2) at PRF = −30 dBm. (b) Broadband rectification from 40×
100 nm2 single STD (red line) and 10 STDs connected in series (blue line), at PRF =
−20 dBm. (c) Resonant and band-pass response from the 80× 200 nm2 single STD (red

line) and a 10 STDs connected in series (blue line).

However, the output rectified voltage is not enough for the EHM. To address this,
we propose to use an array of STDs connected in series. Figure 1.33 (b) and (c)
show the results for two arrays of 10 STDs, the first made of 40× 100 nm2 STDs,
the second of 80× 200 nm2 STDs. The 10 STDs are connected in series without
any external antenna. The excitation is provided directly by wireless RF energy,
which is the key challenge to face for the development of ultra-compact EHMS.
The 40 × 100 nm2 STD-array shows a broadband frequency response compati-
ble with the single STD response, while the 80× 200 nm2 one exhibits a transition
from resonant to broadband. The latter shows a narrow detection band compared
to the 40× 100 nm2 STD-array (suitable for a band-pass filter rectifier) but with
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high output voltage, indicating high sensitivity. To further understand the exper-
imentally observed transition from resonant to broadband in 40× 100 nm2 single
STDs, we performed micromagnetic simulations within the macrospin approxi-
mation.

We simulated an elliptical device with FL dimensions of 40× 100 nm2 and thick-
ness 1 nm, featuring an in-plane polarizer and tilted out-of-plane FL magnetiza-
tion. The main micromagnetic parameters used to solve the LLGS equation are:
MS = 800 kA/m, Ku = 0.39 MJ/m3, αG = 0.02, and STT parameters g = 2,
P = 0.7. The demagnetizing field originated by the polarizer is added as a con-
stant external field HDC = −5 mT. The rectification curves are computed for AC
current density raging from JAC = 0.1 to 10 MA/cm2 and frequencies scanned
from f = 0.1 to 15 GHz. Figure 1.34 presents the results: (a) the phase diagram of
the rectification curves as a function of the amplitude of the AC current density,
where the color identifies the amplitude of the x-component of the FL magne-
tization ∆mx. For clarity, the maximum value of ∆mx as a function of the AC
current in shown in (b), and four examples of rectification curves are displayed
in (c), highlighting the transition from resonant to broadband response. Further-
more, we observed that a small variation of the anisotropy coefficient has a big
impact on the resonance frequency value. Keeping the AC current constant at a
value for which the STD is resonant, JAC = 0.1 MA/cm2, Figure 1.34 (c) shows a
linear behavior of the resonance frequency as a function of the anisotropy param-
eter Ku. For Ku = 0.419 MJ/m3 the frequency value is close to the 5G frequency
(≈ 3.5 GHz), matching experimental measurement for similar devices.



Chapter 1. Spintronic devices: fundamental and applications 54

FIGURE 1.34: Simulated results for a 40× 100 nm2 illustrate the transition from resonant
to broadband response. (a) STD phase diagram of the precession amplitude of the x-
component of the FL magnetization (∆mx) as a function of the microwave frequency f
and AC current density amplitude (JAC). (b) Maximum ∆mx as a function of JAC. (c) Four
examples of rectification curves at different JAC to highlight the transition from resonant
to broadband response. (d) Linear behavior of microwave frequency as a function of
the anisotropy coefficient Ku. Red dot: the 5G frequency, matching the experimental

measurement for a similar device.

In order to understand the origin of the transition from resonant to broadband re-
sponse, additional experiments have been performed, involving a single and two
serially-connected 40× 100 nm2 STDs, driven by an AC current at angular fre-
quency ω (and IDC = 0 mA). Figure 1.35 (a) and (b) show the respective recorded
microwave emissions. The single STD exhibits a weak second harmonic (2ω com-
ponent) at 6 GHz, while in the two STDs connected in series the second harmonic
is enhanced by one order of magnitude.
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FIGURE 1.35: Experimental spectrum emitted from 40× 100 nm2 (a) single STD (b) two
serially-connected STDs, excited by a RF signal (IDC = 0 mA). The presence of a second
harmonics at 6 GHz is evident and enhanced in (b). (c) Amplitude of the x-component
FL magnetization as a function of the AC input current for VCMA of 0 and 10 mT. The

VCMA-driven enhancement of the magnetization precession can be observed.

The presence of the second harmonics can be understood from the rectification
voltage formulation in Eq. (1.71). Its enhancement is due to the large VCMA
of the device. When connected in series, the voltage at 2ω in one STD drives a
parametric excitation in the other STD, enhancing the magnetization precession
angle. To support this claim, we also perform a micromagnetic simulation with
AC current at ω and VCMA applied at 2ω, with a VCMA amplitude of 10 mT,
and compare the response with zero VCMA, as shown in Figure 1.35 (c). The mi-
cromagnetic parameters are the same as those used for results in Figure 1.34. The
simulation results confirm that the amplitude of the magnetization precession
increases with VCMA, indicating a potential enhancement of the sensitivity.

Finally, the feasibility of the EHM module is demonstrated by integrating the
80× 200 nm2 STD-array (10 STDs in series) in an EHM in an ambient environment
without an extra antenna. The EHM is used to power a temperature sensor, as
illustrated in Figure 1.36 (a). In Figure 1.36 (b), the rectification response of the
STD-array using the 2.45, 3.5 and 2.5 + 3.5 GHz RF sources, is presented. The
voltage threshold of the boost is 20 mV, which the STD-array achieves at 22 dBm
at 2.45 GHz. The boost converter steps up the STD-array voltage from 20 – 50
mV to 1.6 – 4 V. The temperature sensor turns on at Vstep ≈ 1.2 V, achieved at –27
dBm and –22 dBm using the dual sources (2.45 and 3.5 GHz) and a single 2.45
source, respectively. To mitigate the fast charging-discharging effect of STDs due
to the low capacitance, an external capacitor of 0.01 F (capacity 3.3 V) is used to
maintain a stable rectified voltage.



Chapter 1. Spintronic devices: fundamental and applications 56

FIGURE 1.36: (a) A schematic representation of the energy harvesting module based on
STDs. The harvested voltage (VDC) from the STD-array is stored in the capacitor, and a
boost converter steps it up to a high-voltage (Vstep ≈ 1.6− 4 V) to power a temperature
sensor. (b) Experimental results of rectified voltage from STD-array using 2.45 and 3.5
GHz antenna. The dashed line represents the threshold voltage for the boost converter

(VDC ≈ 20 mV).

In comparison with the state-of-the-art RF rectifiers, STDs are ultra-compact,
less prone to the parasitic effect, easy to integrate, scalable and more efficient
in the ambient condition. Combining these features of STDs, a new benchmark
is demonstrated for rectifier applications in the low-power regime and compact
technology.

1.10.2 Spintronic accelerometer based on MTJs

Accelerometers are an essential component in many applications, including au-
tomotive ones [76], seismic monitoring [77] and human-computer interaction
[78]. Conventional accelerometers often rely on micro electro-mechanical systems
(MEMSs). The most predominant type is the capacitive MEMS-based accelerom-
eter, illustrated in Figure 1.37 (a). These devices operate by detecting changes in
capacitance, resulting from external accelerations, between a fixed electrode and
a movable one attached to a proof mass coupled by a spring [77, 79]. However,
these systems have drawbacks such as difficulties in down-scaling, lack of elec-
tromagnetic radiation hardness and high-power consumption, due to the need to
charge capacitive plates [77].
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FIGURE 1.37: (a) Schematic description of a capacitive MEMS-based accelerometer, con-
sisting of a fixed electrode and a movable one. Change in the relative position lead to
variations in capacitance. (b) MTJ-based accelerometer configuration, with a fixed MTJ,
operating as an STD, and a free MTJ, acting as a STNO, coupled magnetically (via the

stray field) and elastically (through the spring).

Spintronic-based accelerometers have been proposed [80–82], however these rely
on the mechanical stresses acting on the MTJ, which can potentially lead to rapid
degradation. Moreover, these solutions often required intricate fabrication pro-
cesses for the MTJ, making them expensive and complex products.

Inspired by the concept of capacitive MEMS-based accelerometers, we propose an
innovative design for MTJ-based accelerometers. Our approach involves magnet-
ically (via dipolar interactions) and elastically (through the substrate) coupling
the two MTJs working as STNOs. Figure 1.37 (b) shows the device concept: one
MTJ is attached on top of a stationary substrate (fixed MTJ), while the other MTJ
is placed on a substrate that is free to move (free MTJ) but elastically connected
to the fixed MTJ. The fixed MTJ operates as an STD in injection-locking regime,
and the free MTJ is designed in such a way that the rectified voltage in the fixed
MTJ changes linearly with the distance between the two devices. This changes in
rectified voltage is directly linked to the external acceleration acting on the free
MTJ, as the magnetization dynamics is faster than the elastic ones.

The detailed results of this work can be found in Ref.[68], and a patent is pending.

1.10.2.1 Model

To demonstrate the feasibility of the proposed MTJ-based MEMS accelerome-
ter, we performed simulations that account for both magnetic and elastic cou-
pling. The magnetic behavior of the spintronics MEMS accelerometer is sim-
ulated by numerically integrating two coupled LLGS equations (Eq. (1.48))
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for the free and fixed MTJs. The effective field includes the anisotropy field,
the demagnetizing field and the dipolar field acting on MTJ i due to MTJ j:
hdip, j→i = (µ0/4πr3

ij)
(

3 urij

(
mj · urij

)
−mj

)
= ¯̄D ·mj where urij is the unit vec-

tor of magnitude rij representing the distance between MTJ i and MTJ j, and ¯̄D is
the position-dependent dipole matrix. The MTJs employed have an in-plane PL
and out-of-plane FL magnetization, patterned into pillars with elliptical cross-
section dimensions of 150× 70 nm2 (in x and y direction, respectively) and 1.6
nm-thick FL of CoFeB. The micromagnetic parameters are: MS = 0.95 MJ/(Tm3),
Ku = 0.545 MJ/m3, Aex = 20 pJ/m, αG = 0.02, and the STT parameters are g = 2,
P = 0.77, and qSTT = 0.1. The nominal electrical resistances are RP = 640 Ω and
RAP = 1200 Ω.

The elastic dynamics of the free MTJ can be described as a one-dimensional
damped spin-mass harmonic oscillator, expressed as:

mtot
d2uMTJ

dt2 = −b
duMTJ

dt
− keluMTJ − Fmag + Fext (1.78)

Where uMTJ is the displacement of the free-MTJ along the direction connecting
the two devices; mtot is the total mass of the accelerometer; b is the viscous damp-
ing coefficient; kel is the elastic constant, with resonance frequency ω2

0 = kel/mtot;
Fmag = ∇

(
mi MsVFL · hdip,i→j

)
is the magnetic interaction between the MTJs, and

Fext = mtotaext (t) is the driven external force acting on the devices due to the
external acceleration aext (t). These forces are applied to the center of mass of the
free MTJ.

1.10.2.2 Results

A preliminary study involves the characterization of the fixed MTJ in order
to identify the value of DC current (IDC,1), inducing the self-oscillation, and
the AC current (IAC,1 and fAC,1) controlling the oscillation frequency through
the injection-locking phenomenon (described in paragraph 1.8.2.2). We found
IDC,1 = −0.09 mA, IAC,1 = 50 µA, and fAC,1 = 0.5 GHz.

After the characterization of the STD, mutual synchronization of the free and
fixed MTJs is studied at varying distance d. The fixed MTJ is set in the injec-
tion locking regime and the free MTJ is biased with a second DC current (IDC,2)
driving the self-oscillations. The rectification voltage of the isolated fixed MTJ
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(V0
DC,1) serves as a reference for calibration, with the rectification voltage given by

∆VDC = VDC,1 − V0
DC,1, where VDC,1 is the rectification voltage measured across

the fixed MTJ when the two MTJs are coupled. Figure 1.38 (a) shows ∆VDC as
a function of the distance (ranging from 350 to 650 nm) for various IDC,2. The
intrinsic phase shift φDC between the AC current and the oscillating magnetiza-
tion depends on the distance between the MTJs, as shown in Figure 1.38 (b) for
IAC,2 = −0.10035 mA. The phase shift can be easily measured, thus the latter re-
sults offer a good advantage.

FIGURE 1.38: (a) Rectification voltage ∆VDC as a function of the distance d between the
fixed MTJ and the free MTJ, for different DC current injected into the free MTJ IDC,2:
-0.099 mA (black dots), -0.1 mA (dark blue triangles), -0.10035 mA (navy-blue squares),
-0.1008 mA (light-blue triangles), -0.10135mA (yellow diamonds) , -0.1017 mA (light-
brown pentagons), 0.10225 mA (dark-brown triangles). (b) Intrinsic phase shift φDC as a
function of d at IDC,2 = −0.10035 mA. Inset: time trace of the input AC current IAC,1 and

the magnetoresistance ∆R for IDC,2 = −0.10035 mA and distance d = 450 nm.

Finally, the modeling of the complete magneto-elastic dynamics is studied. When
the mechanical resonance is at least 10 times larger than the external acceleration
aext, the latter can be determined from the equilibrium conditions of a forced
harmonic oscillator: aext = ω2

0 d. To demonstrate that this formulation can
be applied in our MTJ-based MEMS accelerator, we solve the Eq. (1.78) with
mtot = 1 µg, kel = 1 kN/m [79, 83] and damping ratio ζ = b/

√
4kelmtot = 0.75,

for the fixed MTJ in injection-locking regime and free MTJ in self-oscillation with
IAC,2 = −0.10035 mA, the time evolution of distance d for different constant ac-
celeration up to 10g, where g = 9.81 m/s2 is the acceleration gravity, is shown
in Figure 1.39 (a). These results show that the transient elastic dynamics occur
in less than 0.5 ms, and the final displacement d corresponds to the forced har-
monic case. The transient of the magnetization dynamics occurs in less than 40
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ns, that is negligible compared to the elastic one. Figure 1.39 (b) demonstrates
the results when a more realistic acceleration is taken into account, revealing the
direct mapping between ∆VDC, d and aext affirming the effectiveness of the pro-
posed approach.

FIGURE 1.39: (a) Time-dependent displacement of the free MTJ relative to its initial posi-
tion under different constant external accelerations, expressed in units of g. (b) More re-
alistic input time-dependent external acceleration, aext, in units of g (top panel); relative
displacement, d, between the free and fixed MTJs (middle panel); and time-dependent
rectification voltage, ∆VDC, measured at the fixed MTJ (bottom panel) in response to aext.

1.11 Conclusions

Micromagnetism emerges as a robust theoretical framework for investigating
magnetization dynamics, and micromagnetic simulations, which numerically in-
tegrate the LLG equation, serve as powerful tools for exploring various phenom-
ena of magnetization behavior in spintronic devices. In this chapter, we have
introduced a fast and user-friendly micromagnetic solver within the macrospin
approximation designed to simulate MTJs in several configurations and operat-
ing regimes.
We have presented two impactful applications of MTJs: firstly, an energy har-
vesting module based on STDs designed to efficiently capture ambient radiofre-
quency energy. Secondly, an MTJ-based accelerometer was presented, where
changes in the rectified voltage of the STD, coupled with an STNO, are correlated
with the acceleration of the system. Spintronic devices are particularly appealing
due to their low-power consumption and compact size.



61

Chapter 2

Magnetic skyrmions

Magnetic skyrmions exhibit unique properties and are known to be the smallest
textures that can be stabilized in ferromagnetic materials. These textures can have
a significant impact in technological developments and, in particular, in storage
and unconventional computing architectures. Beyond the mainstream applica-
tions, it is interesting to highlight a path toward the use of magnetic skyrmions
in biomedical applications, such as their use in transcranial magnetic stimula-
tion. This technique has played a role in treating neurological disorders includ-
ing depression and chronic pains. Basically, skyrmions stabilized in a track can be
shifted with different types of excitations. While moving, these textures modify
the spatial distribution of the local magnetic field and, if coupled with a coil, can
induce an electrical field that can be used for electrical stimulation [84].

This chapter provides an introduction to magnetic skyrmions and fundamental
studies for their static characterizations, exploring several materials’ configura-
tions. The final section investigates the dynamics of skyrmions driven by thermal
gradients in different magnetic systems.
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2.1 Introduction

A skyrmion is a topologically stable field configuration, described as a particle-
like object. The name derives from the physicist T. Skyrme [85, 86], who first
proposed their existence in 1961. It is characterized by a non-trivial topology, i.e.,
an integer skyrmion winding number [87]:

Nsk =
1

4π

∫
m · (∂xm× ∂ym) dx dy (2.1)

Nsk represents the number of times the spin direction wraps the 2D surface
around a unit sphere. Mathematically, structures with different topological num-
bers cannot be continuously transformed into one another. This implies that, in a
physical system, there is an additional energy barrier for skyrmion annihilation
and/or nucleation [88].

Since 1961, skyrmions have been observed in many contexts, including liquid
crystal, Bose-Einstein condensates [89], optics [90, 91], and magnetic materials [8,
92, 93]. This thesis focuses on magnetic skyrmions, known for their topological
stability, high mobility, and small magnetic configuration, making them valuable
solitons for the encoding of information [94–96]. They are promising for diverse
technological applications, such as racetrack memories [97], neuromorphic com-
puting [98, 99], and unconventional applications [100, 101].

A magnetic skyrmion is composed of three regions: an inner domain, known as
skyrmion core, an outer domain, and a domain wall that determines the rotation
of the magnetization from the core toward the outer domain [96]. The skyrmion
core is the region where the magnetization goes from out-of-plane magnetization
to in plane magnetization (mz = 0). The radius R of this region defines the
skyrmion size [102] (see Figure 2.1).
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FIGURE 2.1: Schematic diagram of the magnetization of a skyrmion placed in the center
of a 2D thin film. The arrows represent the spin directions. The skyrmion core radius R

and the domain wall width w are highlighted.

Mathematically, the magnetization variation along the radius, i.e., the skyrmion
profile, is expressed as:

m(r) =
[
sin(θ(r))cos(Qv φ + Qh), sin(θ(r))sin(Qv φ + Qh), cos(θ(r))

]
(2.2)

where θ (r) is the radial function which determines the perpendicular component
of the magnetization m (r); Qv is the vorticity number, defined by the winding
number of the in-plane spin texture; Qh is the helicity number which indicates
the in-plane swirling direction (the phase). These three quantities (Nsk, Qv, Qh)

fully characterize the topological spin texture [103]. An additional index, polarity
(p), describes whether the out-of-plane magnetization at the core of the skyrmion
points in the positive (p = 1) or negative (p = −1) z-direction [104].

Different types of skyrmions arise from the combination of these numbers. The
two most studied are the Bloch and Néel skyrmions. The difference between
these two configurations lies in the different orientation of the DW magnetization.
Figure 2.2 summarizes the spin configurations of these skyrmions, together with
the cross-sections across the skyrmion diameter and the corresponding parameter
values (Nsk, Qv, Qh). In a Néel-type skyrmion, the magnetization rotates along
the radial direction, Qh = 0 for outward chirality and π for inward chirality.
In a Bloch-type skyrmion, the magnetization rotates perpendicular to the radial
direction, |Qh| = π/2, with corresponding chiral state±1 for clockwise (CW) and
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counter-clockwise (CCW) respectively. For both Néel- and Bloch-type skyrmions,
Nsk = p = |1|.

FIGURE 2.2: Spin textures in (a)-(b)-(e)-(f) are Néel-type skyrmions: the spins rotate in
the radial planes from the inner domain to the outer domain. Spin textures in (c)-(d)-(g)-
(j) are Bloch-type skyrmions: the spins rotate in the tangential plane, that is, orthogonal
to the radial directions, when moving from the inner domain to the outer domain. Top:
skyrmion number, vorticity number and helicity number, i.e., (Nsk, Qv, Qh). Bottom:

cross-section across the skyrmion diameter.

The spin texture emerges as an equilibrium magnetization configuration in-
fluenced by the interplay of different energy interactions and their respective
strengths. The balance between interactions like exchange and anisotropy, favor-
ing ferromagnetic alignment of adjacent spins, and others like DMI and dipolar
interactions, promoting twisted spin textures, determine the stabilization of skyr-
mions [96]. Symmetry breaking plays a crucial role in their stability and classifi-
cation. Skyrmions have been observed in materials with out-of-plane magnetiza-
tion, which is achievable through an external field or sufficiently large perpendic-
ular anisotropy [105–107]. In the absence of DMI, a trade-off between the dipolar
and exchange interactions stabilizes the so-called skyrmion bubbles [108], while,
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for large enough DMI, chiral skyrmions are observed. In particular, in bulk ma-
terials with bDMI, such as B20 materials, Bloch skyrmions are stabilized, while
Néel skyrmions are mainly observed in thin magnetic films and heterostructures
involving the coupling of FM layers with materials exhibiting strong spin-orbit
coupling, like heavy metals (HM), therefore in presence of iDMI [8]. The Néel
skyrmions are more promising for practical applications because they can be sta-
bilized at room temperature [109]. The chirality of the skyrmion can be controlled
by the sign of the DMI parameter [110]. Several studies have been performed to
understand the energy stability of skyrmions. A fundamental theoretical model
developed for a single skyrmion relies on the definition of the critical DMI value
(Dc) below which a single magnetic skyrmion can be stabilized. At zero temper-
ature and infinite film approximation, Dc = 4

√
4Ku/π [96].

Skyrmions can be observed in different phases, either isolated or forming a lattice,
identified by the critical material parameter κ = πD/4

√
AKu = D/Dc. For κ > 1,

the skyrmions are stable and form a lattice, whereas for 0 < κ < 1, they are
metastable and isolated [111, 112].

FIGURE 2.3: Tuning skyrmion stability with Fe/Co composition. (a) Estimation of skyr-
mion stability parameter κ for Fe/Co samples with different composition. (b)-(e) exper-
imental images of skyrmion configuration in sample (b) Fe(2)/Co(6) (c) Fe(2)/Co(5) (d)
Fe(4)/Co(4) and (e) Fe(4)/Co(6). With increasing κ, there is the transition from isolated

skyrmions to a dense lattice [111].
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Figure 2.3 shows the experimental results of Soumyanarayanan et al. [111], in
multilayer films (discussed in the paragraph 2.1.1) with [Ir(10)/ Fe(x)/ Co(y)/
Pt(10)]20 stacks of different composition and thickness (layer thickness in Å in
parentheses). As the estimated stability parameter κ increases, the skyrmions’
configuration evolves from isolated skyrmions (Figure 2.3 (b)) to a dense lattice
(Figure 2.3 (e)), accompanied by a change in skyrmion size. This is also evident
while comparing Figure 2.3 (b) and (e).

Woo et al. [106] studied the stability of a skyrmion lattice within a confined ge-
ometry, examining the influence DMI and MS. Figure 2.4 presents the theoretical
phase diagram, annotated with experimental parameters from their Pt/Co/Ta
experiment. The skyrmion phase is observed in regions with higher values of MS

and DMI. For low MS and low DMI, the uniform magnetization state is the only
stable configuration. As MS exceeds 0.2 MA/m and DMI is below 0.5 mJ/m2,
there are stabilized bubbles, while low MS and high DMI values result in the ob-
servation of labyrinth stripes. The labyrinth stripe phase and skyrmion phase are
close in energy, and slight parameters adjustments can lead the transition from
one configuration to the other (for example see Figure 2.4 (b) MS = 0.068 MAm−1

and D = 1.25− 1.50 mJm−2).

FIGURE 2.4: Phase stability diagram of spin textures as a function of DMI and MS. (a)
Magnetic equilibrium states in Pt/Co/Ta nano discs as a function of the saturation mag-
netization and DMI. (b) Examples of stable spin textures for different magnetic parame-

ters [106].



Chapter 2. Magnetic skyrmions 67

2.1.1 Magnetic skyrmions in magnetic multilayers

Skyrmions were first observed experimentally in MnSi in 2009, since then they
have attracted a great interest and have been observed in several other materi-
als, such as bulk B20 materials (e.g. MnGe or FeGe) and thin film structures like
Fe/Ir [113]. In the former the observation has been achieved below room tem-
perature. For this reason, most of the research directions have been focused on
the latter, in particular the first experimental observation was in a heavy metal
single ferromagnet bi-layer [114]. However, skyrmions can have a large size, up
to the micrometers. To reduce their size to nanoscale, magnetic multilayers with
an active tri-layer composition, involving two heavy metals and one ferromag-
netic material, are repeated several times along the thickness of the samples [107,
111, 115]. This approach offers tunability of the parameters through variations
in constituent components and relative layer thicknesses, leading to an enhanced
DMI and thermal stability.

In magnetic multilayers, usually two different types of skyrmions can be stabi-
lized: hybrid and pure Néel skyrmions. Recently, the observation of skyrmionic
cocoons has been reported [116].

A skyrmion in multilayer is classified as a pure Néel when a Néel skyrmion is
stabilized in each layer, while a hybrid skyrmion is characterized by a thickness-
dependent reorientation of its DW chirality [117, 118]. The investigation of these
different configurations, initially explored in DW and later extended to skyr-
mions, has revealed that the value of the DMI plays a key role in the DW chi-
rality [117]. In the absence of DMI, a hybrid DW is observed, characterized by
a Néel configuration in proximity of the external layers, with opposite chirality
in the topmost and bottommost layers (clockwise and counterclockwise). In the
middle layers, a Bloch DW is hosted. By increasing the |D| values the preference
for a single chirality shifts the position of the Bloch DW from the middle layer to
higher or lower layers, depending on the sign of DMI (see Figure 2.5). Beyond a
threshold value of DMI, the Block DW is completely expelled from the structure
and a pure Néel DW is observed (see Figure 2.5 (d)).
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FIGURE 2.5: Cross-section of a magnetic multilayer with DW stabilized with D =
−1, 0, 1 and 2 mJ/m2 from (a) to (d) [117].

These complex magnetization profiles are stabilized by a competition between
the iDMI and the dipolar interactions among all the layers. Figure 2.6 shows an
example of hybrid skyrmion stabilized in 16-repeat magnetic multilayers studied
by Li et al. [118] (see Figure 2.6 (a)). It is possible to identify mainly Néel-type
skyrmions in the topmost and bottommost layers, with opposite chirality – in-
ward and outward chirality, respectively (compare Figure 2.6 (c) and (d)) –, and
a Bloch-type skyrmion in the 10th magnetic layer (see Figure 2.6 (d)). Figure 2.6
(b) summarizes the helicity angle as a function of the number of magnetic layers
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for D = 0.4 mJ/m2.

FIGURE 2.6: Micromagnetic simulations of a single skyrmion in a magnetic multilayer.
(a) Cross-section of the 16-repeat multilayer sample. (b) Helicity angle as a function of
the position of the layers, showing the transition from an outward Néel skyrmion in
layer 1 (c), to a Bloch skyrmion in layer 10 (d), and an inward Néel skyrmion in layer

16(e) [118].

Furthermore, the skyrmion size depends on the layer position in the sample.
Specifically, skyrmions tend to be larger in the central layers and smaller in the
external layers [117, 119].

2.1.1.1 Magnetic skyrmion in synthetic antiferromagnet materials

A particular class of magnetic multilayer structures are SAFs materials, where
magnetic skyrmions have been experimentally observed [120, 121]. A SAF typi-
cally consists of two thin FMs layers separated by a spacer, which is a thin non-
magnetic metallic material such as ruthenium or platinum. The spacer couples
the two FM layers through an interlayer exchange interaction, of the Ruderman-
Kittel-Kasuya-Yoshida (RKKY) type [94, 122, 123]. The sign of the interlayer ex-
change constant (Aex) depends on the thickness of the spacer: (i) a positive value
results in the alignment the two ferromagnets in the same direction, forming syn-
thetic ferromagnets; (ii) a negative value leads to anti-parallel alignment of the
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two ferromagnets, stabilizing an SAF. Figure 2.7 shows an antiferromagnetic Néel
skyrmion configuration in an SAF, characterized by a skyrmion with positive core
and inward chirality in the lower FM layer, and a skyrmion with negative core
and outward chirality in the upper FM layer [124]. The advantages of the SAF
structures over previous multilayer will be discussed in paragraph 2.3.

FIGURE 2.7: Skyrmion configuration in an SAF material: a skyrmion with positive core
and inward chirality in the lower FM layer is coupled via RKKY-type interaction with a

skyrmion with negative core and outward chirality in the upper FM layer.

2.2 Characterization of the spin configuration of

magnetic skyrmions

Part of the activities that we have implemented in this Ph.D. program are linked
with collaborations with experimental groups. In particular, before exploring
potential spintronic applications, it is important to conduct static investigations,
with the primary goal of characterizing the spin configurations of the skyrmions.
Understanding these configuration is crucial due to their impact on the skyrmion
dynamics [117]. Most of these studies use magnetic microscopies to obtain two-
dimensional spatial resolution of the spin texture. The results we have analyzed
have been imaged at the Lawrence Berkeley National Laboratory and the sam-
ples are from the lab of Prof. Wanjun Jiang. As already discussed in paragraph
2.1.1, in multilayers, skyrmions can have a three-dimensional structure.

Sophisticated imaging methods using photons or electrons, can be used to char-
acterize those 3D structures. For example, the X-ray magnetic circular dichro-
ism (XMCD) method projects the direction of the magnetization onto the pho-
ton beam, allowing a distinction between out-of-plane and in-plane components,
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which is crucial for the 3D characterization of the skyrmions. The full-field mag-
netic transmission X-ray microscopy (MTXM) [106], which uses Fresnel zone
plates as an X-ray optical system, obtains a 3D spin configuration for samples
mounted on a rotatory stages. 2D MTXM images are taken with the X-ray pty-
chography as a function of the rotation angle [119] where the sample is raster
scanned while the focused X-ray beam remains fixed and a full diffractive pat-
tern is collected for each of the scanning steps.

While electron- and photon-based magnetic microscopy techniques require
sources to produce their respective probes, a wide range of scanning probe meth-
ods are also available, notably magnetic force microscopy (MFM). The MFM
maps magnetic fields by a measurement of the interaction of the magnetic mo-
ment of the tip with the stray field of the sample. It is one of the most used
technique [111, 115, 119] although it cannot reveal the spin chirality [125].

Recent studies also introduced indirect methods to identify the type of skyr-
mions. Duong et al. [119] have demonstrated that systems with pure Néel skyr-
mions and hybrid skyrmions exhibit different characteristics in the first-order
reversal-curve (FORC) diagrams.

Another indirect approach we have worked on is based on the different collaps-
ing dynamics observable for pure Néel and hybrid skyrmions driven by changing
perpendicular magnetic field as discussed in detail in the subparagraph 2.2.1.

2.2.1 Field-driven collapsing dynamics of skyrmions in mag-

netic multilayers

In this section, we will show a qualitatively different collapsing dynamics for
pure Néel and hybrid skyrmions induced by a perpendicular magnetic field in
two representative multilayers systems, [Pt/Co/Ir]15 and [Ta/ CoFeB/ MgO]15.
In the first system, skyrmions undergo a first morphological transition at zero
field to labyrinth domains and followed by a second morphological transition to
skyrmions with opposite polarity and chirality, when the direction of the perpen-
dicular fields is reversed. On the other hand, skyrmions in [Ta/CoFeB/MgO]15

multilayers exhibit a continuous field-dependent transition, which is mainly re-
lated to a reversible change of the skyrmion size. These conclusions arise from
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a combination of experimental results and micromagnetic simulations. A com-
prehensive micromagnetic phase diagram is provided to identify these two col-
lapsing mechanisms, which depend on the material parameters, since the two
different collapsing dynamics rely on the detailed layer-dependent spin textures
of skyrmions. We wish to stress the potential use of them as fingerprints of the
skyrmion type.

The main results of this study have been published in Ref. [126].

2.2.1.1 Experimental measurements

Two multilayers samples, well known to host nanoscale skyrmions at room tem-
perature [106, 107, 127] are investigated. Sample #1 [Pt(1.5 nm)/ Co(1 nm)/ Ir(1.5
nm)]15 and #2 [Ta(3 nm)/ Co20 Fe60 B20(1 nm)/ MgO(2 nm)]15 (values in paren-
theses represent the thickness) were fabricated onto thermally oxidized silicon
substrates using an ultrahigh-vacuum magnetron sputtering system. Figure 2.8
(a) and (c) provide a schematic illustration of the two samples.

FIGURE 2.8: (a) A schematic representation of the [Pt(1.5 nm)/Co(1 nm)/Ir(1.5 nm)]15
multilayer and (b) its in-plane (dashed blue) and out-of-plane (solid red) magnetic hys-
teresis loops. (c) A schematic representation of the [Ta(3 nm)/Co20Fe60B20(1 nm)/MgO(2
nm)]15 multilayer and (d) its in-plane (dashed blue) and out-of-plane (red solid) mag-
netic hysteresis loops. The H⊥ and H∥ indicated in the x-axes of the figures are the
applied magnetic fields oriented parallel or perpendicular to the plane of the film, re-

spectively.

The magnetic properties of these samples were characterized via using a super-
conductor quantum interference device (SQUID) magnetometer (MPMS, Quan-
tum Design). The resulting in-plane and out-of-plane magnetic hysteresis loops
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for the sample #1 are shown in Figure 2.8 (b), and for the sample #2 in Figure
2.8 (d). The estimated MS and anisotropy field are MS = 1200 emu/cc and
µ0Hk = 500 mT for the [Pt/Co/Ir]15 multilayer, and MS = 900 emu/cc and
µ0Hk = 1000 mT for the [Ta/ Co20 Fe60 B20/ MgO]15 multilayer.

These multilayers were deposited on 100-nm-thick Si3N4 membranes for imaging
analysis by using the full-field soft X-ray transmission microscopy with a spatial
resolution of approximately 20 nm, which is performed at the beamline 6.1.2,
Advanced Light Source, Lawrence Berkeley National Laboratory. We use this
imaging approach to capture the collapsing dynamics of Néel- or hybrid-type
skyrmions that are driven by perpendicular magnetic fields.

Figure 2.9 (a) shows a series of magnetic images of the [Pt/Co/Ir]15 multilayer,
captured at the Co L3 edge (778.5 eV) under different perpendicular fields H⊥. At
an applied magnetic field of µ0H⊥ = 141 mT, isolated quasicircular Néel skyr-
mions are observed. As magnetic fields decrease toward zero, these Néel skyr-
mions expand and change shape, resulting in a mixed phase that includes both
isolated larger skyrmions and elongated ones. When the magnetic field direction
is reversed, this mixed phase transitions into a labyrinthine domain configuration
(at µ0H⊥ = −93 mT). Further increasing the magnetic field leads to the dissection
of labyrinthine domains into isolated skyrmions, with an inverse magnetization
of their core compared to the starting one. In contrast, a very different collapsing
behavior is observed in the [Ta/CoFeB/MgO]15 multilayer, as shown in Figure
2.9 (b), with magnetic images captured at the Fe L3 edge (708.5 eV) for different
H⊥. At H⊥ = 47.8 mT, the presence of circular domains is indicative of iso-
lated hybrid skyrmions. By decreasing H⊥ the skyrmions continuously increase
in size, thanks also to the reversed field direction parallel to the skyrmions’ core.
Further increasing H⊥ causes the skyrmions to coalesce and form large band do-
mains, with the magnetization in the center aligned along the field direction (at
µ0H⊥ = −67.0 mT).

These qualitatively different collapsing dynamics of the skyrmions resulting from
experimental observations imply different spin profiles across the thickness direc-
tion of the multilayers. To study the three-dimensional profile of the skyrmions,
micromagnetic simulations will be performed as discussed ahead in the text.
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FIGURE 2.9: Experimental results of the collapsing dynamic of skyrmions driven by out-
of-plane field in (a) [Pt/Co/Ir]15 and [Ta/CoFeB/MgO]15 multilayers. The color white
(black) corresponds to the local magnetization pointing out of the film plane mz > 0

(mz < 0)

2.2.1.2 Micromagnetic model

We perform micromagnetic simulations based on the typical parameters of the
[Pt/Co/Ir]15 [107] and [Ta/CoFeB/MgO]15 [118] multilayers. Table 2.1 summa-
rizes micromagnetic and computational parameters used for the simulations.

TABLE 2.1: Summary of micromagnetic and computational parameters used to simulate
experimental multilayer samples.

Parameter [Pt/Co/Ir]15 [Ta/CoFe/MgO]15

MS (MA/m) 1.2 0.91

Aex (pJ/m) 10 10

D (mJ/m2) 0.5 0.5

Ku (MJ/m3) 1.29 0.52

Discretization cell size (nm3) 2.5× 2.5× 1 4× 4× 1

Number of cells 400× 400× 17 250× 250× 21

In simulations, both samples are characterized by five repetitions of FM layer of



Chapter 2. Magnetic skyrmions 75

thickness 1 nm, interposed by a nonmagnetic layer of 3 and 4 nm thickness in
sample #1 and #2, respectively. iDMI boundary conditions are present in all the

simulations:
dm
dn

=
D

2A
(ẑ × n)×m [9, 10], where n is the unit vector normal to

the edge of the sample (see paragraph 1.3.2 for details).

Figure 2.10 shows the equilibrium configurations of skyrmions in sample #1 with
an applied field H⊥ = 141 mT, and in sample #2 with H⊥ = 47.9 mT. Sample
#1 hosts a Néel skyrmion in all the layers, with a partial size reduction in the
external layers. As discussed in section 2.1.1, the same chirality in each layer is
due to the large contribution of the DMI, while the thickness-dependent size of
the skyrmion is due to the magnetostatic field. On the contrary, sample #2, with a
smaller DMI, hosts a hybrid skyrmion, where the Bloch-type skyrmion is shifted
to layer 4, due to the non-zero DMI.

FIGURE 2.10: Spatial spin configuration of skyrmions in multilayer samples. (a)-(e) Néel
skyrmions in FM layers of [Pt/Co/Ir]15 at H⊥ = 141 mT. (f)-(j) Hybrid skyrmions in FM

layers of [Ta/CoFeB/MgO]15 at H⊥ = 47.9 mT.

The outcomes of our micromagnetic simulations support the earlier hypothesis
of the presence of two distinct types of skyrmions in these two different samples.
Once the static configuration of the skyrmions in the samples is known, we can
try to describe the experiments and study the collapsing dynamics of the skyr-
mions with a gradual reduction of the out-of-plane magnetic field.
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Figure 2.11 shows the results for both samples. In sample #1 we start from an
initial configuration with six pure Néel skyrmions and H⊥ = 141 mT. The skyr-
mions are small, isolated and have a circular shape, as in the experimental results.
With a reduction of the field toward zero, a labyrinth domain configuration is ob-
served (H⊥ = −92.3 mT). This configuration is broken into small skyrmions with
a reversed core compared to the initial state by a further increase of the negative
field.

In sample #2, we start with nine isolated hybrid skyrmions and H⊥ = 47.9 mT.
Reducing the field toward zero the skyrmions become larger and deformed with
respect to the circular shape. An inversion of the field leads to the coalescence
of the skyrmions and the formation of large domains with magnetization in the
same direction of the applied field (H⊥ = −29.8 mT).

FIGURE 2.11: Spin configurations obtained by micromagnetic simulations showing the
collapsing dynamics of the skyrmions (a)-(e) in sample #1 and (f)-(k) in sample #2.
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In conclusions, we can state that micromagnetic simulations well reproduce the
experimental measurements. The next step is to study the origin of the two dif-
ferent types of collapsing dynamics.

2.2.1.3 Micromagnetic results: explanation

We evaluate the energy as a function of the out-of-plane applied field for a Néel
skyrmion and compare it with the energy of the uniform state, as shown in Fig-
ure 2.12. This evaluation can be extended to the pure Néel skyrmions stabilized
in the sample #1 [128]. The skyrmion is stable in range 0 µT ≤ µ0H⊥ < 4 µ T
(its energy is lower that the energy of the uniform state), while in range 4 µT ≤
µ0H⊥ < 150 mT the skyrmion is in a metastable state. This can justify the collaps-
ing dynamics in sample #1: the skyrmions are metastable at µ0H⊥ ≤ 141 mT, and
become stable in range −92.3 mT < µ0H⊥ < 0 mT, therefore labyrinth domains
are observed. Skyrmions become again metastable at higher field.

FIGURE 2.12: Energy of a Néel skyrmion compared to the energy of the uniform ground
state as a function of the applied out-of-plane field in range (a) 0 µT < µ0H⊥ < 15 µT
and (b) 0 mT < µ0H⊥ < 150 mT in logarithmic scale. Inset: magnetic field region

(12 mT < µ0H⊥ < 15 mT) where the skyrmion is in a metastable state.

To understand the collapsing dynamic of the hybrid skyrmions in sample #2 we
can take advantage of the previous results of magnetic bubbles in bulk materials
[129–133]. In fact, their energy landscape is very similar: both are stabilized for a
minimization of the magnetostatic energy, and therefore have a similar response
to the external field. Based on quality factor Q = 2Ku/µ0M2

S, it is possible to
identify three scenarios:



Chapter 2. Magnetic skyrmions 78

1.) Q < 1: the magnetostatic field is stronger than the perpendicular anisot-
ropy field, therefore the easy axis is in-plane. Only in a confined structure
magnetic bubbles can be stabilized.

2.) 1 < Q < 2: the magnetostatic field is comparable or weaker than the per-
pendicular anisotropy field, therefore the easy axis is out of plane. Magnetic
bubbles are energetically favored.

3.) Q > 2: the perpendicular anisotropy field is stronger than the magnetostatic
field, therefore the easy axis is out-of-plane. In a small sample, magnetic
bubbles are observed at zero field, while, in large dots, labyrinth domains
are obtained.

The sample #2 has a Q ∼= 1, therefore it falls in the second case. Figure 2.13
shows the micromagnetic simulation results of magnetic bubbles within a bulk
material with perpendicular magnetic anisotropy and zero DMI, and the same
micromagnetic and geometrical parameters of sample #2 (see Table 2.1). As
expected, the collapse dynamics of magnetic bubbles is qualitatively similar to
that of hybrid skyrmions. Magnetic bubbles are stabilized by a positive field
H⊥ = 200 mT, and when the field decreases the bubbles change shape into elon-
gated bubbles. The reversing of the field direction transforms them into large
domains with the core magnetization aligned in the same direction of the applied
field (H⊥ = −150 mT). It is important to note that, unlike bulk samples, in mag-
netic multilayers each FM layer is coupled via dipolar interactions, and iDMI is
present due to the asymmetric interfaces.

FIGURE 2.13: Spin configurations obtained using micromagnetic simulations, showing
the collapsing dynamics of magnetic bubbles in perpendicular bulk materials.

In order to gain a more comprehensive understanding of the collapsing dynam-
ics of skyrmions in magnetic multilayers, we perform systematic micromagnetic
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simulations across various material parameters. The results are summarized in
Figure 2.14, which presents a phase diagram of the collapsing dynamics of skyr-
mions in Q-d space (d = 2A/D) [128].

FIGURE 2.14: Phase diagram of the micromagnetically simulated collapsing dynamics
of skyrmions in Q-d space. Each color represents a different final state (domains, hybrid
skyrmions: HS or pure Néel skyrmions: PNS) and collapsing dynamics (type 1: similar
to the sample #1, or type 2: similar to the sample #2). The circular points correspond to
the simulations. The experimental samples are indicated with black stars. An example

of the collapsing dynamics within the blue region is presented in Figure 2.15.

From the phase diagram five regions can be identified:

1.) Q < 1 and 0 < d < 0.55 (blue region): at the initial state hybrid skyrmions
(HS) are stabilized. The collapsing dynamics of the skyrmions is similar
to the sample #1 (referred to as collapsing dynamics of type 1) and it is
shown in Figure 2.15. Notably, the iDMI is not enough strong to stabilize
skyrmions in all the layers, therefore it exists a mixed phase which includes
hybrid skyrmions and magnetic bubbles.

2.) 1 < Q < 1.25 and 0 < d < 0.5 (red region): at the initial state hybrid
skyrmions are stabilized. The collapse dynamics of the skyrmions is similar
to the sample #2 (referred to as collapsing dynamics of type 2), therefore
in the final state large domains are observed. The black star identifies the
experimental sample #2.
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3.) 1.25 < Q < 1.4 and 0.2 < d < 0.4 (red region): at the initial state pure Néel
skyrmions (PNS) are stabilized. However, the collapsing dynamics is simi-
lar to the sample #2 (collapsing dynamics type 2) leading to the formation
of large band domains.

4.) 1.25 < Q < 1.4 and 0 < d < 0.3 (yellow region): the equilibrium state is
characterized by a uniform out-of-plane configuration, as the high perpen-
dicular magnetic anisotropy precludes the existence of skyrmions.

5.) 1 < Q < 1.4 and 0.5 < d < 1 (green region): at the initial state pure Néel
skyrmions (PNS) are stabilized. The collapsing dynamics of the skyrmions
is similar to the sample #1 (referred to as collapsing dynamics of type 1),
therefore in the final state Néel skyrmions with opposite polarity are ob-
served. The black star identifies the experimental sample #1.

By referring to the full phase diagram, we can establish a direct correlation be-
tween the type of skyrmions and the associated collapse dynamics, which can
be observed experimentally using imaging measurement techniques that do not
resolve the three-dimensional structure of the spins.

FIGURE 2.15: Spin configurations obtained using micromagnetic simulations showing
the collapsing dynamics (of type 1) of hybrid skyrmions leading to the formation of
mixed phase of HS and magnetic bubbles. The parameters are Q = 0.94 and d = 0,

corresponding to the blue region of the phase diagram in Figure 2.14.
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2.3 Dynamic studies of skyrmions

One of the key features of skyrmions that has made them promising candidates
for spintronic applications, such as storage, is that they can be “easily” manip-
ulated. Looking at the skyrmion as a particle-like object, its dynamics can be
analytically described by Thiele’s equation, which is directly derived from the
LLG equation [97, 134, 135]. As a rigid entity, the motion of the skyrmion can be
related to the motion of its center of mass R, which corresponds to the skyrmion
core [136]. The center of mass is defined as the weighted average of out-of-plane
magnetic moments mz in the region enclosed by the domain wall, i.e., mz = 0.
The Thiele’s equation is given by:

G× v− αGD · v + F = 0 (2.3)

where G is the gyrocoupling vector, v = dR (t) /dt is the velocity of the skyrmion
center, with v = (vx, vy) the longitudinal and transversal components, respec-
tively, αG is the Gilbert damping, D is a dissipative or viscosity tensor describing
the effect of the dissipative forces on the skyrmion motion, and F comprises forces
acting on the skyrmion, such as repulsion from the edges of the samples and pin-
ning from local defects.

The skyrmion motion due to a constant excitation is characterized by an in-
plane deflection with respect to the excitation itself. This effect is similar to the
Magnus force which occurs when a spinning object is moving within a flowing
fluid. A similar phenomenon, called Hall effect, arises when, in presence of a
perpendicular external field, the charged particles flowing in a conductor are
deflected toward two sides, creating a voltage across the conductor itself. For
skyrmions, this effect is called skyrmion Hall effect and the angle between the
skyrmion trajectory and the external excitation is known as skyrmion Hall angle,

ϕSkH = arctan
(

vy

vx

)
(see Figure 2.16). An exception is the motion of the skyrmion

in SAF materials, where the skyrmion Hall effect vanishes due to the fact that the
two coupled skyrmions are subjected to a Magnus force of the same magnitude
but in opposite direction, thus the net force perpendicular to the external excita-
tion vanishes [123, 124, 137].
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FIGURE 2.16: Sketch of the skyrmion Hall effect. The motion of the skyrmion is tilted
with respect to the direction of the external excitation [94].

2.3.1 Review of skyrmion motion driven by different external

forces

The most studied approach to manipulate skyrmions is by spin-polarized current
through the conventional spin-transfer torque (STT) [138, 139] and spin-orbit-
torques (SOTs) [106, 120, 140–142].

When an electrical current flows through a nonuniform magnetization config-
uration, it undergoes an adiabatic realignment of electron spins with the local
magnetization. This process involves the transfer of the spin angular momentum
to the local magnetization, consequently inducing dynamics in the magnetization
and, therefore, the skyrmion shifting [94]. This effect has also been studied in the
context of the DW motion and most of the findings can also be linked with the
dynamics of skyrmions [8].

Although electrical current-induced skyrmion motion is a suitable approach from
a theoretical and experimental point of view, alternative methods have been pro-
posed, including the use of external field [143, 144], perpendicular anisotropy
gradient [145] and thermal gradients [127, 146]. The latter is particularly promis-
ing due to its low energy consumption and it is the basis of an emerging research
area known as skyrmion caloritronics [127]. In this scenario, we move the topic
forward with the analytical and numerical demonstration of the skyrmion mo-
tion driven by thermal gradients in different magnetic systems (see subparagraph
2.3.2).
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2.3.2 Temperature-gradient-driven magnetic skyrmion motion

In this section, the motion of the skyrmion induced by a thermal gradient will
be explained by identifying the role of entropic torques due to the temperature
dependence of magnetic parameters. Our studies show that, in single-layer fer-
romagnets with iDMI, the skyrmions move toward higher temperatures, while,
in magnetic multilayers, they move to lower temperatures. We provide both an-
alytical and numerical demonstration that the opposite behaviors are attributed
to different scaling relations of the material parameters as well as to the presence
of a non-negligible magnetostatic field gradient in multilayers. Furthermore, we
observe a spatially dependent skyrmion Hall angle in multilayers hosting hybrid
skyrmions, which arises from the change of thickness-dependent chirality as the
skyrmion moves along the temperature gradient.

The main results of this study are published in Ref. [147].

2.3.2.1 Introduction

FIGURE 2.17: (1) Scanning electron microscopy image of the multilayer device under in-
vestigation. (2)-(7), Snapshots at increased temperature gradients, the time step between
snapshots is fixed at 500 ms. The skyrmions follow a unidirectional diffusion from the

hot to the cold region.

Wang et al. [127] have shown experimentally a unidirectional diffusion of skyr-
mions induced by thermal gradients, with their movement from hot to cold re-
gions. Figure 2.17 reports the experimental results where the temperature in-
creases from the bottom to the top of the multilayer device. For example, by fol-
lowing the skyrmion circled in orange it is possible to identify its motion toward
the cold region. This behavior has been explained by considering a combination
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of factors, including the repulsive forces between skyrmions, thermal SOTs [148],
magnonic spin torques [149, 150], as well as entropic forces.

Gong et al. [151] explains the observed skyrmion motion with the concept of spin
currents generated by thermal gradients. From their study, they found that skyr-
mions can move in both directions along the temperature gradient depending on
the material parameters.

Tomasello et al. [128] have found, via atomistic calculations, the scaling relations
of magnetic parameters (Aex, D, Ku) as a function of the temperature, and they
use these relations to study the stationary properties of a skyrmion in a single-
layer.

Inspired by the experimental results of Wang [128], we study the effects of ther-
mal gradients on the motion of the skyrmion within different magnetic systems:
in single-layer FM with iDMI, in multilayer, and in SAF. We use the already
known thermal scaling relations to study the thermally-induced skyrmion mo-
tion in a single-layer with iDMI, while, for the multilayer systems, in collabora-
tion with Prof. Joseph Barker, we computed the scaling relations via atomistic
simulations.

We focus on two effects: the entropic torque, that in a deterministic scenario gen-
erates the movement of the skyrmion toward the region where its free energy is
minimized, and the magnonic torque arising from thermal spin waves [150]. By
performing micromagnetic simulations we observe that, driven by the entropic
torque, skyrmions in single layers move toward the hotter region characterized
by a finite skyrmion Hall angle, while in multilayers they move in the opposite
direction (toward the colder region). Furthermore, we have corroborated the mi-
cromagnetic results with a generalized Thiele’s equation that takes into account
variations in the size of the skyrmion along its trajectory.

Moreover, we show that, similar to the current-driven skyrmions, the skyrmion
Hall angle vanishes in SAFs.

2.3.2.2 Theoretical model

We perform micromagnetic simulations of a squared 1200× 1200 nm2 sample for
the single-layer FM hosting a Néel skyrmion with outward chirality in the center.
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The same sample size is used for the SAF with two FM repetitions of 1 nm sep-
arated by 1-nm-thick non-magnetic layers. A squared 900× 900 nm2 sample is
simulated for the multilayer system, with five FeCo FM repetitions of 1 nm thick-
ness, separated by 2-nm-thick non-magnetic Pt/Ir layers. The multilayer sam-
ple hosts a hybrid skyrmion in the center. We consider a thermal gradient from
100 to 300 K applied by a linear function of the position along the x-direction,
with the minimum value on the left side of the sample and the maximum on
the right. We include this gradient in the temperature dependence of the macro-
scopic parameters. The change of MS with the temperature follows the relation

MS (T) = MS (0)

(
1−

(
T

Tlim

)δ
)

, where MS (0) is the value of MS of the ferro-

magnet at zero temperature, δ = 1.5 and the Curie temperature Tlim = 1120 K
[152–154]. For the other parameters, we use the 2D scaling relations found in
Ref.[128]:

Aex (T) = Aex (0) m (T)α ,
D (T) = D (0) m (T)β ,
Ku (T) = Ku (0) m (T)γ

(2.4)

where m (T) = MS (T) /MS (0) and (0) refers to the value of the parameters at
zero temperature, that are listed in Table 2.2 for each of the three simulated sys-
tems: single-layer FM with iDMI, multilayer, and SAF. In the latter, we consider
an antiferromagnetic interlayer exchange coupling constant of Aex = −5e−4 J/m2

[124, 155].

TABLE 2.2: Summary of the micromagnetic parameters at zero temperature the three
different simulated systems.

Parameter Single-layer FM [61] Multilayer SAF

MS (kA/m) 1060 1300 770

Aex (pJ/m) 20 15 20

D (mJ/m2) 2.2 1.0 2.5

Ku (MJ/m3) 0.90 1.20 0.60

Out-of-plane Hext (mT) 15 60 0

In Ref. [128] the temperature scaling relations refers to the single-layer FM with
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α = β = 1.5 and γ = 3.0 . To obtain these scaling relations for the magnetic
multilayer we perform atomistic simulations.

We model the thin film as an fcc (111) lattice with two layers of Fe (adjacent to Ir),
one layer of 50:50 mixed Fe and Co, and then two layers of Co (adjacent to Pt).
The Hamiltonian is given by:

H = ∑
⟨ij⟩

JijSi · Sj + ∑
⟨ij⟩

Dij · (Si × Sj)−∑
⟨ij⟩

KijSziSzj (2.5)

where the first term is the isotropic exchange, the second is the DMI, active only
at the Ir-Fe and Co-Pt interfaces, and the third is the two-ion anisotropy, which
only influences the Co-Pt interface. The angle brackets, ⟨ij⟩, indicate that only the
nearest neighbors are considered. Exchange, anisotropy and DMI constants are
parametrized using values from ab initio calculations in Ref. [111]: Jij (Fe− Fe) =
24.2 meV, Jij (Co− Co) = 29.0 meV, Jij (Fe− Co) = 26.6 meV, Dij (Fe− Ir) =

−0.854 meV, Dij (Fe− Pt) = 1.281 meV , Kij (Co− Co) = 0.59 meV and use
magnetic moments µ (Fe) = 1.7 µB and µ (Co) = 1.3 µB [156].

The constrained Monte Carlo method is used to obtain the temperature depen-
dence of magnetic anisotropy [157], while the temperature dependence of ex-
change stiffness and iDMI is obtained from the softening [158] and shifting asym-
metry of the spin-wave spectra (see Supplemental Material of Ref. [128] for de-
tails).

We find that the scaling parameters for the Ir/FeCo/Pt trilayer are α = 1.7, β =

2.0 and γ = 2.5 . These parameters can be tuned by changing the properties of
the material.

Micromagnetic simulations are corroborated by a generalized Thiele’s equation
developed for this scenario, where an adiabatic evaluation of the changes in the
skyrmion size is also included. It is important to note that for the given range
of temperatures the radius of the skyrmion is approximatively constant (34.6
nm + 0.2 nm from micromagnetic simulation in single-layer FM). Following the
Thiele’s formulation, the dynamic evaluation of the motion of the skyrmion at
each instant is given by:

dm
dτ

(x, τ) = −v (x, τ) · ∇m (x, τ) (2.6)
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where v = vxx̂ + vyŷ is the velocity of the skyrmion center. By substituting Eq.
(2.6) into the LLG equation (1.41) and projecting along m× ∂im , with i = x, y , we
obtain a generalized Thiele’s equation (see Supplemental Material of Ref. [147]
for details). With this formulation we derive the velocity of the skyrmion as:

vx = − 4παGDexFx

α2
GD2

ex + (4π)2 and vy = − 4πFx

α2
GD2

ex + (4π)2 (2.7)

where Dex =
∫

d2x (∂xm · ∂xm) =
∫

d2x
(
∂ym · ∂ym

)
is the viscosity tensor com-

ponents for a radially symmetric skyrmion, and Fx = ∂xV is the force gen-
erated by a gradient of the effective field along the x-axis, where V (x′) =∫

d2x
(
m (x′, τ) · he f f (x, τ)

)
. When a thermal gradient, represented as a varia-

tion of the magnetic parameters, is applied along the x-direction, the he f f de-
pends on the x-coordinate, resulting in a motion of the skyrmion. For large skyr-
mions, this means that their radius is bigger than the DW width ∆ =

√
A/Ke f f .

We can assume that mz = arccos
(

2 arctan
(
(R/r) eξ(R−r)

))
, with

ξ = (1/∆)
√

2Ke f f /µ0M2
S [128], and obtaining:

V = 2πσDW R + 2πMSHTR2 (2.8)

where σDW ≈ 4
√

AKe f f − πD is the domain wall energy density [9], HT =

Hz − bµ0MS is the external field with an additional contribution to incorporate
the variation of MS along the sample, with b depending on the properties of the
film.

2.3.2.3 Results

The results of micromagnetic simulations show that a skyrmion subjected to a
thermal gradient moves along qualitatively opposite trajectories in single-layer
FM and multilayer. Figure 2.18 (a) shows that a skyrmion hosted in a single-layer
FM moves from the cold to the hot region, which means it has a positive velocity
in both the x and y directions. Conversely, Figure 2.18 (b) shows that a skyrmion
hosted in a multilayer moves from the hot to the cold region, which means it has a
negative velocity in both the x and y directions. The latter results are qualitatively
in agreement with the experimental observations reported in Figure 2.17.
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FIGURE 2.18: Micromagnetic simulation results of the trajectory of the skyrmion in-
duced by a linear thermal gradient in a (a) single-layer FM, and (b) multilayer with five
FM repetitions. The cross-section along the thickness of the multilayer shows the stabi-

lization of a hybrid skyrmion in (b).

The first step to understand the origin of this different behavior is to analyze the
effect of a linear gradient along the x-axis of only a single micromagnetic param-
eter at a time, regardless of the link with the temperature. We want to point out
that: the Ku gradient can be achieved by inserting an additional wedge layer of a
HM [159]; the D gradient can be obtained by tuning the HM thickness [160]; the
MS and Aex gradients can be induced by a wedge layer of the FM. Practically, a
gradient of MS always implies a gradient of Aex. The outcomes of these micro-
magnetic simulations are shown in Figure 2.19. The trajectories of the skyrmions
refer to the single-layer FM, but similar results are observed in a multilayer. Each
range of the parameter is chosen after a systematic study of the skyrmion sta-
bility. Two antagonistic effects are observed, leading to two qualitatively oppo-
site skyrmion Hall angles. The gradient of perpendicular Ku and Aex moves the
skyrmion to the region where those parameters are smaller, therefore, in terms of
temperature, from the cold to the hot region. On the contrary, the gradients of MS

(magnetostatic field), D, and the combination of MS and Aex, promote the motion
of the skyrmion to the region where those parameters are larger, thus from the hot
to the cold region. These behaviors can be explained by energy considerations.
Basically, the skyrmion moves toward the region where the local value of the pa-
rameters minimizes its energy, favoring the existence of a larger skyrmion. From
the Eq.(2.8), it is possible to identify the following trade-off: increase of exchange
and anisotropy energies increases the skyrmion size, while increase of saturation
magnetization and DMI energy decreases the skyrmion size.
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FIGURE 2.19: Micromagnetic simulation results of the trajectory of the skyrmion in a
single-layer FM induced by a linear gradient of: (a) Aex (b) Ku (c) MS (d) D (e) combina-

tion of MS and Aex.

Taking into account the combinations of all parameters’ gradients (see Figure
2.18), the final effect on the skyrmion motion relies on the predominance of one
or the other effects, Aex and Ku versus D and MS).

We focus on the single-layer FM. Figure2.18 (a) implies that the scaling relations
lead to the dominance of Aex and Ku over D and MS. To better understand and
control this behavior, we consider two degrees of freedom: (i) the scaling expo-
nents, and (ii) values of the magnetic parameters at zero temperature. In particu-
lar, we focus on the iDMI scaling relation, since D can be easily tuned by simply
changing the materials at the interfaces; for example, using a different HM or
modifying its thickness [160].

First, we perform a systematic study by changing the scaling exponent β within a
range of stability of the skyrmion and fixing all the other parameters. Figure 2.20
(a) shows results for 1.5 ≤ β ≤ 2.7 where the skyrmion moves from the cold to the
hot region, therefore in the same direction of the previous results shown in Figure
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2.18 (a). On the other hand, for 2.8 ≤ β ≤ 4.0 the motion of the skyrmions is in
the opposite direction, therefore from hot to cold region. Then, we can conclude
that a threshold value of β exists that reverses the motion of the skyrmion.

The second study involves the change of iDMI at zero temperature, D(0), for two
fixed scaling exponents β = 4.0 and β = 1.5, while the other parameters are
fixed. Figure 2.20 (b) shows that the trajectories of the skyrmion is barely affected
by the D(0) for both values of β.

FIGURE 2.20: (a) Trajectories of the skyrmion as a function of different scaling exponents
of iDMI β. (b) Trajectories of the skyrmion as a function of different iDMI at zero tem-

perature D(0), for β = 1.5 on the left side and β = 4.0 on the right side of the figure.

We also conduct a systematic investigation of the influence of the thermal gradi-
ent’s magnitude on the velocity of the skyrmion. Figure 2.21 (a) shows that the
velocity increases linearly with the gradient, and the same qualitative results are
obtained in magnetic multilayers (see Figure 2.21 (b))
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FIGURE 2.21: Skyrmion velocity as a function of the thermal gradient’s magnitude in
(a) single-layer and (b) multilayers. The blue triangles (red dots) correspond to the
x-component (y-component) of the velocity obtained with micromagnetic simulations,

while the solid lines are a linear fitting of the data.

Once we have understood the skyrmion motion in the single-layer FM, we will
focus on magnetic multilayers. In particular, we study the motion of hybrid skyr-
mions under a linear iDMI gradient. We perform micromagnetic simulations
with a iDMI from 0 to −2 mJ/m2. At the starting point of the simulation, the hy-
brid skyrmion is placed at the center of the sample, which has a D = −1 mJ/m2.
Figure 2.22 (a) shows the trajectory of the hybrid skyrmion, which exhibits a
change in the trajectory slope when moving toward the edges. To understand
why this change occurred, we study the three-dimensional profile of the skyr-
mion with the calculation of the helicity angle expressed in degrees. In particular,
from the cross-section S1 in Figure 2.22, we see that iDMI value shifts the Bloch
skyrmion from the middle layer (at zero iDMI) to the second layer of the 5-repeat
multilayer. Therefore, the helicity of the skyrmion in the second layer is com-
puted, and the result is shown Figure 2.22 (b). The angle at the starting point
is about 107°, which corresponds to a Bloch skyrmion with a tilt of the chiral-
ity toward a Néel inward chirality. With the skyrmion motion toward larger |D|
values, the angle tends to approach 180°. This suggests that the Bloch skyrmion
has shifted further downward, being replaced by a Néel skyrmion with inward
chirality, as shown in the cross-section S2-S5. Comparing the change in slope in
Figure 2.22 (a) with the corresponding helicity angle in Figure 2.22 (b), we can
conclude that the variation of the trajectory results from the change of the hybrid
skyrmion profile along the thickness of the multilayers.
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FIGURE 2.22: (a) Trajectory of the hybrid skyrmion in a 5-repeat multilayer induced by
a linear gradient of iDMI. (b) Helicity angle of the skyrmion in the second layer as a
function of the position of the skyrmion along the x-axis and the corresponding value of
iDMI. Inset: illustration of the skyrmion highlighting the helicity angle of the magneti-
zation vector. The snapshots S1 to S5 show the cross-section along the thickness of the

multilayer for the points in (a) and (b).

Nonetheless, the previous result does not justify the different trajectories ob-
served between the single-layer FM and the magnetic multilayers.

Once we know the behavior of the skyrmion in both systems, single-layer FM and
multilayers, we conduct a “numerical experiment” performing a micromagnetic
simulation of a single layer using the scaling relations obtained for the multilayer
system. From the result shown in Figure 2.23 we can see that the Néel skyrmion
moves toward the colder region, similarly to the hybrid skyrmion in the multi-
layer. Therefore, the scaling relations play the key role in the predominance of
iDMI effect over the other parameters.
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FIGURE 2.23: Trajectory of the skyrmion in single-layer FM with scaling relations of
magnetic multilayers as computed via a micromagnetic simulation

The micromagnetic results are corroborated by the Thiele’s equation. Figure 2.24
(a) and Figure 2.24 (b) show the skyrmion trajectory obtained with the Thiele
methods for the single-layer FM and multilayer systems, respectively, which are
in agreements with the micromagnetic simulations.

FIGURE 2.24: Trajectory of the skyrmion obtained by Thiele’s equation with scaling re-
lations (a) single-layer FM, (b) multilayers.
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Once the influence of the entropic torques are clear, we analyze the effect of the
magnonic torque in a single-layer FM. We perform stochastic micromagnetic sim-
ulations including a linear thermal field [161, 162] gradient from 0 to 100 K by
performing different realizations, as shown in Figure 2.25. The skyrmion moves
toward the hotter region but with a stochastic dispersion of the skyrmion Hall
angle due to thermal fluctuations.

FIGURE 2.25: Trajectories of the skyrmion in a single-layer FM due to a linear stochastic
thermal field and for different realizations.

The last part of this study concerns the motion of the skyrmion in SAF, where
we decide to use the scaling relations of the magnetic multilayers. The results of
the simulations are in agreement with those obtained in ferromagnetic systems,
with the difference that, as expected, in SAF the skyrmion Hall angle vanishes,
therefore the skyrmion moves along the direction of the applied linear gradient
(x-axis). Figure 2.26 (a) and (b) show the skyrmion trajectory driven by a linear
gradient of either iDMI, MS, or thermal field gradient (top (a) and bottom (b)
layer of the SAF). The SAF skyrmion moves toward the colder region. We want to
point out that, by using the scaling relations of the single-layer FM, the skyrmion
under a thermal gradient moves toward the hotter region. On the other hand,
Figure 2.26 shows the skyrmion trajectory under a linear gradient of either Ku, or
Aex. (top (c) bottom (d) layer of the SAF).
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FIGURE 2.26: (a)-(b) Trajectories of the skyrmion under a linear gradient of either iDMI,
MS, or thermal gradient in the top and bottom layer of the SAF, respectively. (c)-(d)
Trajectories of the skyrmion under a linear gradient of either Ku , or Aex in the top and

bottom layer of the SAF, respectively.

2.4 Conclusions

Magnetic skyrmions have been topologically classified, and the stability condi-
tions for different configurations have been outlined. Our method for charac-
terizing skyrmions in magnetic multilayers, based on the different field-driven
collapsing dynamics of pure Néel and hybrid skyrmions, has been explained
through experimental and micromagnetic simulations. This approach provides
an effective means of characterizing skyrmions in magnetic multilayers, requir-
ing only a 2D imaging analysis. Following the static characterization of skyr-
mions, we have presented a dynamic study of skyrmion behavior. Our results on
the thermal-gradient-driven motion of magnetic skyrmions in various systems —
single-layer FMs, multilayer FMs, and SAFs — were explained. The qualitatively
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opposite motion observed in single and multilayer systems, as shown in the mi-
cromagnetic simulations, was further validated using Thiele’s equation, and the
findings were consistent with experimental results. This study represents an im-
portant advancement in the understanding of the dynamics of skyrmions and
contributes to the emerging field of skyrmion caloritronics.
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Chapter 3

Neuromorphic spintronics

Neuromorphic spintronics is a field of study that focuses on the implementation
of the building blocks of neuromorphic computing with spintronic technology.
This novel research topic can have a significant impact in biomedical applica-
tions. First of all, as already discussed in the previous chapters, spintronics is
emerging as an ultralow power technology that is also CMOS compatible. Hence,
any hardware implementation of neurons and synapses, fundamental concepts
in neuromorphic computing, can be implemented with MTJs, as discussed be-
low. Neuromorphic spintronics offers a technology that can be used in a variety
of biomedical applications where the energy cost is the key parameter, and it can
indeed impact the development of AI and deep learning in a broader sense.

More in detail, ANNs are the main building blocks of deep learning. These mod-
els have driven an impressive improvement in machine learning and artificial
intelligence. Conventional machine learning techniques rely on engineered fea-
tures, necessitating human intervention in the decision-making process. On the
other hand, deep learning models can autonomously extract distinctive features
directly from data [163] (see Figure 3.1).

This chapter introduces the basic concepts of artificial neural networks – neurons
and synapses – and the idea of transfer learning and knowledge distillation based
on dark knowledge. These latter approaches aim to leverage existing knowledge
of well-trained neural network models to speed-up the training process and de-
ployment of more effective and precise models.
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FIGURE 3.1: An illustration of the relationship between artificial intelligence, machine
learning and deep learning.

The research activities discussed in this chapter focus on neuromorphic spin-
tronics. We wish to stress that the main promises of this technology are the
low energy consumption while maintaining high computational speed (GHz),
offering compatibility not only with CMOS, but also with memristors [164], field-
programmable gate arrays [165], or serving as a standalone alternative [93, 166–
169]. In particular, we explain how spintronic technology can impact the imple-
mentation of artificial neural networks, with a focus on the fully connected and
convolution layers of neural networks. In detail, we present:

i ) a study of the reliability of transfer learning from software to hardware
based on spintronics neurons;

ii ) the concept of analog multiplication based on STDs and its impact on
knowledge distillation;

iii ) the idea of dynamical neurons implemented with STNOs.



Chapter 3. Neuromorphic spintronics 99

3.1 Basic concepts of artificial neural networks

FIGURE 3.2: (a) Illustration of a biological neural network, depicting neurons intercon-
nected with each other through synapses. (b) Schematic representation of an artificial

neuron.

ANNs are a computational abstraction of biological neural networks. Biological
neural networks rely on the transmission of electrical signals through neurons
interconnected by synapses (see Figure 3.2 (a)). By analogy, the building block
of ANNs are both synapses, and the artificial neuron or perceptron. The latter
has been introduced by Frank Rosenblatt in 1958 [170]. This concept was first in-
vestigated in 1943 in a work by the neurophysiologist McCulloch and the mathe-
matician Pitts [171]. The perceptron receives input signals from the other neurons
connected with weighted synapses, performing a weighed sum called multiply-
accumulate operation (MAC). A nonlinear transformation, known as activation
function (AF), is then applied to the output (see Figure 3.2 (b)). The AF can ex-
hibit different nonlinearities, which can be reproduced by spintronic devices, as
detailed later in this chapter.

Mathematically, the perceptron can be described by:

zi =
n

∑
j=1

(
wijxj

)
+ bi (3.1)

yi = f (zi) (3.2)

where n is the number of neurons connected to the neuron i, wij are the synap-
tic weights, xi the input signals, zi is the results of the MAC operations, and bi
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is a bias value. yi is the output of the neurons after applying a nonlinear trans-
formation f to zi. During the so-called training phase, the synaptic weights are
adjusted/optimized to improve the performance of the ANNs.

Based on the nature of the input data, there are three main learning algorithms:
supervised, unsupervised, and reinforcement learning. The first two learn from
data (labeled in the first case and unlabeled in the second one) while the latter
learns from experience. This thesis focuses on solving classification problems,
which are compatible with supervised learning algorithms. For this reason, all
the concepts from now on refer to this paradigm. In supervised learning, the
network is trained using a labeled dataset, comprising of training and validation
datasets, with the model performance being evaluated on a separate test dataset
to ensure generalizability.

The training procedure involves two steps: forward propagation and backprop-
agation of the error. In the forward step, the ANN predicts the response for a
given input. The error between the predicted response yi and the true response
ti is quantified by a task-specific loss function. For multiclass classification, the
categorical cross-entropy loss is computed:

L = −
n

∑
i=1

ti ln(yi) (3.3)

where n is the number of output neurons. The softmax AF, which is typically
implemented in the last layer of the ANN, transforms the predicted output into
probabilities:

yi = f (zi) =
ezi

∑n
j=1 ezj

(3.4)

The cost function averages individual losses computed across the entire dataset
during the training. It is worth noting that, when commenting the performance
of a neural network, the cost function itself is often referred to as the “loss” of the
network. Backpropagation employs the gradient descent algorithm to minimize
the error by adjusting synaptic weights. First, the gradient of the cost function
with respect to synaptic weights ∂L/∂w is calculated, and then the chain rule
of the derivative is used to propagate the error back through the network [163].
Once the gradients are computed, they are used to adjust the synaptic weights
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(3.5) according to the following formula:

w← w− η
∂L
∂w

(3.5)

where η is the learning rate, a critical hyperparameter that controls the trade-off
between the training speed and convergence. Different learning rate annealing
schedules are proposed to optimize the gradient descent algorithms [172]. Three
gradient descent algorithms differ in the amount of data used to calculate the
gradient: (i) the batch gradient descent updates weights using the entire train-
ing dataset; (ii) the stochastic gradient descent updates after each training sam-
ple; (iii) the mini-batch gradient descent updates using a subset (mini-batch) of
n training samples. This study employs mini-batch gradient descent for a stable
convergence, computational efficiency and enhanced model generalization [172].
An epoch marks one complete iteration through the training data.

The number of epochs is a crucial hyperparameter that has to be properly set in
order to prevent both underfitting and overfitting of the model. Underfitting oc-
curs when the model is not able to perform well on the task due to an insufficient
number of epochs, as illustrated in Figure 3.3 (red region). On the other hand,
overfitting occurs when the model memorizes the training data, typically due to
an excessive number of epochs, leading to a compromised ability to generalize
effectively to new, unseen data, as illustrated in Figure 3.3 (green region). To con-
tinually assess the performance of the ANN during the training, a subset of the
training dataset (not used during the training), known as validation dataset, is
used to test the ANN at the conclusion of each epoch. To mitigate the risk of
overfitting, an early stopping technique can be implemented, which periodically
evaluates the model’s performance on the validation dataset and stops training
once the validation error exhibits signs of increasing or plateauing.

In addition to the loss, accuracy is a key metric for evaluating ANN performance
in a classification task. The accuracy measures the percentage of correctly pre-
dicted samples compared to the total number of samples in a set of data. The
training accuracy represents the ability of the ANN to fit the training data, the
validation accuracy assess overfitting/underfitting, while the test accuracy mea-
sures the effective goodness of the ANN in performing the assigned task.
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FIGURE 3.3: Example of loss function versus number of epochs for training and val-
idation error, to evaluate the model performance. By comparing the two curves, it is
possible to identify underfitting (red region) and overfitting (blue region) of the model.
A simple pictorial representation of underfitting, well-fitting and overfitting is shown.

3.2 Layers of an artificial neural network

Different architectures of ANNs arise from a different arrangement of the neurons
and synapses.

3.2.1 Fully connected neural network

The perceptron perform a linear transformation of the inputs, so it is not able to
solve complex nonlinear tasks [173]. To address this problem, the neurons are
organized in layer, and multiple layers of neurons are stacked. When there is at
least one middle layer, known as hidden layer, between the input layer and the
output layer of neurons, the resulting structure is called deep neural networks.
A layer where each neuron is connected to all the neurons of the next layer is re-
ferred to as fully connected (FC) or dense. In a fully connected neural network or
a multi-layer perceptron (MLP) there are multiple fully connected layers stacked,
as illustrated in Figure 3.4.

The depth of the ANN refers to the number of hidden layers, while its width
refers to the number of neurons in a given layer. To avoid overfitting, a regular-
ization technique, known as dropout, is commonly implemented. During each
epoch, a fraction of random neurons or synapses, typically less than 50% of the
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total, are temporarily “dropping out” [174], i.e., they are not used in the compu-
tation.

FIGURE 3.4: An example of fully connected neural network with one input layer, two
hidden layers and one output layer.

3.2.2 Convolutional neural network

Convolutional neural networks (CNNs) have emerged as the most important tool
in applying neural networks to computer vision tasks. The popularity of CNN
starts in 2012 when Alex Krizhevsky and his team outperform other participants
in the ImageNet ILSVRC challenge [175] with a deep CNN named AlexNet [176].

The key advantages of the CNNs lies in the use of weighted filters rather
than fully connected neurons. This introduces parameters sharing, as the same
weights are reused across different spatial locations. Consequently, this reduces
the number of training parameters and increases the computational efficiency.
Furthermore, the local connections create a translation invariant property, as the
network can thus recognize features in a different spatial configuration. This
property is derived from the convolution operation performed in the convolu-
tional layer, where a filter slides across the image, computing the dot product
and storing results in a feature map, as illustrated in Figure 3.5. Therefore, each
unit of the feature map is connected to a local area of the previous layer through
a set of weights.
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FIGURE 3.5: Example of 2D convolution of an input image of size 5 × 5 and a filter of
size 3× 3. Each element of the output feature map is the sum of the element-wise matrix

multiplication of a subset of the input image and the weights of the filter.

The discrete convolution can be mathematically expressed as:

zi,j, f =
nc−1

∑
c=0

m−1

∑
d=0

m−1

∑
a=0

wa,d,c, f x(a+i)(d+j), c + b f (3.6)

where w is the weight of a m × m filter, with a and d being the vertical and
horizontal coordinates, c the index of the input channel, and f the index of the
feature map. b is the bias, while x is the input data, with i and j being the vertical
and horizontal coordinates of the pixel position in the feature maps. Channels are
essentially the feature maps from the previous layers, and they are equal to the
number of filters. Usually, in a CNN, several convolutional layers are stacked, as
shown in Figure 3.6 (a).

As an input propagates through the layers, abstract features are extracted. Figure
3.6 (b) shows an example of features learned by a CNN where it is evident that
the first convolutional layer detects simple features, like edges, the second one
detects simple shapes, and the third ones detects more complex features [177]. In
a CNN, nonlinearities and pooling layers are also applied to these feature maps.
The pooling layer uses operations such as maximum or average calculation over
a set of values to merge similar features, thereby reducing the spatial dimension
of the feature maps. The final feature maps, obtained after all convolutional lay-
ers, are typically flattened, i.e., transformed into one-dimensional vector which
is then connected to a fully connected part of the neural network. The part of
the neural network in which this flattening operation is performed is called flat-
ten layer. In summary, the convolutional layers act as feature detectors, extracting
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relevant information, while the FC layers leverage these features for the final clas-
sification task, as highlighted in Figure 3.6 (a).

FIGURE 3.6: (a) A schematic of a convolutional neural network architecture. The in-
put image is processed by convolutional layers that extract relevant features (“features
maps”), which are highlight by the nonlinear activation function. Then the pooling
layers perform dimensional space reduction of the feature maps. A sequence of fully
connected layers and a softmax classify the input image. (b) Learned features in con-
volutional layers: deeper convolutional layers extract progressively more abstract and

high-level features from input. Source of pictures [178].

3.3 Knowledge transfer techniques

Knowledge transfer techniques can be crucial for improving the training effi-
ciency and performance of ANN models, making them essential techniques for
the deployment. The concept is based on transferring knowledge from one ANN
model to another. In this thesis, we focus on two promising techniques: transfer
learning and knowledge distillation.

The transfer learning technique involves training a wide and deep ANN on a
large amount of data (source dataset). This pre-trained ANN is then leveraged to
solve a different, usually smaller, dataset, as illustrated in Figure 3.7 (a). Knowl-
edge distillation, as depicted in Figure 3.7 (b), employs a wide and deep teacher
ANN to imparts/transfer its knowledge to a smaller and shallower student ANN.
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This technique aims to distill the learned knowledge from the complex teacher
model into a more compact student model.

FIGURE 3.7: A schematic representation of (a) Transfer learning: the weights of wide
and deep ANN, trained on a source dataset with a large amount of data (top), are used to
solve a target dataset with few samples (bottom). (b) Knowledge distillation: a wide and
deep teacher ANN (top) is used to educate/transfer knowledge to a small and shallow

student ANN (bottom).

3.3.1 Transfer learning

Transfer learning leverages the idea that individuals can efficiently apply an es-
tablished knowledge to face new problems [179]. This approach involves using
a wide and deep ANN initially trained on a huge and general dataset, such as
ImageNet [180], as a starting point for addressing a new problem with limited
data. The features learned from a large amount of data can be useful to solve
a new dataset. As already discussed, the early layers of an ANN extract fea-
tures that are general, like edges and lines [181], while the latter layers are more
task-related. Therefore, in transfer learning, only the final layers are replaced and
trained in order to extract features relevant to the new task. Fine-tuning the ANN
with the new dataset may be necessary for performance improvement. The main
advantages of transfer learning over training a model from scratch include: sav-
ing training time; achieving better ANN performance; and mitigating the need
for a large amount of data.
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3.3.2 Knowledge distillation

Knowledge distillation involves transferring knowledge from a large, complex
ANN model, called teacher model, to a smaller and simpler one, known as stu-
dent model [182, 183]. This process is valuable for compressing the model, mak-
ing it more suitable for deployment on hardware with limited resources, such as
an Internet of things node or a mobile phone. The idea is that the student model
mimics the teacher model, that could be a pre-trained ANN.

However, the information learned from hard targets of the teacher model, con-
sisting of output probabilities calculated by the softmax, may not by sufficient.
Therefore, the teacher model provides the student with additional information
known as dark knowledge. Dark knowledge is revealed by soft targets, which
effectively smooth out the probability distribution and reveal inter-class relation-
ships. The soft targets are achieved by increasing the temperature coefficient (T)
of the softmax function (typically T = 1):

yi =
e

zi
T

∑n
j=1 e

zj
T

(3.7)

When T → ∞ all the classes have the same probability. Figure 3.8 shows an
intuitive example of soft and hard targets to better understand the concept of dark
knowledge [184]. The probabilities indicating the similarity between a “dog” and
a “cat” are higher than the probabilities associating it to a “cow” and a “car”.

FIGURE 3.8: Intuitive example of hard and soft targets for dark knowledge explanation
[184].
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3.4 Computing with spintronics technology

3.4.1 Challenges in modern computing

Training an ANN is the more expensive part of deep learning algorithms. It de-
mands a lot of time and energy, especially for state-of-the-art ANNs having a
huge number of parameters. Neuromorphic computing tries to address these
challenges with the development of energy efficient and fast hardware optimized
for neural network models [185].

For example, the energy consumption of the state-of-the-art natural language
processing deep neural network BERT [186, 187], developed in 2018 by Google,
is 1 MWh, with 108 synaptic weights. In contrast, the estimated power con-
sumption of the human brain during an intellectual activity is about 20 W, with
1015 synapses and 1011 neurons. This comparison highlights that, with the same
amount of energy, the brain operates for 6 years, with multiple tasks in parallel
(such as vision, natural language processing, social interactions and so on) and
the ability to accumulate knowledge over time, even being able to extrapolate
patterns from few examples and apply the newly acquired knowledge in several
tasks [185].

Over the years, to enhance the performance, ANNs have expanded in both depth
and width. However, the computational demand for training larger models con-
tinues to grow exponentially [188]. For instance, the training of ChatGPT, a lan-
guage model with 175 billion trainable parameters developed by OpenAI in 2020
[189], consumes more than 1 GWh of energy, roughly equivalent to the annual
amount of energy of 120 typical U.S. households. Figure 3.9 shows that the en-
ergy required for computing will exceed the world’s energy productions in 2040
[190].
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FIGURE 3.9: Energy consumption trend in computing vs. the world energy production,
over year. Source: [190].

The energy inefficiency in the hardware implementation of ANNs is closely tied
to the von Neumann architecture, where memory and computation hardware
are separated into two physically distinct units, as shown in Figure 3.10 (a). For
each computational step, a huge amount of data is read, processed, and then
transferred back to the memory. This continuous data transfer consumes time
and energy, creating a bottleneck in performance [191]. The graphics process-
ing units (GPUs) and tensor processing units (TPUs) only partially solve the von
Neumann bottleneck by incorporating multiple cells containing both processing
and memory, enabling parallel computations. In contrast, neuromorphic com-
puting, inspired by the topology of the brain, aims to design circuits where neu-
rons (processing part) are interconnected by synapses with in-situ memory (see
Figure 3.10 (b)). Unfortunately, this architecture cannot be implemented solely
using CMOS technology. The current research focuses on discovering and devel-
oping nanoscale devices that emulate neurons and synapses, offering character-
istics such as low energy consumption, high endurance, ease to connect in large
networks, tunability and reconfigurability [185].

Several solutions have been proposed, such as optical devices [192, 193], memris-
tors [164], field-programmable gate arrays [165] and spintronic devices [93, 166–
169, 185, 194]. Spintronics devices such as MTJs, have the characteristics required
by neuromorphic computing and, in addition, offer the advantages of having a
working speed in the GHz and potentially in the THz (antiferromagnetic spin-
tronics [195]), on top of intrinsic nonlinearity, non-volatility, and compatibility
with CMOS systems. The recent popularity of these devices for neuromorphic
computing applications has given birth to the field of neuromorphic spintronics
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[166].

FIGURE 3.10: (a) Illustration depicting the von Neumann architecture, to highlight the
separation between processing (CPU) and memory (RAM), known as “von Neumann
bottleneck”. (b) A schematic representation of a biological neural network, in which

neurons (processing part) are interconnected with synapses (memory part).

3.4.2 State-of-the-art of neuromorphic spintronics

In recent years, a significant progress has been made in the development of spin-
tronic devices designed to emulate the functions of neurons and synapses. Within
the existing literature, MTJs have played a crucial role, particularly in embodying
the nonlinearity essential for neuron functionalities, effectively serving as activa-
tion functions.

Cai et al. [196] have performed an MTJ-based FC ANN built by voltage-controlled
superparamagnetic MTJs (see Figure 3.11 (a)), in which the probability of switch-
ing was also controlled by the VCMA effect. This solution was able to reproduce
the sigmoidal activation function and its tunability was proposed to implement
adaptive neurons.

Pan et al. [197] proposed a multilevel cell-based STT-MRAM for in-memory com-
puting. The architecture for a binary convolutional neural network is shown in
Figure 3.11 (b). The multilevel cell structure is composed of an MTJ on top of a
large MTJ, and two bits are stored in one cell.
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FIGURE 3.11: (a) Structure of ANN implemented with voltage-controlled spintronic
stochastic neuron based on MTJs [196] (b) Multilevel cell STT magnetic RAM-based com-

puting with in-memory accelerator for binary CNN [197].

Torrejon et al. [194] demonstrated that a single STNO can emulate 400 neurons
using time multiplexing (see Figure 3.12 (a)): the oscillator periodically allocates
an interval in time for different neurons’ states and uses finite relaxation time to
emulate coupling between neurons. This approach has been successfully used to
implement a reservoir computer to recognize the spoken digits with an accuracy
of 99.6%.

Romera et al. [198] demonstrated that coupled STNO-based neural networks can
classify signals at microwave frequency, and they used it for vowel recognition,
with an accuracy of 89%. The first layer of their network consists of two indepen-
dent neurons (A and B) implemented by two microwave sinusoidal sources of
frequency fA and fB. The microwave outputs of the first layer are sent, through
a strip line, in the second layer, consisting of four all-to-all-connected STNO neu-
rons (see Figure 3.12 (b-left)). The main idea is that the synchronization of two
oscillators simulate a strong synaptic coupling. If the ith neuron in the second
layer is synchronized with neuron A in the first layer, due the same frequency,
a strong synaptic coupling is simulated. On the hand, if neuron A and neuron i
have independent dynamics and frequencies, a weak synaptic coupling between
them is simulated (see Figure 3.12 (b-right)). The strength of these synapses can
be tuned by changing the bias current of each oscillator in the second layer.
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FIGURE 3.12: (a) Reservoir computing with a single STNO. The spoken digit “1” to
recognize is pre- and post-processed using time multiplexing and a single STNO [166,
194]. (b) Left: a schematic representation of ANN. Right: a schematic representation
of the experimental set-up, consisting of four STNO electrically connected in series and
coupled through their emitted microwave currents. Two microwave signals, encoding
information in their frequencies fA and fB, are applied as inputs to the system via a strip
line, generating two microwave fields. The overall microwave output of the oscillator

network is recorded using a spectrum analyzer [198].

There are also many other different types of ANNs proposed including solutions
using domain walls and skyrmions [98, 99].

One of the main advantages of neuromorphic spintronics is the implementation
of the nonlinearity of the neuron with a single spintronic device. On top of those
solutions, a study of robustness in terms of device-to-device variation is still miss-
ing and this study aims to fill this gap as described in the rest of this chapter.

3.4.3 Reliability of neural networks based on spintronic neurons

Previous works have demonstrated that the intrinsic nonlinearity of spintronic
devices can be leveraged for neuromorphic computing [196, 199, 200] and in par-
ticular it can be used to implement the activation function with a single device.
However, the existing literature highlights a notable gap in achieving a large scale
realization of spintronic-based ANNs. The projections from theoretical studies
often assume the same activation functions for all the devices. Here, we focused
on the fact that geometrical and physical characteristics are device dependent
and device-to-device variations are inevitable in the hardware implementation of
spintronic neurons. As shown in Figure 3.13, we have studied the effect of trans-
fer learning from software to hardware in presence of device-to-device variations,
which can be found in a real stack of devices. These variations are reflected in the
spread of the slope of the activation functions, as discussed in paragraph 3.4.3.1.
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FIGURE 3.13: Workflow. On the left, the ideal neurons of a software ANN with sigmoid
and ReLU activation functions are depicted. On the right, the deployment of the ANN
on hardware introduces device-to-device variations, simulated by the spread of the slope

of the activation functions.

The main results of this study are published in Ref. [70].

3.4.3.1 Spintronic neurons

3.4.3.1.1 Sigmoidal AF

The first study is based on the data by Cai et al. [196], where an experimental
implementation of a sigmoidal AF was based on a superparamagnetic MTJ. At
a fixed magnetic field and voltage, time-domain traces of stochastic switching in
the resistance state of the MTJ are observed. The switching probability is given
by P = NRAP/Ntotal, where NRAP is the number of high-resistance states readout
and Ntotal is the total number of samples. The switching probability can be tuned
with an external perpendicular magnetic field. A large-enough positive (nega-
tive) field leads to a high (low) P. A sigmoidal behavior is shown in Fig. 2 (d) of
Ref. [196]. However, this configuration has a drawback: it requires some time,
of the order of µs, to average a trustworthy output resistance value which can be
used for the calculation of the output of the AF.

To overcome this limitation, we have proposed a way to implement a determinis-
tic sigmoidal AF designed through micromagnetic simulations. It can be obtained
by using a hybrid MTJ with out-of-plane FL magnetization m and in-plane PL
magnetization mp, as shown in Figure 3.14 (a). The simulated MTJ is an ellip-
tical cylinder of size 20 × 18 × 1 nm3 with discretization cell of 1 × 1 × 1
nm3. The micromagnetic parameters are: MS = 1100 kA/m, A = 20 pJ/m,



Chapter 3. Neuromorphic spintronics 114

Ku = 0.6215 MJ/m3, αG = 0.02. The MTJ’s dimensionless resistance is calcu-
lated with Eq. (1.58), with RP = 0 and RAP = 1. The PL magnetization is fixed
along the positive x-direction, therefore only the x-component mx gives rise to
the magnetoresistive signal, i.e., cos (θ) = mx. At zero external field the FL mag-
netization is perpendicular, therefore R (π/2 ) = 0.5. The equilibrium direction
of the magnetization can be controlled using an external field Hx applied along
the x-axis. For a large-enough positive (negative) Hx the magnetization is aligned
with the field and a low (high) resistance state is reached. The field is generated
by a DC current, as explained below. Figure 3.14 (b) shows the results of the sim-
ulations (red dots) which are well-fitted by a sigmoid function. As shown in the
sketch in Figure 3.14 (a), the Hx can be generated by a DC current IDC flowing
in a nanowire positioned on top of the MTJ. In particular, in our simulations a
positive (negative) IDC generates negative (positive) Hx. The behavior observed
confirms that the proposed configuration of the MTJ can be used for a determin-
istic sigmoid AF of the neurons.

FIGURE 3.14: (a) A sketch of MTJ structure to obtain a deterministic sigmoid AF. The DC
current, IDC, generates the in-plane magnetic field, Hx, which brings the FL magnetiza-
tion m to be parallel or antiparallel to the PL magnetization mp. (b) Magnetoresistance
curve of the MTJ device as a function of DC current, IDC, computed from micromagnetic
simulations for Ku = 0.6215 MJ/m3 (blue dots) fitted by the ideal sigmoid function (blue
line). (Top-left inset) Magnetoresistance curves of the MTJ device vs IDC, for Ku = 0.6225
and 0.6200 MJ/m3, which can be described by a sigmoid with a slope coefficient α = 0.91

and 1.3, respectively.
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To investigate the impact of device-to-device variations in the accuracy of the
network, a change of the anisotropy constant Ku is then considered. In detail,
we have performed simulations with Ku ranging from 0.6200 to 0.6225 MJ/m3.
These are the lowest values that guarantee a perpendicular FL magnetization
at zero temperature, while also being in agreement with a 5% variation of MTJ
parameters deposited with same nominal thickness. Furthermore, we consider
small variations because the anisotropy can be also controlled by fine tuning
it with a voltage applied across the MTJ [25, 58, 201, 202]. The curves ob-
tained from the simulations with these values of Ku are still sigmoid functions
f (x) = 1/ (1 + e−αx), with a slope coefficient which varies between α = 0.91 and
α = 1.30, respectively, as also depicted in top-left inset of Figure 3.14 (b).

The presence of the thermal fluctuations can affect the stability region (physi-
cal parameters and/or geometry) of the sigmoidal AF. For this reason, we have
performed a systematic study finding the anisotropy region of Ku to have a
stable sigmoidal response. We have performed simulations with temperature
T = 300 K and, despite the stochasticity, a sigmoidal behavior is shown for
Ku = 0.6225 MJ/m3 (see Figure 3.15 (a)). The inset of Figure 3.15 (b) shows an
example of the time domain trace of the x-component of the FL magnetization
mx for IDC = 3.68 (arb. units). Blue dots in Figure 3.15 (a) are obtained from the
time-averaged value ⟨mx⟩ shown in the Figure 3.15 (b).

FIGURE 3.15: (a) Sigmoidal AF as obtained in presence of thermal fluctuations at room
temperature T = 300 K. The blue dots are the results of the micromagnetic simulations,
while the black line represents an ideal sigmoidal function. (b) Histogram of the values
of the x-component of the FL magnetization for T = 300 K, where the time-averaged
value is indicated by a black dashed line. Inset: time evolution of the x-component of

the FL magnetization.
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Figure 3.16 shows the time trace of mx and its time-averaged value, where it is
possible to observe that the average time to achieve a reliable resistive signal is
predicted to be of the order of 5 ns. This short time makes spintronic devices
robust against thermal fluctuations when properly designed.

FIGURE 3.16: (Blue line) Time evolution of the x-component of the FL magnetization un-
der the effect of thermal fluctuations at room temperature T = 300 K. The x-component
gives rise to the magnetoresistive signal (the polarizer is oriented in the x-direction).

(Red line) Corresponding moving mean of the FL magnetization x-component.

The deterministic sigmoid AF can be also implemented with the use of the spin-
transfer torque generated from a spin-polarized current. The scheme consists of
two hybrid MTJs connected in parallel, according to the sign of the bias current
applied to the MTJ branch, which is selected thanks to a diode, see Figure 3.17
(a). This dual-device scheme is necessary because a positive current drives the
rotation of the FL magnetization, while, for a negative current, self-oscillations
are excited [47, 51, 203, 204]. The simulations (blue dots in Figure 3.17 (b)) are
performed with the same parameters of Figure 3.15 with a spin polarization pa-
rameter P = 0.66.
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FIGURE 3.17: (a) A sketch of circuit involving two MTJs and two diodes, designed to
obtain a deterministic sigmoid AF. (b) Magnetoresistance curve as a function of the IDC.
The micromagnetic simulations’ results (blue dots) are fitted by an ideal sigmoid func-

tion (solid blue line).

3.4.3.1.2 ReLU-like AF

Cai et al. [199] proposed the implementation of a ReLU-like AF from the ascend-
ing branch of the rectification curve VDC of a spin-torque diode (STD) as a func-
tion of the DC bias current IDC, opening the path toward neural networks with
microwave neurons. An example of those curves is shown in Fig. 3 (a) of Ref.
[199] and reported in Figure 3.18 (a). For this application, the best device should
have the rectification curve as asymmetric as possible with the largest possible
ascending branch of the rectification curve. For this reason, here we consider a
high sensitivity STD (105 V/W) working at zero bias field as reported by Zhang et
al. [57] experimentally. The MTJ’s structure has a tilted FL magnetization and an
in-plane PL magnetization (see inset Figure 3.18). The selected experimental data
of VDC as a function of IDC can be fitted with a third-order polynomial function
(see Figure 3.18).

To study the impact of device-to-device variation, we consider AFs which are
sampled between the green and blue line shown in the inset of Figure 3.18 (b).
Those curves have been identified together with experimentalists according to
measured data, and it can be seen as a rotation of the reference curve with a
clockwise or counterclockwise rotation of 5 degrees (θ = ±5°). Alternatively, the
microwave power applied to the STD can be tuned to reduce the device-to-device
variation, see for example the rectification curve at different powers as shown Fig.
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3 (a) of [199] (0.32 and 0.56 µW) and reported here in Figure 3.18 (a) for clarity.

FIGURE 3.18: Experimental rectified voltage VDC, as a function of DC current IDC (a),
from Ref. [199], and for different powers (b), from Ref. [57] (blue dots). The data is fitted
by a third-order polynomial function (blue line). (Top-left inset) Fitted experimental data
with different spreading angles θ, as indicated in the legend. (Bottom-right inset) Sketch
of the MTJ spintronic diode implemented in Ref. [57] where the rectification effect is

achieved via the injection locking due to a locally injected AC current, IAC.

3.4.3.2 Application in convolutional neural networks

In order to study the reliability of an ANN model with non-ideal AFs, a vanilla
CNN is trained to solve classification tasks using the Mixed National Institute
of Standards and Technology (MNIST) [205] and Fashion-MNIST [206] database.
Both databases consist of 28 × 28 = 784 pixel gray scale images divided into ten
categories, for a total of 70000 samples (60000 for training and validation, 10000
for test). The first database contains images of handwritten digits while the sec-
ond contains Zalando’s article images, and it is more difficult to solve than the
MNIST. The CNN structure is shown in Figure 3.19. A single convolutional layer
with 64 filters of size 3 × 3 performs the feature extraction. The resulting feature
maps are passed through the ReLU AF and its spatial dimensions are halved into
a max pooling layer. The outputs are flattened and connected to an FC layer with
128 neurons, and sigmoid or ReLU-like AF is adopted as the neurons’ AF in the
FC layer. The last layer of the FC part has ten neurons that are activated with
a softmax AF to obtain the output probability of the classes. Dropout layer and
early stopping are used to prevent overfitting during the training process.
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FIGURE 3.19: The CNN architecture consists of one convolutional layer with ReLU AF,
pooling layer, one FC layer with 128 neurons (replaced with spintronic neurons) and the

last FC layer.

To perform our numerical experiments, we first train the CNN by considering
all the neurons having the same AF. Finally, we use this pre-trained model for
a transfer learning technique to emulate the hardware implementation of the
model. We simulate 10000 different instances of the CNN where each of them
has nonideal AFs for neurons of the FC layer. Below, we provide more details of
the two studies performed.

3.4.3.2.1 Results for the sigmoid AF

The CNN is trained using neurons of the FC layer having an ideal sigmoid AF,
therefore α = 1. For the MNIST and Fashion-MNIST dataset the validation accu-
racy obtained is 98.93% (Figure 3.20 (a)) and 92.26% (see Figure 3.21 (a)), respec-
tively. The test accuracy is 98.89% (ideal accuracy in Figure 3.20 (b)) for MNIST
and 91.81% (ideal accuracy in Figure 3.21 (b)) for Fashion-MNIST. We use this
pre-trained ideal CNN as a starting point to test its robustness against device-to-
device variation, that we simulate with different magnetic anisotropy values. We
select different slopes α for the sigmoid function by sampling 128 random val-
ues from a normal distribution with a mean of 1 (representing the slope of the
ideal sigmoid) and a standard deviation of 0.2 (negative values are discarded and
resampled). To obtain a reasonable statistic of the test accuracy, 10000 instances
of the CNN are simulated. The results for the MNIST dataset are summarized
in Figure 3.20, the ones for the Fashion-MNIST are in Figure 3.21 (b). A Gaus-
sian distribution of the results is observed with a mean of 98.87% and 98.81% for
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MNIST and Fashion-MNIST respectively, with a standard deviation of few points
percentage from the average.

3.4.3.2.2 Results for the ReLU-like AF

The same CNN is also trained using neurons in the FC layer having a ReLU-like
AF as described in section 3.4.3.1.2. For the MNIST and Fashion-MNIST dataset
the validation accuracy obtained is 98.95% (see Figure 3.20 (c)) and 91.93% (see
Figure 3.21 (c)), respectively. The test accuracy is 98.92% (ideal accuracy in Figure
3.20 (d)) for MNIST and 91.89% (ideal accuracy in Figure 3.21 (d)) for Fashion-
MNIST. These results are comparable with the test accuracy of 98.87% obtained
considering the ideal ReLU AF. With the same procedure of the sigmoid AF, we
study the effect of device-to-device variation. We select different ReLU-like AFs
between -5°< θ < +5°by sampling in a Gaussian distribution with mean of zero
and standard deviation of 3. The CNN accuracy is computed over 10000 differ-
ent instances. The results for the MNIST dataset are summarized in Figure 3.20
(d) while the ones for the Fashion-MNIST are shown in Figure 3.21 (d). A Gaus-
sian distribution of the results is observed with a mean of 98.91% and 98.85% for
MNIST and Fashion-MNIST, respectively.
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FIGURE 3.20: Classification results of MNIST database. (a) and (c) Accuracy versus
number of epochs for training and validation achieved for neurons with ideal sigmoid
and ReLU-like AFs, respectively. The solid (dashed) blue line represents the train (val-
idation) loss. (b) and (d) Statistics of the test accuracy obtained with the nonideal FC

layer composed of spintronic neurons with different sigmoid and ReLU-like AFs.
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FIGURE 3.21: Classification results of Fashion-MNIST database. (a) and (c) Accuracy
versus number of epochs for training and validation achieved for neurons with ideal
sigmoid and ReLU-like AFs, respectively. The solid (dashed) blue line represents the
train (validation) loss. (b) and (d) Statistics of the test accuracy obtained with the non-
ideal FC layer composed of spintronic neurons with different sigmoid and ReLU-like

AFs.

In summary, the average test accuracy over 10000 instances is a few percentages
less than the ideal test accuracy for both configurations studied.

3.4.4 Computing with injection-locked spintronic diodes

This section explores the use of STDs for implementing analog multiplication,
which is one of the key operations in ANNs, including CNNs. The concept of de-
gree of rectification (DOR) in injection-locked STDs is introduced. The working
range of STDs for the DOR implementation is studied by performing micromag-
netic simulations and considering experimental data from literature. The applica-
bility of DOR-based multiplication is tested for both image processing and CNN
models.

The main results of this study are published in Ref. [67].



Chapter 3. Neuromorphic spintronics 123

3.4.4.1 Introduction to the concept of degree of rectification

As we already discussed, the inputs of a CNN are convoluted with filters for
feature extraction, this implies a huge amount of multiplication operations. Dig-
ital multiplication can be implemented with several solutions, such as multiple
adders, and carryover systems. These approaches are scalable, but the drawbacks
are the computational time, energy consumption, and area occupancy [207]. An
analog solution can overcome these bottlenecks but seems difficult to achieve
nowadays mainly due to the susceptibility to noise and offset voltage [208]. Ana-
log solutions based on optical devices [209], photonic devices [210, 211], and
memristors [164, 212] have already been proposed. However, the main problems
of memristors for a CNN application are the significant device-to-device varia-
tion and conductance degradation, which can be smoothed with a continuous
in-situ training of the model [212].

Given two values, F and G, the analog multiplication, FG, can be implemented
by considering a physical observable P characterized by a parabolic input-output
relation P (X) = aX2 + bX + c, where X is the input and the coefficients a, b
and c are characteristic of the physical system. The multiplication FG, can be
implemented combining three measurements (3.8):

FG =
P (F− G)− P (F)− P (−G) + c

−2a
(3.8)

The first idea to implement the multiplication of Eq. (3.8) dates back to the con-
cept of degree of match (DOM). It is based on the interaction between two non-
linear oscillators, and it is a measure that quantifies the synchronization (or simi-
larity) in their oscillations. The DOM is defined as (3.9):

zDOM (t) =
1
2
|z1 (t) + z2 (t)| (3.9)

Each oscillator is characterized by power p = |z|2 and phase ϕ = arg(z), where
z (t) is the complex oscillating variable describing the behavior of each oscilla-
tor. Considering two spintronic oscillators with approximately constant output
power in the locking region, the DOM can be written as (3.10):

zDOM
∼= |
√

p| cos
∆ϕ

2
(3.10)
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where ∆ϕ = ϕ1 − ϕ2 is the phase difference between the time-domain traces of
two oscillators. The working point of the oscillators can be set and controlled by
a bias current [213]. In this point ∆ϕ is close to zero, and the cosine function can
be approximated using a second-order polynomial through the Taylor expansion.
Hence, the DOM can be considered eligible as observable P in the Eq. (3.8), where
X represents the phase difference between the oscillators. The aforementioned
observations can be generalized to the scenario of two different oscillators [214].
However, the DOM’s read-out is one of the key challenge due to difficulties in
on-chip estimation of the oscillator amplitudes and phases.

We have introduced the concept of DOR, which is based on the Eq. (3.8) where the
observable P is the rectification voltage VDC of an injection-locked STDs, while the
input is its bias current IDC. The applicability of the DOR is studied by perform-
ing micromagnetic simulations. The simulation results show a parabolic relation-
ship between VDC and IDC [57], which is also in agreement with the experimental
data in Ref. [46]. This approach has the intrinsic advantages of spintronic tech-
nology (such as CMOS compatibility, scalability, and low power dissipation), the
read-out mechanism is simpler than the DOM and can be implemented with a
single device.

We use a vanilla CNN model to solve the MNIST dataset considering, for the
multiplication, the one implemented with the DOR. The reliability of this ap-
proach is also tested considering device-to-device variations. Furthermore, we
also demonstrate the robustness of DOR-based multiplication for dark knowl-
edge extraction, opening a path in the use of nonlinear operators to extract the
dark knowledge.

3.4.4.2 Device concept and micromagnetic simulation results

The device structure is a hybrid MTJ with out-of-plane FL magnetization (1.63-
nm-thick Co20 Fe60 B20) and in-plane PL magnetization (synthetic antiferromag-
net Co70 Fe30 (2.3 nm)/Ru (0.85 nm)/Co40 Fe40 B20 (2.4 nm) and exchange biased
by a PtMn (15 nm) layer, as illustrated in Figure 3.22 (a). The MTJ has an elliptical
cross-section 150 × 60 nm2, with resistance state RP = 640 Ω and RAP = 1200 Ω.
It has been experimentally demonstrated that this device operates at zero field.
We perform micromagnetic simulations, and the micromagnetic parameters are:
MS = 950 kA/m, Aex = 20 pJ/m, Ku = 0.545 MJ/m3, αG = 0.02, P = 0.66. The
field-like torque of the STT has a ratio qSTT = 0.1; the results are qualitatively the
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same for qSTT = 0 and qSTT = 0.2 with a variation of the oscillation frequency by
less than 3% [215].

FIGURE 3.22: (a) Sketch of the hybrid STD with perpendicular FL magnetization and
in-plane polarizer along -x direction. (b) Frequency (blue squares) and power (green
triangles) of FL magnetization oscillation as a function of the applied DC current, ob-
tained using micromagnetic simulations. The vertical line indicates the threshold cur-

rent |Ith| = 0.056 mA.

Figure 3.22 (b) summarizes the frequency f0 (blue dots) and the power p0 (green
dots) of self-oscillation of the MTJ as a function of the DC current IDC . The
threshold current is |Ith| = 0.056 mA. The nonlinear frequency shift, N, which
links the oscillation frequency and power of the self-oscillation near the Ith− f0 =

f0 (Ith) + Np0/2π [47] - is N/2π = d f0/dp0
∼= −411 MHz. This parameter plays

a crucial role in the magnetization dynamics in the injection-locking regime. As
discussed in the paragraph 1.8 , this regime is achieved when the frequency of
the applied AC current, fAC, approaches the self-oscillation frequency f0. In this
locking regime, the magnetoresistance oscillates at the same frequency of the AC
current, giving rise to a rectification voltage [216, 217]. Within the locking range,
a variation of IDC does not change the frequency. However, it can change the
amplitude of the oscillating magnetization, ∆mx (IDC), which is related to the
oscillator power p

(
∆mx
√

p
)
, and the intrinsic phase shift φ (IDC) between the

AC current and the oscillating magnetoresistive signal [218]. The output voltage
can be then computed using the following expression [46]:

VDC =
(RAP − RP)

√
p

4
IAC,max cos [φ (IDC)] (3.11)
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The rectification voltage obtained at IAC,max = 70.7 µA, fAC = 800 MHz and
φAC = 0 is shown in Figure 3.23 (a), with the maximum value at IDC, 0 =

−0.134 mA, which corresponds to a phase shift close to zero. The correspond-
ing ∆mX (green dots) and φ (blue dots) are shown in Figure 3.23 (b).

FIGURE 3.23: (a) Micromagnetic data of rectified voltage, VDC, as a function of the DC
current, IDC, applied to the STD (blue dots) with IAC,max = 70.7 µA and fAC = 800 MHz,
and parabolic fit (red line). (b) Intrinsic phase shift (blue dots) and amplitude of x-
component of the magnetization, ∆mX , (green dots) as a function of DC current for the

same IAC,max and fAC as those in (a).

The amplitude of the magnetization displays a weak current-dependence: a
change of less than 3% is observed. This outcome is in agreement with the behav-
ior expected for an oscillator characterized by a large nonlinear frequency shift.
This is clear if we look at the expression of the power p of the injection-locked os-

cillator p/p0 = 1 + σIAC,max/
√

1 + (N/Pξ)2, where ξ = IDC/Ith (eq 1.69) is the
supercriticality of the DC bias current, and P is the effective damping rate [47]. In
our devices, N/P is larger than 15, leading to a reduced dependence of oscillator
power on IDC [47]. The quasi-linear behavior of the intrinsic phase shift as a func-
tion of the IDC, with a deviation at the edge of the locking region (see Figure 3.23
(b)), was already observed in Refs. [218, 219]. This behavior can be approximated
by φ (IDC) = mIDC + n, where the fitting parameters can be identified from the
rectified voltage in Eq. (3.11) at IDC,0 (see Figure 3.23 (a)), therefore φ (IDC) = 0
and the n = −mIDC,0. Furthermore, the coefficient m can be estimated from the
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second order derivative of the rectified voltage with respect the DC current eval-

uated at IDC,0,
d2VDC

dI2
DC

∣∣∣∣∣
IDC=IDC,0

= −m2VDC,max. This approach can be applied to

experimental data as well to extract information about the intrinsic phase shift.

To estimate the DOR, we are looking for a parabolic behavior, and the Eq. (3.11)
can be rearranged into a parabolic function (3.12):

VDC (IDC) = aI2
DC + bIDC + c (3.12)

where a = −(1/2)VDC,maxm2, b = VDC,maxm2 IDC,0 and c =

VDC,max

{
1−

[
(mIDC,0)

2 /2
]}

.

Figure 3.24 (a) shows the micromagnetic data (already shown in Figure 3.23 (a))
fitted by a parabolic fit (red line) and analytical evaluation (dashed line); we can
clearly observe the excellent agreement.

FIGURE 3.24: (a) Micromagnetic data of rectified voltage, VDC, as a function of the DC
current, IDC, (blue circles) (already shown in Figure 3.23 (a)) with the parabolic fit (red
line) and the parabola obtained with the analytical data (dashed line). The table (b)
summarizes the coefficients of the two parabolas, obtained from the parabolic fit and the

analytical process.

Indeed, for the successful implementation of a multiplier using spintronic diodes,
it is crucial that the devices operate with specific currents and microwave input
frequencies to achieve an intrinsic phase shift ϕ close to 0 or π.
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Figure 3.25 (a) provides an overview of the systematic study of φ as a function of
IDC and fAC, while maintaining IAC,max = 70.7 µA. The horizontal line represents
the working point for the data presented in Figure 3.23 (a) and Figure 3.23 (b). No-
tably, in this device’s geometry, the value φ = 0 can be achieved close to the edge
of the injection-locking range. Figure 3.25 (b) shows the time-evolution of the
spatially averaged x-component of the FL magnetization for a IDC = −0.48 mA
and fAC = 800 MHz (circle in Figure 3.25 (a)) and the AC current. A constant time
shift can be noted from the comparison of the time traces. However, in Fourier
space the dynamics of the magnetization has a predominant first harmonic (with
76% of the total energy) and also high-order harmonics which could potentially
impact the measurements. For this reason, it is more appropriate to compute this
parameter in the Fourier space.

FIGURE 3.25: (a) Phase diagram of the intrinsic phase shift, φ, as a function of mi-
crowave frequency, fAC, and DC current, IDC, for IAC,max = 70.7 µA. The vertical line is
the auto-oscillation current threshold, |Ith| = 0.056 mA, while the horizontal line is the
microwave frequency value used in Figure 3.23 (a)-(b). (b) Time traces of the applied
current I (left y-axis) and spatially-averaged x-component of magnetization dmx (right
y-axis) for the working point indicated with a circle in (a). The time shift, ∆t, between

the two-time traces is indicated.

Figure 3.26 (a) shows the time-evolution of the spatially-averaged x-component
of the FL magnetization for IDC = −0.48 mA and fAC = 800 MHz during the
application of a DC current step to achieve the injection-locking regime. The
transient time is about 10 ns, and it provides a reliable estimation of the speed
of the multiplication operation. A smaller transient time is observed in presence
of thermal fluctuations at room temperature as shown in Figure 3.26 (b). The
frequency of the self-oscillation is smaller in presence of a thermal field, at least
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for the simulation with fAC = 543 MHz.

FIGURE 3.26: (a) Time domain trace of the injection locking of the x-component of the
magnetization (blue line) achieved after application of a DC current step from 0 to -0.148
mA. The normalized DC current is shown in red line. The amplitude of AC current is
IAC = 70.7 µA and the frequency fAC = 800 MHz. (b) Same as (a) but with fAC =

543 MHz and at room temperature.

Figure 3.27 (a) shows the experimental data from Ref. [46], which exhibits a be-
havior similar to the theoretical curves. Figure 3.27 (b) shows the parabolic fit
of the data for a wider range of input. In order to achieve high sensitivity, the
variation of the DC resistance induced by the microwave input, RDC, is added in
the rectified voltage: VDC (IDC) = aI2

DC + (b + RDC) IDC + c. This term is propor-
tional to the IDC and it introduces a linear shift of the parabolic equation [46].



Chapter 3. Neuromorphic spintronics 130

FIGURE 3.27: (a) Experimental data (black dots) of output DC voltage, VDC, as a function
of DC current, IDC, in injection locked STD from Ref. [46] (bottom axis), and the corre-
sponding numeric input for the even parabola (top axis). The solid red line represents
the parabolic fit of the data. The points corresponding to the input values F = −0.62,
G = −0.44, and (F− G) = −0.18 are shown. (b) Experimental data of (a) are fitted by
ideal parabolas considering a smaller (red curve) and a wider range (blue curve). Near

the peak, the red curve overlaps the blue one.

3.4.4.3 DOR-based multiplication

The computation of the DOR-based multiplication is built on the Eq. (3.12). For
simplicity, the range of input currents is scaled to be in the range [−1, 0] with
a linear transformation: IDC = |IDC,0 − IDC,−1| x + IDC,0, where IDC,0 (IDC,−1) is
the current value associated with the numeric inputs 0 (−1). By making this
transformation, we obtain an even parabolic equation VDC (x) = VDC (−x) given
by:

VDC (x) = a′x2 + c′ (3.13)

where a′ = a |IDC,0 − IDC,−1|2 and c′ = VDC,max (see Figure 3.27 (a)). Based on the
Eq. (3.8), the steps to compute the multiplication between F and G consists in the
evaluation of the voltages for x = F, G, (F−G). To give an example, we consider
the experimental data of the rectified VDC as a function of the IDC and input value
x (top x-axis), showed in Figure 3.27 (a). For this example, we haveF = −0.62,
G = −0.44 and (F− G) = −0.18. The respective VDC are: VDC,F = 17.85 mV,
VDC,G = 18.30 mV, and VDC,F−G = 18.57 mV. We use Eq. (3.8) to perform the
multiplication considering the coefficients a = −2.0476 mV and c = 18.565 mV.
The DOR-based product is FG = 0.241, which is very close to the ideal value
FG = 0.273.
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The hardware implementation of the DOR can be realized sequentially with a
single STD, to minimize the area occupancy, or in parallel, with three STDs, to
maximize the computational performance. On the other hand, with three STDs
used for each multiplication, the calculation is three time faster, and the speed of
the DOR operation depends on the time required for the injection-looking and
the time required for the CMOS circuity to perform the addition.

3.4.4.4 Performance evaluations

As a first step, we have studied a comparison between the ideal multiplication
with the micromagnetic and experimental DOR-based multiplication.

Figure 3.28 (a) and Figure 3.28 (b) show the correlation results of 200 multiplica-
tions obtained using the DOR-based multiplication on micromagnetic data (blue
dots in Figure 3.23 (a)) and experimental data (black dots in Figure 3.27 (a)), com-
pare with ideal multiplication (red line). The Pearson correlation coefficient be-
tween the ideal multiplication and the micromagnetic (experimental) DOR-based
multiplication is 99.93% (99.83%). The high correlation values indicate that both
the micromagnetic and experimental DOR-based multiplications closely match
the ideal case, a promising result in term of accuracy and precision of the DOR
method for performing multiplication operations.

FIGURE 3.28: (a) Comparison between DOR multiplications based on micromagnetic
simulations (blue dots) and the ideal multiplication (red line) versus the ideal multipli-
cation. (b) Same comparison as in (a) but using the experimental curve from Ref. [46] for

DOR-based multiplication.
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In the second test, we have performed the convolution operation with the DOR-
based multiplication.

Figure 3.29 (a)-(d) illustrate results of the convolution between an image of a snail
(taken from the ImageNet dataset [180]) and the 3 × 3 blurring filter (see Figure
3.29 (a)), using ideal, simulated, and experimental DOR-based multiplication, re-
spectively. The blurring filter represents a limited case since each its element has
the same weight so the multiplication errors add up.

FIGURE 3.29: (a) Image of a snail, from ImageNet dataset; inset, 3 × 3 blur filter used to
perform the convolution with (b) ideal multiplication, (c) DOR-based multiplication ob-
tained via micromagnetic data, (d) DOR-based multiplication obtained via experimental

data.

As an example, we compute the convolution operation between an image of a
snail and several 3 × 3 filters, using both ideal multiplication and DOR-based
multiplication. The comparison of the results is evaluated through the Pearson
correlation (see Figure 3.30 (a)). Figure 3.30 (b) shows the probability density
functions (PDFs) of the Pearson correlation coefficients, r, obtained by consid-
ering 10000 random instances of filters. The average correlation coefficients are
r̄sim = 99.41 % for the simulation data and r̄sim = 97.87 % for the experimen-
tal data. The smaller average correlation and larger dispersion observed in the
experimental data are attributed to the less-accurate parabolic behavior.
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FIGURE 3.30: (a) A schematic representation of the process: correlation between the re-
sults of convolution of an image of a snail and a random filter using ideal multiplication
and DOR-based multiplication. (b) Correlation probability density functions obtained
by the convolution between an image of a snail (in (a)) and 10000 random filters, consid-
ering DOR multiplication through simulation (red curve) and experimental data (green

line).

The third test of the DOR-based multiplication is performed with a vanilla CNN
considering the experimental data. Figure 3.31 (a) shows the CNN architecture
used to solve the MNIST dataset [205] (28 × 28 = 784 pixel gray scale images
divided into ten categories). A single convolutional layer with 16 filters of size
3 × 3 performs the features extraction. The resulting feature maps are passed
through a ReLU AF and its spatial dimensions are halved using max pooling
layer. The outputs are flattened and connected to a FC layer with 10 neurons
and a softmax AF is used to obtain the output probability of the classes. Dropout
layers and early stopping are used to prevent overfitting. The CNN model is
implemented in Python with TensorFlow framework. The training dataset is
composed by 48000 images, the validation dataset by 12000 images and the test
dataset by 10000 images. The training accuracy reached is 98.64% and the test
accuracy 98.57% (see Figure 3.31 (b)).
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FIGURE 3.31: (a) CNN architecture consists of a convolutional layer, ReLU activation
function, pooling layer, FC layer. (b) Percentage of recognition accuracy versus number

of epochs for training (black line) and validation (blue line) of the CNN.

In order to mimic the spintronic hardware implementation of the model, we
transfer the trained weights into a CNN model with DOR-based multiplications.
After replacing the multiplication only in the convolutional layer (ConvDOR), the
test accuracy achieved is 96.83%; when extending the replacement to both the
convolutional layer and the FC layer (ConvDOR+ FCDOR), the test accuracy is re-
duced to 94.72%. However, a fine-tuning of the FC layer, considering DOR-based
multiplications only in the convolution layer (ConvDOR+ trainFC), increases the
test accuracy to 98.40%, see Table 3.1 (row a). Therefore, only an additional train-
ing of the last layer of the model is enough to restore the high accuracy obtained
in the ideal case.

TABLE 3.1: Summary of test accuracy for the CNN trained, respectively, with
ideal multiplication (Ideal), with DOR-based multiplication in the convolutional layer
(ConvDOR), with DOR-based multiplication in both the convolutional and FC layers
(ConvDOR+FCDOR), and with DOR-based multiplication in the convolutional layer and
an additional training of the FC layer (ConvDOR+trainFC). (a) Test accuracy obtained
with the main curve (represented in Figure 3.23 and Figure 3.27 (red curve)); (b) test
accuracy obtained considering device-to-device variations of the STDs; (c) test accuracy

obtained using the curve with a larger input-current range (Figure 3.27, blue curve).

Test accuracy (%)

Ideal ConvDOR ConvDOR+FCDOR ConvDOR+trainFC

a 98.57 96.83 94.72 98.40

b 85.51 51.18 98.33

c 97.07 93.11 98.35
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We also perform a study taking into account the device-to-device variation of the
STDs by simulating random variations in the coefficient a′ and c′ of the parabola
used in the DOR-based multiplication (Eq. (3.13)). Specifically, we added ±2.5%
random variation to the coefficient to account for the nonideal behavior of the
device. The results are summarized in Table 3.1 row b, for the cases described
above. The test accuracy has drastically decreased; nonetheless, also in this is
case, good performances are achieved with an additional fine-tuning the FC layer.

In addition, we perform the same analysis considering a large current region for
the input (see Figure 3.27 (b)). The results are shown in Table 3.1 row c. It is im-
portant to highlight that an additional training can adapt weights to better match
the specific characteristics of the DOR-based multiplication and can effectively
correct the errors introduced by using this non-ideal multiplication and improve
the accuracy of the computation.

As an example, Figure 3.32 shows some feature maps from a test image generated
using ideal multiplication (top) and DOR-based multiplication (bottom).

FIGURE 3.32: Feature maps of a test image. The images of the upper section are obtained
with the convolutional layer with ideal multiplication, while in the lower section with

DOR-based multiplication.

3.4.4.4.1 Dark knowledge analysis

We have also investigated the impact of the DOR-based multiplication on the ex-
traction of the dark knowledge. As discussed in paragraph 3.3.2, to bring out the
dark knowledge the temperature of the softmax has to be increased. In Figure
3.33 (a) the output probability of the most probable class for two representative
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images is plotted as a function of temperature (similar results are obtained for
other images) for ideal multiplication (solid line) and DOR-based multiplication
(dashed line). Additionally, the inset shows the probability of the second-most-
probable class as a function of temperature. These results suggest that the DOR-
based multiplication does not significantly affect the extraction of dark knowl-
edge. Figure 3.33 (b) provides a summary of the probability for all classes at
T = 10. In addition, we can anticipate that the non-linear response achieved
with the non-ideal DOR can introduce some features in the extraction of the dark
knowledge which can be beneficial. However, this is a direction which has to be
explored properly.

FIGURE 3.33: Dark knowledge extraction from CNN. (a) The probability of the most
probable class as a function of the temperature coefficient for the two test images (black
line for the image of a handwritten digit one, and blue line for the image of handwritten
digit nine) obtained with a CNN based on ideal multiplication (solid lines) and a CNN
with DOR-based multiplication for the convolutional layer and additional training of
the FC layer (dashed lines). The graph in the inset shows the probability of the second-
most-probable class as a function of temperature. (b) Probability of all classes for T = 10
for the represented image of a handwritten digit one, obtained from CNN based on ideal
multiplication (red) and CNN with DOR-based multiplication applied to the convolu-

tional layer with additional training of the FC layer (green).
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3.4.5 Dynamical neural network based on spin transfer nano-

oscillators

In ANNs, information propagates through layers with nonlinearity in between.
This process can be also expressed as the time evolution of a dynamical system,
therefore new paradigms of ANN models are based on dynamical systems and
can be modeled as ordinary differential equations rather than nonlinear AFs. A
significant difference between these approaches is the reduction of weight param-
eters. Here, we propose the STNOs as a physical dynamical system. If properly
designed, STNOs can naturally emulate memory and intrinsic nonlinearity, mak-
ing them a suitable building block for ANNs. Nonlinear classification is solved by
properly tuning STNOs with few control signals, allowing the devices to project
the initial configuration of states into regions of the phase space where states are
linearly separable, therefore a single FC layer at the end of the model is enough
to perform the classification. The training of the model is performed using op-
timal control theory. We test the proposed dynamical neuronal network with
two types of datasets, and its reliability against the device-to-device variations
is demonstrated. Although these systems are computationally expensive, their
hardware implementation is straightforward and cost-effective. The main results
of this study are published in Ref [220].

3.4.5.1 Introduction to neural networks with dynamical systems

We have already discussed the advantages and necessity of the hardware imple-
mentation of neural networks, highlighting the advantages of using spintronic
devices. The implementation of physical neural networks based on the evolution
of dynamical systems is a topic of great interest for reservoir computing and dy-
namical neural networks. For this purpose several solutions have already been
proposed including optical and mechanical ones [221, 222].

It has been already demonstrated that, for such dynamical neural networks, the
information propagation through multilayers can be expressed as a time evolu-
tion of dynamical systems [223, 224]. This idea was inspired by the simplified
version of the forward propagation in residual neural networks (ResNet) [225]:
zj+1 = zj + f (zj, wj) for j = 0, . . . N − 1, where N is the number of layers, z is
the output of the hidden layer and f is the activation function. In other words,
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this expression can be seen as an explicit Euler discretization of the nonlinear or-
dinary differential equation (ODE) zt+1 = zt + f (zt, t, w), with z (0) = z0, over a
time t = [0, T].

FIGURE 3.34: A schematic representation of the structure of the dynamical neural net-
work. The dataset is encoded as the initial state of the input power p (0) of the dynamic
system. The state at the end time Te = n∆t, p(n∆t) is the input of a FC layer for classi-
fication tasks. The trainable parameters are the control signal u (t) and the weights w.
(Bottom-left) Schematic of a STNO-based virtual neural network. (Right) Basic hybrid
unit of the neural network: a CMOS component reads the power and current, which
after calculation is injected back into the STNO. The resistance of the STNO depends on

the relative orientation between the FL and PL magnetization.

As physical dynamical neurons, we propose STNOs (see paragraph 1.8). These
devices have unique features, such as low-power consumption, nanoscale size
and tunability, which make them a reliable and versatile platform for implement-
ing such dynamical neural networks [194, 198]. We consider the time evolution
of the power emitted by an STNO, which is a monotonic function of the injected
current, as experimentally shown in Ref. [226] and [51]. At each time step, the
STNO’s output power has a dynamical evolution in response to the input cur-
rent, which can be considered as a linear combination of the power output from
the previous step. Therefore, the information propagation through multiple lay-
ers is emulated by the stationary power of the STNOs at each time step. The
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STNOs are supposed to be combined with CMOS technology for electrical oper-
ations such as reading the output power, calculating and injecting the current at
each step. Figure 3.34 shows the proposed dynamical neural networks.

Training the network involves optimizing the control signals and weights of the
FC layer, the one placed at the end of the model, to minimize the cost function.
This can be done using backpropagation algorithms coupled with the optimal
control theory developed in Ref. [222].

The learning algorithm is implemented as follows:

i ) The input data xk are encoded in the initial states of the power p (0); k =

0, . . . , K, where K is the number of input data.

ii ) Forward propagation. Integration of the dynamical system (we used
Heun’s method):

dp (t)
dt

= F [p (t) , u (t)] (3.14)

starting from the initial state p (0) = xk to the final state t = n∆t = Te,
pk (Te). u (t) =

{
Aij, Bi

}
represents the control signals. pk (Te) repre-

sents the input of the FC layer that perform the linear separation: zl,k =

wlpk (Te) + wbias
l from l = 0, . . . , L − 1, where L is the number of output

neurons, i.e., the number of categories of the dataset; wl and wbias
l are the

trainable synaptic weights. For the final output, yk, the softmax function is
applied.

iii ) Compute the cost function, J, using the categorical cross-entropy loss, L.

iv ) Backpropagation. The adjoint method developed for optimal control prob-
lems is applied to compute the gradient of the loss through the dynamical
system. We define the adjoint time-dependent parameter ak, such that it sat-

isfies the following equation: ak (Te) =
∂Lk
∂pk

∣∣∣∣
t=Te

for t = Te,
∂ak
dt

= −ak
∂Fk
∂ak

for 0 < t < Te. The adjoint is integrated in backward direction from t = Te

to t = 0, where
∂Lk
∂pk

∣∣∣∣
t=Te

=
∂Lk
∂zk

∂zk
∂pk

=
∂Lk
∂zk

w.

v ) Compute the variations:

• δw = −αw
∂J
∂w

= −αw ∑k
∂Lk
∂zk

∂zk
∂w

= −αw ∑k
∂Lk
∂zk

pk (Te)
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• δwb = −αw
∂J

∂wb = −αw ∑k
∂Lk
∂zk

∂zk

∂wb = −αw ∑k
∂Lk
∂zk

• δu (t) = −αu ∑k

(
pk (t)

∂Fk
∂u

)
where αw and αu are the learning rates.

vi ) Update control signals u (t)← u (t) + δu (t) and weights w← w + δw.

We use this network to solve simple classification tasks and to demonstrate the
effectiveness and feasibility of such approach. We aim to test experimental im-
plementations in the future.

3.4.5.2 Dynamical neural networks based on STNOs

3.4.5.2.1 Functional response of STNOs

FIGURE 3.35: Structure of the STNO used in the experiment performed in Ref. [226]. (b)
A comparison of the power vs current relationship: experimental data from the Ref.
[226] measured for an applied perpendicular field of 10 kOe (black line); model de-
scribed in Eq. (3.15) developed in Ref. [47] (red line) and phenomenological model

described in Eq. (3.16) (blue line). Both with Ith = −6 mA and Q = 0.1.

The first set of experimental data of STNOs used for the calculation in this work
are from Ref. [226]. Figure 3.35 (a) shows the device structure: two ferromagnetic
layers of permalloy (Py = Ni80Fe20) separated by a nonmagnetic layer of Copper
(Cu). The lower, thicker Py layer has a fixed magnetization direction, while the
upper Py layer has a free magnetization that moves in the presence of external
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torques. As already explained in paragraph 1.6.1, the electrical current is spin-
polarized by the fixed layer magnetization and exerts a spin-transfer torque on
the FL magnetization of the adjacent layer. The unitary magnetization of the FL
in presence of the STT follows the dynamic described by the LLGS equation (Eq.
1.38).

If the electrical current I is above a certain threshold Ith, it triggers an auto-
oscillation of the FL magnetization [47, 53]. In the auto-oscillation regime, the
magnetization rotates maintaining a fixed component along a direction defined
by the effective magnetic field, he f f , and the polarizer vector, mp. The power
emitted is proportional to this fixed component, making it the key component to
obtain the STNO’s output power. The power can be measured electrically [227–
229]. This power has also been already observed experimentally [226]. In addi-
tion, a well-established analytical theory has been developed by Slavin et al. [47]
(paragraph 1.8.1.1), where the stationary power of an STNO with injected current
I is given by (3.15):

p (I) =
I − Ith

I + QIth
(3.15)

where Q quantifies the nonlinearity of the system. However, this analytical
model does not fit well the exponential tail near the critical current shown by
the real data [226] (see Figure 3.35(b)). Therefore, based on the Slavin model [47],
we propose a phenomenological model given by (3.16):

p (I) =
1 + tanh (aI − b)

2
I − Ith

I + QIth
(3.16)

where the added pre-factor function is depending on the fitting parameters a and
b, that are directly identified from the experimental data to correctly match the
behavior close to the critical current. Different expressions can be used as pre-
factor functions, according to the power vs current characteristic of the STNO.
The analytical model of Eq. (3.15) fits well with many experimental data of STNO
published in literature [46, 50, 230, 231]. The pre-factor introduced here is strictly
a way to improve the fitting of experimental data and can be implemented in
hardware as a simple circuit coupled with the STNO. State-of-art STNOs further
improve the scalability of the dynamical neural network as they require lower
currents and no applied external magnetic field [51, 231].
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Figure 3.36 shows the experimental power as a function of the injected current
emitted by the STNO in Ref. [51] (blue dots), which are the second set of data
used. The data are well-fitted by the phenomenological model, Eq. (3.16), (black
dots). The device is an MTJ with magnetic stacks of CoFeB, (in-plane polarizer
and out-ot-plane FL magnetization), separated by a tunnel barrier of MgO, as
shown in Figure 3.36.

FIGURE 3.36: A comparison between the experimental power vs current data from Ref.
[51] (black dots) and the fitted phenomenological model from Eq. (3.16) (blue dots),
with Ith = −10 µA, and Q = 0.3. The inset shows the configuration of the STNO used to

obtain experimental data.

Experiments show microwave emissions with large output power, peak on the
order of 10 nW, excited at ultra-low currents, Ith ≈ −10 µA, and no external
magnetic fields. Thinner free layers have also been shown to produce even higher
power outputs at lower currents. Moreover, the full experimental results reveal
a greater nonlinearity of the emitted power curve, which can increase the perfor-
mance of the dynamical neural network while decreasing the computation costs
in terms of energy for larger problems.

3.4.5.2.2 Dynamical neuron

In the dynamical neural network, the information is encoded in the stationary
power output of the k STNOs at each time step, p (t) = {p1 (t) , . . . , pk(t)}. The
time evolution of the power is governed by the following iterative equation (3.17):

pi (t + ∆t) = p (Ii (p (t))) (3.17)
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where the input current of the i-th STNO, Ii, is a linear function of the power
output of all the STNOs in the previous time step (3.18):

Ii (p (t)) =

(
k

∑
j=1

Aij (t) pj (t) + Bi (t)

)2

(3.18)

where the matrix A (t) and vector B (t) correspond to controllable external sig-
nals (current or field). The input data is mapped to the initial condition of the
output power from a different STNOs. For instance, given an image consisting
of continuous pixel values, each pixel is linked to an STNO. The pixel value cor-
responds to a normalized value of the power output of the chosen STNO. The
system evolves over time controlled by the external parameters A (t) and B (t).
At the final time Te, the initial states are disentangled in different regions of the
phase space and become linearly separable, hence easy to classify with a single
FC layer. To achieve these results, the physical external parameters and weights
of the model are optimized through the minimization of the loss function, as de-
scribed in the learning algorithm.

3.4.5.2.3 Results

We evaluate the performance of the STNO-based dynamical neural networks on
two simple classifications tasks. In both tests, we consider identical STNOs with
output power, Eq. (3.16), given by a = 4, b = 5, Ith = 1, and Q = 2.

First, we solve the binary classification problem given by data spread in a spi-
ral pattern, where each point is labeled with one of two categories, as already
presented for an optical-based solution [222]. This dataset has 1000 points: 80%
of the data is used for training the ANNs and 20% for testing it (in this study
we treat validation as a test). We mapped the two coordinates of the points to
the power output of two STNOs. The classification accuracy is 93.88% for the
training, and 92.00% in test. Figure 3.37 (a) shows the results of the binary clas-
sification. Figure 3.37 (b)-(d) show the distribution of the data at the final state,
p (Te), for three different epochs during the training of the network. As we can
see in Figure 3.37 (d), at the end of the training the spiral dataset is disentangled
and becomes linearly separable.
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FIGURE 3.37: (a) Spiral dataset and results of binary classification into two regions indi-
cated by red and blue colors. (b)-(d) Configuration of the states at the end time, p (Te),
for three different epochs during the training. (d) Configuration of the states at the last
training epoch, where the data becomes linearly separable; the dashed line represents

the decision boundary to separate the two regions.

Additionally, we evaluate the reliability of the proposed network against device-
to-device variations. To do this, we have used the trained network employed for
Figure 3.37 and, to take into account the aforementioned variations, we consider
a different value of the parameter a from Eq. (3.16) for each device. This value is
sampled from a normal distribution with mean µ = 4 (ideal parameter). Figure
3.38 shows the average accuracy of the test over 10000 runs, plotted against the
standard deviation used to sample the a parameters for each device. The net-
work maintains high accuracy for deviations up to σ = 0.25. Consequently, the
proposed network is robust against device-to-device variations.

FIGURE 3.38: Average of test accuracy over 10000 runs, as a function of the standard
deviation (σ) of the normal distribution from which the parameter a in Eq. (3.16) were
sampled. The inset shows the normal distribution of the possible a values and indicated

the σ.
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In the second case, we evaluate the performance of the network in the multiclass
classification of the “DIGIT” dataset. The dataset consists of 8 × 8 = 64 pixel
gray scale images of handwritten digits from 0 to 9, for a total of 1797 images. The
values for each of the 64 pixels were mapped to the power output of 64 STNOs.
As in the previous case, we divided the dataset into two: 80% of the data is used
for the training of the network and 20% for testing. The accuracy obtained during
training is 99.16% while the accuracy of the test set is 97.5%. Figure 3.39 shows
the accuracy and loss for the training and the test set, as a function of the number
of epochs.

FIGURE 3.39: Accuracy and loss as a function of number of epochs for training and
testing of the neural networks, on the “DIGIT” dataset. The solid (dashed) blue line

corresponds to the train (validation) loss.

Our results show that a phenomenological model of STNO can be used to design
spintronic dynamical neurons and dynamical ANNs. Those promising results
achieved for simple datasets are the proof-of-concept of the idea and we believe
they may inspire future hardware implementations of this network.

3.5 Conclusions

We have introduced the fundamental concepts of artificial neural networks, high-
lighting two prominent challenges: the escalating energy demands for ANN
training and the von Neumann bottleneck. Neuromorphic spintronics emerges
as a potential solution, leveraging spintronic devices for neuromorphic comput-
ing. We have discussed the state-of-the-art and explored the applications of MTJs
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in neuromorphic spintronic systems. Specifically, we have demonstrated the use
of MTJs as neurons, addressing the reliability of ANNs by accounting for device-
to-device variations.

Furthermore, we have demonstrated the use of STDs for analog multiplication,
in both image processing and CNNs.

In the last part of this section, we propose using STNOs to implement a dynam-
ical neural network. This marks a step forward in exploring new and dynamic
approaches to neural network architectures.



147

Chapter 4

Probabilistic computing

Effective optimization tools are very important for many problems in biomed-
ical engineering. In particular, combinatorial optimization, which aims to find
optimal solutions in problems with a finite, discrete set of configurations, can im-
pact the design of clinical trials for the organization of the patients’ groups and
for searching the optimal dose of drugs. In addition, combinatorial optimiza-
tion provides a path to systematically address the complexity and scale of many
other problems in biomedical engineering, which range from advancements in
the research (e.g. drug discovery, genomics), diagnosis (medical imaging analy-
sis), treatment (optimization of the resources), etc.. The integration of combina-
torial optimization tools with cutting-edge artificial intelligence presents a very
powerful solution to face biomedical problems that were intractable up to recent
years. Among all the potential combinatorial optimization tools, this thesis fo-
cuses on Ising machines, which are becoming increasingly popular as efficient
and hardware-friendly solvers for combinatorial optimization problems. These
machines are designed to search for absolute or approximate ground states of
the Hamiltonians of Ising models by using proper annealing processes. One ap-
proach to solving Ising models is probabilistic computing with p-bits (PC), where
the traditional bits are replaced by bistable tunable stochastic bits, which can be
naturally implemented in hardware and, in particular, with MTJs. The first part
of this chapter provides an introduction to the Ising model formalism and combi-
natorial optimization problems. The second part presents the PC paradigm and
describes its implementation in a homemade C/CUDA solver (PetaIsing). The
chapter concludes with results related to MTJ-based PC.
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4.1 Ising model

The Ising model is a mathematical model that was originally designed to study
phase transitions in ferromagnetic materials [232]. Its origins date back to 1920,
when Wilhelm Lenz came up with the idea. Later, his student Ernest Ising solved
the one-dimensional model. The model became the subject of interest from physi-
cists after Lars Onsager analytically solved a two-dimensional version in 1944, re-
vealing the phase transition phenomenon within ferromagnetic materials [233].

The ferromagnetic material can be modelled as a lattice with N sites, each site
hosting an atom of the magnetic material. Each atom has an intrinsic magnetic
moment, called spin, which can have either “up” or “down” direction, as illus-
trated in Figure 4.1 (a). An independent variable σi is assigned to each lattice site
i = 1, . . . N. This is a binary variable representing the discretized state of the spin,
σi ∈ {−1,+1}. An assignment of spins (σ1, σ2, . . . , σN) to each lattice site is re-
ferred to as spin configuration σ of the system [234].

FIGURE 4.1: (a) A schematic representation of a two-dimensional lattice with four sites,
using spins up or down to model a ferromagnetic material in the Ising model. (b) A
schematic representation of neighboring spins

(
σi, σj

)
with their coupling Jij and exter-

nal field
(
hi, hj

)
.

In mathematical physics, the Hamiltonian represents the total energy of a system.
For the Ising model, the formulation of the Hamiltonian relies on the theoretical
assumption that only short-range, “nearest-neighbor” interactions and interac-
tions with an external field contribute to the energy of the system [234]. For each
spin configuration, the Hamiltonian is:

H (σ) = −∑
⟨i,j⟩

Jijσiσj −∑
i

hiσi (4.1)
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where the first sum is over all pairs of spins that are nearest neighbors in the
lattice, and the second sum is over all the spins. The parameter Jij corresponds to
the coupling between nearest-neighbor sites i, j ∈ [1, N], and the parameter hi is
the external field applied to each site i ∈ [1, N], as illustrated in Figure 4.1 (b). For
a ferromagnet, the coupling Jij is positive, so that a magnetized configuration,
where nearest-neighbor pairs have parallel spins σi = σj, has a lower energy
compared to a non-magnetized configuration. The hi acts as an external magnetic
field which tends to align the spins in its direction, favoring lower energy levels.

In a generalized version of the Ising model, these interaction parameters can
assume positive, negative, or zero values, representing ferromagnetic, antifer-
romagnetic, and non-interactions, respectively. The interactions extend beyond
neighboring spins; instead, they are all-to-all. This implies that each spin within
the system is interconnected with every other spin (provided that these interac-
tions also include zero coupling ones). The Hamiltonian, which reflects the total
energy of the system, is consequently redefined to capture this comprehensive
interaction scheme:

H (σ) = −∑
i<j

Jijσiσj −∑
i

hiσi (4.2)

The interactions between spins can be collectively represented by a symmetric
square matrix J, and the external field by a bias vector h.

The possible spin configurations of a system with N spins are 2N. For a given
temperature T of the system, the probability of being in a particular spin con-
figuration σ can be described by the statistic physics and follows the Boltzmann
distribution, which is given by the formula:

Pβ (σ) =
e−βH(σ)

∑σ e−βH(σ)
(4.3)

where β is the inverse temperature β = (kBT)−1, where kB is the Boltzmann’s
constant. The negative sign biases the probability toward states with lower en-
ergy. A low value of β, indicative to a high temperature, tends to equalize the
distribution of all configurations. Conversely, a high value of β, indicative of
low temperature, amplifies the probability of the lowest energy states, also called
ground states (GS) [234].
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The evolution of the system toward the ground state is governed by an “update
equation” of the spin states. As the time approaches infinity, the probability dis-
tribution of the systems follows the Boltzmann distribution. Each computational
paradigm is characterized by its update equation.

Any approach design to find the absolute or approximate ground states of an
Ising model is called Ising machine.

4.2 Complexity classes

Since the 1980s, the Ising model has emerged as an efficient method for solving
combinatorial optimization problems (COPs) [235–237]. COPs are problems that
become harder and harder to solve as the instances become larger for determin-
istic methods. The term “deterministic” commonly implies the absence of choice.
In a deterministic event, the outcome can be precisely predicted based on prior
circumstances. Conversely, the term “non-deterministic” is used to describe an
event where the outcome is relies on the choices made by its participants, there-
fore it cannot be accurately predicted [238]. Figure 4.2 shows the difference be-
tween deterministic and non-deterministic algorithms. In a deterministic algo-
rithm, for a given input, the output remains always the same (Figure 4.2 (a)). On
the contrary, in a non-deterministic algorithm, for the same input there are sev-
eral possible outputs, so there is a choice point at which one output is selected
(see Figure 4.2 (b)-left). Consequently, if the same input is provided in different
algorithm execution, the output may differ. This process can be represented as a
“tree of choices”, where each node is a choice point, leading to a different path
from the root to the leaf of the tree (see Figure 4.2 (b)-right), while in a determin-
istic algorithm the path from the root to the leaf of the tree is always the same (see
Figure 4.2 (a)-right).

The aforementioned classification, applied to Turing machines, serves as a fun-
damental framework for categorizing algorithmic complexity.

A Turing machine is a mathematical model of computation introduced by Alan
Turing in 1936 [239]. This abstract machine manipulates symbols on a strip of tape
according to a set of rules, and it is able to implement any computer algorithm.
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FIGURE 4.2: Comparison of deterministic and non-deterministic algorithms. (a) Deter-
ministic algorithm: the output remains the same for a given input. (b) Non-deterministic
algorithm: multiple outputs are possible for a given input, and the choice point selects
one. A set of choice points forms a “tree of choices”, and each execution of the algorithm

may follow a different path from the root to the leaf of the tree.

The complexity of an algorithm, that is, a set of instructions used to solve a prob-
lem, usually refers to the computation time as a function of the size of the in-
stances of the problem. Sets of problems that share common characteristics are
grouped into what is called complexity class. There are several types of complex-
ity classes, some of which are:

• P (polynomial time): it is the class of problems that can be solved by a de-
terministic Turing machine in polynomial time.

• NP (nondeterministic polynomial time): it is the class of problems that can
be solved by a non-deterministic Turing machine in polynomial time and
the solutions of the problems are verifiable by a deterministic Turing ma-
chine in polynomial time.

• NP-complete: it is the classes of problems that are in NP and such that ev-
ery problem in NP can be mapped (reduced) to any NP-complete problem
in polynomial time. In other words, solving an NP-complete problem in
polynomial time would imply the ability to solve any NP problem in poly-
nomial time.

• NP-hard: it is the class of problems such that every problem in NP can be
mapped (reduced) to any NP-complete problem in polynomial time. An
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NP-hard problem that is in NP is, thus, also NP-complete. NP-hard prob-
lems that are not in NP are not verifiable by a deterministic Turing machine
in polynomial time.

Figure 4.3 shows the Euler diagram detailing the relationship between P, NP, NP-
complete and NP-hard. In particular, NP contains P and intersects with NP-hard,
and this intersection is the NP-complete class.

FIGURE 4.3: Euler diagram of complexity classes for P, NP, NP-complete and NP-hard
set of problem.

4.3 Invertible logic and NP-hard problems

Most COPs are NP-hard problems. Some examples are the maximum cut problem
(Max-Cut), the maximum satisfiability problem (Max-SAT), and planted Ising.
When these problems can be described by a logic circuit, it is possible to have a
way to map them in the Ising model involving the use of invertible logic [240–
242]. Invertible logic is the concept of designing an Ising model to emulate a
Boolean logic circuit with the flexibility to operate bidirectionally. The building
blocks of this encoding paradigm are the invertible logic gates [242]. The truth
table of a Boolean logic operation corresponds to the ground states of these Ising
models. The Ising elements (J and h) are chosen in such a way that the configura-
tions of the spins lead to the truth tables states. As an example, let us focus on the
AND logic gate. Figure 4.4 shows the truth table (a) and the Ising elements (b) of
the AND gate, with two spins for the input and one for the output. The possible
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spin configurations are 23, but 4 states are the spin configurations that minimize
the energy describing the AND truth table, as shown from the probability distri-
bution of the states shown in the Figure 4.4 (c) with orange bars, where each of
these states is equally probable. The main point of invertible gates is that they
can be used in reverse mode. A way to program this behaviour is by increasing
or decreasing the bias of a specific output spin, in a process called clamping. The
clamping of the output leads to a change of the energy landscape toward the in-
put spin configurations compatible with the fixed output. Figure 4.4 (c) shows
this process for the AND gate: for a low value of the clamping, which corre-
sponds to σC = −1, there are 3 equally probable spin configurations (000, 010,
100) (green bars), while for a high value, meaning σC = +1, the most explored
spin configurations is only σA = σB = 1 (purple bars) [241].

FIGURE 4.4: Logic gate AND. (a) Circuit symbol and truth table (b) Ising elements J and
h. (c) Probability distribution of the Ising model of AND. The orange bars represent the
probability of the unclamped AND, the green bars correspond to spin configurations
under a positive clamp of the output, and the purple bars for a negative clamp of the

output.

The same considerations apply to all logic gates and logic circuits in this encoding
paradigm in general.

We wish to stress that by appropriately combining the Ising elements of several
logic gates it is possible to map COP described by logic circuits in the Ising model
[242, 243]. This thesis delves into the study of several problems, which are intro-
duced in the next sections.
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4.3.1 Maximum cut problem (Max-Cut)

Given an undirected graph, the Max-Cut problem aims to group the vertices of
the graph into two partitions such that the number of the edges between them
is as large as possible [244]. This problem has an important impact in logistic
problems. Figure 4.5 (a) shows a simple example of a graph, where some of the
four vertices are connected with edges. In this case, each edge is characterized by
a weight, which describes the coupling strength between the two connected ver-
tices. In fact, a more generalized version of the problem is the weighted Max-Cut
which aims to maximize the total weight of the edges between the two partitions,
rather the number of edges.

The Max-Cut problem is NP-hard and can be mapped in polynomial time into
an Ising model where each vertex of the graph is an Ising spin σi, and the con-
nections between vertices define the coupling Jij. The spin value encodes the
group to which a vertex belongs. Directly connected vertices in different groups(
σi ̸= σj

)
have to lead to a reduction of energy, and this is achieved by assigning

a negative coupling between them
(

H (σ) = −Jijσiσj
)
. Figure 4.5 (b) shows the

solution of the graph in (a) mapped into the Ising model, where the vertices are
separated into two partitions that maximize the cut value. Figure 4.5 (c) shows
the corresponding Ising elements.

FIGURE 4.5: Max-Cut problem illustration. (a) A schematic illustration of a weighted
graph with four vertices. (b) The graph in (a) is encoded in an Ising model in which
the spins (vertices) are separated into two groups. This leads to maximizing the sum
of the weights of the edges connecting the partitions. The optimal value of the cut is 4,

highlighted with a solid yellow line. (c) Ising elements J and h of the graph in (b).
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4.3.2 Planted Ising

Planed Ising problems are constructed based on predetermined ground-state con-
figurations, known as planted solutions, making them particularly suitable for
benchmarking purposes [245]. The basic idea involves generating several small
Hamiltonians with known ground states and then summing them together to
create a nontrivial problem with a known solution [243]. This process allows the
generations of several instances of the problems with different size and difficulty.
Figure 4.6 illustrates a graph with Pegasus topology [246], a lattice employed to
generate instances of problems solved in this thesis. Planted Ising can be also
created on cubic graphs and Zephyr topologies.

FIGURE 4.6: An example of graph with Pegasus topology.

4.3.3 Maximum satisfiability problem (Max-SAT)

Max-SAT is an optimization problem for propositional formulas in conjunctive
normal form (CNF). In CNF, a propositional formula is a conjunction of clauses,
where each clause is a disjunction of literals. For a Boolean variable x, a literal is
defined as x or its negation -x. The goal of Max-SAT is to find an assignment of the
variables that maximizes the number of satisfied clauses [247]. In this thesis, we
measure the “solution cost”, which represents the number of unsatisfied clauses.
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A more general version of Max-SAT is the weighted Max-SAT, where each clause
is assigned a non-negative weight (in standard Max-SAT this weight is one), and
the goal is to find an assignment that maximizes the combined weight of the
satisfied clauses.

A Max-SAT instance can be represented as a logic circuit, where literals in a clause
are connected by OR gates, and all clauses are connected by AND gates, as illus-
trated in Figure 4.7. The regular gates are replaced with their equivalent invert-
ible gates, and the instance is then mapped into the Ising model elements [242].

FIGURE 4.7: A schematic representation of the Max-SAT encoding into an Ising model.
A toy Max-SAT instance in its “.cnf” file format is converter into a logical representation,
with corresponding logic gate circuit that can be mapped onto the Ising model elements

[242].

4.3.4 Integer factorization

The integer factorization problem is the decomposition of a positive integer C
into a product of integers, known as factors, C=A·B. For a non-trivial solution,
the factors must be greater than 1. Of particular interest is the prime factoriza-
tion, where A and B are prime numbers, forming the foundation of cryptography
[248]. Despite various deterministic algorithms designed to address this problem,
achieving scaling for large numbers of bits remains elusive.

This problem can be managed by IMs by using invertible logic gates to encode
the problem [249]. Figure 4.8 shows an example of a circuit operating in reverse



Chapter 4. Probabilistic computing 157

mode, clamping the number to be factorized as the input of the IM, which at-
tempts to identify the prime integer factors.

FIGURE 4.8: (a) A schematic representation of logic gates circuit to solve 8 bits integer
factorization with an IM operating in reverse mode. (b) Ising model elements J and h.

4.4 Hardware implementation of Ising machines

Ising machines are hardware solvers designed to find the absolute or approx-
imate ground state of the Ising model. Over the years, several hardware im-
plementations of the Ising model have been investigated, involving both digital
hardware accelerators and analog computing approaches. Mohseni et al. in Ref.
[244], provides a comprehensive review of IMs as hardware solvers for COPs.

Figure 4.9 summarizes some physical implementation of IMs (from [244]), in-
cluding magnetic devices [240, 242, 243], memristors [250], electrical oscillators
[251], single atoms [252] and optics [253]. For instance, in oscillator-based IMs,
each Ising spin σi is encoded in the phase of an oscillator’s dynamics. In optical
systems, this corresponds to the phase of light. Memristor crossbars are used to
perform an analog matrix multiplication of the Ising matrix. A stochastic MTJ can
be used to replace a conventional bit with a probabilistic bit, which is the building
block for a type of probabilistic computing approach for solving COPs discussed
in the paragraph 4.6.

Digital-electronic approaches of IMs include hardware accelerators using CMOS
applications [254, 255], FPGAs [256] and GPUs [257–259].
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Classical IM paradigms are commonly benchmarked against quantum comput-
ing, i.e. quantum annealers. It is important to notice that quantum hardware
development requires a lot of resources, facing challenges such as decoherence,
error control, limited connectivity, and need for cryogenic temperatures. Nowa-
days, D-Wave System has emerged as a pioneering company able to implement
systems with a large number of quantum bits (qubits) for quantum annealers
[244, 260]. Given the key role of quantum effects in D-Wave machine [261], algo-
rithms inspired by quantum system have been developed for IMs.

FIGURE 4.9: Summary of technologies used to implement IMs [244]. (a) Stochastic MTJ
illustrating the difference between conventional MRAM and the probabilistic bit [240].
(b) Memristor crossbar array for matrix-vector multiplication [250]. (c) CMOS chip im-
plementing a 1 million spin Boltzmann machine [262]. (d) Metal-insulator VO2 system
realizing coupled electrical oscillators [251]. (e) Co atoms on the surface of black phos-
phorus interacting with a scanning tunneling microscope to implement a Boltzmann
machine [252]. (f) Spatial light modulator-based photonic annealer [253]. (g) Coherent

Ising machine measurement-feedback loop [263].
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4.5 Energy minimization algorithms

One of the crucial aspects for an effective approach for solving an Ising model is
the choice of the energy minimization algorithm. As discussed in paragraph 4.1,
the inverse temperature β plays a key role in determining the probability distri-
bution of the states. Consequently, many algorithms tune this parameter to find
the spin configuration with lowest energy. Another important hyper-parameter
is the number of copies of the system (known as replicas) that are randomly ini-
tialized. The most basic algorithm is the sampling, but more sophisticated al-
gorithms have been developed, such as simulated annealing, parallel tempering
and simulated quantum annealing, all of which are discussed in the following
sections.

4.5.1 Sampling

The system evolves at a fixed temperature, as illustrated in Figure 4.10. The
choice of β is crucial; a low value fails to encourage the system to reside in en-
ergy minima; a high value does not allow the system to escape from shallow local
minima.

FIGURE 4.10: A schematic representation of the sampling algorithm. At each time step
the temperature of the system remains constant.

4.5.2 Simulated annealing

The SA is one of the most popular energy-minimization algorithms [236]. It
draws inspiration from the annealing process in metallurgy, where a material is
heated to a high temperature and then gradually cooled, promoting the removal
of defects and leading to a more ordered and stable structure. Similarly, SA starts
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with a random spin configuration at high temperature (low β), which promotes
the exploration of the spin configuration space. The temperature gradually de-
creases during the evolution of the system leading toward the lowest energy state.
Once the system reaches this state, it is “frozen” with not much energy to escape
from the minimum. Figure 4.11 illustrates a schematic representation of the algo-
rithm. The choice of the annealing schedule is crucial, as it determines the rate at
which the algorithm explores and converges. A standard approach is to have β

increase linearly from a low to a high value, although alternative behaviors can
be employed [264].

FIGURE 4.11: A schematic representation of the SA algorithm. At each time step the
temperature gradually decreases.

4.5.3 Parallel tempering

PT algorithm provides an important improvement over SA, albeit at a higher
computational cost [265, 266]. In PT, multiple replicas of the system are used,
each at a different temperature [244]. In order to find the solution, the PT algo-
rithm compares the energy of the replicas and apply different operators to per-
form swaps of the states between replicas. For example, a deterministic operator
we implemented here works as follow. The energies of the replicas are compared,
if the energy of the hotter replica is lower that the energy of the colder replica, a
swap occurs, as illustrated in Figure 4.12.

For non-deterministic approaches, the probability of swap can be governed by
certain rules linked to a probability function, allowing in some cases also swaps
that can be energetically disadvantageous. The higher temperature replicas fa-
cilitate diversification by exploring a larger spin configuration space, while the
lower temperature replicas act as an intensification element by improving the
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state through the exploration of a local solution until a minimum is found [242].

FIGURE 4.12: A schematic representation of the PT algorithm. (a) Multiple replicas of
the system evolve in parallel at different temperatures and can swap their states during
the algorithm’s progression. (b) Illustration highlighting the swapping rule between two

replicas - one at high temperature and one at low temperature.

Energy is the most general metric governing the swapping rules, although other
problem-related metrics can be employed, as it will be discussed in the next sec-
tions.

The choice of hyper-parameters such as the values of β and the number of replicas
is crucial for solving problems.

4.5.4 Simulated quantum annealing

SQA is a quantum-inspired algorithm that simulates the quantum tunneling phe-
nomena in an Ising model with a transverse field [256, 267]. Multiple replicas at
the same temperature interact with each other via a transverse field, simulating
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the superposition of all possible spin configurations. Figure 4.13 illustrates the
working principle of the algorithm.

FIGURE 4.13: A schematic representation of the SQA algorithm. Multiple replicas at the
same temperature interact with each other via a transverse field. The transverse field
starts from zero and increases over time, gradually forcing the replicas to converge to

the same state.

The transverse field is close to zero at the beginning of the simulation, allowing
the replicas to evolve relatively independently. This field smoothly increases over
time until it diverges near the end of the simulation, causing the replicas to be-
come strongly coupled and ideally “collapse” into one spin configuration. The
formulation of the strength of transverse coupling between replicas used in this
thesis is given by:

JT (n) = −JT0 log
(

tanh
(

β
N − n
N − 1

Gx

))
(4.4)

where JT0 is the scaling parameters, Gx is the transverse field, N is the number of
steps in the simulation, and n is the generic step of the simulation.
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4.6 Probabilistic computing with p-bits

Conventional/digital computing uses bits to encode information as either 0 and
1, while quantum computing uses qubits which can be used to model superpo-
sition of states (0 and 1 in case of a single q-bit). Positioned between these two
paradigms of computing we can place the idea of probabilistic computing, which
uses p-bits – probabilistic bits (see Figure 4.14(a)). The p-bit fluctuates in time
between the states -1 and 1, but at any given time it is in one of the two states
[241, 268].

FIGURE 4.14: (a) A schematic representation of bit, p-bit, and qubit. (b) Behavior of the
p-bit in response of the input signal. The orange line represents the binary stochastic
state response of a single p-bit with input signal values from −5 to +5. The blue line is
the average over 104 runs with the same Ii, which approximates the hyperbolic tangent

function (black line).

A simple example of equation governing the time domain dynamic of a p-bits σi

is:
σi (n + 1) = sgn (rand (−1, 1) + tanh (Ii (n))) (4.5)

where rand(−1, 1) is a random number between−1 and +1, and Ii (n) is the input
control signal that tunes the dynamical response of the ith p-bit. It is possible to
identify two terms: the stochastic component given by the random number and
the deterministic component given by the hyperbolic function. The higher is the
value of the Ii, the more deterministically the p-bit is going to act. This behavior
can be described in terms of probability of the p-bit being in a given state, i.e., for
Ii = 0 there is 50% of probability that σi = −1 or +1, while for high (low) value
of Ii the probability of a p-bit to stay in the state −1 and +1 changes. Figure 4.14
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(b) shows the behavior of the p-bit σi as the input is ramped from -5 to +5. The
orange line is the binary stochastic response of the p-bit, the blue line is obtained
by averaging over 104 runs with the same Ii, which approximates tanh (Ii) (black
line).

The input signal of each p-bit is a function of all the p-bits connected to it:

Ii (n) = β

(
∑

j
Jijσj + hi

)
(4.6)

It resembles the input basic neuron of fully connected layers of neural networks.
β is the inverse pseudo-temperature, Jij represents the coupling between the ith

p-bit, the one being updated, and the jth p-bit at the moment of the update. By
updating a system of p-bits in sequence, the state samples the energy landscape
of the Ising Hamiltonian. Figure 4.15 illustrates the sequential update of the 3
p-bit AND gate.

The update of each p-bit in a system once is referred to as an “iteration”. The
update sequence is randomly chosen at each iteration.

FIGURE 4.15: A schematic representation of sequential p-bit update for the 3 p-bits of
the AND gate. The green square represents the updated p-bit.

4.6.1 Probabilistic computing solver

In a work led by Nobel laureate Giorgio Parisi, Bernaschi et al. [269], it was
demonstrated that an efficient implementation of IMs on GPUs can have per-
formances that are at least 2 orders of magnitude better than the other state-of-
the-art devices, such as D-Wave quantum processors [270] and memcomputing
machines [271]. Their work led them to leadership in the 3-XORSAT challenge in
2019.
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Keeping this in mind, we have developed a PC solver in C/C++ programming
language, with a GPU acceleration written in CUDA language that is poised for
further improvements.

The code is designed to solve potentially every problem that can be mapped into
an Ising model. Given the coupling matrix J and the bias vector h, it is always
possible to calculate the energy of the system. However, many problems have a
problem-related metric to check the solution, such as the value of maximum cut
in Max-Cut or the solution cost in Max-SAT. For this reason, some of these metrics
have been implemented in the solver, as discussed in paragraph 4.6.1.2.

The code is created for straightforward benchmarking through the setting of all
the simulation parameters via text files. In particular, the configuration files re-
quired to setup the simulations and run the solver are the following (shorthand
notation in parenthesis):

• ProblemType_parameters.txt (fileProblem).

• Simulation_parameters.txt (fileSimu).

• Computing_parameters.txt (fileComp).

• Annealing_parameters.txt (fileAnn).

• Output_parameters.txt (fileOut).

The file name suggests the nature of the parameters it holds. For example,
fileProblem holds parameters such as the type of problem to solve, and some
problem-related parameters, i.e., the number of clauses and variables in Max-
SAT. fileComp holds parameters like the number of iterations, the number of p-
bits and the file name of the J and h text files. In fileSimu it is possible to decide
between CPU and GPU version of the solver.

Scalability is one of the key advantages of the code.

The pseudocode reported in the table Algorithm 4.1 describes the main struc-
ture of the program PetaIsing. All simulation parameters are stored in variables
or pointers, organized in several structures, commonly referred as structs. To
improve memory usage, performance, and flexibility we decide to employ only
1D pointers. At the beginning of the program, the variables in the structs are
populated with configuration parameters loaded from files. The subsequent step
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involves setting of the pointers with values loaded from text files, including J,
and h, along with added clamp values.

The program allows for multiple runs of the PC solver, each with a different seed,
thus starting from distinct initial state of the p-bits. In particular, the initialization
of p-bits can be done either by the code with initial values randomly set to −1 or
+1, or by loading them from a text file. Despite being a probabilistic solver, the
code is designed to ensure reproducibility for a given seed of the random number
generators.

To find the solution of a problem a huge number of iterations can be required. To
deal with this, we divided the total number of iterations into B blocks. In other
words, we perform B blocks, each consisting of N iterations, resulting in a total
number of B×N iterations for the entire simulation. The results of each block are
stored using double pointers, that point at each block. At the end of each block,
the results, like the energies, the losses, and the spin configurations, are saved in
text files.

Algorithm 4.1: Main structure of PetaIsing
structs← DEFINESTRUCT()

structs← LOADINPUTS(structs)

J, h, . . . ← SETINPUTS(structs)

for run← 0 to nRun do
σ ← INITPBITS(structs)

for block← 0 to B do ▷ B number of blocks
σ ← UPDATEPBITS(σ, block, structs)

end

end

UPDATEPBITS is the main function of the PC solver, where the update of each
p-bit is performed, as detailed in the table Algorithm 4.2. For a system of M p-
bits and R replicas, the indices of each p-bit are stored in the pointer x, which
is shuffled every iteration (N) to randomize the update order. At the beginning
of each iteration, the random component of the update equation (Eq. (4.5)) for
each p-bit of the replicas is stored, enhancing the efficiency in the PC-CUDA. In
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PC-CUDA, the MAC operation between the p-bits and their coupling, with the
addition of the bias, is parallelized.

The function COMPUTEβ returns the value of β for each replica at every iteration,
enabling the implementation of several annealing algorithms. For random sam-
pling and SQA algorithm, β remains constant throughout each iteration. In PT,
each replica is assigned a different value of β, while in SA, β changes over the iter-
ation number, from a low value βL to a high value βT. Typically, in SA, β follows
a linear behaviour, implemented as: β ← βL +

n
BN − 1

(βT − βL). Furthermore,
the solver accommodates custom annealing schedules via an appropriately con-
figured text file.

At the conclusion of each iteration, the energy and the objective function asso-
ciated with the problem, referred to as loss, are computed. The function COM-
PUTELOSS will be further discussed in paragraph 4.6.1.2.
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Algorithm 4.2: p-bits update function

x← [0, 1, 2, . . . , M− 1]R ▷ x containing all the indices of the M

p-bits

for n← blockN to (block + 1) N do ▷ Loop over N iterations
x← shuffle(x)

rd← [rand(-1,1)]R

for i← 0 to M− 1 do ▷ Loop over M p-bits

for r ← 0 to R− 1 do ▷ Loop over R replicas

Sr ← ∑ Jijσj + hi ▷ MAC + bias

end

β←COMPUTEβ(n, i)

for r ← 0 to R− 1 do ▷ *
ii← xr,i

I ← βrSr

σr,ii ← sgn(rdr,ii + tanh (I)) ▷ Update ith p-bit of rth replica

end

end

for r ← 0 to R− 1 do

Er ← −
(
∑∑1

2
Jijσr,iσr,j + ∑ hiσr,i

)
▷ Energy of rth replica

Lr ←COMPUTELOSS(σ)

end

end

4.6.1.1 Implementation of energy minimization algorithms

Random sampling and SA can be easily implemented by properly setting the
value of β and its time domain evolution, as discussed in the previous paragraph.

As explained in the paragraph 4.5.3, PT involves the comparison between replicas
based on either energy or loss computation according to the COPs to solve. The
table Algorithm 4.3 details the process for the energy, but the same considerations
apply to the loss. Replicas can be set to swap either every iteration or after a
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chosen number of iterations NPT (if it is not specified NPT = 1). The replicas are
arranged from the coldest at replica 0 to the hottest at replica R− 1. Starting from
the hottest replicas, if its energy is lower than the energy of the colder neighbor,
the swap occurs.

Algorithm 4.3: PT algorithm

if n mod NPT = 0 then

for r ← R to 1 do

Er ← −
(
∑∑1

2
Jijσr,iσr,j + ∑ hiσr,i

)
Er−1 ← −

(
∑∑1

2
Jijσr−1,iσr−1,j + ∑ hiσr−1,i

)
if Er < Er−1 then

tmp← σr

σr ← σr−1

σr−1 ← tmp

end

end

end

Expanding upon the PT concept, the code integrates various methods of ex-
changes between replicas. These include reordering the replicas based on their
energy or loss, initiating swaps or changes in the state of a set of replicas if a
given metric of the coldest replicas remains stuck for a certain number of itera-
tions.

The SQA involves the interaction between replicas via a transverse field Itrans

added to the input signal. The table Algorithm 4.4 summarizes the loop marked
with * in the table Algorithm 4.2, including the additional Itrans term. The strength
of transverse coupling between replicas (JT) as given by Eq. (4.5) is computed at
the beginning of the simulation in the functions SETINPUTS or can be configurated
via a text file.
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Algorithm 4.4: SQA algorithm

JT = −JT0 log
(

tanh
(

β
N − n
N − 1

Gx

))
for r ← 0 to R− 1 do

ii← xr,i

Ilocal ← βrSr

Itrans = JTn (σr−1,ii + σr+1,ii)

I ← Ilocal + Itrans

σr,ii ← sgn ( rdr,ii + tanh (I))

end

4.6.1.2 Result

As previously mentioned in section 4.6.1, the PC solver is designed to address
every problem that can be mapped into an Ising model. While it is feasible to
compute the energy of any given problem, it is often more insightful to also ob-
serve the trends of a problem-related objective function (loss). This is particularly
true as encoding a problem in the Ising model necessitates a significant number of
auxiliary p-bits that increase the computational cost of the energy. In the follow-
ing sections, we will delve into a detailed explanation of the objective function
and present results from the comparative analysis of SA, PT and SQA for Max-
Cut, Max-SAT and integer factorization.

4.6.1.2.1 Max-Cut

The table Algorithm 4.5 details the pseudocode implementation for computing
the maximum cut, which is the objective function for Max-Cut problems, on a
weighted graph (refer to paragraph 4.3.1 for details).
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Algorithm 4.5: Maximum cut in Max-Cut problems

for r ← 0 to R− 1 do

for i← 0 to M− 1 do

for j← i + 1 to M− 1 do

if σr,i ̸= σr,j then
Lr ← − Ji,j

end

end

end

end

The performance of PC with different energy minimization algorithms were com-
pared attempting to solve several hard Max-Cut instances from G-set graphs,
problems generated by the machine-independent graph generator “rudy” of G.
Rinaldi. Each instance is attempted 100 times for each algorithm with 1000 iter-
ations, and the cut value as a function of the iteration was recorded. Table 4.1
summarizes the results of the comparison. For each instance, we report both the
average cut score and the best one achieved among the 100 runs. In addition, we
also show the number of times the best result was reached. The list of parameters
for each algorithm are the following:

• SA: 1 replica with linear annealing from βL = 0 and βT = 1.5.

• PT: 10 replicas. The values of β for each replicas: β0 = 1.5, β1 = 0.70,
β2 = 0.60, β3 = 0.50, β4 = 0.45, β5 = 0.40, β6 = 0.35, β7 = 0.30, β8 =

0.28, β9 = 0.23.NPT = 1.

• SQA: 10 replicas, β = 0.4, JT0 = 0.5, Gx = 3.0.
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TABLE 4.1: Results of solving attempts of instances of the G-set performed using SA, PT
and SQA. The average cut and the best cut found among the 100 trials for each instance
are presented, along with the number of times the best result was achieved. The best cut

among each algorithm is highlighted.

SA PT SQA
Instance

name
N° of
p-bits

Mean
±std

Best N°
of

best

Mean
±std

Best N°
of

best

Mean
±std

Best N°
of

best
g1 800 11595.61

± 16.23
11624 9 11616.24

± 6.51
11624 19 11599.19

± 16.16
11624 6

g2 800 11590.95
± 11.30

11616 1 11610.54
± 4.06

11619 1 11593.29
± 9.23

11616 2

g3 800 11598.74
± 14.14

11622 4 11617.57
± 3.42

11622 11 11604.47
± 11.20

11621 5

g4 800 11627.5 ±
12.14

11646 8 11642.72
± 3.13

11646 30 11627.88
± 11.27

11646 2

g5 800 11610.32
± 14.45

11631 4 11625.92
± 3.64

11631 8 11611.01
± 12.50

11631 2

g6 800 2154.33 ±
16.95

2178 3 2173.71 ±
4.02

2178 6 2156.73 ±
13.18

2177 1

g7 800 1982.42 ±
13.62

2006 6 1996.87 ±
3.72

2006 1 1983.06 ±
9.20

2006 1

g8 800 1984.64 ±
10.96

2005 2 1999.68 ±
3.35

2005 5 1986.82 ±
7.51

2003 3

g9 800 2027.47 ±
15.84

2054 2 2045.50 ±
4.56

2054 2 2032.82 ±
11.06

2053 1

g10 800 1975.62 ±
14.96

2000 2 1993.45 ±
3.91

2000 2 1979.68 ±
10.99

1999 2

g11 800 553.56 ±
3.44

560 6 554.40 ±
2.06

562 1 553.94 ±
2.58

560 1

g12 800 547.22 ±
3.42

554 1 546.40 ±
2.40

552 1 548.70 ±
2.88

554 5

g13 800 571.92 ±
3.38

580 1 570.80 ±
2.26

576 2 572.94 ±
2.99

580 2

g14 800 3043.53 ±
4.5

3055 1 3035.88 ±
4.13

3050 1 3052.65 ±
5.03

3061 4
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g15 800 3028.43 ±
6.09

3042 1 3018.61 ±
5.23

3032 1 3037.25 ±
4.10

3046 2

g16 800 3030.05 ±
5.38

3045 1 3021.52 ±
4.73

3034 1 3039.26 ±
4.20

3047 5

g17 800 3025.92 ±
4.81

3035 3 3017.69 ±
5.06

3030 2 3035.28 ±
3.60

3047 1

g18 800 976.45 ±
7.16

987 3 975.58 ±
5.28

986 1 979.88 ±
6.58

990 1

g19 800 891.77 ±
9.37

906 1 892.35 ±
4.76

902 1 896.06 ±
6.70

904 3

g20 800 928.39 ±
8.60

941 1 930.97 ±
5.16

941 2 930.51 ±
9.19

941 6

g21 800 914.66 ±
7.81

929 1 916.04 ±
4.94

926 2 917.00 ±
5.60

927 1

g22 2000 13314.27
± 17.38

13357 1 13331.39
± 12.41

13355 1 13319.02
± 20.04

13358 1

g23 2000 13313.08
± 11.80

13336 1 13312.64
± 8.73

13329 1 13311.46
± 15.11

13337 1

g24 2000 13300.82
± 13.07

13329 1 13306.36
± 9.14

13331 1 13302.04
± 15.04

13333 1

g25 2000 13305.08
± 12.16

13330 1 13308.31
± 9.17

13329 1 13309.18
± 9.96

13328 3

g26 2000 13294.97
± 10.55

13321 1 13295.29
± 9.25

13316 1 13295.07
± 12.29

13320 1

g27 2000 3302.43 ±
13.88

3334 1 3307.16 ±
7.57

3324 1 3304.34 ±
15.74

3339 2

g28 2000 3268.06 ±
13.66

3293 1 3269.98 ±
7.83

3285 1 3269.27 ±
14.04

3295 1

g29 2000 3361.10 ±
13.5

3398 1 3367.17 ±
10.22

3393 1 3366.48 ±
13.39

3402 1

g30 2000 3381.80 ±
13.93

3407 1 3383.24 ±
9.15

3402 3 3380.67 ±
17.19

3410 2

g31 2000 3277.44 ±
12.92

3304 1 3280.72 ±
8.21

3299 1 3277.52 ±
14.25

3306 1
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g32 2000 1379.78 ±
6.15

1392 1 1377.28 ±
4.63

1388 1 1384.88 ±
5.20

1398 2

g33 2000 1352.36 ±
5.47

1366 1 1351.98 ±
3.74

1364 1 1360.32 ±
4.37

1370 1

g34 2000 1357.50 ±
4.66

1368 2 1354.60 ±
3.33

1364 1 1362.34 ±
4.17

1372 1

g35 2000 7623.56 ±
9.10

7654 1 7602.17 ±
7.59

7625 1 7652.86 ±
7.42

7671 1

g36 2000 7618.78 ±
10.00

7646 1 7593.75 ±
7.50

7610 1 7644.61 ±
7.61

7663 1

g37 2000 7628.12 ±
9.37

7647 1 7603.71 ±
7.66

7628 1 7655.21 ±
7.45

7672 1

g38 2000 7627.93 ±
8.76

7651 1 7603.72 ±
7.03

7621 1 7652.1 ±
6.21

7664 5

g39 2000 2361.76 ±
12.66

2385 1 2338.06 ±
17.36

2375 1 2374.82 ±
11.56

2400 1

g40 2000 2349.57 ±
13.43

2390 1 2329.32 ±
17.81

2374 1 2363.98 ±
12.55

2392 1

g41 2000 2353.02 ±
13.17

2391 1 2335.29 ±
16.04

2375 1 2367.36 ±
13.75

2401 1

g42 2000 2432.50 ±
12.39

2455 3 2406.09 ±
17.71

2449 1 2443.41 ±
12.25

2465 4

g43 1000 6641.98 ±
11.60

6660 6 6654.09 ±
2.94

6660 2 6645 ±
10.24

6660 2

g44 1000 6635.52 ±
9.82

6650 5 6643.36 ±
3.51

6650 1 6636.89 ±
8.12

6650 3

g45 1000 6635.25 ±
8.48

6654 1 6644.51 ±
4.89

6654 1 6637.29 ±
7.95

6653 3

g46 1000 6630.80 ±
8.00

6649 1 6639.93 ±
3.61

6649 1 6635.78 ±
7.20

6649 1

g47 1000 6640.71 ±
9.00

6656 6 6648.45 ±
4.27

6656 4 6642.10 ±
8.61

6656 8

g48 3000 5962.04 ±
55.03

6000 66 6000.00 ±
0.00

6000 100 5962.22 ±
52.96

6000 66
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g49 3000 5940.04 ±
36.92

6000 19 5967.76 ±
28.11

6000 40 5943.92 ±
39.21

6000 25

g50 3000 5841.88 ±
18.86

5876 1 5839.02 ±
13.37

5870 2 5843.98 ±
15.38

5874 1

g51 1000 3821.10 ±
5.51

3832 1 3810.68 ±
4.76

3825 1 3833.54 ±
5.37

3845 1

g52 1000 3823.92 ±
5.71

3837 1 3814.57 ±
5.04

3829 1 3834.43 ±
4.24

3844 1

g53 1000 3823.70 ±
5.72

3837 2 3813.00 ±
4.92

3824 2 3834.53 ±
4.25

3845 1

g54 1000 3823.49 ±
5.61

3838 1 3811.00 ±
4.69

3824 1 3834.00 ±
4.58

3846 1

The main result of these tests is that SQA outperforms SA and PT in instances
mapped with a high number of p-bits. This result can open the path to high
parallel approaches to solve combinatorial optimizations inspired by quantum
physics. On the other hand, for small problems, SA and PT exhibit better cut
attempts compared to SQA.

In general, both PT and SQA achieve better results than SA as the number of
replicas increases.

4.6.1.2.2 Max-SAT

The table Algorithm 4.6 details the code implementation to compute the solution
cost of Max-SAT problems (refer to paragraph 4.3.3 for details).

To assess the performance of the PC solver for Max-SAT, we selected a Max-SAT
instance of average difficulty from the international Max-SAT competition 2016,
namely “s3v70c700-1.cnf”. This instance is characterized by 70 variables and 700
clauses (with 3 literals for each clause), encoded with 771 p-bits. The optimal
solution for this instance is 21.
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Algorithm 4.6: Max-SAT solution cost

X← [x0, x1, x2, . . . , xZ−1] ▷ X containing indices of Z variables

Y← [y0, y1, y2, . . . , yD−1] ▷ Y containing value of L

literals of each clause.

D = C× L, whit C number of

clauses.
S← [s0, s1, s2, . . . , sD−1] ∈ [−1, 1] ▷ S containing sing of L

variables of each clause.
W← [w0, w1, w2, . . . , wC−1] ▷ W containing weight each clause.

for r ← 0 to R− 1 do

for z← 0 to Z− 1 do
i← Xz

vr,z ← σr,i

end

end

for r ← 0 to R− 1 do

for c← 0 to C− 1 do
truthValue← 0

for l ← 0 to L− 1 do
g← yc,l

if vr,g sc,l > 0 then
truthValue← 1

end

end

if truthValue = 1 then
Lr ← Lr + wc

end

end

end

Figure 4.16 illustrates a comparison of the solution cost evolution for a success-
ful run of the problem using PT (a) and SQA (b) with 10 replicas. These results
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shed light on the distinctions between these two energy minimization algorithms,
as discussed in paragraph 4.5. In the case of PT, each replica explores different
regions of the spin configuration space, while in SQA, as the strength of the trans-
verse field increases (black solid line) the replicas become more coupled until, at
the end of the simulation, they “collapse” in single spin configuration state. Fur-
ther investigation has revealed that, for a considerable number of replicas, there
is not a single emerging state, but rather different clusters.

FIGURE 4.16: Solution cost of the instance “s3v70c700-1.cnf”, characterized by 70 vari-
ables and 700 clauses, using (a) PT and (b) SQA with 10 replicas. (a) Each colored line
represents the evolution of the solution cost of a replica at constant value of β, linearly
distributed from 0.50 and 0.01 with one replica at 1.50, indicated in the color bar. The
solid black line is a “replica” that saves the best results among all the replicas. The
dashed black line highlighted is the optimal solution cost of 21. (b) Each replica has
β = 0.5. The black solid line represents the value of the transverse coupling between

replicas, which increases as a function of the iterations.

Figure 4.17 shows a comparison of SA, PT and SQA with 5 replicas (a) and 1000
replicas, across 100 runs of 1000 iterations. The solid line represents the average at
that iteration, while the shaded area the standard deviation. For the SA, β linearly
increases from 0.0 and 1.5, and the different replicas represent different runs of
the problem. For PT, the value of β of each replica is linearly distributed from
0.01 and 0.5, with a replica at β = 1.5. For SQA, β = 0.5, JT0 = 1.0 and Gx = 3.0.
The results shows that, for few replicas, SQA performs worse compared to SA
and PT, as discussed in Ref.[272] where the selected parameters highligthed this
behaviour. However, for a large number of replicas SQA outperforms SA and PT.
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FIGURE 4.17: Results of the comparison of SA, PT and SQA in terms of Max-SAT solu-
tion cost of the instance “s3v70c700-1.cnf”. (a)-(b) Envelope curves of 5 (1000) replicas
of the solution cost computed for 1000 iterations with SA (red), PT (green) and SQA
(blue). For both numbers of replicas, a total of 100 runs for each algorithm have been
performed. The solid line is the trend of the average best solution cost at that iteration;
the area around the solid line is the standard deviation. The dashed black line is the

optimal value 21.

Intrigued by these results, we performed a systematic study using the same pa-
rameters of Figure 4.17, varying the number of replicas, as shown in Figure 4.18.
The results reveal that, for more than 500 replicas, SQA reaches the optimal so-
lution with a probability close to 100%, whereas PT requires more replicas to
achieve similar results. It is important to note that these outcomes are strongly
influenced by the chosen parameters, which are selected heuristically. When the
number of replicas is fixed, only four parameters need to be chosen for SQA,
while PT requires setting a value of β for each replica. Hence, finding parame-
ters that lead to optimal solution in SQA appears to be a more straightforward
process compared to PT.
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FIGURE 4.18: Results of the comparison of SA (red), PT (green) and SQA (blue)
for increasing number of replicas in terms of Max-SAT solution cost of the instance
“s3v70c700-1.cnf”. The solid line is the trend of the average best solution cost at iter-
ation 1000 over 100 runs; the area around the solid line is the standard deviation. The

dashed black line is the optimal value 21.

4.6.1.2.3 Integer factorization

The table Algorithm 4.7 details the code implementation for computing the loss
of integer factorization, that is, the difference between the number to factor C and
the product of the factors obtained by the PC solver (refer to paragraph 4.3.4 for
details).

To assess the performance of the PC solver with the integer factor-
ization problem, we have chosen to show a 34-bit semiprime number
(16883648723 = 128813× 131071), and we performed 100 runs of 1000 iterations
using SA, PT and SQA. For the SA, β linerly increases from 0.0 and 1.2. For PT, the
value of β of each replica is linearly distributed from 0.01 and 0.5, with a replica
at β = 1.5. For SQA, β = 0.5, JT0 = 1.0 and Gx = 3.0. Figure 4.19 shows the prob-
ability of obtaining the correct factors as a function of the number of replicas.
PT outperforms over SA and SQA. In particular, when employing 1000 replicas,
PT achieves a probability of factorizing the semiprime number higher than 50%.
Furthermore, the linear scaling behaviour observed implies that the probability
is expected to increase with a higher number of replicas.
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Algorithm 4.7: Integer factorization loss

C← Integer ▷ C is the number to be factorized

A← [a0, a1, a2, . . . , aF−1] ▷ A containing indices of

factor A. F number of bits
B← [b0, b1, b2, . . . , bF−1 ] ▷ B containing indices of factor B

for r ← 0 to R− 1 do

for i← 0 to F− 1 do
a,b← Ai, Bi

σAr,i , σAr,i ←
σr,a + 1

2
,

σr,b + 1
2

▷ [0, 1]← [−1, 1]

fAr , fBr ← BINTODEC(σAr,i), BINTODEC(σBr,i)

end

pr ← fAr fBr

Lr ← abs (C − pr)

end

FIGURE 4.19: Results of the comparison of SA (red), PT (green) and SQA (blue) in terms
of probability of obtaining the correct factors as a function of the number of replicas.

Each point averages 100 runs with 1000 iterations for a 34 bits number.
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4.7 Probabilistic computing with spintronic devices

The hardware implementation of p-bits requires a natural element that is sub-
stantially unstable, yet controllable. The spintronic technology is one of the best
candidates, taking advantage of the probabilistic nature of the switching between
two states in MTJs [240–242, 256, 268, 273–275]. Figure 4.20 shows the experimen-
tal demonstration of the p-bit using a stochastic MTJs, from Ref. [240]. Borders
et al. [240] adeptly exploited spintronic-based PC to experimentally realize in-
vertible logic gates circuit, successfully solving integer factorizations problems
of numbers described by 8 p-bits. This innovative approach marks a significant
stride in the practical implementation of p-bits for complex problem-solving.

FIGURE 4.20: Experimental demonstration of a p-bit. (a) A schematic representation of
a p-bit with a stochastic MTJ and NMOS transistor. A representation of the MTJ’s FL
fluctuates between two stable configurations, activated by thermal noise. (b) Sigmoidal
behavior exhibited by the time-averaged output voltage, VOUT, as a function of the ap-
plied input. (c)-(e) Time snapshots of VOUT for three different input VIN [240]. In (c) a
low input voltage; in (d) a voltage causing the MTJ to behave purely stochastically; in

(e) a high input voltage.

As discussed in Chapter 3 on neuromorphic computing, it is important to take
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into account the device-to-device variation in hardware implementations. This
holds true for PC as well, where the device-to-device variation of each p-bit can
potentially undermine the overall performance in solving complex problem. Be-
fore delving into the intricacies of this challenge, we advocate for a preliminary
exploration of a hybrid p-bit implementation, which integrates spintronic devices
with well-established CMOS technology.

4.7.1 Random number generation in a digital implementation of

a p-bit

FIGURE 4.21: Example of CMOS architecture implementing the MAC (Eq. (4.6) and p-
bit (Eq. (4.5)) equations. The hyperbolic tangent function is realized through a lookup
table and the random number generation employs a LFSR [249]. (b) A schematic rep-
resentation of mapping binary output from MTJs (measured via readout R/O units) to

true random decimal number within the range (−1, 1), used in Eq. (4.5) [72].

Figure 4.21 shows the CMOS architecture employed to realize a p-bit [240, 249].
One of main issues is the generation of the random numbers, since LFSR is a
PRNG. After a certain number of iterations, the pseudorandom sequence starts
to repeat, posing challenges for PC, as sometimes a large number of iterations is
required to converge to the ground state. The quality of the RNG emerges as a
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critical factor during the benchmark of the PC solver, significantly impacting PC
results [276].

One way to address these issues is to replace the LFSR with MTJs, known for
being a TRNG. In Ref. [72], we propose a stable voltage-controlled perpendicular
MTJs, leveraging the VCMA effect for the dynamic generation of true random
numbers [277, 278]. This approach boasts several advantages, including high
update speed of the p-bits, and scalability to a large number of MTJs.

Moreover, we design a new way of implementing p-bits using only unbiased
MTJs, i.e., MTJs generating random bitstreams with 50% probability of being in
−1 or +1 state. Indeed the sequence of random numbers passes all the NIST
tests. Therefore, there is no need for a fine-tuning of MTJ inputs, eliminating
the necessity for analog feedback loops and enhancing circuit scalability. Figure
4.21 (b) shows our design to obtain a random number within the range (−1, 1), as
used in Eq. (4.5) for p-bit updates. A series of n MTJs, subjected to voltage pulses,
generates an n-bit binary number, b, which can be mapped to a decimal number
within (−1, 1) using −1 + 2b/ (2n − 1). For instance, in the example illustrated
in Figure 4.21 (b), 5 MTJs provide a binary number 01111, equivalent to 15 in

decimal. This can be mapped to −1 +
2 · 15

(25 − 1)
= −0.032 using a lookup table.

We preliminarily tested this approach on the invertible AND gate and then we
applied it to solve integer factorization of semiprime numbers [72].

The performance of PC is intricately tied to the precision of the number, deter-
mined by the number of MTJs utilized to segment the range (−1, 1). In a sys-
tematic study, we examined the probability of obtaining optimal solutions for the
Max-SAT instance “s3v70c700-1.cnf” as a function of the precision. Figure 4.22
shows the results from 1000 runs with 1000 iterations, using PT with 1000 repli-
cas. As expected, the probability of attaining the optimal solution increases with
the number of MTJs. In particular, the probability is 0% for less than 8 MTJs,
progressively approaching the performance achieved with a software implemen-
tation of a double precision RNG when 16 MTJs are considered.
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FIGURE 4.22: Probability of obtaining the optimal solution for the Max-SAT instance
“s3v70c700-1.cnf” with 771 p-bits as a function of the number of MTJs employed to span
the range (−1, 1), as detailed in Figure 4.21 (b). The probability is derived from 1000

runs with 1000 iterations, using PT with 1000 replicas.

4.7.2 MTJ-based p-bit

Conventional MTJ-based p-bit designs rely on MTJs with a low energy barrier,
where the randomness arises from the thermal fluctuation of the FL magnetiza-
tion [240, 242, 268, 274]. However, this approach has several drawbacks. Generat-
ing random bits at high rates requires a very low energy barrier, a parameter that
is challenging to control effectively. Moreover, maintaining the same energy bar-
riers across devices fabricated on a chip proves to be a complex task, as this value
is very sensitive (exponential dependence) on the thickness of the ferromagnet,
leading to significant device-to-device variation of the energy barrier.

To address these issues, we propose a p-bit implementation with three-terminal
MTJs [71]. Through micromagnetic simulations within the macrospin approxi-
mations, we simulated a perpendicular MTJ with a circular cross section of 50 nm
× 50 nm, and FL thickness of 1.4 nm, as illustrated in Figure 4.23 (a). The micro-
magnetic parameters of the simulation are: Ms = 0.80 MA/m, Ku = 0.06 MJ/m3,
JSOT = 100.00 MA/cm2, JSTT = [−0.40, 0.40] MA/cm2, qFLT = 0.10, and room
temperature. The MTJ is designed so that the energy landscape of the FL magne-
tization has two stable minima along the z-axis. The application of an SOT cur-
rent aligns the FL magnetization with the direction of the spin-current (y-axis),
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creating a metastable state. When the SOT is switched off, the FL magnetization
relaxes with equal probability toward one direction along the z-axis, as depicted
in Figure 4.23 (b). The switching probability is tuned with an STT current applied
to the third terminal, resulting in a sigmoidal curve when averaging the FL mag-
netization after the SOT pulse across 104 runs, as shown in Figure 4.23 (c).

FIGURE 4.23: (a) A sketch of the three-terminal perpendicular MTJ designed for a hard-
ware p-bit implementation. (b) A schematic representation outlining the three-step pro-
cess of tunable RNG, as described in the text. (c) Average magnetization response as a
function of the input STT current, resulting in a sigmoidal behavior. In the insets, the

energy landscape of the three main states involved in this process.

In collaboration with the group of Prof. Pedram Khalili Amiri at Northwestern
University, we experimentally investigated another hardware p-bit implementa-
tion based on a two-terminal superparamagnetic perpendicular MTJ illustrated
in Figure 4.24 (a). At room temperature the MTJ resistance, which depends on the
z-component of the magnetization, switches between the parallel and antiparallel
states stochastically. A fine-tuning of the switching probability becomes possible
through the application of an STT current generated by the applied bias volt-
age V. Figure 4.24 (b) shows experimental results of three different devices. The
experimental data fitted with a hyperbolic tangent function show that the key
difference between the curves is in their slope.
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FIGURE 4.24: (a) A sketch of the two-terminal perpendicular MTJ designed for hardware
p-bit implementation. (b) Experimental data of three devices (red, green and blue dots)

fitted with a hyperbolic tangent function (red, green and solid lines, respectively).

4.7.3 Investigating PC reliability due to the device-to-device

variations

Drawing insights from experimental observations, our analysis delves into the
reliability of PC, acknowledging the inherent device-to-device variation reflected
in distinct slopes (α) for each p-bit. The update equation of the ith p-bit becomes:
σi (n + 1) = sgn (rand (−1, 1) + tanh (αIi (n))), where α acts as an additional
temperature scaling parameter, which is now p-bit dependent. Our systematic
study involved sampling the α values from a Gaussian distribution with unitary
mean (representing the ideal p-bit) and increasing the values of the standard de-
viation σ. For realistic assumptions, the α values are confined within the range
[1− σ, 1 + σ]. Figure 4.25 (a) schematizes this process. Reliability assessments of
PC are conducted using PT and SQA, across 3 different problems:

• Max-SAT instance “s3v70c700-1.cnf”, with 771 p-bits, 1000 iterations, 1000
replicas. For PT, the value of β of each replica is linearly distributed from
0.01 and 0.5, with a replica at β = 1.5. For SQA, β = 0.5, JT0 = 1.0 and
Gx = 3.0 (Figure 4.25 (b)).

• wMax-SAT instance “s3v70c700-1.wcnf”, with 771 p-bits, 1000 iterations,
1000 replicas. For PT, the value of β of each replica is linearly distributed
from 0.01 and 0.5, with a replica at β = 1.5. For SQA, β = 0.05, JT0 = 1.0
and Gx = 30.0 (Figure 4.25 (c)).
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• Planted Ising with Pegasus topology graph instance, with 1288 p-bits, 2000
iterations, 1000 replicas. For PT, the value of β of each replica is linearly
distributed from 0.01 and 5.0, with a replica at β = 10.0. For SQA, β = 1.0,
JT0 = 1.0 and Gx = 0.5 (Figure 4.25 (d)).

Examining the robustness in terms of the probability of obtaining the optimal
solution over 100 runs for a given problem, as shown in Figure 4.25, reveals
that SQA outperforms PT. SQA exhibits remarkable insensitivity to the device-
to-device variations, positioning it as a robust solution for practical applications.
While PT shows a greater susceptibility to these variations, it is noteworthy that
for small values of σ, the impact is only marginal.
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FIGURE 4.25: (a) A schematic representation illustrates the computation of variability of
each p-bit in PC simulations. For each p-bit, a different slope α is sampled in a Gaussian
distribution with unitary mean and different standard deviation σ. Inset: ideal curve
of the p-bit (black line), and two representative curves, one for α = 1− σ (green line)
and the other for α = 1 + σ (magenta line). (b)-(d) Probability of obtaining the optimal
solution over 100 runs, as a function of increasing variability in (b) Max-SAT (c) wMax-

SAT and (d) planted Ising with Pegasus topology graph.

4.8 Conclusions

Ising models have proven to be effective tools for addressing NP-hard problems,
particularly COPs. Among the many IM paradigms, our focus lies on PC. In this
chapter, we have provided a detailed description of the PC solver, designed to
address any problem that can be mapped into an Ising model. The implemen-
tation includes different energy minimization algorithms, and their performance
across different problems is compared. The hardware realization of PC leverages
MTJs as p-bits. Our studies reveal that the SQA algorithm emerges as the most
robust choice in terms of handling of device-to-device variations.
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