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Abstract

This dissertation is devoted to the modeling of architectured metamaterials and particle-based
materials. Such materials generally necessitate the use of sophisticated continuum models to
properly characterize their mechanical behavior and make accurate numerical predictions. To
this purpose, generalized continua, which improve the classical (or Cauchy) continuum, have
been a topic of interest in the last decade. This dissertation begins with a uniform presentation
of four different generalized continua, namely the micropolar continuum, the micromorphic
continuum, the second-gradient continuum, and the second-gradient-micropolar continuum.
Special attention is paid to the Euler-Lagrange equations that are derived using the least action
principle and the Levi-Civita tensor calculus. Then, the dissertation focuses on pantographic
structures that represent a paradigmatic case of architectured metamaterials described by
generalized continua. A novel torsional energy for pantographic sheets is proposed and
experimentally validated. A novel second-gradient continuum model for pantographic blocks
is proposed and experimentally validated through digital volume correlation techniques. The
effect of pivots-related local defects on the mechanical response of pantographic sheets is
investigated via a noninformative prior probabilistic model. Finally, random generalized
continuum models for particle-based materials with uncertain constitutive parameters and
fields are analyzed: response and numerical identification of random Timoshenko-Ehrenfest
beams are carried out via a noninformative prior probabilistic model, and sensitivity analysis
of a second-gradient continuum model for particle-based materials is performed via an
informative prior probabilistic model based on the maximum entropy principle. To make the
work self-consistent, in Appendix, an overview of Levi-Civita tensor algebra is given.
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Chapter 1

General Introduction

1.1 Research positioning

The term generalized continua denotes the set of theories that refine and develop the classical
Cauchy continuum. In the last decade, generalized continua have become an important
ingredient for the mechanical modeling of materials for which the microstructure can be
considered such as particle-based materials and architectured metamaterials. On the one
hand, the term metamaterials is generally used to denote those materials that cannot be
described by classical Cauchy continuum and that require generalized continua. On the other
hand, the term architectured metamaterial is generally used to denote those materials that
require generalized continua, while being formed by assembling components that can be
described by classical Cauchy continuum. It should be noted that the term granular materials
is improperly used in the literature to refer to particle-based materials.

This dissertation specifically focuses on the study of the most common generalized
continua, on the construction, identification, and on simulations of deterministic and random
models for particle-based materials and pantographic structures, the latter being a paradigmatic
case of architectured metamaterials. Moreover, we present novel contributions to uncertainty
quantification within the framework of generalized continua.

Among the most common generalized continua, one can list the micropolar continuum,
the micromorphic continuum, the second-gradient continuum, and the second-gradient-
micropolar continuum.

In micropolar continuum, each material particle is modeled as a rigid body with six
degrees of freedom. The initial concepts regarding micropolar continuum were discussed
already at the end of the 19th century by Kelvin, Helmholtz, Duhem, Voigt, and Cosserat
brothers, and summarized in [27]. Later results can be found in Eremeyev et al. [41],
Altenbach et al. [5, 4], Eremeyev and Pietraszkiewicz [42]. Interesting applications devoted
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to particle-based materials can be found in [90, 96] and chiral mechanical metamaterials
in [52, 58].

More generally, micromorphic continuum takes into account the micro deformation of
each particle [43, 62, 53]. Particle-based material and chiral metamaterial applications were
carried out by [95, 93, 28].

Finally, the deformation energy function combines the second-order derivatives of
displacements in second-gradient continuum. Gabrio Piola was a pioneer of second-gradient
continuum, whose contributions were summarized in [34, 30–32, 133]. It has become popular
for describing particle-based materials [146] and metamaterials [142, 22, 24, 3, 33]

Regarding second-gradient-micropolar continuum, it appears there is no current literature.
Yet, as will be demonstrated below, it lends to the physical significance of the double couples,
which play a crucial role in the modified couple stress theory [145] that has widely been used
in many research works [111, 87, 112].

The primary goals of this work are to provide a uniform presentation of the listed
generalized continua via the least action principle (or, more generally, the principle of virtual
work), to demonstrate the ability of second-gradient discrete and continuum models to describe
pantographic structures, and to provide generalized models for particle-based materials taking
into account uncertainties. In this dissertation, integral nonlocal theories [70, 45] will not be
discussed (see Section 5.2 on future perspectives)

Pantographic structures are metamaterials consisting of a discrete grid of beams and
pivots (also known as hinges in the literature) whose homogenization results in second-
gradient mechanical models [3, 17, 11, 109]. Some of these homogenized models have been
experimentally validated in [10, 12]. Numerous publications have contributed to the body
of knowledge on this subject [22, 23, 38, 137]. In the present work, the torsional energy
currently used for modeling pantographic sheets (2D) has been improved and experimentally
validated, and a first second-gradient model for pantographic blocks (3D) has been proposed
and experimentally validated.

Uncertainty quantification is essential for predictive engineering sciences. A review of
stochastic methods for particle-based-effects uncertainties at the microscale on their response
at the macroscale is provided in [100] using only first-gradient continuum models. Despite the
inherent randomness of particle-based materials, uncertainties have not yet been accounted
for in the second-gradient continuum theories; only a small number of works involving
uncertain quantities have recently been proposed, not for particle-based materials but for fiber
materials [16, 110]. In this work, the impact of uncertainty in material modeling is investigated
for pantographic structures, micropolar beams, and particle-based second-gradient materials.
In the first two cases, noninformative prior models of uncertainties have been used. In
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the third case, an informative prior model has been developed using the maximum entropy
principle. This work provides novel contributions to the analysis of pantographic sheets
and particle-based second-gradient continua in accounting for uncertainties. Throughout the
entire dissertation, it is emphasized how least action principle and maximum entropy principle
can systematically be applied to derive fundamental equations in continuum mechanics and
probabilistic models, respectively.

1.2 Organization of the dissertation

This dissertation is organized as follows. The Euler-Lagrange equations and the main
theoretical concepts related to the most common generalized continua are presented in
Chapter 2. Chapter 3 concerns the modeling and experimental testing of pantographic
structures. Chapter 4 investigates micropolar beams and an existing particle-based second-
gradient continuum. In Chapter 3 and 4, uncertainties related to the material parameters are
considered. Below is a detailed explanation of these chapters.

◦ Chapter 2 focuses on the derivation of Euler-Lagrange equations for the micropolar,
the micromorphic, the second-gradient, and the second-gradient-micropolar continua.
The equations are derived using the least action principle and the Levi-Civita tensor
calculus, and they are valid for any deformation measure and external reference system.
It cannot be claimed that the results and ideas presented in this chapter are completely
novel, but to the author knowledge, there is no other presentation that provides such
a uniform, comprehensive, and in-depth analysis of the role played by least action
principle and tensor calculus on generalized continua.

◦ In Chapter 3, for modeling pantographic sheets (2D), a novel torsional energy is
proposed and experimentally validated, which improves the one currently used in
the literature. Despite being developed within the framework of discrete models,
it is applicable within the framework of second-gradient continua. In addition, for
modeling pantographic blocks (3D), a novel second-gradient continuum model is also
proposed and experimentally validated. In the latter case, the experimental validation
is conducted using digital volume correlation (DVC) techniques. Finally, using a
noninformative prior probabilistic model, the effects of pivots-related local random
uncertainties on pantographic sheets (2D) are studied.

◦ In Chapter 4, micropolar Timoshenko-Ehrenfest macro- and micro-beams with random
material parameters are investigated using noninformative prior probabilistic models
to account for uncertainties. Moreover, an informative prior probabilistic model for a
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particle-based second-gradient continuum with uncertain parameters and uncertain
constitutive fields is also proposed, which is based on the use of maximum entropy
principle.

The notation is defined subsection by subsection.

1.3 Summary of the contributions

This dissertation deals with the foundation of generalized continua, modeling, and uncertain
quantification of particle-based materials and pantographic structures, the letter being a
paradigmatic case of architectured metamaterials. The main contributions of this work are
summarized below.

◦ We unsuccessfully searched for a uniform presentation of generalized continua in the
literature. Consequently, we provide a uniform presentation of generalized continua
based on the least action principle and Levi-Civita tensor calculus. The micropolar
continuum, the micromorphic continuum, the second-gradient continuum, and the
second-gradient-micropolar continuum are studied, and the Euler-Lagrange equations
are derived by considering a generic external reference system. It is proven that
second-gradient-micropolar continuum implies the existence of double couples.

◦ We introduce and experimentally validate a novel deformation energy function for
modeling the torsional behavior of pivots of pantographic sheets (2D) under bias
extension tests.

◦ Similarly to the 2D case, we introduce and experimentally validate a novel second-
gradient continuum model for modeling pantographic blocks (3D) under 3-point flexure
tests. The experimental validation is based on digital volume correlation techniques.

◦ Within an application framework, we show that local pivot-related random defects
do not significantly affect the mechanical response of pantographic sheets due to the
redundant connections inside them.

◦ On one hand, we show that the analysis of macro-beams with random material
parameters allows us to identify the Young modulus. On the other hand, we show that
the analysis of micro-beams with random material parameters allows us to identify one
3D micropolar material parameter responsible for scale effects.

◦ After improving the analytical relationship between the deformation tensors of an
existing second-gradient continuum model for particle-based materials, we formulate a
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novel probabilistic model based on the maximum entropy principle for the particle-pair
distance and the microscale stiffness parameters describing particle interactions. First,
particle-pair distance and microscale stiffness parameters are assumed to be independent
of spatial and orientation directions. Within an application framework, we prove that
the randomness of the particle-pair distance between two consecutive particles has a
major effect on the randomness of the mechanical response of a particle-based material.
Second, particle-pair distance and microscale stiffness are modeled as random fields.
Within an application framework, we prove that the coefficient of variation of the
axial displacement is smaller than the coefficient of variations of the transversal one.
Moreover, by increasing the number of particles with random positions, the particle-pair
distance between two consecutive particles has a minor effect on the randomness of the
mechanical response of a particle-based material.





Chapter 2

Uniform presentation of generalized
continua

Following the ideas of Gabrio Piola, Joseph-Louis Lagrange, Raymond Mindlin, Richard
Toupin, Leonid Ivanovich Sedov, Gerard Maugin, Paul Germain, and others, we have
recognized the least action principle and, more generally, the principle of virtual work as the
most effective tool for deriving the fundamental equations of a given theory of continuum
mechanics. In addition, since the expression of the deformation energy density characterizes
the type of admissible external loads for a considered continuum model, least action principle
permits the determination of the external actions that the considered continuum model can
sustain. This chapter provides an overview of the fundamental concepts about the micropolar,
the micromorphic, the second-gradient, and the second-gradient-micropolar continua. Least
action principle and Levi-Civita tensor calculus are systematically applied. Fundamental
concepts of the Levi-Civita tensor algebra can be found in Appendix A.1. The methodology
is borrowed from [53]. The Levi-Civita tensor calculus is an indispensable tool across various
disciplines, including differential geometry, electromagnetism, the theory of relativity, and
continuum mechanics. Its roots lie in the theory of matrices and determinants, with initial
traces dating back to Leibniz, and its comprehensive development credited to Jacoby and
Coyley. Voight was the first to recognize tensors as independent entities, while prominent
figures like Grassmann, Hamilton, Gibbs, and Cristoffel also contributed to the contemplation
of tensors. The modern version of tensor calculus can be traced back to the absolute tensor
calculus of Ricci and Levi-Civita. To underscore the efficiency of the methods pioneered by
Ricci and Levi-Civita, we echo Einstein words:

The gravitational equations represent a triumph of the tensor calculus originated by Ricci.
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This work does not aim to address all the historical and technical aspects of tensor calculus.
However, for further details, refer to [51, 97, 82]. In the following, tensors are referred
to generic reference systems, necessitating metric tensors to define scalar products. This
approach enables a clear distinction between covariant and contravariant components, crucial
for preventing computational errors and easing the shift from a Lagrangian to an Eulerian
description. Its practical implications span across significant domains such as astronomy,
fluid dynamics, and aerospace engineering.

2.1 The micropolar continuum

Notation

Below 𝐴, 𝐵, 𝑖, and 𝑗 are integers belonging to {1,2,3}.

B: initial (Lagrangian) configuration.

𝜕B: boundary of B.

Indices denoted by uppercase letters are chosen to indicate components of a tensor in
the initial configuration and lowercase letters to indicate components of a tensor in the
current configuration. Summation is intended over the repeated indices.

𝑁𝐴: components of the outward-pointing normal 𝑁 of 𝜕B.

𝑋𝐴: Lagrangian coordinates.

𝜒𝑖: component 𝑖 of the configuration field 𝜒.

𝑣𝑖: component 𝑖 of the translation velocity 𝑣.

𝐺𝐴𝐵: component (𝐴, 𝐵) of the metric tensor 𝐺 with respect to the initial configuration.

𝛿𝐴
𝐵
: component (𝐴, 𝐵) of the second-order identity tensor 𝐼.

𝑔𝑖 𝑗 : component (𝑖, 𝑗) of the metric tensor 𝑔 in the current configuration.

𝑄𝑖
𝐴
: component (𝑖, 𝐴) of the microrotation tensor 𝑄.

𝜗𝐵𝐴 𝑗 : component (𝐵, 𝐴, 𝑗) of the rotation velocity 𝜗.

𝐹𝑖
𝐴
: component (𝑖, 𝐴) of the gradient of the configuration field 𝐹.
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𝜌: Lagrangian time-independent mass density.

𝐽𝐴𝐵: component (𝐴, 𝐵) of the Lagrangian time-independent moment of inertia of
material points 𝐽.

A𝜋: action functional for the micropolar continuum.

(P𝜋)𝑖𝐴: component (𝑖, 𝐴) of the micropolar stress tensor P𝜋.

(M𝜋)𝑖𝐴: component (𝑖, 𝐴) of the micropolar couple stress tensorM𝜋.

(V𝜋) 𝑗 : component 𝑗 of the micropolar couple stress vector V𝜋.

(𝐵𝜋) 𝑗 : component 𝑗 of the volumic forces 𝐵𝜋.

(𝐶𝜋) 𝑗 : component 𝑗 of the volumic couples 𝐶𝜋.

(𝑏𝜋) 𝑗 : component 𝑗 of the surface forces 𝑏𝜋.

(𝑐𝜋) 𝑗 : component 𝑗 of the surface couples 𝑐𝜋.

[𝑆]𝑇 , 𝑆: transpose of the second-order tensor 𝑆.

𝜖 𝑗 𝐴𝐵: permutation (or Levi-Civita) symbol.

𝑓 ,𝐵 : partial derivative of the function 𝑓 with respect to 𝑋𝐵, i.e, 𝑓 ,𝐵= 𝜕 𝑓

𝜕𝑋𝐵 .

𝑑𝑉 and 𝑑𝑠: volume and surface elements.

2.1.1 Kinematics of the micropolar continuum

The micropolar continuum consists of small, rigid particles, each of which is represented
geometrically by a point 𝑋 . Each particle is considered as a continuum itself at a lower scale,
denoted by 𝑆 (𝑋), whose center of mass is 𝑋 . We refer to a material point of 𝑆 (𝑋) by its
spatial coordinate 𝑋′. With this assumption, one can write

(𝜒′)𝑖 (𝑋, 𝑋′, 𝑡) = 𝜒𝑖 (𝑋, 𝑡) +𝑄𝑖𝐴 (𝑋, 𝑡)
(
(𝑋′)𝐴− 𝑋𝐴

)
, (2.1)

where 𝜒 describes the configuration change of the center of mass 𝑋 of each particle, the
orthogonal microrotation tensor 𝑄 describes the rigid rotation of each particle, and 𝜒′

describes the configuration change of each material point 𝑋′ within 𝑆 (𝑋). These assumptions



10 Uniform presentation of generalized continua

allow describing the kinematical properties of each particle in a more refined way with respect
to the classical continuum. Let B be the initial (or Lagrangian) configuration of the centers
of mass 𝑋 . From Eq. (2.1), we get

𝜕 (𝜒′)𝑖 (𝑋, 𝑋′, 𝑡)
𝜕𝑡

=
𝜕𝜒𝑖 (𝑋, 𝑡)

𝜕𝑡
+
𝜕𝑄𝑖

𝐴
(𝑋, 𝑡)
𝜕𝑡

(
(𝑋′)𝐴− 𝑋𝐴

)
(2.2)

and ∫
B

∫
𝑆(𝑋)

(
𝜚̂ (𝑋, 𝑋′) 𝑔𝑖 𝑗

𝜕 (𝜒′)𝑖 (𝑋, 𝑋′, 𝑡)
𝜕𝑡

𝜕 (𝜒′) 𝑗 (𝑋, 𝑋′, 𝑡)
𝜕𝑡

)
𝑑𝑋𝑑𝑋′

=

∫
B

(
𝜚 (𝑋) 𝑔𝑖 𝑗

𝜕𝜒𝑖 (𝑋, 𝑡)
𝜕𝑡

𝜕𝜒 𝑗 (𝑋, 𝑡)
𝜕𝑡

+ 𝐽𝐴𝐵 (𝑋) 𝑔𝑖 𝑗
𝜕𝑄𝑖

𝐴
(𝑋, 𝑡)
𝜕𝑡

𝜕𝑄
𝑗

𝐵
(𝑋, 𝑡)
𝜕𝑡

)
𝑑𝑋 ,

(2.3)

where
𝜚 (𝑋) =

∫
𝑆(𝑋)

𝜚̂ (𝑋, 𝑋′) 𝑑𝑋′ (2.4)

and
𝐽𝐴𝐵 (𝑋) =

∫
𝑆(𝑋)

𝜚̂ (𝑋, 𝑋′)
(
(𝑋′)𝐴− 𝑋𝐴

) (
(𝑋′)𝐵 − 𝑋𝐵

)
𝑑𝑋′ . (2.5)

The function 𝜚 (𝑋) refers to the Lagrangian time-independent mass density and the functions
𝐽𝐴𝐵 (𝑋) refers to the Lagrangian time-independent moment of inertia of each particle.
Eq. (2.5) implies that 𝐽𝐴𝐵 = 𝐽𝐵𝐴.

2.1.2 Deformation energy density and deformation measures

We refer to a function as objective if it satisfies the so-called principle of frame indifference
that consists of three independent postulates: the principle of invariance under Euclidean
transformations, the principle of invariance under superposed rigid-body motions, and the
principle of frame-invariance of the constitutive equations under the change of observer [102].
In order for a function to be objective and, consequently, to represent an adequate deformation
energy density, it must be invariant under a rigid motion in its current configuration. Let
𝑊def
𝜋 (𝜒,𝑄,𝐹,∇𝑄, 𝑋) be the specific deformation energy density. Since it must be objective,

the equality
𝑊def
𝜋 (𝜒,𝑄,𝐹,∇𝑄, 𝑋) =𝑊def

𝜋 (𝑂𝜒+ 𝑎,𝑂𝑄,𝑂𝐹,𝑂∇𝑄, 𝑋) (2.6)

needs to be satisfied for any orthogonal transformation 𝑂 and for any vector 𝑎. For any 𝑄
and for any 𝜒, it is natural to choose 𝑂 =𝑄𝑇 and 𝑎 = −𝑄𝑇 𝜒. We get

𝑊def
𝜋 (𝜒,𝑄,𝐹,∇𝑄, 𝑋) =𝑊def

𝜋 (0, 𝐼,𝑄𝑇𝐹,𝑄𝑇∇𝑄, 𝑋) . (2.7)
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Eq. (2.7) implies that if𝑊def
𝜋 is an objective function, then there exists a function𝑊def

𝜋 such
that

𝑊def
𝜋 (0, 𝐼,𝑄𝑇𝐹,𝑄𝑇∇𝑄, 𝑋) =𝑊def

𝜋 (𝑄,𝐹,∇𝑄, 𝑋) , (2.8)

yielding
𝑊def
𝜋 (𝜒,𝑄,𝐹,∇𝑄, 𝑋) =𝑊def

𝜋 (𝑄,𝐹,∇𝑄, 𝑋) . (2.9)

Eq. (2.7) also leads to the deformation measures 𝐸𝜋 and 𝛤𝜋 defined by

𝐸𝜋 =
1
2

(
𝑄𝑇𝐹 − 𝐼

)
, 𝛤𝜋 =𝑄

𝑇∇𝑄 , (2.10)

which have the following component expressions:

(𝐸𝜋)𝑀𝑁 =
1
2

(
𝑔𝑖 𝑗𝑄

𝑗

𝑀
𝐹𝑖𝑁 −𝐺𝑀𝐴 𝛿

𝐴
𝑁

)
, (𝛤𝜋)𝑀𝑁𝐶 = 𝐺𝑀𝐴

(
𝑄𝑇

) 𝐴
𝑖
𝑄𝑖𝑁,𝐶 . (2.11)

It is natural to refer to the tensor 𝐸𝜋 as the micropolar stretch tensor and to the tensor 𝛤𝜋 as
the micropolar wryness tensor. Since 𝑄𝑇𝐹 and 𝑄𝑇∇𝑄 can be expressed as a function of 𝐸𝜋
and 𝛤𝜋, it follows the existence of a function𝑊def

𝜋 such that

𝑊def
𝜋 (𝑄,𝐹,∇𝑄, 𝑋) =𝑊def

𝜋 (𝐸𝜋, 𝛤𝜋, 𝑋) . (2.12)

Micropolar stretch tensor and micropolar wryness tensor are only two of the possible
deformation measures that can be introduced. Several alternatives have been proposed in the
literature. Instead of 𝛤𝜋, some authors (see [102]) prefer to consider the tensor 𝔎𝜋 that, in
components, is defined by

(𝔎𝜋)𝑀𝑁 =
1
2
𝐺𝐵𝑀 𝜖

𝐵𝐹𝐶𝐺𝐹𝐴

(
𝑄𝑇

) 𝐴
𝑖
𝑄𝑖𝐶,𝑁 , (2.13)

where 𝜖𝐵𝐹𝐶 is equal to the permutation symbol 𝜖𝐵𝐹𝐶 for any 𝐵, 𝐹, and 𝐶. Moreover,
Eq. (2.12) can be rewritten to underline the micro-macro relative rotation [76, 91, 71]. In the
following, the Euler-Lagrange equations are derived by considering the deformation energy
density as an objective function of 𝑄, 𝐹, and ∇𝑄, 𝑊def

𝜋 (𝑄,𝐹,∇𝑄, 𝑋). Thus, the derived
equations are valid for any chosen combination of deformation measures.
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2.1.3 Euler-Lagrange equations

Microrotation test function

The subsequent steps allow us to avoid using Euler angles, which would otherwise limit the
generality of the dissertation. Let us consider the equality(

𝑄𝑇
)𝐵
𝑖
𝑄𝑖𝐴 = 𝛿

𝐵
𝐴 . (2.14)

If the variation of each member of Eq. (2.14) is evaluated, it is obtained(
𝛿𝑄𝑇

)𝐵
𝑖
𝑄𝑖𝐴 = −

(
𝑄𝑇

)𝐵
𝑖
𝛿𝑄𝑖𝐴 . (2.15)

The transpose of 𝑄 and 𝛿𝑄 implies

𝐺𝐴𝐷 𝛿𝑄
𝑗

𝐷
𝑔 𝑗𝑖𝑄

𝑖
𝐵 +𝐺

𝐴𝐷𝑄
𝑗

𝐷
𝑔 𝑗𝑖 𝛿𝑄

𝑖
𝐵 = 0 (2.16)

that, by multiplying each term for 𝐺𝐹𝐴, yields

𝐺𝐹𝐴𝐺
𝐴𝐷𝛿𝑄

𝑗

𝐷
𝑔 𝑗𝑖𝑄

𝑖
𝐵 +𝐺𝐹𝐴𝐺

𝐴𝐷𝑄
𝑗

𝐷
𝑔 𝑗𝑖 𝛿𝑄

𝑖
𝐵 = 0 . (2.17)

Since 𝐺𝐹𝐴𝐺
𝐴𝐷 = 𝛿𝐷

𝐹
, we have

𝛿𝑄
𝑗

𝐹
𝑔 𝑗𝑖𝑄

𝑖
𝐵 = −𝑄𝑖𝐹 𝑔 𝑗𝑖 𝛿𝑄

𝑗

𝐵
. (2.18)

It follows the existence of a vector function 𝛿𝜔 such that

𝛿𝑄
𝑗

𝐹
𝑔 𝑗𝑖𝑄

𝑖
𝐵 = 𝜖𝑘𝐹𝐵 𝛿𝜔

𝑘 . (2.19)

It is natural to refer to 𝛿𝜔 as the microrotation test function. It yields

𝛿𝑄
𝑗

𝐹
𝑔 𝑗𝑖𝑄

𝑖
𝐵𝐺

𝐵𝐴 = 𝛿𝑄
𝑗

𝐹

(
𝑄𝑇

) 𝐴
𝑗
, (2.20)

where the first term has been multiplied by 𝐺𝐵𝐴 and

𝛿𝑄
𝑗

𝐹

(
𝑄𝑇

) 𝐴
𝑗
= 𝐺𝐵𝐴 𝜖𝑘𝐹𝐵 𝛿𝜔

𝑘 , (2.21)

from which we get
𝛿𝑄

𝑗

𝐹
= 𝐺𝐵𝑀𝑄

𝑗

𝑀
𝜖𝑘𝐹𝐵 𝛿𝜔

𝑘 . (2.22)
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Eq. (2.22) is widely applied in the following and it allows us to couple the equilibrium
equations without the introduction of the Euler angles for describing the rotation of each
particle. The use of Euler angles would reduce the generality of the dissertation and would
lead to numerical issues when large microrotations appear.

Action functional

Let us consider the action functional

A𝜋 =

∫ 𝑡1

𝑡0

∫
B

(
1
2
𝜌 𝑣2 + 1

2
𝐽Θ2 −𝑊𝜋 (𝜒,𝑄,𝐹,∇𝑄, 𝑋)

)
𝑑𝑉𝑑𝑡

+
∫ 𝑡1

𝑡0

∫
𝜕B

(
−𝑊 surf

𝜋 (𝜒,𝑄, 𝑋)
)
𝑑𝑠 𝑑𝑡 ,

(2.23)

where

◦ the field 𝜒 denotes the configuration field;

◦ the fields 𝜌 and 𝐽 refer to the Lagrangian time-independent mass density and to the
Lagrangian time-independent moment of inertia of material points;

◦ the fields 𝑣 =
𝜕𝜒

𝜕𝑡
and Θ =

𝜕𝑄

𝜕𝑡
denote the Lagrangian-translation velocities and

Lagrangian-rotation velocities;

◦ 𝜌 𝑣2 = 𝑔𝑎𝑏 𝑣
𝑎 𝑣𝑏 and 𝐽Θ2 = 𝐽𝐵𝐴Θ𝑖

𝐴
Θ𝑘
𝐵
𝑔𝑖𝑘 ;

◦ the potential𝑊𝜋 (𝜒,𝑄,𝐹,∇𝑄, 𝑋) is related to the volume density of action;

◦ the potential𝑊 surf
𝜋 (𝜒,𝑄, 𝑋) is related to the actions externally applied on the boundary

𝜕B.

Potential𝑊𝜋 can be split into two addends: the objective deformation energy density𝑊def
𝜋

and the external conservative action of bulk loads𝑈ext
𝜋 , as follows

𝑊𝜋 (𝜒,𝑄,𝐹,∇𝑄, 𝑋) =𝑊def
𝜋 (𝑄,𝐹,∇𝑄) +𝑈ext

𝜋 (𝜒,𝑄, 𝑋) . (2.24)

The first variation of the deformation energy-related portion of the action functional can be
expressed as the sum of three terms,

𝛿Adef
𝜋 = 𝛿Adef

𝜋𝐹 + 𝛿A
def
𝜋𝑄 + 𝛿Adef

𝜋∇𝑄 , (2.25)
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where

𝛿Adef
𝜋𝐹 = −

∫ 𝑡1

𝑡0

∫
B

𝜕𝑊def
𝜋

𝜕𝐹𝑖
𝐴

𝛿𝐹𝑖𝐴 𝑑𝑉𝑑𝑡 , (2.26)

𝛿Adef
𝜋𝑄 = −

∫ 𝑡1

𝑡0

∫
B

𝜕𝑊def
𝜋

𝜕𝑄
𝑗

𝐹

𝛿𝑄
𝑗

𝐹
𝑑𝑉𝑑𝑡 , (2.27)

and

𝛿Adef
𝜋∇𝑄 = −

∫ 𝑡1

𝑡0

∫
B

𝜕𝑊def
𝜋

𝜕𝑄𝑖
𝑀,𝐵

𝛿𝑄𝑖𝑀,𝐵 𝑑𝑉𝑑𝑡 . (2.28)

Micropolar stress tensor

Let us compute the first variation 𝛿Adef
𝜋𝐹

. It yields

𝛿Adef
𝜋𝐹 = −

∫ 𝑡1

𝑡0

∫
𝜕B

𝜕𝑊def
𝜋

𝜕𝐹𝑖
𝐴

𝑁𝐴 𝛿𝜒
𝑖 𝑑𝑠 𝑑𝑡 +

∫ 𝑡1

𝑡0

∫
B

𝜕

𝜕𝑋𝐴

(
𝜕𝑊def

𝜋

𝜕𝐹𝑖
𝐴

)
𝛿𝜒𝑖 𝑑𝑉 𝑑𝑡 . (2.29)

Let P𝜋 be the micropolar stress tensor defined by

(P𝜋)𝑀𝑏 =
𝜕𝑊def

𝜋

𝜕𝐹𝑏
𝑀

. (2.30)

Eq. (2.29) becomes

𝛿Adef
𝜋𝐹 = −

∫ 𝑡1

𝑡0

∫
𝜕B

(P𝜋)𝑀𝑏 𝑁𝑀 𝛿𝜒𝑏 𝑑𝑠 𝑑𝑡 +
∫ 𝑡1

𝑡0

∫
B

𝜕

𝜕𝑋𝑀
(P𝜋)𝑀𝑏 𝛿𝜒𝑏 𝑑𝑉 𝑑𝑡 . (2.31)

First part of the micropolar stress vector

Let us consider the first variation 𝛿Adef
𝜋𝑄

. It yields

𝛿Adef
𝜋𝑄 = −

∫ 𝑡1

𝑡0

∫
B

𝜕𝑊def
𝜋

𝜕𝑄𝑖
𝐹

𝛿𝑄
𝑗

𝐹
𝑑𝑉 𝑑𝑡 . (2.32)

Eq. (2.14) leads to

𝛿Adef
𝜋𝑄 = −

∫ 𝑡1

𝑡0

∫
B

(
VI
𝜋

)
𝑘
𝛿𝜔𝑘 𝑑𝑉 𝑑𝑡 , (2.33)

where (
VI
𝜋

)
𝑘
=
𝜕𝑊def

𝜋

𝜕𝑄𝑖
𝐹

𝐺𝐵𝑀𝑄𝑖𝑀 𝜖𝑘𝐹𝐵 (2.34)

is named first part of the micropolar stress vector.
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Micropolar couple stress tensor and micropolar stress vector

Let us consider the first variation 𝛿Adef
𝜋∇𝑄 . It yields

𝛿Adef
𝜋∇𝑄 = −

∫ 𝑡1

𝑡0

∫
B

𝜕𝑊def
𝜋

𝜕𝑄𝑖
𝑀,𝐵

(
𝐺𝑁𝐴𝑄𝑖𝐴,𝐵 𝜖 𝑗𝑀𝑁 𝛿𝜔

𝑗 +𝐺𝑁𝐴𝑄𝑖𝐴 𝜖 𝑗𝑀𝑁 𝛿𝜔
𝑗

,𝐵

)
𝑑𝑉 𝑑𝑡 (2.35)

and

𝛿Adef
𝜋∇𝑄 = −

∫ 𝑡1

𝑡0

∫
B

𝜕𝑊def
𝜋

𝜕𝑄𝑖
𝑀,𝐵

𝐺𝑁𝐴𝑄𝑖𝐴,𝐵 𝜖 𝑗𝑀𝑁 𝛿𝜔
𝑗 𝑑𝑉 𝑑𝑡

−
∫ 𝑡1

𝑡0

∫
𝜕B

𝜕𝑊def
𝜋

𝜕𝑄𝑖
𝑀,𝐵

𝐺𝑁𝐴𝑄𝑖𝐴 𝜖 𝑗𝑀𝑁 𝛿𝜔
𝑗 𝑁𝐵 𝑑𝑠 𝑑𝑡

+
∫ 𝑡1

𝑡0

∫
B

𝜕

𝜕𝑋𝐵

(
𝜕𝑊def

𝜋

𝜕𝑄𝑖
𝑀,𝐵

𝐺𝑁𝐴𝑄𝑖𝐴 𝜖 𝑗𝑀𝑁

)
𝛿𝜔 𝑗 𝑑𝑉 𝑑𝑡 .

(2.36)

LetM𝜋 and V(II)
𝜋 be the tensors defined by

(M𝜋)𝐵𝑗 =
𝜕𝑊def

𝜋

𝜕𝑄𝑖
𝑀,𝐵

𝐺𝑁𝐴𝑄𝑖𝐴 𝜖 𝑗𝑀𝑁 ,

(
VII
𝜋

)
𝑗
=
𝜕𝑊def

𝜋

𝜕𝑄𝑖
𝑀,𝐵

𝐺𝑁𝐴𝑄𝑖𝐴,𝐵 𝜖 𝑗𝑀𝑁 (2.37)

that are named micropolar couple stress tensor and second part of the micropolar stress
vector, respectively. Eq. (2.36) becomes

𝛿Adef
𝜋∇𝑄 = −

∫ 𝑡1

𝑡0

∫
B

(
VII
𝜋

)
𝑗
𝛿𝜔 𝑗 𝑑𝑉 𝑑𝑡 −

∫ 𝑡1

𝑡0

∫
𝜕B

(M𝜋)𝑁𝑗 𝑁𝑁𝛿𝜔 𝑗 𝑑𝑠 𝑑𝑡

+
∫ 𝑡1

𝑡0

∫
B

𝜕

𝜕𝑋𝑁
(M𝜋)𝑁𝑗 𝛿𝜔 𝑗 𝑑𝑉 𝑑𝑡 .

(2.38)

External actions

Let us consider the first variation 𝛿Aext
𝜋 . It yields

𝛿Aext
𝜋 =

∫ 𝑡1

𝑡0

∫
B
(𝐵𝜋)𝑏 𝛿𝜒𝑏𝑑𝑉𝑑𝑡 +

∫ 𝑡1

𝑡0

∫
B
(𝐶𝜋) 𝑗 𝛿𝜔 𝑗 𝑑𝑉𝑑𝑡 , (2.39)

where
(𝐵𝜋)𝑏 = −

𝜕𝑈ext
𝜋

𝜕𝜒𝑏
, (𝐶𝜋) 𝑗 = −

𝜕𝑈ext
𝜋

𝜕𝑄𝑘
𝐹

𝐺𝐵𝑀𝑄𝑘
𝑀𝜖 𝑗𝐹𝐵 . (2.40)
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Let us consider the first variation 𝛿Asurf
𝜋 . It yields

𝛿Asurf
𝜋 =

∫ 𝑡1

𝑡0

∫
𝜕B

(𝑏𝜋)𝑏 𝛿𝜒𝑏𝑑𝑠 𝑑𝑡 +
∫ 𝑡1

𝑡0

∫
𝜕B

(𝑐𝜋) 𝑗 𝛿𝜔 𝑗 𝑑𝑠 𝑑𝑡 , (2.41)

where

(𝑏𝜋)𝑏 = −
𝜕𝑊 surf

𝜋

𝜕𝜒𝑏
, (𝑐𝜋) 𝑗 = −

𝜕𝑊 surf
𝜋

𝜕𝑄𝑘
𝐹

𝐺𝐵𝑀𝑄𝑘
𝑀 𝜖 𝑗𝐹𝐵 . (2.42)

kinetic contributions

Let us consider the first variation 𝛿Akin
𝜋 . It yields

𝛿Akin
𝜋 =

∫ 𝑡1

𝑡0

∫
B

(
𝜌 𝑔𝑎𝑏 𝑣

𝑎 𝛿𝑣𝑏 + 𝐽𝐵𝐴 𝛿Θ𝑖𝐴Θ
𝑘
𝐵 𝑔𝑖𝑘

)
𝑑𝑉𝑑𝑡 . (2.43)

Let us define

𝛿Akin
𝜋Θ =

∫ 𝑡1

𝑡0

∫
B
𝐽𝐵𝐴 𝛿Θ𝑖𝐴Θ

𝑘
𝐵 𝑔𝑖𝑘 𝑑𝑉𝑑𝑡

=

∫ 𝑡1

𝑡0

∫
B
𝐽𝐵𝐴 𝑔𝑖𝑘Θ

𝑘
𝐵

𝜕𝛿𝑄𝑖
𝐴

𝜕𝑡
𝑑𝑉𝑑𝑡 .

(2.44)

By replacing Eq. (2.14) into (2.44), we arrive to

𝛿Akin
𝜋Θ =

∫ 𝑡1

𝑡0

∫
B
𝐽𝐵𝐴 𝑔𝑖𝑘Θ

𝑘
𝐵

(
𝐺𝑁𝑀Θ𝑖𝑀 𝜖 𝑗 𝐴𝑁 𝛿𝜔

𝑗 +𝐺𝑁𝑀𝑄𝑖𝑀 𝜖 𝑗 𝐴𝑁
𝜕𝛿𝜔 𝑗

𝜕𝑡

)
𝑑𝑉𝑑𝑡 . (2.45)

For fixed value of 𝑗 and 𝑁 , and without summation over 𝐴 that is fixed too, the following
equality holds

𝐽𝐵𝐴 𝑔𝑖𝑘Θ
𝑘
𝐵𝐺

𝑁𝑀Θ𝑖𝑀 𝜖 𝑗 𝐴𝑁 + 𝐽
𝐵𝑁 𝑔𝑖𝑘Θ

𝑘
𝐵𝐺

𝐴𝑀Θ𝑖𝑀 𝜖 𝑗𝑁𝐴

= 𝐽𝐵𝐴 𝑔𝑖𝑘Θ
𝑘
𝐵𝐺

𝑁𝑀Θ𝑖𝑀 𝜖 𝑗 𝐴𝑁 − 𝐽
𝐵𝐴 𝑔𝑖𝑘Θ

𝑘
𝐵𝐺

𝐴𝑀Θ𝑖𝑀 𝜖 𝑗 𝐴𝑁 = 0
(2.46)

Thus, for any 𝑗 , it yields
𝐽𝐵𝐴 𝑔𝑖𝑘Θ

𝑘
𝐵𝐺

𝑁𝑀Θ𝑖𝑀𝜖 𝑗 𝐴𝑁 = 0 (2.47)

and
𝛿Akin

𝜋Θ =

∫ 𝑡1

𝑡0

∫
B
𝐽𝐵𝐴𝜗𝐵𝐴 𝑗

𝜕𝛿𝜔 𝑗

𝜕𝑡
𝑑𝑉𝑑𝑡 , (2.48)

where
𝜗𝐵𝐴 𝑗 = 𝑔𝑖𝑘Θ

𝑘
𝐵𝐺

𝑁𝑀𝑄𝑖𝑀 𝜖 𝑗 𝐴𝑁 . (2.49)
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Equilibrium equations

The equilibrium equations, in Lagrangian description, are listed below:

◦ on the volume B,

−𝜕 (𝜌𝑣𝑏)
𝜕𝑡

+ 𝜕

𝜕𝑋𝑀
(P𝜋)𝑀𝑏 + (𝐵𝜋)𝑏 = 0 , (2.50)

−
𝜕 (𝐽𝐴𝐵𝜗𝐵𝐴 𝑗 )

𝜕𝑡
+ 𝜕

𝜕𝑋𝑁
(M𝜋)𝑁𝑗 − (V𝜋) 𝑗 + (𝐶𝜋) 𝑗 = 0 , (2.51)

where V = V(I) +V(II) could be referred to as micropolar stress vector;

◦ on the boundary 𝜕L
− (P𝜋)𝑀𝑏 𝑁𝑀 + (𝑏𝜋)𝑏 = 0 , (2.52)

− (M𝜋)𝑁𝑗 𝑁𝑁 + (𝑐𝜋) 𝑗 = 0 . (2.53)

All the derived expressions are functions of the microrotation tensor 𝑄. On one hand,
Eqs. (2.52) and (2.53) imply that the subdomains of the micropolar continuum exchange
with each other forces per unit area, P𝜋, and couples per unit area,M𝜋. On the other hand,
Eq. (2.51) implies that a couple of forces per unit area, V𝜋, acts on each subdomain of the
micropolar continuum.

2.2 The micromorphic continuum

Notation

Below 𝐴, 𝐵, 𝑖, and 𝑗 are integers belonging to {1,2,3}. Summation is intended over repeated
indices.

B: initial (Lagrangian) configuration.

𝜕B: boundary of B.

Indices denoted by uppercase letters are chosen to indicate components of a tensor in
the initial configuration and lowercase letters to indicate components of a tensor in the
current configuration. Summation is intended over the repeated indices.

𝑁𝐴: components of the outward-pointing normal 𝑁 of 𝜕B.

𝑋𝐴: Lagrangian coordinates.
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𝜒𝑖: component 𝑖 of the configuration field 𝜒.

(𝜒′)𝑖: component 𝑖 of the micromorphic configuration field 𝜒.

𝑣𝑖: component 𝑖 of the translation velocity 𝑣.

𝐺𝐴𝐵: component (𝐴, 𝐵) of the metric tensor 𝐺 with respect to the reference system in
the initial configuration.

𝑔𝑖 𝑗 : component (𝑖, 𝑗) of the metric tensor 𝑔 with respect to the reference system in the
current configuration.

𝛿𝐴
𝐵
: component (𝐴, 𝐵) of the second-order identity tensor 𝐼.

𝜖 𝑗 𝐴𝐵: component ( 𝑗 , 𝐴, 𝐵) of the permutation (or Levi-Civita) tensor 𝜖 .

𝑃𝑖
𝐴
: component (𝑖, 𝐴) of the micromorphic second-order configuration tensor 𝑃.

𝜑𝐵𝑖: component (𝐵,𝑖) of the microvelocity 𝜑.

𝐹𝑖
𝐴
: component (𝑖, 𝐴) of the gradient of the configuration field 𝐹, 𝐹𝑖

𝐴
=

𝜕𝜒𝑖

𝜕𝑋𝐴 .

𝜌: Lagrangian time-independent mass density.

𝐽𝐴𝐵: component (𝐴, 𝐵) of the Lagrangian time-independent moment of inertia of
material points 𝐽.

A𝜇: action functional for the micropolar continuum.(
P𝜇

) 𝑖
𝐴
: component (𝑖, 𝐴) of the micropolar stress tensor P𝜇.(

S𝜇
) 𝑖
𝐴
: component (𝑖, 𝐴) of the microstress tensor S𝜇.(

H𝜇
) 𝐴𝐵
𝑖

: component (𝐴, 𝐵, 𝑖) of the hyper microstress tensor H𝜇.(
𝐵𝜇

)
𝑗
: component 𝑗 of the volumic forces 𝐵𝜇.(

𝔅𝜇

)
𝑗
: component 𝑗 of the volumic doubleforces 𝔅𝜇.(

𝑏𝜇
)
𝑗
: component 𝑗 of the surface forces 𝑏𝜇.(

𝔟𝜇
)
𝑗
: component 𝑗 of the surface doubleforces 𝔟𝜇.

[𝑆]𝑇 , 𝑆: transpose of the second-order tensor 𝑆.
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𝜖 𝑗 𝐴𝐵: permutation (or Levi-Civita) symbol.

𝑓 ,𝐵 : partial derivative of the function 𝑓 with respect to 𝑋𝐵, i.e, 𝑓 ,𝐵= 𝜕 𝑓

𝜕𝑋𝐵 .

𝑑𝑉 and 𝑑𝑠: volume and surface elements.

2.2.1 Kinematic of the micromorphic continuum

Placement functions

The micropolar continuum consists of small, deformable particles, each of which is represented
geometrically by a point 𝑋 . Each particle is considered as a continuum itself, denoted by
𝑆 (𝑋), whose center of mass is 𝑋 . We refer to a material point of 𝑆 (𝑋) by its spatial
coordinate 𝑋′. With this assumption, one can write

(𝜒′)𝑖 (𝑋, 𝑋′, 𝑡) = 𝜒𝑖 (𝑋, 𝑡) +𝑃𝑖𝐴 (𝑋, 𝑡)
(
(𝑋′)𝐴− 𝑋𝐴

)
, (2.54)

where 𝜒 describes the configuration change of the center of mass 𝑋 of each particle, 𝑃
describes the deformation of each particle, and 𝜒′ describes the configuration change of
each material point 𝑋′ within 𝑆 (𝑋). These assumptions allow describing the kinematical
properties of each particle in a more refined way with respect to the classical continuum. Let
B be the initial (or Lagrangian) configuration of the centers of mass 𝑋 . From Eq. (2.54), we
get

𝜕 (𝜒′)𝑖 (𝑋, 𝑋′, 𝑡)
𝜕𝑡

=
𝜕𝜒𝑖 (𝑋, 𝑡)

𝜕𝑡
+
𝜕𝑃𝑖

𝐴
(𝑋, 𝑡)
𝜕𝑡

(
(𝑋′)𝐴− 𝑋𝐴

)
(2.55)

and ∫
B

∫
𝑆(𝑋)

𝜚̂ (𝑋, 𝑋′) 𝑔𝑖 𝑗
𝜕 (𝜒′)𝑖 (𝑋, 𝑋′, 𝑡)

𝜕𝑡

𝜕 (𝜒′) 𝑗 (𝑋, 𝑋′, 𝑡)
𝜕𝑡

𝑑𝑋𝑑𝑋′

=

∫
B

(
𝜚 (𝑋) 𝑔𝑖 𝑗

𝜕𝜒𝑖 (𝑋, 𝑡)
𝜕𝑡

𝜕𝜒 𝑗 (𝑋, 𝑡)
𝜕𝑡

+ 𝐽𝐴𝐵 (𝑋) 𝑔𝑖 𝑗
𝜕𝑃𝑖

𝐴
(𝑋, 𝑡)
𝜕𝑡

𝜕𝑃
𝑗

𝐵
(𝑋, 𝑡)
𝜕𝑡

)
𝑑𝑋 ,

(2.56)

where 𝜚 (𝑋) and 𝐽𝐴𝐵 (𝑋) are defined by Eq. (2.5) that implies 𝐽𝐴𝐵 = 𝐽𝐵𝐴.

2.2.2 Deformation energy density and deformation measures

Let 𝑊def
𝜇 (𝜒,𝑃, 𝐹,∇𝑃, 𝑋) be the specific deformation energy density. Since it must be

objective, the equality

𝑊def
𝜇 (𝜒,𝑃, 𝐹,∇𝑃, 𝑋) =𝑊def

𝜇 (𝑂𝜒+ 𝑎,𝑂𝑃,𝑂𝐹,𝑂∇𝑃, 𝑋) (2.57)
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needs to be satisfied for any orthogonal transformation𝑂 and for any vector 𝑎. Let us consider
the polar decomposition of 𝑃, 𝑃 = 𝑅𝜇𝑉𝜇, where 𝑉𝜇 =

(
𝑃𝑇𝑃

)1/2. It yields

𝑅𝜇 = 𝑃

(
𝑃𝑇𝑃

)−1/2
, 𝑅𝑇𝜇 =

[(
𝑃𝑇𝑃

)−1/2
]𝑇
𝑃𝑇 . (2.58)

For any 𝑃 and for any 𝜒, it is natural to choose 𝑂 = 𝑃𝑇 and 𝑎 = −𝑃𝑇 𝜒. We get

𝑊𝜇 (𝜒,𝑃, 𝐹,∇𝑃, 𝑋)

=𝑊𝜇

(
0,

[(
𝑃𝑇𝑃

)−1/2
]𝑇
𝑃𝑇𝑃,

[(
𝑃𝑇𝑃

)−1/2
]𝑇
𝑃𝑇𝐹,

[(
𝑃𝑇𝑃

)−1/2
]𝑇
𝑃𝑇∇𝑃, 𝑋

)
. (2.59)

Eq. (2.59) implies that if 𝑊̃def
𝜇 is an objective function, then there exists a function𝑊def

𝜇 such
that

𝑊𝜇

(
0,

[(
𝑃𝑇𝑃

)−1/2
]𝑇
𝑃𝑇𝑃,

[(
𝑃𝑇𝑃

)−1/2
]𝑇
𝑃𝑇𝐹,

[(
𝑃𝑇𝑃

)−1/2
]𝑇
𝑃𝑇∇𝑃, 𝑋

)
=𝑊def

𝜇 (𝑃,𝐹,∇𝑃, 𝑋) (2.60)

and
𝑊def
𝜇 (𝜒,𝑃, 𝐹,∇𝑃, 𝑋) =𝑊def

𝜇 (𝑃,𝐹,∇𝑃, 𝑋) . (2.61)

Eq. (2.59) leads also to the deformation measures 𝐸𝜇, 𝐺𝜇 and 𝛤𝜇 defined by

𝐸𝜇 =
1
2

(
𝑃𝑇𝐹 − 𝐼

)
, 𝐺𝜇 =

1
2

(
𝑃𝑇𝑃− 𝐼

)
, Γ𝜇 = 𝑃

𝑇∇𝑃 , (2.62)

which have the following component expressions:(
𝐸𝜇

)
𝑀𝑁

=
1
2

(
𝑔𝑖 𝑗 𝑃

𝑗

𝑀
𝐹𝑖𝑁 −𝐺𝑀𝐴 𝛿

𝐴
𝑁

)
,

(
𝐺𝜇

)
𝑀𝑁

=
1
2

(
𝑔𝑖 𝑗 𝑃

𝑗

𝑀
𝑃𝑖𝑁 −𝐺𝑀𝐴 𝛿

𝐴
𝑁

)
, (2.63)

(
𝛤𝜇

)
𝑀𝑁𝐶

= 𝐺𝑀𝐴

(
𝑃𝑇

) 𝐴
𝑖
𝑃𝑖𝑁,𝐶 . (2.64)

It is natural to refer to the tensor 𝐸𝜇 as the micromorphic stretch tensor, to the tensor 𝐺𝜇

as the micromorphic Green-Saint-Venant tensor, and to the tensor 𝛤𝜇 as the micromorphic
wryness tensor. Since 𝑃𝑇𝐹, 𝑃𝑇𝑃, and 𝑃𝑇∇𝑃 can be expressed as a function of 𝐸𝜇, 𝐺𝜇, and
𝛤𝜇, it follows the existence of a function𝑊def

𝜇 such that

𝑊def
𝜇 (𝑃,𝐹,∇𝑃, 𝑋) =𝑊def

𝜇

(
𝐸𝜇,𝐺𝜇, 𝛤𝜇, 𝑋

)
. (2.65)
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Micromorphic stretch tensor, micromorphic Green-Saint-Venant tensor, and micromorphic
wryness tensor are only three of the possible deformation measures that can be introduced.
Several alternatives have been proposed in the literature. In the following, the Euler-Lagrange
equations are derived by representing deformation energy density as an objective function
of 𝑃, 𝐹, and ∇𝑃, 𝑊def

𝜇 (𝑃,𝐹,∇𝑃, 𝑋). Thus, the derived equations are valid for any chosen
combination of deformation measures.

2.2.3 Euler-Lagrange equations

Action functional

Let us consider the action functional

A𝜇 =

∫ 𝑡1

𝑡0

∫
B

(
1
2
𝜌 𝑣2 + 1

2
𝐽Φ2 −𝑊𝜇 (𝜒,𝐹, 𝑃,∇𝑃, 𝑋)

)
𝑑𝑉𝑑𝑡

+
∫ 𝑡1

𝑡0

∫
𝜕B

(
−𝑊 𝑠𝑢𝑟 𝑓

𝜇 (𝜒,𝑃, 𝑋)
)
𝑑𝑠 𝑑𝑡 ,

(2.66)

where

◦ the field 𝜒 denotes the configuration field;

◦ the fields 𝜌 and 𝐼 refer to the Lagrangian time-independent mass density and to the
Lagrangian time-independent moment of inertia of material points;

◦ the fields 𝑣 =
𝜕𝜒

𝜕𝑡
and Φ = 𝜕𝑃

𝜕𝑡
denote the Lagrangian-translation velocities and

Lagrangian-translation microvelocities;

◦ 𝜌𝑣2 = 𝑔𝑎𝑏 𝑣
𝑎 𝑣𝑏 and 𝐽Φ2 = 𝐽𝐵𝐴Φ𝑖

𝐴
Φ𝑘
𝐵
𝑔𝑖𝑘 ;

◦ the potential𝑊𝜇 (𝜒,𝐹, 𝑃,∇𝑃, 𝑋) is related to the volume density of action;

◦ the potential𝑊 surf
𝜇 (𝜒,𝑃, 𝑋) is related to the actions externally applied on the boundary

𝜕B.

Potential𝑊𝜇 can be split into two addends: the objective specific deformation energy density
𝑊def and the external conservative action of bulk loads𝑈ext

𝜇 , as follows

𝑊𝜇 (𝜒,𝐹, 𝑃,∇𝑃, 𝑋) =𝑊def
𝜇 (𝐹,𝑃,∇𝑃) +𝑈ext

𝜇 (𝜒,𝑃, 𝑋) . (2.67)
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The first variation of the deformation energy-related portion of the action functional can be
expressed as the sum of three terms,

𝛿Adef
𝜇 = 𝛿Adef

𝜇𝐹 + 𝛿A
def
𝜇𝑃 + 𝛿A

def
𝜇∇𝑃 , (2.68)

where

𝛿Adef
𝜇𝐹 = −

∫ 𝑡1

𝑡0

∫
B

𝜕𝑊def
𝜇

𝜕𝐹𝑖
𝐴

𝛿𝐹𝑖𝐴 𝑑𝑉𝑑𝑡 , (2.69)

𝛿Adef
𝜇𝑃 = −

∫ 𝑡1

𝑡0

∫
B

𝜕𝑊def
𝜇

𝜕𝑃
𝑗

𝐹

𝛿𝑃
𝑗

𝐹
𝑑𝑉𝑑𝑡 , (2.70)

and

𝛿Adef
𝜇∇𝑃 = −

∫ 𝑡1

𝑡0

∫
B

𝜕𝑊def
𝜇

𝜕𝑃𝑖
𝑀,𝐵

𝛿𝑃𝑖𝑀,𝐵 𝑑𝑉𝑑𝑡 . (2.71)

Micromorphic stress tensor

Let us compute the first variation 𝛿Adef
𝜇𝐹

. It yields

𝛿Adef
𝜇𝐹 = −

∫ 𝑡1

𝑡0

∫
𝜕B

𝜕𝑊def
𝜇

𝜕𝐹𝑖
𝐴

𝑁𝐴 𝛿𝜒
𝑖 𝑑𝑠 𝑑𝑡 +

∫ 𝑡1

𝑡0

∫
B

𝜕

𝜕𝑋𝐴

(
𝜕𝑊def

𝜇

𝜕𝐹𝑖
𝐴

)
𝛿𝜒𝑖 𝑑𝑉 𝑑𝑡 . (2.72)

Let P be the micromorphic stress tensor defined by

(
P𝜇

) 𝐴
𝑖
=
𝜕𝑊def

𝜇

𝜕𝐹𝑖
𝐴

. (2.73)

Eq. (2.72) becomes

𝛿Adef
𝜇𝐹 = −

∫ 𝑡1

𝑡0

∫
𝜕B

(
P𝜇

) 𝐴
𝑖
𝑁𝐴 𝛿𝜒

𝑖 𝑑𝑠 𝑑𝑡 +
∫ 𝑡1

𝑡0

∫
B

𝜕

𝜕𝑋𝐴

(
P𝜇

) 𝐴
𝑖
𝛿𝜒𝑖 𝑑𝑉 𝑑𝑡 . (2.74)

Microstress tensor

Let us consider the first variation 𝛿Adef
𝜇𝑃

. It yields

𝛿Adef
𝜇𝑃 = −

∫ 𝑡1

𝑡0

∫
B

𝜕𝑊def
𝜇

𝜕𝑃
𝑗

𝐹

𝛿𝑃
𝑗

𝐹
𝑑𝑉𝑑𝑡 . (2.75)
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Let S be the microstress tensor defined by

(
S𝜇

) 𝐴
𝑖
=
𝜕𝑊def

𝜇

𝜕𝑃𝑖
𝐴

. (2.76)

Eq. (2.75) becomes

𝛿Adef
𝜇𝑃 = −

∫ 𝑡1

𝑡0

∫
B

(
S𝜇

)𝐹
𝑗
𝛿𝑃

𝑗

𝐹
𝑑𝑉𝑑𝑡 . (2.77)

Hyper microstress tensor

Let us consider the first variation 𝛿Adef
𝜇∇𝑃. It yields

𝛿Adef
𝜇∇𝑃 =

∫ 𝑡1

𝑡0

∫
𝜕B

−
𝜕𝑊def

𝜇

𝜕𝑃𝑖
𝐴,𝐵

𝛿𝑃𝑖𝐴 𝑁𝐵 𝑑𝑠 𝑑𝑡 +
∫ 𝑡1

𝑡0

∫
B

𝜕

𝜕𝑋𝐵

(
𝜕𝑊def

𝜇

𝜕𝑃𝑖
𝐴,𝐵

)
𝛿𝑃𝑖𝐴 𝑑𝑉 𝑑𝑡 . (2.78)

Let us introduce the tensor H𝜇 defined by

(
H𝜇

) 𝐴𝐵
𝑖

=
𝜕𝑊def

𝜇

𝜕𝑃𝑖
𝐴,𝐵

, (2.79)

which could be named hyper microstress tensor. Eq. (2.78) becomes

𝛿Adef
𝜇∇𝑃 =

∫ 𝑡1

𝑡0

∫
𝜕B

−
(
H𝜇

) 𝐴𝐵
𝑖
𝛿𝑃𝑖𝐴𝑁𝐵 𝑑𝑠 𝑑𝑡 +

∫ 𝑡1

𝑡0

∫
B

𝜕

𝜕𝑋𝐵

(
H𝜇

) 𝐴𝐵
𝑖
𝛿𝑃𝑖𝐴 𝑑𝑉 𝑑𝑡 . (2.80)

External actions

Let us consider the first variation 𝛿Aext
𝜇 . It yields

𝛿Aext
𝜇 =

∫ 𝑡1

𝑡0

∫
B

(
𝐵𝜇

)
𝑏
𝛿𝜒𝑏 𝑑𝑉𝑑𝑡 +

∫ 𝑡1

𝑡0

∫
B

(
𝔅𝜇

) 𝐴
𝑖
𝛿𝑃𝑖𝐴 𝑑𝑉𝑑𝑡 , (2.81)

where (
𝐵𝜇

)
𝑏
= −𝜕U

ext

𝜕𝜒𝑏
,

(
𝔅𝜇

) 𝐴
𝑖
= −𝜕U

ext

𝜕𝑃𝑖
𝐴

. (2.82)

Let us consider the first variation 𝛿Asurf
𝜇 . It yields

𝛿Asurf
𝜇 =

∫ 𝑡1

𝑡0

∫
𝜕B

(
𝑏𝜇

)
𝑏
𝛿𝜒𝑏 𝑑𝑠 𝑑𝑡 +

∫ 𝑡1

𝑡0

∫
𝜕B

(
𝔟𝜇

) 𝐴
𝑖
𝛿𝑃𝑖𝐴 𝑑𝑠 𝑑𝑡 , (2.83)
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where (
𝑏𝜇

)
𝑏
= −

𝜕𝑊 surf
𝜇

𝜕𝜒𝑏
,

(
𝔟𝜇

) 𝐴
𝑖
= −

𝜕𝑊 surf
𝜇

𝜕𝑃𝑖
𝐴

. (2.84)

kinetic contributions

Let us consider the first variation 𝛿Akin
𝜇 . It yields

𝛿Akin
𝜇 =

∫ 𝑡1

𝑡0

∫
B

(
𝜌 𝑔𝑎𝑏 𝑣

𝑎 𝛿𝑣𝑏 + 𝐽𝐵𝐴 𝛿Φ𝑖
𝐴Φ

𝑘
𝐵 𝑔𝑖𝑘

)
𝑑𝑉𝑑𝑡 . (2.85)

Let us define

𝛿Akin
𝜇Φ =

∫ 𝑡1

𝑡0

∫
B
𝐽𝐵𝐴 𝛿Φ𝑖

𝐴Φ
𝑘
𝐵 𝑔𝑖𝑘 𝑑𝑉𝑑𝑡

=

∫ 𝑡1

𝑡0

∫
B
𝐽𝐵𝐴 𝑔𝑖𝑘Φ

𝑘
𝐵

𝜕𝛿𝑃𝑖
𝐴

𝜕𝑡
𝑑𝑉𝑑𝑡 .

(2.86)

It yields

𝛿Akin
𝜇Φ =

∫ 𝑡1

𝑡0

∫
B
𝐽𝐵𝐴𝜑𝐵𝑖

𝜕𝛿𝑃𝑖
𝐴

𝜕𝑡
𝑑𝑉𝑑𝑡 , (2.87)

where
𝜑𝐵𝑖 = 𝑔𝑖𝑘Φ

𝑘
𝐵 . (2.88)

Equilibrium equations

The equilibrium equations, in the Lagrangian description, are listed below:

◦ on the volume B:

−𝜕 (𝜌𝑣𝑏)
𝜕𝑡

+ 𝜕

𝜕𝑋𝑀

(
P𝜇

)𝑀
𝑏
+

(
𝐵𝜇

)
𝑏
= 0 , (2.89)

−𝜕 (𝐽
𝐴𝐵𝜑𝐵𝑖)
𝜕𝑡

+ 𝜕

𝜕𝑋𝐵

(
H𝜇

) 𝐴𝐵
𝑖

+
(
𝔅𝜇

) 𝐴
𝑖
= 0 ; (2.90)

◦ on the boundary 𝜕B:

−
(
P𝜇

)𝑀
𝑏
𝑁𝑀 +

(
𝑏𝜇

)
𝑏
= 0 , (2.91)

−
(
H𝜇

) 𝐴𝐵
𝑖
𝑁𝐵 +

(
𝔟𝜇

) 𝐴
𝑖
= 0 . (2.92)

Eqs. (2.91) and (2.92) imply that the subdomains of the micromorphic continuum exchange
with each other forces per unit area, P𝜇, and double forces per unit area, H𝜇.



2.3 Second-gradient classic continuum 25

2.3 Second-gradient classic continuum

Notation

Below 𝐴, 𝐵, 𝐷, 𝑖, and 𝑗 are integers belonging to {1,2,3}. Summation is intended over
repeated indices.

B: initial (Lagrangian) configuration.

𝜕B: boundary of B.

𝜕𝜕B: edges of B.

Indices denoted by uppercase letters are chosen to indicate components of a tensor in
the initial configuration and lowercase letters to indicate components of a tensor in the
current configuration. Summation is intended over the repeated indices.

𝑁𝐴: components of the outward-pointing normal 𝑁 of 𝜕B.

𝜈𝐴: components of the outward-pointing normal 𝜈 of 𝜕𝜕B.

𝑋𝐴: Lagrangian coordinates.

𝜒𝑖: component 𝑖 of the configuration field 𝜒.

𝑣𝑖: component 𝑖 of the translation velocity 𝑣.

𝐺𝐴𝐵: component (𝐴, 𝐵) of the metric tensor 𝐺 in the initial configuration.

𝛿𝐴
𝐵
: component (𝐴, 𝐵) of the second-order identity tensor 𝐼.

𝑔𝑖 𝑗 : component (𝑖, 𝑗) of the metric tensor 𝑔 in the current configuration.

𝜖 𝑗 𝐴𝐵: component ( 𝑗 , 𝐴, 𝐵) of the permutation (or Levi-Civita) tensor 𝜖 .

𝑚⊥𝐷𝐴 : component (𝐷, 𝐴) of the operator of orthogonal projection 𝑚⊥.

𝑚∥
𝐷
𝐴

: component (𝐷, 𝐴) of the operator of parallel projection 𝑚∥ .

𝐹𝑖
𝐴
: component (𝑖, 𝐴) of the gradient of the configuration field 𝐹.

𝜌: Lagrangian time-independent mass density.

A𝜎: action functional for the micropolar continuum.
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(P𝜎)𝑖𝐴: component (𝑖, 𝐴) of the Piola stress tensor P𝜎.

(H𝜎)𝐴𝐵𝑖 : component (𝐴, 𝐵, 𝑖) of the hyper stress tensor H𝜎.

(𝐵𝜎) 𝑗 : component 𝑗 of the volume forces 𝐵𝜎.

(B𝜎) 𝑗 : component 𝑗 of the volumic doubleforces B𝜎.

(𝑏𝜎) 𝑗 : component 𝑗 of the surface forces 𝑏𝜎.

(𝛽𝜎) 𝑗 : component 𝑗 of the length forces 𝛽𝜎.

[𝑆]𝑇 , 𝑆: transpose of the second-order tensor 𝑆.

𝜖 𝑗 𝐴𝐵: permutation (or Levi-Civita) symbol.

𝑓 ,𝐵 : partial derivative of the function 𝑓 with respect to 𝑋𝐵, i.e, 𝑓 ,𝐵= 𝜕 𝑓

𝜕𝑋𝐵 .

𝑑𝑉 , 𝑑𝑠, and 𝑑ℓ: volume, surface, and length elements.

2.3.1 Deformation measures

Let𝑊def
𝜎 (𝜒,𝐹,∇𝐹, 𝑋) be the specific deformation energy density. Since it must be objective,

the equality
𝑊̃def
𝜎 (𝜒,𝐹,∇𝐹, 𝑋) = 𝑊̃def

𝜎 (𝑂𝜒+ 𝑎,𝑂𝐹,𝑂∇𝐹, 𝑋) (2.93)

needs to be satisfied for any orthogonal transformation𝑂 and for any vector 𝑎. Let us consider
the polar decomposition of 𝐹, 𝐹 = 𝑅𝜎𝑉𝜎, where 𝑉𝜎 =

(
𝐹𝑇𝐹

)1/2. It yields

𝑅𝜎 = 𝐹

(
𝐹𝑇𝐹

)−1/2
, 𝑅𝑇𝜎 =

[(
𝐹𝑇𝐹

)−1/2
]𝑇
𝐹𝑇 . (2.94)

For any 𝐹 and for any 𝜒, it is natural to choose 𝑂 = 𝑅𝑇𝜎 and 𝑎 = −𝑅𝑇𝜎 𝜒. We get

𝑊𝜎 (𝜒,𝐹,∇𝐹, 𝑋) =𝑊𝜎

(
0,

[(
𝐹𝑇𝐹

)−1/2
]𝑇
𝐹𝑇𝐹,

[(
𝐹𝑇𝐹

)−1/2
]𝑇
𝐹𝑇∇𝐹, 𝑋

)
. (2.95)

Eq. (2.95) implies that if 𝑊̃def
𝜎 is an objective function of 𝜒, 𝐹, and ∇𝐹, then there exists a

function𝑊def
𝜎 such that
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𝑊𝜎

(
0,

[(
𝐹𝑇𝐹

)−1/2
]𝑇
𝐹𝑇𝐹,

[(
𝐹𝑇𝐹

)−1/2
]𝑇
𝐹𝑇∇𝐹, 𝑋

)
=𝑊def

𝜎 (𝐹,∇𝐹, 𝑋) (2.96)

and
𝑊def
𝜎 (𝜒,𝐹,∇𝐹, 𝑋) =𝑊def

𝜎 (𝐹,∇𝐹, 𝑋) . (2.97)

Eq. (2.95) leads also to the deformation measures 𝐺𝜎 and 𝛤𝜎 defined by

𝐺𝜎 =
1
2

(
𝐹𝑇𝐹 − 𝐼

)
, 𝛤𝜎 = 𝐹𝑇∇𝐹 . (2.98)

which have the following component expressions:

(𝐺𝜎)𝑀𝑁 =
1
2

(
𝑔𝑖 𝑗 𝐹

𝑗

𝑀
𝐹𝑖𝑁 −𝐺𝑀𝐴 𝛿

𝐴
𝑁

)
, (𝛤𝜎)𝑀𝑁𝐶 = 𝐺𝑀𝐴

(
𝐹𝑇

) 𝐴
𝑖
𝐹𝑖𝑁,𝐶 . (2.99)

It is natural to refer to the tensor 𝐺𝜎 as the Green-Saint-Venant stretch tensor and to the
tensor 𝛤𝜎 as the second-gradient wryness tensor. The Green-Saint-Venant stretch tensor
gives the change in length of an infinitesimal material segment (also named fiber or material
line element). From a historical standpoint, its use emerges in [19, 86, 114, 81, 25]. Since
𝐹𝑇𝐹 and 𝐹𝑇∇𝐹 can be expressed as a function of 𝐺𝜎 and 𝛤𝜎, it follows the existence of a
function𝑊def

𝜎 such that

𝑊def
𝜎 (𝐹,∇𝐹, 𝑋) =𝑊def

𝜎 (𝐺𝜎, 𝛤𝜎, 𝑋) . (2.100)

Green-Saint-Venant stretch tensor and second-gradient wryness tensor are just two of
the possible deformation measures that can be introduced. Many alternatives have been
proposed in the literature. In the following, the Euler-Lagrange equations are derived by
assuming deformation energy density as an objective function of 𝐹, and ∇𝐹,𝑊def

𝜎 (𝐹,∇𝐹, 𝑋).
Consequently, the derived equations hold for any chosen combination of deformation
measures.

2.3.2 Euler-Lagrange equations

Action functional

Let us consider the action functional
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A𝜎 =

∫ 𝑡1

𝑡0

∫
B

(
1
2
𝜌 𝑣2 −𝑊𝜎 (𝜒,𝐹,∇𝐹, 𝑋)

)
𝑑𝑉𝑑𝑡

+
∫ 𝑡1

𝑡0

∫
𝜕B

(
−𝑊 surf

𝜎

(
𝜒,
𝜕𝜒

𝜕𝑁
, 𝑋

))
𝑑𝑠 𝑑𝑡 +

∫ 𝑡1

𝑡0

∫
𝜕𝜕B

(
−𝑊 lgth

𝜎 (𝜒, 𝑋)
)
𝑑ℓ 𝑑𝑡 ,

(2.101)

where

◦ the field 𝜒 denotes the configuration field;

◦ the field 𝑣 = 𝜕𝜒

𝜕𝑡
denotes the velocity field;

◦ the field 𝜌 denote the Lagrangian time independent mass density;

◦ 𝜌 𝑣2 = 𝑔𝑎𝑏 𝑣
𝑎 𝑣𝑏;

◦ the potential𝑊𝜎 (𝜒,𝐹,∇𝐹, 𝑋) is the volumic density of action;

◦ the potential𝑊 surf
𝜎 (𝜒, 𝜕𝜒

𝜕𝑁
, 𝑋) is related to the actions externally applied on the boundary

𝜕B;

◦ the potential𝑊 lgth
𝜎 (𝜒, 𝑋) is related to the actions externally applied on the edges 𝜕𝜕B.

Potential𝑊𝜎 can be split into two addends, the objective specific deformation energy𝑊def
𝜎

and the external conservative actions of bulk loads𝑈ext
𝜎 , as follows

𝑊𝜎 (𝜒,𝐹,∇𝐹, 𝑋) =𝑊def
𝜎 (𝐹,∇𝐹, 𝑋) +𝑈ext

𝜎 (𝜒, 𝑋) . (2.102)

The first variation of the deformation energy-related portion of the action functional can be
expressed as the sum of three terms,

𝛿Adef
𝜎 = 𝛿Adef

𝜎𝐹 + 𝛿A
def
𝜎∇𝐹 , (2.103)

where

𝛿Adef
𝜎𝐹 =

∫ 𝑡1

𝑡0

∫
B

(
−
𝜕𝑊def

𝜎

𝜕𝐹𝑖
𝐴

(𝐹,∇𝐹, 𝑋)
)
𝛿𝐹𝑖𝐴 𝑑𝑉𝑑𝑡 (2.104)

and

𝛿Adef
𝜎∇𝐹 =

∫ 𝑡1

𝑡0

∫
B

(
−
𝜕𝑊def

𝜎

𝜕𝐹𝑖
𝐴,𝐵

(𝐹,∇𝐹, 𝑋)
)
𝛿𝐹𝑖𝐴,𝐵 𝑑𝑉𝑑𝑡 . (2.105)
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First stress tensor

Let us consider the first variation 𝛿Adef
𝜎𝐹

. We get

𝛿Adef
𝜎𝐹 = −

∫ 𝑡1

𝑡0

∫
𝜕B

𝜕𝑊def
𝜎

𝜕𝐹𝑖
𝐴

𝑁𝐴 𝛿𝜒
𝑖 𝑑𝑠 𝑑𝑡 +

∫ 𝑡1

𝑡0

∫
B

𝜕

𝜕𝑋𝐴

(
𝜕𝑊def

𝜎

𝜕𝐹𝑖
𝐴

)
𝛿𝜒𝑖 𝑑𝑉𝑑𝑡 . (2.106)

Let P be the first stress tensor defined by

(P𝜎)𝐴𝑖 =
𝜕𝑊def

𝜎

𝜕𝐹𝑖
𝐴

. (2.107)

We get

𝛿Adef
𝜎𝐹 = −

∫ 𝑡1

𝑡0

∫
𝜕B

(P𝜎)𝐴𝑖 𝑁𝐴 𝛿𝜒𝑖 𝑑𝑠 𝑑𝑡 +
∫ 𝑡1

𝑡0

∫
B

𝜕

𝜕𝑋𝐴
(P𝜎)𝐴𝑖 𝛿𝜒𝑖 𝑑𝑉𝑑𝑡 . (2.108)

Hyper and effective stress tensors

Let us consider the first variation 𝛿Adef
𝜎∇𝐹 . It yields

𝛿Adef
𝜎∇𝐹 = −

∫ 𝑡1

𝑡0

∫
𝜕B

𝜕𝑊def
𝜎

𝜕𝐹𝑖
𝐴,𝐵

𝛿𝐹𝑖𝐴 𝑁𝐵 𝑑𝑠 𝑑𝑡 +
∫ 𝑡1

𝑡0

∫
B

𝜕

𝜕𝑋𝐵

(
𝜕𝑊def

𝜎

𝜕𝐹𝑖
𝐴,𝐵

)
𝛿𝐹𝑖𝐴 𝑑𝑉𝑑𝑡 . (2.109)

The second integral of Eq. (2.109) is equal to∫ 𝑡1

𝑡0

∫
B

𝜕

𝜕𝑋𝐵

(
𝜕𝑊def

𝜎

𝜕𝐹𝑖
𝐴,𝐵

)
𝛿𝐹𝑖𝐴 𝑑𝑉 𝑑𝑡 =

∫ 𝑡1

𝑡0

∫
𝜕B

𝜕

𝜕𝑋𝐵

(
𝜕𝑊def

𝜎

𝜕𝐹𝑖
𝐴,𝐵

)
𝑁𝐴𝛿𝜒

𝑖 𝑑𝑠 𝑑𝑡

−
∫ 𝑡1

𝑡0

∫
B

𝜕2

𝜕𝑋𝐴𝜕𝑋𝐵

(
𝜕𝑊def

𝜎

𝜕𝐹𝑖
𝐴,𝐵

)
𝛿𝜒𝑖 𝑑𝑉 𝑑𝑡 .

(2.110)

Let us introduce the tensor H𝜎 defined by

(H𝜎)𝐴𝐵𝑖 =
𝜕𝑊def

𝜎

𝜕𝐹𝑖
𝐴,𝐵

, (2.111)

which could be named hyper stress tensor, and let us introduce the tensor P̄𝜎 defined by

(
P̄𝜎

) 𝐴
𝑖
= (P𝜎)𝐴𝑖 +

𝜕 (H𝜎)𝐴𝐵𝑖
𝜕𝑋𝐵

, (2.112)
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which could be named effective stress tensor. Tensor P̄𝜎 plays a crucial role in the translation
equilibrium of the continuum.

Double and edge contact forces

The first integral of the second term of Eq. (2.110) gives

−
∫ 𝑡1

𝑡0

∫
𝜕B

𝜕𝑊def
𝜎

𝜕𝐹𝑖
𝐴,𝐵

𝛿𝐹𝑖𝐴 𝑁𝐵 𝑑𝑠 𝑑𝑡 = −
∫ 𝑡1

𝑡0

∫
𝜕B

(
𝜕𝑊def

𝜎

𝜕𝐹𝑖
𝐴,𝐵

𝑁𝐵

)
𝛿𝜒𝑖,𝐴 𝑑𝑠 𝑑𝑡

= −
∫ 𝑡1

𝑡0

∫
𝜕B

(
𝜕𝑊def

𝜎

𝜕𝐹𝑖
𝐴,𝐵

𝑁𝐵

)
𝛿𝜒𝑖,𝐶𝛿

𝐶
𝐴 𝑑𝑠 𝑑𝑡 .

(2.113)

From Eq. (2.113), we get

−
∫ 𝑡1

𝑡0

∫
𝜕B

(
𝜕𝑊def

𝜎

𝜕𝐹𝑖
𝐴,𝐵

𝑁𝐵

)
𝛿𝜒𝑖,𝐶 𝛿

𝐶
𝐴 𝑑𝑠 𝑑𝑡 = −

∫ 𝑡1

𝑡0

∫
𝜕B

(
𝜕𝑊def

𝜎

𝜕𝐹𝑖
𝐴,𝐵

𝑁𝐵

)
𝛿𝜒𝑖,𝐶

(
𝑚⊥

𝐶
𝐴 +𝑚∥

𝐶
𝐴

)
𝑑𝑠 𝑑𝑡

= −
∫ 𝑡1

𝑡0

∫
𝜕B

(
𝜕𝑊def

𝜎

𝜕𝐹𝑖
𝐴,𝐵

𝑁𝐵

)
𝛿𝜒𝑖,𝐶

(
𝑚⊥

𝐶
𝐷𝑚⊥

𝐷
𝐴 +𝑚∥

𝐶
𝐷
𝑚∥

𝐷
𝐴

)
𝑑𝑠 𝑑𝑡 .

(2.114)

On one hand, the first integral of the second term of Eq. (2.114) is equal to

−
∫ 𝑡1

𝑡0

∫
𝜕B

(
𝜕𝑊def

𝜎

𝜕𝐹𝑖
𝐴,𝐵

𝑁𝐵

)
𝑁𝐶𝑁𝐴𝛿𝜒

𝑖
,𝐶 𝑑𝑠 𝑑𝑡 = −

∫ 𝑡1

𝑡0

∫
𝜕B

(
𝜕𝑊def

𝜎

𝜕𝐹𝑖
𝐴,𝐵

𝑁𝐵𝑁𝐴

)
𝜕𝛿𝜒𝑖

𝜕𝑁
𝑑𝑠 𝑑𝑡 (2.115)

and we name double contact forces the quantities

𝜕𝑊def
𝜎

𝜕𝐹𝑖
𝐴,𝐵

𝑁𝐵𝑁𝐴 . (2.116)

On the other hand, the second integral of Eq. (2.114) is equal to

−
∫ 𝑡1

𝑡0

∫
𝜕B

(
𝜕𝑊def

𝜎

𝜕𝐹𝑖
𝐴,𝐵

𝑁𝐵

)
𝛿𝜒𝑖,𝐶

(
𝑚∥

𝐶
𝐷
𝑚∥

𝐷
𝐴

)
𝑑𝑠 𝑑𝑡

=

∫ 𝑡1

𝑡0

∫
𝜕B

𝜕

𝜕𝑋𝐶

(
𝜕𝑊def

𝜎

𝜕𝐹𝑖
𝐴,𝐵

𝑁𝐵𝑚∥
𝐷
𝐴

)
𝑚∥

𝐶
𝐷
𝛿𝜒𝑖 𝑑𝑠 𝑑𝑡

−
∫ 𝑡1

𝑡0

∫
𝜕B

𝜕

𝜕𝑋𝐶

(
𝜕𝑊def

𝜎

𝜕𝐹𝑖
𝐴,𝐵

𝑁𝐵𝑚∥
𝐷
𝐴
𝛿𝜒𝑖

)
𝑚∥

𝐶
𝐷
𝑑𝑠 𝑑𝑡

(2.117)
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and the Gauss Theorem for embedded manifolds leads to

−
∫ 𝑡1

𝑡0

∫
𝜕B

𝜕

𝜕𝑋𝐶

(
𝜕𝑊def

𝜎

𝜕𝐹𝑖
𝐴,𝐵

𝑁𝐵𝑚∥
𝐷
𝐴
𝛿𝜒𝑖

)
𝑚∥

𝐶
𝐷
𝑑𝑠 𝑑𝑡 = −

∫ 𝑡1

𝑡0

∫
𝜕𝜕B

(
𝜕𝑊def

𝜎

𝜕𝐹𝑖
𝐴,𝐵

𝑁𝐵 𝜈𝐴

)
𝛿𝜒𝑖 𝑑ℓ 𝑑𝑡 .

(2.118)
We name edge contact forces the quantities

𝜕𝑊def
𝜎

𝜕𝐹𝑖
𝐴,𝐵

𝑁𝐵𝜈𝐴 . (2.119)

External actions

Let us consider the first variation 𝛿Aext. It yields

𝛿Aext
𝜎 =

∫ 𝑡1

𝑡0

∫
B
(𝐵𝜎)𝑏 𝛿𝜒𝑏 𝑑𝑉𝑑𝑡 , (2.120)

where
(𝐵𝜎)𝑏 = −

𝜕𝑈ext
𝜎

𝜕𝜒𝑏
. (2.121)

Let us consider the first variation 𝛿Asurf
𝜎 . It yields

𝛿Asurf
𝜎 =

∫ 𝑡1

𝑡0

∫
𝜕B

(𝑏𝜎)𝑏 𝛿𝜒𝑏 𝑑𝑠 𝑑𝑡 +
∫ 𝑡1

𝑡0

∫
𝜕B

(B𝜎)𝑏
𝜕𝛿𝜒𝑏

𝜕𝑁
𝑑𝑠 𝑑𝑡 (2.122)

where

(𝑏𝜎)𝑏 = −
𝜕𝑊 surf

𝜎

𝜕𝜒𝑏
, (B𝜎)𝑏 = −

𝜕𝑊 surf
𝜎

𝜕𝜒𝑏

𝜕𝑁

. (2.123)

Let us consider the first variation 𝛿Algth
𝜎 . It yields

𝛿Algth
𝜎 =

∫ 𝑡1

𝑡0

∫
𝜕𝜕B

(𝛽𝜎)𝑏 𝛿𝜒𝑏 𝑑ℓ𝑑𝑡 , (2.124)

where

(𝛽𝜎)𝑏 = −𝜕𝑊
lgth
𝜎

𝜕𝜒𝑏
. (2.125)

Equilibrium equations

The equilibrium equations, in the Lagrangian description, are listed below:

◦ on the volume B,
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−𝜕 (𝜌𝑣𝑏)
𝜕𝑡

+ 𝜕

𝜕𝑋𝑀

(
P̄𝜎

)𝑀
𝑏
+ (𝐵𝜎)𝑏 = 0 ; (2.126)

◦ on the boundary 𝜕B,(
−P̄𝜎

)𝑀
𝑏
𝑁𝑀 + 𝜕

𝜕𝑋𝐶

(
𝜕𝑊def

𝜎

𝜕𝐹𝑏
𝐴,𝐵

𝑁𝐵𝑚∥
𝐷
𝐴

)
𝑚∥

𝐶
𝐷
+ (𝑏)𝑏 = 0 , (2.127)

−
𝜕𝑊def

𝜎

𝜕𝐹𝑏
𝐴,𝐵

𝑁𝐵 𝑁𝐴 + (B𝜎)𝑏 = 0 ; (2.128)

◦ on the edges 𝜕𝜕B,

−
𝜕𝑊def

𝜎

𝜕𝐹𝑏
𝐴,𝐵

𝑁𝐵 𝜈𝐴 + (𝛽𝜎)𝑏 = 0 . (2.129)

On one hand, Eqs. (2.127) and (2.128) imply that the subdomains of the second-gradient
continuum exchange with each other forces per unit area, forces per unit area depending on
the curvature of the Cauchy cut, and double forces. On the other hand, Eq. (2.129) implies
that the subdomains of the second-gradient continuum exchange with each other also forces
per unit length.

2.4 Second-gradient-micropolar continuum

Notation

Below 𝐴, 𝐵, 𝐷, 𝑖, and 𝑗 are integers belonging to {1,2,3}. Summation is intended over
repeated indices.

B: initial (Lagrangian) configuration.

𝜕B: boundary of B.

𝜕𝜕B: edges of B.

Indices denoted by uppercase letters are chosen to indicate components of a tensor in
the initial configuration and lowercase letters to indicate components of a tensor in the
current configuration. Summation is intended over the repeated indices.

𝑁𝐴: components of the outward-pointing normal 𝑁 of 𝜕B.

𝜈𝐴: components of the outward-pointing normal 𝜈 of 𝜕𝜕B.
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𝑋𝐴: Lagrangian coordinates.

𝜒𝑖: component 𝑖 of the configuration field 𝜒.

𝑣𝑖: component 𝑖 of the translation velocity 𝑣.

𝐺𝐴𝐵: component (𝐴, 𝐵) of the metric tensor 𝐺 in the initial configuration.

𝑔𝑖 𝑗 : component (𝑖, 𝑗) of the metric tensor 𝑔 in the current configuration.

𝛿𝐴
𝐵
: component (𝐴, 𝐵) of the second-order identity tensor 𝐼.

𝑚⊥𝐷𝐴 : component (𝐷, 𝐴) of the operator of orthogonal projection 𝑚⊥.

𝑚∥
𝐷
𝐴

: component (𝐷, 𝐴) of the operator of parallel projection 𝑚∥ .

𝑄𝑖
𝐴
: component (𝑖, 𝐴) of the microrotation tensor 𝑄.

𝜗𝐵𝐴 𝑗 : component (𝐵, 𝐴, 𝑗) of the rotation velocity 𝜗.

𝐹𝑖
𝐴
: component (𝑖, 𝐴) of the gradient of the configuration field 𝐹.

𝜌: Lagrangian time-independent mass density.

𝐽𝐴𝐵: component (𝐴, 𝐵) of the Lagrangian time-independent moment of inertia of each
particle 𝐽.

A𝜎𝜋: action functional for the micropolar continuum.(
P̄𝜎𝜋

) 𝑖
𝐴
: component (𝑖, 𝐴) of the effective second-gradient-micropolar stress tensor P̄.(

M̄𝜎𝜋

) 𝑖
𝐴
: component (𝑖, 𝐴) of the effective second-gradient-micropolar couple-stress

tensor M̄.

(V𝜎𝜋) 𝑗 : component 𝑗 of the second-gradient-micropolar couple-stress vector V𝜎𝜋.

(𝐵𝜎𝜋) 𝑗 : component 𝑗 of the volumic forces 𝐵𝜎𝜋.

(𝐶𝜎𝜋) 𝑗 : component 𝑗 of the volumic couples 𝐶𝜎𝜋.

(𝑏𝜎𝜋) 𝑗 : component 𝑗 of the surface forces 𝑏𝜎𝜋.

(𝑐𝜎𝜋) 𝑗 : component 𝑗 of the surface couples 𝑐𝜎𝜋.

(B𝜎𝜋) 𝑗 : component 𝑗 of the surface doubleforces B𝜎𝜋.
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(C𝜎𝜋) 𝑗 : component 𝑗 of the surface doublecouples C𝜎𝜋.

(𝛽𝜎𝜋) 𝑗 : component 𝑗 of the edge forces 𝛽𝜎𝜋.

(𝔠𝜎𝜋) 𝑗 : component 𝑗 of the edge forces 𝔠𝜎𝜋.

[𝑆]𝑇 , 𝑆: transpose of the second-order tensor 𝑆.

𝜖 𝑗 𝐴𝐵: permutation (or Levi-Civita) symbol.

𝑓 ,𝐵 : partial derivative of the function 𝑓 with respect to 𝑋𝐵, i.e, 𝑓 ,𝐵= 𝜕 𝑓

𝜕𝑋𝐵 .

𝑑𝑉 , 𝑑𝑠, and 𝑑ℓ: volume, surface, and length elements.

2.4.1 Deformation energy density and deformation measures

Let 𝑊def
𝜎𝜋 (𝜒,𝑄,𝐹,∇𝑄,∇𝐹,∇∇𝑄, 𝑋) be the specific deformation energy density. Since it

must be objective, the equality

𝑊def
𝜎𝜋 (𝜒,𝑄,𝐹,∇𝑄,∇𝐹,∇∇𝑄, 𝑋) =𝑊def

𝜎𝜋 (𝑂𝜒+ 𝑎,𝑂𝑄,𝑂𝐹,𝑂∇𝑄,𝑂∇𝐹,𝑂∇∇𝑄, 𝑋)
(2.130)

needs to be satisfied for any orthogonal transformation 𝑂 and for any vector 𝑎. For any 𝑄
and for any 𝜒, it is natural to choose 𝑂 =𝑄𝑇 and 𝑎 = −𝑄𝑇 𝜒. We get

𝑊𝜎𝜋 (𝜒,𝑄,𝐹,∇𝑄,∇𝐹,∇∇𝑄, 𝑋) =𝑊def
𝜎𝜋

(
0, 𝐼,𝑄𝑇𝐹,𝑄𝑇∇𝑄,𝑄𝑇∇𝐹,𝑄𝑇∇∇𝑄, 𝑋

)
. (2.131)

Eq. (2.131) implies that if 𝑊̃def
𝜎𝜇 is an objective function, then there exists a function 𝑊def

𝜎𝜋

such that

𝑊def
𝜎𝜋

(
0, 𝐼,𝑄𝑇𝐹,𝑄𝑇∇𝑄,𝑄𝑇∇𝐹,𝑄𝑇∇∇𝑄, 𝑋

)
=𝑊def

𝜎𝜋 (𝑄,𝐹,∇𝑄,∇𝐹,∇∇𝑄, 𝑋) (2.132)

and
𝑊𝜎𝜋 (𝜒,𝑄,𝐹,∇𝑄,∇𝐹,∇∇𝑄, 𝑋) =𝑊def

𝜎𝜋 (𝑄,𝐹,∇𝑄,∇𝐹,∇∇𝑄, 𝑋) . (2.133)

Eq. (2.131) leads also to the deformation measures 𝐸𝜋, 𝛤𝜋, 𝛤𝜎𝜋, and 𝐾𝜎𝜋 defined by

𝐸𝜋 =
1
2

(
𝑄𝑇𝐹 − 𝐼

)
, 𝛤𝜋 =𝑄

𝑇∇𝑄 , 𝛤𝜎𝜋 =𝑄
𝑇∇𝐹 , 𝐾𝜎𝜋 =𝑄

𝑇∇∇𝑄 , (2.134)
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which have the following component expressions:

(𝐸𝜋)𝑀𝑁 =
1
2

(
𝑔𝑖 𝑗𝑄

𝑗

𝑀
𝐹𝑖𝑁 −𝐺𝑀𝐴 𝛿

𝐴
𝑁

)
, (𝛤𝜋)𝑀𝑁𝐶 = 𝐺𝑀𝐴

(
𝑄𝑇

) 𝐴
𝑖
𝑄𝑖𝑁,𝐶 ,

(𝛤𝜎𝜋)𝑀𝑁𝐶 = 𝐺𝑀𝐴

(
𝑄𝑇

) 𝐴
𝑖
𝐹𝑖𝑁,𝐶 , (𝐾𝜎𝜋)𝑀𝑁𝐶𝐷 = 𝐺𝑀𝐴

(
𝑄𝑇

) 𝐴
𝑖
𝑄𝑖𝑁,𝐶𝐷 .

(2.135)

It is natural to refer to the tensor 𝛤𝜎𝜋 as the second-gradient-micropolar wryness tensor and
to the tensor 𝐾𝜎𝜋 as the second second-gradient-micropolar wryness tensor. Since 𝑄𝑇𝐹,
𝑄𝑇∇𝑄, 𝑄𝑇∇𝐹, and 𝑄𝑇∇∇𝑄 can be expressed as a function of 𝐸𝜋, 𝛤𝜋, 𝛤𝜎𝜋, and 𝐾𝜎𝜋, it
follows the existence of a function𝑊def

𝜎𝜋 such that

𝑊def
𝜎𝜋 (𝑄,𝐹,∇𝑄,∇𝐹,∇∇𝑄, 𝑋) =𝑊def

𝜎𝜋 (𝐸𝜋, 𝛤𝜋, 𝛤𝜎𝜋,𝐾𝜎𝜋, 𝑋) . (2.136)

In the following, the Euler-Lagrange equations are derived by considering deformation energy
density as an objective function of 𝑄,𝐹, ∇𝑄, ∇𝐹, and ∇∇𝑄, 𝑊def

𝜎𝜋 (𝐸𝜋, 𝛤𝜋, 𝛤𝜎𝜋,𝐾𝜎𝜋, 𝑋).
Thus, the derived equations are valid for any chosen combination of deformation measures.

2.4.2 Euler-Lagrange equations

Let us consider the action functional

A =

∫ 𝑡1

𝑡0

∫
B

(
1
2
𝜌 𝑣2 + 1

2
𝐽Θ2 −𝑊𝜎𝜋 (𝜒,𝑄,𝐹,∇𝑄,∇𝐹,∇∇𝑄, 𝑋)

)
𝑑𝑉𝑑𝑡

+
∫ 𝑡1

𝑡0

∫
𝜕B

(
−𝑊 surf

𝜎𝜋

(
𝜒,
𝜕𝜒

𝜕𝑁
,𝑄,

𝜕𝑄

𝜕𝑁
, 𝑋

))
𝑑𝑠 𝑑𝑡 +

∫ 𝑡1

𝑡0

∫
𝜕𝜕B

(
−𝑊 lgth

𝜎𝜋 (𝜒,𝑄, 𝑋)
)
𝑑ℓ𝑑𝑡 ,

(2.137)

where

◦ the field 𝜒 denotes the configuration field;

◦ the fields 𝜌 and 𝐼 refer to the Lagrangian time-independent mass density and to the
Lagrangian time-independent moment of inertia of material points;

◦ the fields 𝑣 =
𝜕𝜒

𝜕𝑡
and Θ =

𝜕𝑄

𝜕𝑡
denote the Lagrangian-translation velocities and

Lagrangian-rotation velocities;

◦ 𝜌 𝑣2 = 𝑔𝑎𝑏𝑣
𝑎𝑣𝑏 and 𝐽Θ2 = 𝐽𝐵𝐴Θ𝑖

𝐴
Θ𝑘
𝐵
𝑔𝑖𝑘 ;

◦ the potential𝑊𝜎𝜋 (𝜒,𝑄,𝐹,∇𝐹,∇𝑄,∇∇𝑄, 𝑋) is related to the volume density of action;
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◦ the potential𝑊 surf
𝜎𝜋 (𝜒,𝑄, 𝑋) is related to the actions externally applied on the boundary

𝜕B;

◦ the potential 𝑊 lgth
𝜎𝜋 (𝜒,𝑄, 𝑋) is related to the actions externally applied on the edges

𝜕𝜕B.

Potential𝑊𝜎𝜋 can be split into two addends: the objective specific deformation energy density
𝑊def
𝜎𝜋 and the external conservative action of bulk loads𝑈ext

𝜎𝜋, as follows

𝑊𝜎𝜋 (𝜒,𝑄,𝐹,∇𝐹,∇𝑄,∇∇𝑄, 𝑋) =𝑊def
𝜎𝜋 (𝑄,𝐹,∇𝐹,∇𝑄,∇∇𝑄) +𝑈ext

𝜎𝜋 (𝜒,𝑄, 𝑋) . (2.138)

The first variation of the deformation energy-related portion of the action functional can be
expressed as the sum of three terms,

𝛿Adef
𝜎𝜋 = 𝛿Adef

𝜎𝜋𝐹 + 𝛿A
def
𝜎𝜋𝑄 + 𝛿A

def
𝜎𝜋∇𝐹 + 𝛿A

def
𝜎𝜋∇𝑄 + 𝛿A

def
𝜎𝜋∇∇𝑄 , (2.139)

where

𝛿Adef
𝜎𝜋𝐹 = −

∫ 𝑡1

𝑡0

∫
B

𝜕𝑊def
𝜎𝜋

𝜕𝐹𝑖
𝐴

𝛿𝐹𝑖𝐴 𝑑𝑉𝑑𝑡 , (2.140)

𝛿Adef
𝜎𝜋𝑄 = −

∫ 𝑡1

𝑡0

∫
B

𝜕𝑊def
𝜎𝜋

𝜕𝑄
𝑗

𝐹

𝛿𝑄
𝑗

𝐹
𝑑𝑉𝑑𝑡 , (2.141)

𝛿Adef
𝜎𝜋∇𝐹 = −

∫ 𝑡1

𝑡0

∫
B

𝜕𝑊def
𝜎𝜋

𝜕𝐹𝑖
𝑀,𝐵

𝛿𝐹𝑖𝑀,𝐵 𝑑𝑉𝑑𝑡 , (2.142)

𝛿Adef
𝜎𝜋∇𝑄 = −

∫ 𝑡1

𝑡0

∫
B

𝜕𝑊def
𝜎𝜋

𝜕𝑄𝑖
𝑀,𝐵

𝛿𝑄𝑖𝑀,𝐵 𝑑𝑉𝑑𝑡 , (2.143)

and

𝛿Adef
𝜎𝜋∇∇𝑄 = −

∫ 𝑡1

𝑡0

∫
B

𝜕𝑊def
𝜎𝜋

𝜕𝑄𝑖
𝑀,𝐵𝐶

𝛿𝑄𝑖𝑀,𝐵𝐶 𝑑𝑉𝑑𝑡 . (2.144)

First second-gradient-micropolar stress tensor

Let us consider the first variation 𝛿Adef
𝜎𝜋𝐹

. We get

𝛿Adef
𝜎𝜋𝐹 = −

∫ 𝑡1

𝑡0

∫
𝜕B

𝜕𝑊def
𝜎𝜋

𝜕𝐹𝑖
𝐴

𝑁𝐴𝛿𝜒
𝑖𝑑𝑠 𝑑𝑡 +

∫ 𝑡1

𝑡0

∫
B

𝜕

𝜕𝑋𝐴

(
𝜕𝑊def

𝜎𝜋

𝜕𝐹𝑖
𝐴

)
𝛿𝜒𝑖 𝑑𝑉𝑑𝑡 . (2.145)
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Let P be the second-gradient-micropolar stress tensor defined by

(P𝜎𝜋)𝐴𝑖 =
𝜕𝑊def

𝜎𝜋

𝜕𝐹𝑖
𝐴

, (2.146)

which leads to

𝛿Adef
𝜎𝜋𝐹 = −

∫ 𝑡1

𝑡0

∫
𝜕B

(P𝜎𝜋)𝐴𝑖 𝑁𝐴 𝛿𝜒𝑖 𝑑𝑠 𝑑𝑡 +
∫ 𝑡1

𝑡0

∫
B

𝜕

𝜕𝑋𝐴
(P𝜎𝜋)𝐴𝑖 𝛿𝜒𝑖 𝑑𝑉 𝑑𝑡 . (2.147)

First part of the second-gradient-micropolar stress vector

Let us consider the first variation 𝛿Adef
𝜎𝜋𝑄

. It yields

𝛿Adef
𝜎𝜋𝑄 = −

∫ 𝑡1

𝑡0

∫
B

𝜕𝑊def
𝜎𝜋

𝜕𝑄𝑖
𝐹

𝛿𝑄
𝑗

𝐹
𝑑𝑉 𝑑𝑡 . (2.148)

If Eq. (2.14) is taken into account, we get

𝛿Adef
𝜎𝜋𝑄 = −

∫ 𝑡1

𝑡0

∫
B

(
VI
𝜎𝜋

)
𝑘
𝛿𝜔𝑘 𝑑𝑉𝑑𝑡 , (2.149)

where (
VI
𝜎𝜋

)
𝑘
=
𝜕𝑊def

𝜎𝜋

𝜕𝑄𝑖
𝐹

𝐺𝐵𝑀𝑄𝑖𝑀 𝜖𝑘𝐹𝐵 (2.150)

is the first part of the second-gradient-micropolar stress vector.

Hyper and effective second-gradient-micropolar stress tensors

Let us consider the first variation 𝛿Adef
𝜎𝜋∇𝐹 . We get

𝛿Adef
𝜎𝜋∇𝐹 = −

∫ 𝑡1

𝑡0

∫
𝜕B

𝜕𝑊def
𝜎𝜋

𝜕𝐹𝑖
𝐴,𝐵

𝛿𝐹𝑖𝐴 𝑁𝐵 𝑑𝑠 𝑑𝑡 +
∫ 𝑡1

𝑡0

∫
B

𝜕

𝜕𝑋𝐵

(
𝜕𝑊def

𝜎𝜋

𝜕𝐹𝑖
𝐴,𝐵

)
𝛿𝐹𝑖𝐴 𝑑𝑉𝑑𝑡 . (2.151)

The second integral of the second term gives:∫ 𝑡1

𝑡0

∫
B

𝜕

𝜕𝑋𝐵

(
𝜕𝑊def

𝜎𝜋

𝜕𝐹𝑖
𝐴,𝐵

)
𝛿𝐹𝑖𝐴 𝑑𝑉𝑑𝑡 =

∫ 𝑡1

𝑡0

∫
𝜕B

𝜕

𝜕𝑋𝐵

(
𝜕𝑊def

𝜎𝜋

𝜕𝐹𝑖
𝐴,𝐵

)
𝑁𝐴 𝛿𝜒

𝑖 𝑑𝑠 𝑑𝑡

−
∫ 𝑡1

𝑡0

∫
B

𝜕2

𝜕𝑋𝐴𝜕𝑋𝐵

(
𝜕𝑊def

𝜎𝜋

𝜕𝐹𝑖
𝐴,𝐵

)
𝛿𝜒𝑖 𝑑𝑉𝑑𝑡 .

(2.152)
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Let us define the hyper second-gradient-micropolar stress tensor H𝜎𝜋

(H𝜎𝜋)𝐴𝐵𝑖 =
𝜕𝑊def

𝜎𝜋

𝜕𝐹𝑖
𝐴,𝐵

(2.153)

and the effective second-gradient-micropolar stress tensor P̄𝜎𝜋 equal to

(
P̄𝜎𝜋

) 𝐴
𝑖
= (P𝜎𝜋)𝐴𝑖 +

𝜕 (H𝜎𝜋)𝐴𝐵𝑖
𝜕𝑋𝐵

. (2.154)

First part of the second-gradient-micropolar couple stress tensor and second part of the
second-gradient-micropolar stress vector

Let us compute the first variation 𝛿Adef
𝜎𝜋∇𝑄 . It yields

𝛿Adef
𝜎𝜋∇𝑄 = −

∫ 𝑡1

𝑡0

∫
B

𝜕𝑊def
𝜎𝜋

𝜕𝑄𝑖
𝑀,𝐵

(
𝐺𝑁𝐴𝑄𝑖𝐴,𝐵 𝜖 𝑗𝑀𝑁 𝛿𝜔

𝑗 +𝐺𝑁𝐴𝑄𝑖𝐴 𝜖 𝑗𝑀𝑁 𝛿𝜔
𝑗

,𝐵

)
𝑑𝑉𝑑𝑡 (2.155)

and

𝛿Adef
𝜎𝜋∇𝑄 = −

∫ 𝑡1

𝑡0

∫
B

𝜕𝑊def
𝜎𝜋

𝜕𝑄𝑖
𝑀,𝐵

𝐺𝑁𝐴𝑄𝑖𝐴,𝐵 𝜖 𝑗𝑀𝑁 𝛿𝜔
𝑗 𝑑𝑉𝑑𝑡

−
∫ 𝑡1

𝑡0

∫
𝜕B

𝜕𝑊def
𝜎𝜇

𝜕𝑄𝑖
𝑀,𝐵

𝐺𝑁𝐴𝑄𝑖𝐴 𝜖 𝑗𝑀𝑁 𝛿𝜔
𝑗 𝑁𝐵 𝑑𝑠 𝑑𝑡

+
∫ 𝑡1

𝑡0

∫
B

𝜕

𝜕𝑋𝐵

(
𝜕𝑊def

𝜎𝜋

𝜕𝑄𝑖
𝑀,𝐵

𝐺𝑁𝐴𝑄𝑖𝐴 𝜖 𝑗𝑀𝑁

)
𝛿𝜔 𝑗 𝑑𝑉𝑑𝑡 .

(2.156)

We refer to the tensorM𝜎𝜋 as the Piola-type couple stress tensor and to the vector V(II)
𝜎𝜋 as

the second Lagrangian stress vector. They are defined by(
MI
𝜎𝜋

)𝐵
𝑗
=
𝜕𝑊def

𝜎𝜋

𝜕𝑄𝑖
𝑀,𝐵

𝐺𝑁𝐴𝑄𝑖𝐴 𝜖 𝑗𝑀𝑁 ,

(
VII
𝜎𝜋

)
𝑗
=
𝜕𝑊def

𝜎𝜋

𝜕𝑄𝑖
𝑀,𝐵

𝐺𝑁𝐴𝑄𝑖𝐴,𝐵 𝜖 𝑗𝑀𝑁 . (2.157)

Positions (2.157) and one integration by parts lead to

𝛿Adef
𝜎𝜋∇𝑄 = −

∫ 𝑡1

𝑡0

∫
B

(
VII
𝜎𝜋

)
𝑗
𝛿𝜔 𝑗 𝑑𝑉𝑑𝑡

−
∫ 𝑡1

𝑡0

∫
𝜕B

(
MI

𝜎𝜋

)𝑁
𝑗
𝑁𝑁 𝛿𝜔

𝑗 𝑑𝑠 𝑑𝑡 +
∫ 𝑡1

𝑡0

∫
B

𝜕

𝜕𝑋𝑁

(
MI

𝜎𝜋

)𝑁
𝑗
𝛿𝜔 𝑗 𝑑𝑉𝑑𝑡 .

(2.158)
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Hyper and effective second-gradient-micropolar couple stress tensors

Let us consider the first variation 𝛿Adef
𝜎𝜋∇∇𝑄 . We get

𝛿Adef
𝜎𝜋∇∇𝑄 = −

∫ 𝑡1

𝑡0

∫
B

𝜕𝑊def
𝜎𝜋

𝜕𝑄𝑖
𝑀,𝐵𝐶

(
𝐺𝑁𝐴𝑄𝑖𝐴,𝐵𝐶 𝜖 𝑗𝑀𝑁 𝛿𝜔

𝑗 +𝐺𝑁𝐴𝑄𝑖𝐴,𝐵 𝜖 𝑗𝑀𝑁 𝛿𝜔
𝑗

,𝐶

+𝐺𝑁𝐴𝑄𝑖𝐴,𝐶 𝜖 𝑗𝑀𝑁 𝛿𝜔
𝑗

,𝐵
+𝐺𝑁𝐴𝑄𝑖𝐴 𝜖 𝑗𝑀𝑁 𝛿𝜔

𝑗

,𝐵𝐶

)
𝑑𝑉𝑑𝑡

(2.159)

that is equal to

𝛿Adef
𝜎𝜋∇∇𝑄 = −

∫ 𝑡1

𝑡0

∫
B

𝜕𝑊def
𝜎𝜋

𝜕𝑄𝑖
𝑀,𝐵𝐶

(
𝐺𝑁𝐴𝑄𝑖𝐴,𝐵𝐶 𝜖 𝑗𝑀𝑁 𝛿𝜔

𝑗

+2𝐺𝑁𝐴𝑄𝑖𝐴,𝐵 𝜖 𝑗𝑀𝑁 𝛿𝜔
𝑗

,𝐶
+𝐺𝑁𝐴𝑄𝑖𝐴 𝜖 𝑗𝑀𝑁 𝛿𝜔

𝑗

,𝐵𝐶

)
𝑑𝑉𝑑𝑡

(2.160)

Let us define the third part of the second-gradient-micropolar stress vector(
VIII
𝜎𝜋

)
𝑘
=

𝜕𝑊def
𝜎𝜋

𝜕𝑄𝑖
𝑀,𝐵𝐶

(
𝐺𝑁𝐴𝑄𝑖𝐴,𝐵𝐶 𝜖𝑘𝑀𝑁

)
. (2.161)

From the second integral of Eq. (2.160), we have

−
∫ 𝑡1

𝑡0

∫
B

𝜕𝑊def
𝜎𝜋

𝜕𝑄𝑖
𝑀,𝐵𝐶

(
2𝐺𝑁𝐴𝑄𝑖𝐴,𝐵 𝜖 𝑗𝑀𝑁 𝛿𝜔

𝑗

,𝐶

)
𝑑𝑉𝑑𝑡

= −
∫ 𝑡1

𝑡0

∫
𝜕B

𝜕𝑊def
𝜎𝜋

𝜕𝑄𝑖
𝑀,𝐵𝐶

(
2𝐺𝑁𝐴𝑄𝑖𝐴,𝐵 𝜖 𝑗𝑀𝑁

)
𝑁𝐶 𝛿𝜔

𝑗 𝑑𝑠 𝑑𝑡

+
∫ 𝑡1

𝑡0

∫
B

𝜕

𝜕𝑋𝐶

𝜕𝑊def
𝜎𝜋

𝜕𝑄𝑖
𝑀,𝐵𝐶

(
2𝐺𝑁𝐴𝑄𝑖𝐴,𝐵 𝜖 𝑗𝑀𝑁

)
𝛿𝜔 𝑗 𝑑𝑉𝑑𝑡

(2.162)

that leads to the definition of the second part of the Piola-type couple stress tensor(
MII
𝜎𝜋

)𝐶
𝑘
=

𝜕𝑊def
𝜎𝜋

𝜕𝑄𝑖
𝑀,𝐵𝐶

(
2𝐺𝑁𝐴𝑄𝑖𝐴,𝐵 𝜖𝑘𝑀𝑁

)
. (2.163)
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The third integral of the second term of Eq. (2.160) can be manipulated. We arrive to

−
∫ 𝑡1

𝑡0

∫
B

𝜕𝑊def
𝜎𝜋

𝜕𝑄𝑖
𝑀,𝐵𝐶

𝐺𝑁𝐴𝑄𝑖𝐴 𝜖 𝑗𝑀𝑁 𝛿𝜔
𝑗

,𝐵𝐶
𝑑𝑉𝑑𝑡

= −
∫ 𝑡1

𝑡0

∫
𝜕B

(
𝜕𝑊def

𝜎𝜋

𝜕𝑄𝑖
𝑀,𝐵𝐶

𝐺𝑁𝐴𝑄𝑖𝐴 𝜖 𝑗𝑀𝑁

)
𝑁𝐶 𝛿𝜔

𝑗

,𝐵
𝑑𝑠 𝑑𝑡

+
∫ 𝑡1

𝑡0

∫
B

𝜕

𝜕𝑋𝐶

(
𝜕𝑊def

𝜎𝜇

𝜕𝑄𝑖
𝑀,𝐵𝐶

𝐺𝑁𝐴𝑄𝑖𝐴 𝜖 𝑗𝑀𝑁

)
𝛿𝜔

𝑗

,𝐵
𝑑𝑉𝑑𝑡 .

(2.164)

The second term of Eq. (2.164) is equal to∫ 𝑡1

𝑡0

∫
B

𝜕

𝜕𝑋𝐶

(
𝜕𝑊def

𝜎𝜋

𝜕𝑄𝑖
𝑀,𝐵𝐶

𝐺𝑁𝐴𝑄𝑖𝐴 𝜖 𝑗𝑀𝑁

)
𝛿𝜔

𝑗

,𝐵
𝑑𝑉𝑑𝑡

=

∫ 𝑡1

𝑡0

∫
𝜕B

𝜕

𝜕𝑋𝐶

(
𝜕𝑊def

𝜎𝜋

𝜕𝑄𝑖
𝑀,𝐵𝐶

𝐺𝑁𝐴𝑄𝑖𝐴 𝜖 𝑗𝑀𝑁

)
𝑁𝐵 𝛿𝜔

𝑗 𝑑𝑠 𝑑𝑡

−
∫ 𝑡1

𝑡0

∫
B

𝜕2

𝜕𝑋𝐵𝜕𝑋𝐶

(
𝜕𝑊def

𝜎𝜋

𝜕𝑄𝑖
𝑀,𝐵𝐶

𝐺𝑁𝐴𝑄𝑖𝐴 𝜖 𝑗𝑀𝑁

)
𝛿𝜔 𝑗 𝑑𝑉𝑑𝑡 .

(2.165)

Let us define the Hyper second-gradient-micropolar couple stress tensor H̃𝜎𝜋,(
H̃𝜎𝜋

)𝐵𝐶
𝑗

=
𝜕𝑊def

𝜎𝜋

𝜕𝑄𝑖
𝑀,𝐵𝐶

𝐺𝑁𝐴𝑄𝑖𝐴𝜖 𝑗𝑀𝑁 (2.166)

and the effective second-gradient-micropolar couple stress tensor M̄𝜎𝜇,(
M̄𝜎𝜋

)𝐵
𝑘
=

(
MI
𝜎𝜋

)𝐵
𝑘
+

(
MII
𝜎𝜋

)𝐵
𝑘
+ 𝜕

𝜕𝑋𝐶
(H𝜎𝜋)𝐵𝐶𝑘 . (2.167)

Double and edge second-gradient-micropolar contact couples

The first term of Eq. (2.164) gives

−
∫ 𝑡1

𝑡0

∫
𝜕B

(
𝜕𝑊def

𝜎𝜋

𝜕𝑄𝑖
𝑀,𝐵𝐶

𝐺𝑁𝐴𝑄𝑖𝐴 𝜖 𝑗𝑀𝑁

)
𝑁𝐶 𝛿𝜔

𝑗

,𝐵
𝑑𝑠 𝑑𝑡

= −
∫ 𝑡1

𝑡0

∫
𝜕B

(
𝜕𝑊def

𝜎𝜋

𝜕𝑄𝑖
𝑀,𝐵𝐶

𝐺𝑁𝐴𝑄𝑖𝐴 𝜖 𝑗𝑀𝑁

)
𝑁𝐶 𝛿𝜔

𝑗

,𝐷
𝛿𝐷𝐵 𝑑𝑠 𝑑𝑡

= −
∫ 𝑡1

𝑡0

∫
𝜕B

(
𝜕𝑊def

𝜎𝜋

𝜕𝑄𝑖
𝑀,𝐵𝐶

𝐺𝑁𝐴𝑄𝑖𝐴 𝜖 𝑗𝑀𝑁

)
𝑁𝐶

(
𝑚⊥

𝐷
𝐵 +𝑚∥

𝐷
𝐵

)
𝛿𝜔

𝑗

,𝐷
𝑑𝑠 𝑑𝑡 .

(2.168)
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Moreover, it holds

−
∫ 𝑡1

𝑡0

∫
𝜕B

(
𝜕𝑊def

𝜎𝜋

𝜕𝑄𝑖
𝑀,𝐵𝐶

𝐺𝑁𝐴𝑄𝑖𝐴 𝜖 𝑗𝑀𝑁

)
𝑁𝐶

(
𝑚⊥

𝐷
𝐵 +𝑚∥

𝐷
𝐵

)
𝛿𝜔

𝑗

,𝐷
𝑑𝑠 𝑑𝑡

= −
∫ 𝑡1

𝑡0

∫
𝜕B

(
𝜕𝑊def

𝜎𝜋

𝜕𝑄𝑖
𝑀,𝐵𝐶

𝐺𝑁𝐴𝑄𝑖𝐴 𝜖 𝑗𝑀𝑁

)
𝑁𝐶

(
𝑚⊥

𝐷
𝐹 𝑚⊥

𝐹
𝐵 +𝑚∥

𝐷
𝐹
𝑚∥

𝐹
𝐵

)
𝛿𝜔

𝑗

,𝐷
𝑑𝑠 𝑑𝑡 .

(2.169)

Eq. (2.169) can be split into two integral. The first one implies

−
∫ 𝑡1

𝑡0

∫
𝜕B

(
𝜕𝑊def

𝜎𝜋

𝜕𝑄𝑖
𝑀,𝐵𝐶

𝐺𝑁𝐴𝑄𝑖𝐴 𝜖 𝑗𝑀𝑁

)
𝑁𝐶 𝑁

𝐷 𝑁𝐵 𝛿𝜔
𝑗

,𝐷
𝑑𝑠 𝑑𝑡

= −
∫ 𝑡1

𝑡0

∫
𝜕B

(
𝜕𝑊def

𝜎𝜋

𝜕𝑄𝑖
𝑀,𝐵𝐶

𝐺𝑁𝐴𝑄𝑖𝐴 𝜖 𝑗𝑀𝑁

)
𝑁𝐶 𝑁𝐵

𝜕𝛿𝜔 𝑗

𝜕𝑁
𝑑𝑠 𝑑𝑡

(2.170)

and leads to the double second-gradient-micropolar contact couples defined by(
𝜕𝑊def

𝜎𝜋

𝜕𝑄𝑖
𝑀,𝐵𝐶

𝐺𝑁𝐴𝑄𝑖𝐴 𝜖 𝑗𝑀𝑁

)
𝑁𝐶 𝑁𝐵 . (2.171)

The second one implies

−
∫ 𝑡1

𝑡0

∫
𝜕B

(
𝜕𝑊def

𝜎𝜋

𝜕𝑄𝑖
𝑀,𝐵𝐶

𝐺𝑁𝐴𝑄𝑖𝐴 𝜖 𝑗𝑀𝑁

)
𝑁𝐶

(
𝑚∥

𝐷
𝐹
𝑚∥

𝐹
𝐵

)
𝛿𝜔

𝑗

,𝐷
𝑑𝑠 𝑑𝑡

= −
∫ 𝑡1

𝑡0

∫
𝜕B

𝜕

𝜕𝑋𝐷

(
𝜕𝑊def

𝜎𝜋

𝜕𝑄𝑖
𝑀,𝐵𝐶

𝐺𝑁𝐴𝑄𝑖𝐴 𝜖 𝑗𝑀𝑁 𝑚∥
𝐹
𝐵
𝑁𝐶 𝛿𝜔

𝑗

)
𝑚∥

𝐷
𝐹
𝑑𝑠 𝑑𝑡

+
∫ 𝑡1

𝑡0

∫
𝜕B

𝜕

𝜕𝑋𝐷

(
𝜕𝑊def

𝜎𝜋

𝜕𝑄𝑖
𝑀,𝐵𝐶

𝐺𝑁𝐴𝑄𝑖𝐴 𝜖 𝑗𝑀𝑁 𝑚∥
𝐹
𝐵
𝑁𝐶

)
𝑚∥

𝐷
𝐹
𝛿𝜔 𝑗 𝑑𝑠 𝑑𝑡

(2.172)

and its second term gives

−
∫ 𝑡1

𝑡0

∫
𝜕𝜕B

(
𝜕𝑊def

𝜎𝜋

𝜕𝑄𝑖
𝑀,𝐵𝐶

𝐺𝑁𝐴𝑄𝑖𝐴 𝜖 𝑗𝑀𝑁𝑁𝐶

)
𝑚∥

𝐹
𝐵
𝑚∥

𝐷
𝐹
𝜈𝐷 𝛿𝜔

𝑗𝑑ℓ𝑑𝑡 =

−
∫ 𝑡1

𝑡0

∫
𝜕𝜕B

(
𝜕𝑊def

𝜎𝜋

𝜕𝑄𝑖
𝑀,𝐵𝐶

𝐺𝑁𝐴𝑄𝑖𝐴 𝜖 𝑗𝑀𝑁𝑁𝐶

)
𝜈𝐵 𝛿𝜔

𝑗 𝑑ℓ𝑑𝑡 .

(2.173)

The quantity (
𝜕𝑊def

𝜎𝜋

𝜕𝑄𝑖
𝑀,𝐵𝐶

𝐺𝑁𝐴𝑄𝑖𝐴 𝜖 𝑗𝑀𝑁 𝑁𝐶

)
𝜈𝐵 (2.174)
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is naturally named edge second-gradient-micropolar contact couples.

External actions

Let us consider the first variation 𝛿Aext
𝜎𝜋. It yields

𝛿Aext
𝜎𝜋 =

∫ 𝑡1

𝑡0

∫
B
(𝐵𝜎𝜋)𝑏 𝛿𝜒𝑏 𝑑𝑉𝑑𝑡 +

∫ 𝑡1

𝑡0

∫
B
(𝐶𝜎𝜋) 𝑗 𝛿𝜔 𝑗 𝑑𝑉𝑑𝑡 , (2.175)

where
(𝐵𝜎𝜋)𝑏 = −

𝜕𝑈ext
𝜎𝜋

𝜕𝜒𝑏
, (𝐶𝜎𝜋) 𝑗 = −

𝜕𝑈ext
𝜎𝜋

𝜕𝑄𝑘
𝐹

𝐺𝐵𝑀𝑄𝑘
𝑀 𝜖 𝑗𝐹𝐵 . (2.176)

Let us consider the first variation 𝛿Asurf
𝜎𝜋 . It yields

𝛿Asurf
𝜎𝜋 =

∫ 𝑡1

𝑡0

∫
𝜕B

(𝑏𝜎𝜋)𝑏 𝛿𝜒𝑏 𝑑𝑠 𝑑𝑡 +
∫ 𝑡1

𝑡0

∫
𝜕B

(B𝜎𝜋)𝑏
𝜕 (𝛿𝜒)𝑏

𝜕𝑁
𝑑𝑠 𝑑𝑡

+
∫ 𝑡1

𝑡0

∫
𝜕B

(𝑐𝜎𝜋) 𝑗 𝛿𝜔 𝑗 𝑑𝑠 𝑑𝑡 +
∫ 𝑡1

𝑡0

∫
𝜕B

(C𝜎𝜋) 𝑗
𝜕 (𝛿𝜔) 𝑗

𝜕𝑁
𝑑𝑠 𝑑𝑡 ,

(2.177)

where

(𝑏𝜎𝜋)𝑏 = −
𝜕𝑊 surf

𝜎𝜋

𝜕𝜒𝑏
, (B𝜎𝜋)𝑏 = −

𝜕𝑊 surf
𝜎𝜋

𝜕𝜒𝑏

𝜕𝑁

(2.178)

and

(𝑐𝜎𝜋) 𝑗 = −
𝜕𝑊 surf

𝜎𝜋

𝜕𝑄𝑘
𝐹

𝐺𝐵𝑀𝑄𝑘
𝑀 𝜖 𝑗𝐹𝐵 , (C𝜎𝜋) 𝑗 = −

𝜕𝑊 surf
𝜎𝜋

𝜕𝑄𝑘
𝐹

𝜕𝑁

𝐺𝐵𝑀𝑄𝑘
𝑀 𝜖 𝑗𝐹𝐵 . (2.179)

Let us consider the first variation 𝛿Algth
𝜎𝜋 . It yields

𝛿Algth
𝜎𝜋 =

∫ 𝑡1

𝑡0

∫
𝜕𝜕B

(𝛽𝜎𝜋)𝑏 𝛿𝜒𝑏 𝑑ℓ𝑑𝑡 +
∫ 𝑡1

𝑡0

∫
𝜕𝜕B

(𝔠𝜎𝜋) 𝑗 𝛿𝜔 𝑗 𝑑ℓ𝑑𝑡 , (2.180)

where

(𝛽𝜎𝜋)𝑏 = −𝜕𝑊
lgth
𝜎𝜋

𝜕𝜒𝑏
, (2.181)

(𝔠𝜎𝜋) 𝑗 = −𝜕𝑊
lgth
𝜎𝜋

𝜕𝑄𝑘
𝐹

𝐺𝐵𝑀𝑄𝑘
𝑀 𝜖 𝑗𝐹𝐵 . (2.182)
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2.4.3 Equilibrium equations

The equilibrium equations, in the Lagrangian description, are listed below:

◦ on the volume B,

−𝜕 (𝜌𝑣𝑏)
𝜕𝑡

+ 𝜕

𝜕𝑋𝑀

(
P̄𝜎𝜋

)𝑀
𝑏
+ (𝐵𝜎𝜋)𝑏 = 0 , (2.183)

𝜕 (𝐽𝐴𝐵𝜗𝐵𝐴 𝑗 )
𝜕𝑡

+ 𝜕

𝜕𝑋𝑁

(
M̄𝜎𝜋

)𝑁
𝑗
− (V𝜎𝜋) 𝑗 + (𝐶𝜎𝜋) 𝑗 = 0 ; (2.184)

◦ on the boundary 𝜕B,(
−P̄𝜎𝜋

)𝑀
𝑏
𝑁𝑀 + 𝜕

𝜕𝑋𝐶

(
𝜕𝑊def

𝜎𝜋

𝜕𝐹𝑏
𝐴,𝐵

𝑁𝐵𝑚∥
𝐷
𝐴

)
𝑚∥

𝐶
𝐷
+ (𝑏𝜎𝜋)𝑏 = 0 , (2.185)

(
−M̄𝜎𝜋

)𝑀
𝑗
𝑁𝑀 + 𝜕

𝜕𝑋𝐷

(
𝜕𝑊def

𝜎𝜋

𝜕𝑄𝑖
𝑀,𝐵𝐶

𝐺𝑁𝐴𝑄𝑖𝐴 𝜖 𝑗𝑀𝑁 𝑚∥
𝐹
𝐵
𝑁𝐶

)
𝑚∥

𝐷
𝐹
+ (𝑐𝜎𝜋) 𝑗 = 0 , (2.186)

−
(
𝜕𝑊def

𝜎𝜋

𝜕𝐹𝑏
𝐴,𝐵

)
𝑁𝐵 𝑁𝐴 + (B𝜎𝜋)𝑏 = 0 , (2.187)

−
(
𝜕𝑊def

𝜎𝜋

𝜕𝑄𝑖
𝑀,𝐵𝐶

𝐺𝑁𝐴𝑄𝑖𝐴 𝜖 𝑗𝑀𝑁

)
𝑁𝐶 𝑁𝐵 + (C𝜎𝜋) 𝑗 = 0 ; (2.188)

◦ on the edges 𝜕𝜕B,

−
𝜕𝑊def

𝜎𝜋

𝜕𝐹𝑏
𝐴,𝐵

𝑁𝐵 𝜈𝐴 + (𝛽𝜎𝜋)𝑏 = 0 , (2.189)

−
(
𝜕𝑊def

𝜎𝜋

𝜕𝑄𝑖
𝑀,𝐵𝐶

𝐺𝑁𝐴𝑄𝑖𝐴 𝜖 𝑗𝑀𝑁 𝑁𝐶

)
𝜈𝐵 + (𝔠𝜎𝜋) 𝑗 = 0 . (2.190)

On the one hand, Eqs. (2.185) and (2.186) imply that the subdomains of the second-gradient-
micropolar continuum exchange with each other forces per unit area, forces per unit area
depending on the curvature of the Cauchy cut, couples per unit area, and couples per unit area
depending on the curvature of the Cauchy cut. On the other hand, Eqs. (2.187) and (2.188)
imply that the subdomains of the second-gradient-micropolar continuum exchange with each
other also double forces and double couples. Finally, Eqs. (2.189) and (2.190) imply that
forces and couples per unit length are also shared.

2.5 Summarizing the main results

◦ The micropolar continuum is an assembly of small rigid particles that can translate
and rotate. By means of the least action principle, it has been proven (see Eqs. (2.50)
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to (2.53)) that the subdomains of micropolar continuum interact with each other via
forces per unit area and moments per unit area.

◦ The micromorphic continuum is an assembly of small particles that can translate and
deform. By means of least action principle, it has been proven (see Eqs. (2.89) to
(2.92)) that the subdomains of micromorphic continuum interact with each other via
forces per unit area and double forces per unit area.

◦ The second-gradient continuum is an assembly of small particles that can just translate.
By means of least action principle, it has been proven (see Eqs. (2.126) to (2.129)) that
the subdomains of second-gradient continuum interact with each other via forces per
unit area, forces per unit area depending on the curvature of the Cauchy cut, and forces
per unit length.

◦ The second-gradient-micropolar continuum is an assembly of small particles that
can translate and rotate. By means of least action principle, it has been proven (see
Eqs. (2.183) to (2.190)) that the subdomains of second-gradient-micropolar continuum
interact with each other via forces and couples per unit area, forces and couples per unit
area depending on the curvature of the Cauchy cut, forces and couples per unit length.

◦ Recent applications of the listed generalized continua concern particle-based and
composite materials and metamaterials. Applications in the framework of biological
and biomedical fields are in progress.



Chapter 3

Pantographic structures

This chapter is divided into three sections. Section 3.1 is derived from the paper [79]. Recent
findings regarding pantographic sheets (2D) are presented. Section 3.2 is derived from
the paper [21] in which new results concerning pantographic blocks (3D) are presented.
Section 3.3 is derived from the paper [73] in which the effects of pivot-related defects on
the mechanical response of pantographic sheets are analyzed. For pantographic sheets, we
use both a discrete Hencky-type model and a continuous model. However, for pantographic
blocks, only a continuous approach is used. This decision arises from the greater degrees of
freedom of pantographic blocks, for which continuous models offer computational advantages.

3.1 Novel torsional energy for pantographic sheets

The pantographic sheet consists of a discrete grid of beams and pivots (hinges). We categorize
three distinct scales, namely the macroscopic, mesoscopic, and microscopic scales. On
the macroscale, the pantographic sheet is represented as a second-gradient continuum.
Transitioning to the mesoscale, it is conceptualized as an assembly of extensional springs
linked by rotational springs to account for bending and shear effects. On the microscale, it
is an assembly of beams and pivots. This section introduces a novel torsional energy for
simulating the torsion of pivots via mesoscale modeling. This energy improves the one
proposed in [33].

The section is organized as follows. In Subsection 3.1.1, we summarize the experimental
setup used to test metallic (ME) pantographic sheets, as well as the obtained results. For
the analysis of pantographic sheets, the discrete model currently used in the literature is
summarized in Subsection 3.1.2. Subsection 3.1.3 introduces novel torsional energy and its
properties. In Subsection 3.1.4, a numerical identification in accordance with the experimental
data is performed, and the theoretical force-elongation curves obtained are compared to the
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experimental ones. Both ME and polyamide (PA) pantographic sheets display a high level of
matching. Regarding the experimental results for the PA samples, we refer to paper [33].

Notation

𝑤𝑎: local axial strain energy.

𝑤𝑏: local bending strain energy.

𝑤𝑠: local torsional (or shear) strain energy given in [33].

𝑊𝑠: novel torsional (or shear) strain energy proposed.

𝜓1, 𝜓2: angles used for describing the deformation of polyamide (PA) pantographic
structures.

𝑑1, 𝑑2: Euclidean distances used for describing the deformation of metallic (ME)
pantographic structures.

𝑅𝑥: axial reaction force.

𝜆: rate of the displacement with respect to the maximal displacement before the first
pivot collapse.

3.1.1 Experimental motivations

The development of additive manufacturing and 3D printing enabled the creation of objects
with an extremely fine microstructure that was virtually impossible a decade ago. Among
these, pantographic sheets can be printed, which consist of a planar grid obtained by
superimposing two families of beams (fibers) that are connected by small cylinders usually
referred to as pivots (hinges). To accurately describe their mechanical behavior, at least three
terms in the strain energy must be considered: beam elongation, beam bending, and pivot
torsion.

Below, we report the experimental force-elongation curves of pantographic sheets
subjected to bias-extension tests. Bias-extension tests permit the simultaneous analyses of
extensional, shear, and bending mechanical effects. The deformation shape of a sample
subjected to a bias test can be separated into three regions (see Fig. 3.1):

◦ the clamped ends (A) in which extensional deformations dominate;

◦ the central zone (S) in which shear effects are primarily present;
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◦ the region (B) in which bending deformations are predominant.

A A
B

B

B

B
S A

B

B
S A

B

B

Fig. 3.1 Bias extension test: areas characterized by different predominant energies.

Bias extensional tests have been performed on three metallic pantographic sheets1. The
tested samples have been clamped at both ends, with one end remaining fixed and the other
being longitudinally displaced at a rate of 50 𝜇m/s. The experiments have been carried out in
LMPS-Laboratoire de Mécanique de Paris-Saclay. In Fig. 3.2, four load steps are displayed
for the bias test performed on one of the three ME samples. The quantity 𝑢̂𝑥 = 25mm denotes
the longitudinal displacement following which the first collapse of a pivot occurred. The

(a) (b)

(c) (d)

Fig. 3.2 Bias test of a ME pantographic sheet sample: (a) 0.25 𝑢̂𝑥 , (b) 0.5 𝑢̂𝑥 , (c) 0.75 𝑢̂𝑥 and
(d) 𝑢̂𝑥 .

force-elongation curve of a ME sample until total collapse is depicted in Fig. 3.3, which is
illustrative of a larger set of experiments and has been used as an example for the identification.
In this instance, the bias test has been conducted by using two loading paths:

◦ the samples have been loaded and unloaded after reaching 9.26mm, (see the red portion
of the curve in Fig. 3.3);

1The samples, in 316L stainless steel, were fabricated at Laboratoire PIMM of École Nationale Supérieure
des Arts et Métiers in France by using the SLM125HL setup from SLM solutions.
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◦ then, the samples have been loaded up to the limit of total collapse (see the blue portion
of the curve in Fig. 3.3).

Before the collapse of the first pivot, the force-elongation curve undergoes a change in
concavity (Fig. 3.3). In light of this, we intend to introduce a model capable of capturing

Loading 1

Loading 2

0 10 20 30 40

0

200

400

600

800

ux (mm)

R
x
(N

)

Rx as a function of ux

Fig. 3.3 𝑢𝑥 ↦→ 𝑅𝑥 experimental curve of a ME pantographic sample in bias elongation test.

the mechanical response of both metallic and polyamide specimens with the fewest possible
parameters. Regarding the experimental results pertaining to polyamide samples, we refer
the reader to [33]

3.1.2 Discrete mechanical model

Various types of pantographic sheet models have been proposed in the literature:

◦ meso-models that consist of an assembly of Euler-Bernoulli beams with axial, bending,
and torsional stiffnesses [6, 40];

◦ Hencky-type models in which the microstructure is modeled by means of extensional
springs interconnected by two families of rotational springs to account for bending and
torsional (or shear) effects [138, 137, 139, 141].

Once homogenized, both models result in second-gradient continua. In this section, the
Hencky-type model is used (see Fig. 3.4). The strain energy is assumed to be the sum of
three uncoupled contributions related to stretching, bending, and torsion [138]. Stretching,
bending, and torsional energies are denoted by 𝑤𝑎, 𝑤𝑏 and 𝑤𝑠 and are defined as follows [38]:

𝑤𝑎 (ℓ) =
1
2
𝑘𝑎 (ℓ− ℓ0)2 , (3.1)
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Fig. 3.4 Hencky-type model with (a) axial extensional springs, (b) bending rotational springs,
and (c) torsional rotational springs.

𝑤𝑏 (𝛽) = 𝑘𝑏 (𝑐𝑜𝑠𝛽+1) , (3.2)

𝑤𝑠 (𝛾) =
1
2
𝑘̃𝑠

(
𝛾− 𝜋

2

) 𝑎̃
, (3.3)

where 𝑘𝑎, 𝑘𝑏 and 𝑘̃𝑠 represent the axial, bending and shear stiffnesses, respectively. The
symbols ℓ0 =




−−−−−→𝑃𝑖𝑃𝑖+1




, ℓ = 

−−−−→𝑝𝑖𝑝𝑖+1


 denote, respectively, the initial and the actual lengths

of the beams. The operator ∥·∥ represents the Euclidean norm. The quantities 𝛽 and 𝛾 in
Eq. (3.2) can be calculated in terms of the pivot displacements using the Carnot theorem.
In Fig. 3.4(c), the geometric significance of the angle 𝛾 is highlighted. This type of shear
energy is unsuitable for describing the force-elongation curve of metallic pantographic sheets
depicted in Fig. 3.3, which is characterized by a significant change in concavity. In addition,
the second derivative of the specific energy function 𝑤𝑠 (·), defined in Eq.(3.3), tends to
infinity if 𝑎̃ < 2 and 𝛾 tends to 𝜋/2. This feature may result in numerical problems. Simple
numerical simulations reveal that modifying the functions describing the axial and bending
energies, 𝑤𝑎 (·) and 𝑤𝑏 (·), has no appreciable effect on the matching between the identified
theoretical and experimental force-elongation curves. In this regard, the function 𝑤𝑠 (·) is
essential, and a novel specific shear energy that improves the one in Eq. (3.3) is introduced
below. In addition to discrete models, the proposed energy can be used in the continuum
models that result from a homogenization procedure.

3.1.3 Novel shear nonlinearity model

Our purpose is to find the torsion energy function 𝑤𝑠 (·) for matching the force-elongation
curves for both metallic and polyamide pantographic sheets. The local axial and bending
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energy functions, 𝑤𝑎 (·) and 𝑤𝑏 (·), given by Eqs. (3.1)-(3.2) are not changed since, as
mentioned, they play no significant role in the concavity change of the force-displacement
curve.

Proposed is a phenomenological two-parameter shear energy that can model the high
changes in the concavity of the force-elongation curve, with one parameter responsible for
the change in concavity. In this regard, a novel local shear energy,𝑊𝑠 (·), is introduced by
considering a constitutive law relating the torsional moment 𝑀 to the shear angle 𝛾 via an
arctangent (·) function

𝑀 (𝛾) = 𝑘𝑠 arctan
[
𝑎

(
𝛾− 𝜋

2

)]
, (3.4)

where 𝑘𝑠 and 𝛼 are the two parameters of constitutive law (3.4). Observe that samples undergo
permanent deformations after unloading (see the red part of Fig. 3.3) indicating that pivots are
affected by plastic deformations. In future works, plastic deformations or damage in pivots
will be discussed further. Some results are already available in the literature [132, 134]. In
plasticity, the exp(·), log(·), tan(·) or arctan(·) functions are typically used in the modeling of
hardening. As a result, it is reasonable to consider the arctan(·) function for modeling torsional
moments, and this choice should not be considered as data-driven but as theory-driven.
Eq. (3.4) yields the specific torsional energy,𝑊𝑠. Since,

𝜕𝑊𝑠 (𝛾)
𝜕𝛾

= 𝑀 (𝛾) , (3.5)

then, the specific shear energy can be obtained by integrating Eq. (3.4) with the condition
𝑊𝑠 (𝜋/2) = 0,

𝑊𝑠 (𝛾) = 𝑘𝑠
©­­«
(
𝛾− 𝜋

2

)
arctan

(
𝑎

(
𝛾− 𝜋

2

))
−

log
(
𝑎2 (

𝛾− 𝜋
2
)2 +1

)
2𝑎

ª®®¬ . (3.6)

The first derivative and the second derivative of 𝑊𝑠 with respect to 𝛾 are bounded in the
interval [0, 𝜋] and for any positive number 𝛼. Fig. 3.5 shows the influence of the material
parameter 𝑎 on the shear energy,𝑊𝑠 (·), the first derivative, 𝜕𝑊𝑠

𝜕𝛾
(·), and the second derivative,

𝜕2𝑊𝑠

𝜕𝛾2 (·). The curves of Fig. 3.5 correspond to 𝑘𝑠 = 1/arctan( 𝑎 𝜋2 ) such that 𝑀𝑠 = 1 when 𝛾 = 𝜋.
As expected, due to the boundness, there are no infinite values obtained in any of the three
cases. Accordingly, the proposed energy is appropriate for numerical simulations.
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Fig. 3.5 Parametric study of energy density: (a)𝑊𝑠, (b) 𝜕𝑊𝑠

𝜕𝛾
and (c) 𝜕2𝑊𝑠

𝜕𝛾2 .



52 Pantographic structures

3.1.4 Numerical identification procedure

The characterization of a polyamide sample presented in [33] is based on the use of the two
angles 𝜓1 and 𝜓2, which are physical quantities representative of the deformation process.
The angle 𝜓1 allows us to describe the shear deformation in the shear-dominated region of
the specimen, whereas the angle 𝜓2 allows us to describe the bending deformation in the
bending-dominated region of the specimen.

Two Euclidean distances 𝑑1 and 𝑑2 are preferred here to describe the metallic samples,
whose geometrical definition is shown in Fig. 3.6. The distances 𝑑1 and 𝑑2 are mean quantities
associated with shear- and bending-dominated behavior, whereas the angles 𝜓1 and 𝜓2 are
local descriptors. The numerical procedure for the identification consists of the minimization

Fig. 3.6 Geometrical definition of 𝑑1 and 𝑑2 in the configuration 0.25 𝑢̂𝑥 .

of a function 𝑓 (𝑎, 𝑘𝑎, 𝑘𝑏, 𝑘𝑠),

𝑓 (𝛼, 𝑘𝑎, 𝑘𝑏, 𝑘𝑠) =
𝑁∑︁
𝑖=1

(
𝑅𝑖 −𝑅∗

𝑖

)2 +
𝑁∑︁
𝑖=1

(
𝑝
(1)
𝑖

− 𝑝 (1)∗
𝑖

)2
+

𝑁∑︁
𝑖=1

(
𝑝
(2)
𝑖

− 𝑝 (2)∗
𝑖

)2
, (3.7)

where (𝑝 (1) , 𝑝 (2)) stands for (𝜓1,𝜓2) or (𝑑1, 𝑑2), the superscript ∗ denotes the experimental
values of the considered descriptor, and 𝑁 is the total number of the experimental points.

In Eq.(3.7), the various contributions can be summarized as

◦ the reaction force 𝑅 considered as function of the displacement;

◦ the distance 𝑑1 (or angle 𝜓1) in the shear-dominated region of the specimen considered
as a function of the displacement;

◦ the distance 𝑑2 (or angle 𝜓2) in the bending-dominated region of the specimen
considered as a function of the displacement.
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The identification process is been performed in terms of displacements but in terms of a
dimensionless parameter 𝜆 ∈ [0,1] defined by the ratio between the prescribed displacement
and a maximal prescribed displacement before the first hinge collapse: 𝜆 = 𝑢𝑥/𝑢̂𝑥 , where 𝑢𝑥
is the current axial displacement.2

3.1.5 Identification example

By comparing experimental findings and theoretical numerical simulations for polyamide and
metallic pantographic sheets, the effectiveness of the proposed expression of shear energy is
proven in the following.

Polyamide pantographic sample

The numerical identification procedure is performed with four experimental values cor-
responding to 𝜆 ∈

{ 1
4 ,

1
2 ,

3
4 ,1

}
for each of the three curves relative to (𝜆, 𝑅𝑥), (𝜆,𝜓1), and

(𝜆,𝜓2). For the proposed energy expression, the parameters (𝑎, 𝑘𝑎, 𝑘𝑏, 𝑘𝑠) that best fit the
experimental data have been identified.

In Figs. 3.7-3.8-3.9, we reproduce the experimental results [33] for polyamide specimens.
In these figures, the graphs 𝜆 ↦→ 𝑅𝑥 , 𝜆 ↦→ 𝜓1, and 𝜆 ↦→ 𝜓2 are shown. The parameter 𝛼 is
mainly responsible for the change in the concavity of the force-elongation curve.

Metallic pantographic samples

The numerical identification procedure is performed with only three experimental values
corresponding to 𝜆 ∈

{ 1
4 ,

1
2 ,

3
4
}

for each of the three curves relative to 𝑅𝑥 , 𝑑 (0)1 − 𝑑1 and
𝑑
(0)
2 − 𝑑2. For the proposed energy expression, the parameters (𝑎, 𝑘𝑎, 𝑘𝑏, 𝑘𝑠) that best fit the

experimental data are identified.
Let 𝑑 (0)1 and 𝑑 (0)2 be the values of 𝑑1 and 𝑑2 in the initial configuration. The graphs

𝜆 ↦→ 𝑅𝑥 , 𝜆 ↦→ 𝑑
(0)
1 − 𝑑1 and 𝜆 ↦→ 𝑑

(0)
2 − 𝑑2 are shown in Fig. 3.9, 3.10, and 3.10. It should be

noted that the high chance in the concavity is accurately modeled with the proposed shear
energy (3.6).

The experimental values for 𝜆 = 1 are not used in the identification procedure because
the numerical simulation cannot capture the high increase at the end of the loading. The
mechanism underlying this significant increase is still under investigation, but it may be
related to self-contact between beams in the bending-dominated behavior region (B) (see
Figs. 3.2(d)).

2The minimization procedure is performed by means of the fmincon function in the MATLAB® environment
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Fig. 3.7 𝜆 ↦→ 𝑅𝑥 curves (a) for different values of 𝑎 and (b) for the identified value 𝑎 = 5.
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Fig. 3.8 𝜆 ↦→ 𝜓1 curves (a) for different values of 𝑎 and (b) for the identified value 𝑎 = 5.
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Fig. 3.9 𝜆 ↦→ 𝜓2 curves (a) for different values of 𝑎 and (b) for the identified value 𝑎 = 5.
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Fig. 3.10 𝜆 ↦→ 𝑅𝑥 curves (a) for different values of 𝑎 and (b) for the identified value 𝑎 = 25.
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Fig. 3.11 𝜆 ↦→ 𝑑
(0)
1 − 𝑑1 curve (a) for different values of 𝑎 (b) for the identified value 𝑎 = 25.
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Fig. 3.12 𝜆 ↦→ 𝑑
(0)
2 − 𝑑2 curve (a) for different values of 𝑎 (b) for the identified value 𝑎 = 25.
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3.2 Deformation mode in 3-point flexure on pantographic
block

Pantographic blocks (3D) are made by assembling pantographic sheets (2D). A first attempt
to investigate such a 3D metamaterial can be found in [46, 147]. This section introduces
a novel second-gradient continuum model for simulating their mechanical behavior. The
mathematical model is experimentally validated by means of Digital Volume Correlation
(DVC) techniques [50, 142].

The section is organized as follows. Subsection 3.2.1 introduces a novel second-gradient
model for the pantographic block and discusses the experimental setup. Experiments are
conducted using a prescribed load parallel to the pantographic sheets that constitute the
pantographic block being tested. For the initial and final deformation configurations, the
DVC results are discussed in Subsection 3.2.2. First, the displacement fields are analyzed.
The motions of the pivots are then reported to identify the mode of deformation of the
pantographic block. In Subsection 3.2.3, numerical simulations are performed in which the
prescribed load is orthogonal (and not parallel) to the pantographic sheets. In order to validate
the numerical results for this case, additional experimental campaigns are required and are in
progress at the University of L’Aquila in collaboration with the International Research Centre
on Mathematics and Mechanics of Complex Systems (M&MoCS).

Notation

𝑳, 𝑴: directions of the beams (fibers) in the initial configuration.

𝑵: direction of the pivots (hinges) in the initial configuration.

𝑭: gradient of the configuration field 𝝌, 𝑭 = ∇𝝌.

ℓ, 𝒎: directions of the beams (fibers) in the actual configuration.

𝒏: direction of the pivots (hinges) in the actual configuration.

𝜆−1, 𝜇−1: axial deformation measures of the beams.

𝜂−1: axial deformation measure of the pivots.

𝛾: shear deformation measure.

𝜅𝑡𝐿 , 𝜅𝑡𝑀 : twist deformation measures of the beams.
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𝜅𝑛𝐿 , 𝜅𝑛𝑀 : flexure deformation measures of the beams normal to the plane of the beams.

𝜅𝑔𝐿 , 𝜅𝑔𝑀 : geodesic flexure deformation measures of the beams.

𝜌: grey level residual.

Φ𝑐: sum of squares of grey level residuals in the representative volume of interest
(ROI).

Φ𝑚: penalty term considered in the Hencky-elasticity regularization.

×: cross product of two vectors.

·: scalar product of two vectors.

3.2.1 Model-initialized DVC of in-situ flexure

Strain energy of pantographic blocks

The internal architecture of the pantographic block (Fig. 3.13) is organized along three distinct
orthogonal directions. Two of them define the pantographic plane of the scissor mechanism,
and the directions of the so-called beams (fibers) are given by the unit vectors L and M
in the reference configuration. The third direction, defined by the vector N, represents the
axis of the pivots (hinges). The images of these three vectors in the current (or deformed)
configuration are given by

𝜆 ℓ = 𝑭L , 𝜇𝒎 = 𝑭M , 𝜂 𝒏 = 𝑭N (3.8)

where 𝑭 is the gradient of the configuration field 𝝌, ℓ, 𝒎, and 𝒏 are the unit vectors in the
current configuration under the transformation 𝑭. It is assumed that the behavior of the
pantographic block is the same for all parallel planes to the plane 𝜋 defined by the vectors L
and M. Let us introduce the strain energy [60, 140, 57]

𝑤𝜋 =
1
2

[
K𝑒 ((𝜆−1)2 + (𝜇−1)2) +K𝑠𝛾

2+

K𝑡 (𝜅2
𝑡𝐿 + 𝜅2

𝑡𝑀) +K𝑛 (𝜅2
𝑛𝐿 + 𝜅2

𝑛𝑀) +K𝑔 (𝜅2
𝑔𝐿 + 𝜅2

𝑔𝑀)
]

(3.9)

that has two main contributions: i) the first-gradient part based on the deformation measures
(𝜆−1), (𝜇−1), and 𝛾, which represent the change of length in directions of vectors L and M
as well as the change of angle between these two directions in the deformation process from
the reference to the current configuration as defined by Equation (3.10); ii) the second-gradient
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Fig. 3.13 Nominal geometry of a pantographic block.

part based on the deformation measures representing twist and curvature in directions of
vectors L and M, respectively. The distortion angle between L and M is given by,

sin𝛾 = ℓ ·𝒎 , (3.10)

while the measures of twist deformation, flexure normal to the plane 𝜋, and geodesic flexure
read

𝜅𝑡𝐿 = (𝒏× ℓ) · d𝒏
d𝑆𝐿

, 𝜅𝑛𝐿 = 𝒏 · dℓ
d𝑆𝐿

, 𝜅𝑔𝐿 = −(𝒏× ℓ) · dℓ
d𝑆𝐿

(3.11)

and

𝜅𝑡𝑀 = (𝒏×𝒎) · d𝒏
d𝑆𝑀

, 𝜅𝑛𝑀 = 𝒏 · d𝒎
d𝑆𝑀

, 𝜅𝑔𝑀 = −(𝒏×𝒎) · d𝒎
d𝑆𝑀

(3.12)

for the beams along the directions L and M, respectively. In Equations (3.11) and (3.12), 𝑆𝐿
and 𝑆𝑀 are the abscissae along the two fiber directions. The energy density (3.9) is based on
a Kirchhoff beam model [56, 63].

The behavior in the direction N was assumed to be only characterized by first-gradient
terms

𝑤𝑁 =
1
2
{
K𝑒𝑁 (𝜂−1)2 +K𝑠𝑁 (𝛾2

𝐿𝑁 +𝛾2
𝑀𝑁 ) +2K𝑐 [(𝜆−1) (𝜂−1) + (𝜇−1) (𝜂−1)]

}
, (3.13)

where the first contribution represents a storage of elastic energy due to a change of length
in the direction N; the second term is related to the shear in the plane defined by L and N
as well as in the plane defined by M and N; the last term represents an exchange of energy
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between stretching modes in the pantographic plane 𝜋 and the orthogonal direction N. The
shear strains are defined as

sin𝛾𝐿𝑁 = ℓ · 𝒏 , sin𝛾𝑀𝑁 = 𝒎 · 𝒏 , (3.14)

where K𝑒, K𝑠, K𝑡 , K𝑛, K𝑔, K𝑒𝑁 , K𝑠𝑁 , and K𝑐 are material parameters. It is then assumed that
the strain energy density 𝑤 of the pantographic block is the sum of the two contributions
given by Equations (3.9) and (3.13), 𝑤 = 𝑤𝜋 +𝑤𝑁 .

Experimental setup

A 3-point flexural test is performed on a pantographic block that has been produced at the
Warsaw University of Technology by selective laser sintering (SLS) using PA2200 polyamide
powder, beginning with the nominal geometry shown in Fig. 3.13. The dimensions of the
pantographic block under test are 121.8 mm, 56.8 mm, and 26 mm. These directions are
referred to as longitudinal, vertical, and transverse corresponding to the {𝑥}, {𝑧}, and {𝑦} axes,
respectively. An in situ 3-point flexural test is performed by prescribing a displacement in the
pantographic plane, parallel to the side of length 56.8 mm. The pantographic block under test
is obtained by assembling 11 layers of beams, with each pair of successive layers connected
by 138 pivots (13 vertical rows of 6 pivots alternating with 12 rows of 5 pivots), for a total of
1 380 pivots. The cross-section of the beams has dimensions 2×1 mm2, and the connecting
cylinders have diameter and length equal to 0.90 mm and 1.5 mm, respectively. The 3-point
flexural test is conducted by prescribing a displacement in the pantographic plane, parallel
to the vertical 𝑧 axis. The test is monitored via micro-computed x-ray tomography [89]
to acquire 3D scans of the reference and deformed configurations [18]. The three ABS
supports used in the 3-point flexural test have been 3D-printed using Fused Deposition
Modeling (FDM). Two supports are attached to the bottom plate on the testing machine at
a distance of 8.2 mm, and the third is attached to the top plate, in correspondence to the
middle horizontal position of the others. The test is conducted up to the testing stroke limit
of the machine, controlling the lower motion of the supports. Between the specimen and the
supports, corrugated cardboard (undulated polypropylene sheets) are added to prevent the
beam ends from locking with respect to the supports.

Six tomographic scans are acquired during the experiment. Two of these six scans
correspond to the unloaded configuration: the first is used as the reference scan, while the
second is used to evaluate measurement uncertainties and the baseline level for the correlation
residuals. By increasing the stroke, four scans are acquired in the deformed configurations.
After the acquisition of the undeformed scans, a 10-mm spacer is installed to permit larger
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displacements at the testing stroke limit of the machine. After an additional 14 mm stroke,
the first scan is acquired. The next three scans are acquired every 5 mm. Hence, scans from 1
to 4 are acquired for a total prescribed displacement of 24, 29, 34, and 39 mm, respectively.
The reaction force and stroke are continuously recorded during the test (Fig. 3.15). The
hardware parameters of the experiment are reported in Table B.1.

In Fig. 3.14 a section of three of the reconstructed volumes is shown (reference configura-
tion and scans corresponding to 24 and 39 mm prescribed displacements). For the sake of
conciseness, the majority of the results will focus on scans 1 and 4. The acquired section
is initially parallel to the pantographic plane allowing a fiber layer to be clearly visible in
the unloaded configuration (Fig. 3.14(a)). In Fig. 3.14(b,c), due to out-of-plane motions,
the acquired sections are no longer parallel to the fiber layer. In the cited figures, the pivots
connecting the layers are visible as small white dots. Fig. 3.14(c) shows that the beams
deform significantly, especially at the final deformation level. The magnitude of the vertical
displacements is equal to hundreds of voxels, making DVC analyses extremely challenging.
In Fig. 3.15, the reaction force-stroke recorded data are shown. At zero displacement of the
actuator, a large vertical black bar is obtained, which shows the fluctuation of the reaction
forces during the acquisition of the scans in the unloaded configuration, as well as during
the installation of the spacers. From 0 to 10 mm, there are no available data. The reaction
force measured during the loading steps is illustrated in light gray. The four consecutive
black vertical bars represent force acquisitions during tomographic scans. A linear response
is shown by the plot. Nevertheless, a small hardening effect appears in the final portion of the
loading history, which is related to the triggering of beam flexure for large displacements,
and associated with the activation of second-gradient contributions of the placement field. In
the first part of the loading history, the beams actually tend not to deform because it is less
costly in terms of energy to concentrate the deformation in the connecting pivots. It is worth
noting the beams remain almost unbent until the first deformation step (Fig. 3.14(b)), while
the subsequent loading steps cause the beam to bend increasingly (Fig. 3.14(c)). To describe
this bending, higher-order derivatives of the displacements are required that are not involved
in the classical (or Cauchy) continuum. Thus, it is crucial to understand second-gradient
continuum models to fully characterize this type of metamaterials [64]. In the present
experiment, the energy contribution associated with the elongation of the beams is negligible
as expected [131]. No significant nonlinear deformation mechanisms (plasticity and/or
damage) appear during the tests as evidenced by the essentially linear response.
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(a)

(b)

(c)

Fig. 3.14 Sections in the pantographic plane {𝑥, 𝑧} for the different scanned configurations:
(a) reference (unloaded) configuration; (b) 24 mm and (c) 39 mm prescribed displacements.
Axis labels are expressed in voxels.
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Fig. 3.15 Comparison between measured force vs. prescribed displacement of the specimen
during scan acquisition (vertical black bars) as well as loading steps (light gray), and predicted
response via FE simulations (dash-dotted dark gray line).

Parameter calibration

DVC analysis is initialized by considering the deformation shape predicted by the second-
gradient model exposed in Section 3.1.2, whose parameters are calibrated to fit the force-stroke
response (see Fig. 3.15) up to the first loading step (24 mm deflection). The calibrated
parameters are reported in Table 3.1.

Table 3.1 Calibrated model parameters.

𝐾𝑒 1.4×105 N/m
𝐾𝑠 13 N/m
𝐾𝑔 9.5×10−2 Nm
𝐾𝑛 1.2×10−2 Nm
𝐾𝑡 10−2 Nm
𝐾𝑒𝑁 6.5 MN/m2

𝐾𝑠𝑁 35 MN/m2

𝐾𝑐 2.6 MN/m2

Mesh in the reference configuration

For analyzing the previous test, FE-based DVC [116, 68] is performed. The sought
displacement field u is expressed as

u(x, {𝑣𝑣𝑣}) =
∑︁
𝑖

𝜐𝑖Ni(x) , (3.15)
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where Ni(x) are the vectorial shape functions associated with the nodal displacements 𝜐𝑖,
gathered in the column vector {𝜐𝜐𝜐}, which are the unknowns to be measured. To determine
them, we consider the gray level residual 𝜌 computed for each voxel belonging to the region
of interest (ROI),

𝜌(x, {𝑣𝑣𝑣}) = 𝐼0(x) − 𝐼𝑡 (x+u(x, {𝑣𝑣𝑣})) , (3.16)

where 𝐼0 and 𝐼𝑡 are the gray levels for every voxel in the reference and deformed scans. Thus,
the measured nodal displacements read

{𝜐𝜐𝜐}𝑚𝑒𝑎𝑠 = argmin
{𝜐𝜐𝜐}

Φ2
𝑐 ({𝑣𝑣𝑣}) (3.17)

with
Φ2
𝑐 ({𝜐𝜐𝜐}) =

∑︁
x∈𝑅𝑂𝐼

𝜌2(x, {𝑣𝑣𝑣}) . (3.18)

A penalty term is considered to perform so-called Hencky-elasticity regularization [35]

Φ2
𝑚 ({𝑣𝑣𝑣}) = {𝑣𝑣𝑣}⊤ [K]⊤ [K]{𝜐𝜐𝜐} , (3.19)

so that, to determine the nodal displacements via regularized DVC, the weighted sum is
minimized

{𝜐𝜐𝜐}meas = argmin
{𝜐𝜐𝜐}

(
Φ2
𝑐 ({𝜐𝜐𝜐}) +𝑤𝑚Φ2

𝑚 ({𝜕𝜐𝜐𝜐})
)
, (3.20)

where {𝜕𝜐𝜐𝜐} denotes the column vector of incremental displacements from one analysis to the
next, and [K] the rectangular stiffness matrix associated with bulk and free surface nodes. In
Hencky-elasticity regularization, the regularization weight 𝑤𝑚 is proportional to a length,
referred to as regularization length ℓ𝑚, raised to the power 4 [135]. Section 3.2.1 will discuss
the choice of the regularization length.

An FE mesh of the specimen is needed for performing the DVC analysis. In our study,
the starting point is the STL model of the to-be-printed pantographic structure. Fig. 3.16
shows the mesh in the nominal configuration generated with Gmsh [54]. Modeling the
beams and pivots necessitates the use of different mesh elements due to their significantly
different dimensions. In this type of application, due to small printing errors, incorrect sample
placement, and the possible application of preload, the reference (experimental) configuration
typically does not precisely match the printing geometry. For this reason, a backtracking
procedure [8] is required to fit the mesh constructed from the nominal printing geometry to
the reference scan of the unloaded configuration. The backtracked mesh needs to be cropped
by removing the last two vertical rows of pivots on both sides of the specimen, which, in the
maximum deformed configuration, would end up outside the monitored volume (Fig. 3.14).
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The considered mesh consists of 37 759 nodes and 141 882 T4 elements with a mean size of
6 vx (calculated as the cube root of the average elementary volume).

(a) (b)

Fig. 3.16 FE mesh in the nominal configuration. Overall (a) and detail of the hinge meshing
(b).

The reconstructed volumes are registered using the Correli 3.0 framework [83] in which
Hencky’s regularization is implemented (Table B.2). The measured displacement field u are
parameterized using the nodal displacements associated with the finite element discretization
based on 4-noded (T4) tetrahedra [68].

DVC initialization

Large displacements between successive acquisitions of the deformed configuration (Fig. 3.14),
which are also attributable to the peculiar structure of the studied block, made DVC analyses
challenging. The prescribed displacements relative to the reference configuration are 24, 29,
34, and 39 mm for the four deformed configurations. Expressed in voxels, they correspond
to 290, 350, 410, and 470 vx, respectively. Therefore, these amplitudes are quite large in
comparison to the height of the specimen (56.8 mm or 684 vx). Particularly challenging is
measuring the first deformed configuration (Fig. 3.14(b)). Suitable initialization of DVC
analyses is required to enable convergence.

To this reason, DVC is model-initialized, i.e, finite element (FE) simulations are performed
with the commercial code COMSOL Multiphysics® using the model introduced and calibrated
in Subsection 3.2.1. A rectangular parallelepiped of equal size to the sample size tested is
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numerically analyzed. The positions of the pivot numerically predicted are used to initialize
the pivot motions.

Due to buckling in the transverse direction caused by imperfections that are not accounted
for in the second-gradient model exposed in Subsection 3.2.1, an additional correction
consisting of a rigid translation in the transverse direction is required to improve the
deformation predicted by the model. This phenomenon is not negligible due to the small
dimensions of the specimens (26 mm in width), which makes a displacement of the order
of 5 mm (or 60 vx) comparable to the size of a mesostructure unitary cell. Fig. 3.17 shows
the positions of the pivots predicted by the numerical simulation for a 24 mm prescribed
displacement drawn in one section of the first deformed volume.

Fig. 3.17 Numerically predicted positions of the pivots (red + symbols) drawn on a section of
scan 1 (prescribed displacement 24 mm). Actual positions of the pivots are visible as small
white dots. Axis labels are expressed in voxels.

Direct DVC calculations

Due to the previous initialization, We run DVC analyses on the 4 deformed scans (always using
as reference the undeformed scan). The DVC calculations are stopped when the 𝐿2-norm
of displacement corrections are less than 10−1 vx. This level corresponds to the standard
displacement uncertainty obtained by performing DVC analysis on the repeat scans acquired
before the sample deformation. The regularization length is selected as explained below.

Fig. 3.18(a) shows the root mean square (RMS) gray level residual Φ𝑐 versus the
equilibrium gap Φ𝑚 for different regularization lengths. The five data for each regularization
length correspond, with increasing gray level residual, to scan 0 (second scan in the unloaded
configuration), and scans 1 to 4 of the deformed configurations. The analysis of scan 0
provides information on the stopping criterion for the 𝐿2-norm of displacements. Scans 1
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to 3 have comparable residuals, indicating that the analysis is successful. Extremely high
deformations result in increased gray-level residuals for the fourth scan. The equilibrium gap
Φ𝑚 decreases as the regularization length increases.

(a) (b)

Fig. 3.18 (a) Equilibrium gap Φ𝑚 vs. gray level residual Φ𝑐 for the five analyzed scans and for
different regularization lengths (expressed in voxels). (b) Corresponding plot in arithmetic
scale for scan 4.

The criterion used to select the optimal regularization weight is to look for the maximum
curvature (L-curve criterion [67]) in the graph above for the maximum prescribed displacement,
in arithmetic scale (Fig. 3.18(b)). The regularization length ℓ𝑚 = 25 vx (Table B.2) is selected
that, according to this criterion, provides the best trade-off between Φ𝑐 and Φ𝑚. For this
regularization length, the gray level residuals are shown in Appendix B.2.

3.2.2 DVC results

The DVC results for the initial and final deformed configurations are discussed below. The
displacement fields are first analyzed. Then, the motions of the pivots are reported to assess
the mode of block deformation.

Displacement fields

The measured displacement fields in the three directions are displayed in Figs. 3.19 and 3.20.
As expected, the displacement amplitudes are very large compared to the overall dimensions of
the specimen and, consequently, compared to the dimensions of the elementary pantographic
cell. The flexural displacement is prescribed in the vertical direction, and the primary effect
is that the entire specimen is shortened considerably in that direction, almost uniformly. The
bottom of the specimen remains essentially flat, with almost no noticeable curvature. The
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curvature under the top support is very slight compared to the right side of the specimen and
became more pronounced on the left side of the specimen (Fig. 3.20(a), see also Fig. 3.14).
This phenomenon is caused by the design of the specimen that is characterized by an odd
number of pantographic sheets.

(a) (b)

(c)

Fig. 3.19 DVC measured vertical (a), longitudinal (b) and transverse (c) displacement fields
for the first loading step (24 mm). Labels are expressed in voxels. The displacements are
shown on the mesh in its deformed configuration.

The range of vertical displacement levels found for both scans is consistent with the
prescribed stroke (see a dynamic range of color bars in Figs. 3.19 and 3.20). Specifically, the
prescribed displacements of 24 and 39 mm correspond to 290 and 470 vx, respectively. It is
worth noting that the minimum displacements are not equal to zero. This is due to the fact
that when cropping the volumes after reconstruction, the deformed sample is centered and
thus the top support has apparent translations (Fig. 3.14).

As a result of the mesostructure behavior, given the prescribed flexural displacement,
the specimen significantly elongates in the longitudinal direction. The deformation is
concentrated initially in the pivots, where shear deformation occurs [22], while the beams
deform considerably less and the pantographic structure converts the vertical compression into
longitudinal elongation. The quantification of this effect is shown in Figs. 3.19(b) and 3.20(b),
where longitudinal displacement measurements are shown on the deformed configurations of
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the specimen. The range of measured displacements is 344 vx (about 28.5 mm) for the first
scan and 445 vx (about 36.9 mm) for the last one.

(a) (b)

(c)

Fig. 3.20 DVC measured vertical (a), longitudinal (b) and transverse (c) displacement fields
for the last loading step (39 mm). Labels are expressed in voxels. The displacements are
shown on the mesh in its deformed configuration.

Lastly, significant displacements are measured in the transverse direction relative to the
size of the elementary cell of the microstructure. In Figs. 3.19(c) and 3.20(c), the measured
transverse displacements are displayed on the meshes in deformed configurations. It is
interesting to note that the displacements are not significantly changing for the reported scans.
The measured range varies from 52 vx for scan 1 to 60 vx for the last one (from 4.3 mm to
5 mm, respectively). This level is of the same order of magnitude as the elementary cell size
in the periodic design, which is exactly 5 mm.

Hinge kinematics

It is of interest to extract some information about the pivots from these experimental data,
as the continuous model described in Subsection 3.2.1 has been developed to predict the
geometric center positions of the interconnecting pivots. Piola-identification conjecture
underlies the use of the continuous model for similar mesostructured media where the
geometric centers of the pivots are chosen as control points [37, 33]. As said before, the
numerical prediction of the position of the pivots in the deformed configurations is the basis
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of the initialization of the applied DVC procedure (Fig. 3.17). Let us now address some
considerations based on the analysis of the hinge motions.

Having successfully carried out FE-based DVC analyses, the behavior of various con-
stituents of the tested metamaterial could be studied for different deformed configurations.
We decide to focus on the mesh elements that in the nominal geometry are related to the
pivots. Fig. 3.21 shows the configuration of the pivots in their reference state and in the
deformed configuration with maximum deflection. Details of Fig. 3.21 are shown in Fig. 3.22

(a) (b)

Fig. 3.21 Configuration of pivots in the (a) reference ( unloaded) and (b) last deformed
(39 mm deflection) configurations. Labels are expressed in voxels.

where a set of pivots in the {𝑦, 𝑧} plane (orthogonal to the pantographic plane) is plotted in
the configurations corresponding to scan 1 and 4. The cross-sections of the pantographic
block remain nearly planar and rectangular. While the vertical length of the sections (parallel
to the prescribed displacement) decreases, the transverse sides (orthogonal to the flexural
displacement) remain almost unchanged.

Deformation mode

We analyze the deformation mode by focusing on the deformed shape of the top surface. The
top surface is approximated by means of a surface built by interpolating the positions of the
center of mass of four consecutive central top horizontal rows of pivots as highlighted on
one {𝑥, 𝑧} section in Fig. 3.23(a). These rows are chosen to locally study the surface of the
pantographic block affected by the highest longitudinal curvature, avoiding the top pivots
where artifacts could occur due to direct support contact.

The interpolation is carried out by searching for the six coefficients of a complete second-
order polynomial interpolation 𝑧 = P2 (𝑥, 𝑦) that provides the best fit of the pivot positions
based on the least-squares method. The paraboloid obtained by interpolation is studied to
evaluate the principal curvatures. Fig. 3.23(b) shows both the interpolating paraboloid and
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(a) (b)

Fig. 3.22 Detail of Fig. 3.21. Comparison of the same cross-section in the {y,z} plan for
(a) the reference (unloaded) and (b) last deformed (39 mm deflection) configurations. Labels
are expressed in voxels.

Fig. 3.23 (a) Selected pivots for building the interpolating top surface on one {x,z} section.
(b) Paraboloid interpolating the vertical positions of the center of mass of the selected pivots,
and actual positions of the centers of mass of the pivots measured via DVC for 39 mm
deflection (red markers). Labels are expressed in voxels.
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the actual positions of the centers of mass of the pivots measured by DVC for the maximum
deflection.

The curvatures of the paraboloid are investigated to distinguish the kind of deformation
mode, namely, anticlastic (saddle shape), synclastic (eggshell shape), or monoclastic (cylin-
drical shape). At the critical point, denoted here by 𝑋𝐶 , local evaluations of the Gaussian
curvature and the two principal curvatures are performed. Let 𝐾 (𝑋𝐶) = 𝜅1(𝑋𝑐)𝜅2(𝑋𝐶) be
the Gaussian curvature, where 𝜅1 and 𝜅2 are the principal curvatures [108]. The deformation
mode corresponds to 𝐾 > 0 for synclastic surfaces, 𝐾 < 0 for anticlastic surfaces, and 𝐾 = 0
with 𝜅1 and 𝜅2 that do not vanish for monoclastic surfaces. Due to the already-discussed
asymmetry of the deformed shape of the specimen, the critical point is not exactly centered
in the middle of the specimen but slightly shifted toward the right end.

In this case, small negative Gaussian curvatures 𝐾 are found (Table 3.2). The principal
directions associated with the principal curvatures are parallel to the longitudinal and
transverse directions of the sample. Both principal curvatures are quite small, with the
transverse curvature being roughly 20% of the longitudinal one, but with opposite sign,
indicating a weak anticlastic mode. Nevertheless, since the transverse radius of curvature
is significantly larger than the specimen side dimensions and the Gaussian curvature is
small, the deformation mode is predominantly monoclastic (i.e, the deformed surface is well
approximated by a monoclastic mode).

Table 3.2 Curvatures assessed from experimental measurements and numerical simulations.

Surface Longitudinal curvature Transverse curvature Gaussian curvature K
Fig. 3.23(b) 6.5×10−3 mm−1 −1.3×10−3 mm−1 −8.45×10−6 mm−2

Fig. 3.26 3.8×10−3 mm−1 −8.1×10−5 mm−1 −3.08×10−7 mm−2

Fig. 3.28(a) 12.7×10−3 mm−1 −4.6×10−3 mm−1 −5.84×10−5 mm−2

Fig. 3.28(b) 9.9×10−3 mm−1 −4.9×10−3 mm−1 −4.81×10−5 mm−2

3.2.3 Numerical simulations

This section deals with the numerical simulations that mimic the 3-point flexural test. It is
shown the comparison between the predicted deformation mode and the one experimentally
observed. Finally, results are presented considering another flexural configuration to induce
an anticlastic deformation.
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Predicted deformation mode

The continuum macro-model postulated in Section 3.2.1 was further investigated to predict
the deformed shapes of the pantographic block in a 3-point flexural test. It is noteworthy that
the DVC analyses have required the prediction of second-gradient model for the initialization
step, but the final results are independent of the theoretical model. In Figs. 3.24 and 3.25,
the displacement fields are reported along the three directions for prescribed deflections of
24 and 39 mm, corresponding to the first and final scans of the test (Section 3.2.1). Similar
conclusions are drawn from intermediate steps, which are omitted for brevity. Correspondence
with the reported experimental results is very good (Figs. 3.19 and 3.20). The proposed model
is incapable of predicting transverse displacements in the actual test (likely caused by sliding).
Transverse displacements are negligible in the numerical simulations, and buckling effects
are not considered. Note that in all plots, the lines on the model are material lines, allowing
for an easier comparison of numerical results with the experimental one. In contrast, as also

(a) (b)

(c)

Fig. 3.24 FE results for a prescribed deflection of 24 mm in the vertical direction. (a) Vertical,
(b) longitudinal, and (c) transverse displacement fields.

shown in Fig. 3.17, the correspondence between the theoretical and experimental vertical
displacements is quite good. Lastly, the theoretical model cannot predict any asymmetry
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in terms of vertical displacements. To compare the deformation mode of the numerically

(a) (b)

(c)

Fig. 3.25 FE simulation results for a prescribed displacement of 39 mm in the vertical
direction. (a) Vertical, (b) longitudinal, and (c) transverse displacement fields.

obtained top surface with the one experimentally measured, the first is studied in the same
way as the second. By interpolating the positions of the points corresponding to the real
pivots chosen for the experimental case, a paraboiloid with six coefficients is built a shown
in Fig. 3.26. Consistent with the experiment, the Gaussian curvature 𝐾 is negligible at the
critical point, and the deformation mode is monoclastic.

3.2.4 Anticlastic deformation mode

Numerical simulations are finally performed for a second case in which the prescribed load is
orthogonal to the pantographic plane. Due to the anisotropy of the model and material, it is
of interest to study the behavior of this metamaterial under different loading directions. The
parameters used in this novel simulation are the same as those gathered in Table 3.1. The
same boundary conditions are implemented as in the previous simulations. In Fig. 3.27, the
three displacement field components obtained via FE analysis are displayed on the deformed
configuration for a 10 mm applied deflection. The bottom side of the specimen no longer
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Fig. 3.26 Paraboloid interpolating the vertical positions of the center of mass of the selected
pivots, and positions of the centers of mass of the pivots predicted by numerical simulations
(red markers).

remains flat. It lowers in the middle and raises at the ends by rotating the cross-sections.
Further, the displacements in the transverse direction, {𝑧}-axis direction in Fig. 3.27, are
no longer negligible. The elongation and flexure of the pantographic planes are clearly
visible. An anticlastic deformation mode appears in this case, namely, the curvatures in the
longitudinal and transverse directions are nonzero and of opposite sign. The top and bottom
pantographic surfaces are studied by constructing the interpolating paraboloids similarly
to what has been done in the previous cases. The top and bottom surfaces are reported in
Fig. 3.28. The Gaussian curvature evaluated at the critical point of the surface is negative.
The two principal directions associated with the principal curvatures are again the longitudinal
and transverse directions. Regarding the principal curvatures, the transverse one is very close
for both top and bottom surfaces, while the longitudinal one increases by nearly 30% from
the bottom to the top surface (Table 3.2).

3.3 The effect of pivots-related random defects on the re-
sponse of pantographic sheets

Pantographic structures attracted the attention of many scientists because of their nonclassical
mechanical behaviors. Despite several studies conducted in this field, the role played by
uncertainties has not been investigated in the literature yet. In the present section, we provide
a contribution to this topic. A simplified probabilistic analysis is applied to investigate the
effects of local axial, bending, and torsional defects on their mechanical responses. The
suggested approach involves a generalization of an existing theoretical result and the use
of Monte Carlo simulations to derive probability density functions, mean values, standard
deviations, and coefficients of variation of the random kinematic unknowns. As demonstrated
by the results, pantographic structures are not particularly affected by random local defects due
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(a) (b)

(c)

Fig. 3.27 FE simulation results for a prescribed displacement of 10 mm in the vertical
direction. (a) Vertical, (b) longitudinal, and (c) transverse displacement fields.

(a) (b)

Fig. 3.28 Paraboloid interpolating the vertical positions of the center of mass of the pivots
in the top (a) and bottom (b) planes, and positions of the centers of mass of these pivots
predicted by numerical simulations (red markers).
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to their redundant connections. In addition, the interdependencies between their substructures,
beams, and pivots make it difficult to find the locations where the placement of defects
reduces or maximizes the randomness of the mechanical responses. Work is currently being
conducted on the subject.

This section is organized as follows. In Section 3.3.1, the second-gradient continuum
model for pantographic sheets is presented. In Section 3.3.2, a result already published in the
literature [48] is used for a theory-driven construction of analytical relationships that connect
material uncertainties-related random variables to displacements. Finally, in Section 3.3.3,
the built analytical relationships are used for the analysis of uncertainty propagation and the
derivation of probability density functions, mean values, and standard deviations of random
horizontal displacements.

Notation

Below 𝑀 , 𝑁 , 𝐹, 𝑖, and 𝑗 are integers belonging to {1,2,3}.

A lowercase letter such as 𝑥, 𝜂, 𝑢 is a real deterministic variable except when used as an
integer index as 𝑖, 𝑗 , etc. Greek letters 𝛼, 𝛽, 𝜂 and 𝜏 are neither deterministic variables
or integers as subscripts.

A boldface lower case letter such as 𝒙, 𝜼, 𝒖 is a real deterministic vector.

An upper case letter such as 𝑋 , 𝐻,𝑈 is a real random variable except when used as an
integer index as 𝐴, 𝐵, etc.

A boldface upper case letter such as 𝑿, 𝑯, 𝑼 is a vector random variable.

A lower case letter between brackets such as [𝒙], [𝜼], [𝒖] is a real deterministic matrix.

H : Heaviside function.

[𝛿]𝑖 𝑗 : Kronecker delta.

𝑞𝑀 : Lagrangian coordinates. In this section, stochastic considerations are introduced,
wherein the symbol 𝒒 is preferred for denoting the Lagrangian coordinates, as the
symbol 𝑋 is reserved for the random quantities.

𝜒𝑖: component 𝑖 of the configuration field 𝝌.
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𝑑𝑁1 , 𝑑𝐹2 : the directions of the beams (fibers) of pantographic sheets.

𝜓: deformation energy functional.

𝑋 𝑖𝑝: random variable associated with the 𝑖-th pivots-related imperfection.

𝑈1
𝑗
: random variable associated to the horizontal displacement in 𝑗 with 𝑗 =

𝐴, 𝐵,𝐶,𝐷,𝐸.

𝜌
(
𝑞1
𝑖
, 𝑞2
𝑖

)
: area affected by pivot-related random defects in the neighborhood of

𝒒 = (𝑞1
𝑖
, 𝑞2
𝑖
) with 𝑖 = 1,2,3. Three local pivot-related random defects are considered.

3.3.1 Defining the second-gradient continuum model for pantographic
sheets

Let us consider the work by dell’Isola et al. [33], where a micro-macro identification procedure
𝑎̀ la Piola allows to derive the deformation energy of a pantographic sheet (2D) under the
hypotheses of large deformations and in-plane loads. The deformation energy denoted by
𝜓 (𝝌) is expressed as the sum of stretching, bending, and torsional contributions denoted by
𝜓a (𝝌), 𝜓b (𝝌), and 𝜓p (𝝌), respectively:

𝜓 (𝝌) = 𝜓a (𝝌) +𝜓b (𝝌) +𝜓p (𝝌) , (3.21)

where 𝜒 : B → E is the configuration field defined from the initial (or Lagrangian) configura-
tion B to the actual (or Eulerian) one E. If ℓ1 and ℓ2 are the dimensions of the rectangular
pantographic sheet, it is B = [0, ℓ1] × [0, ℓ2]. The functional 𝜓a (𝝌), 𝜓b (𝝌), and 𝜓p (𝝌) are
defined by

𝜓a (𝝌) =
2∑︁
𝛼=1

∫
B

𝑘a
2
(∥ [ 𝒇 (𝝌)](𝒒) 𝒅𝛼∥ −1)2 𝑑𝒒 , (3.22)

𝜓b (𝝌) =
2∑︁
𝛼=1

∫
B

𝑘b
2

((
∇[ 𝒇 (𝝌)](𝒒) | 𝒅𝛼 ⊗ 𝒅𝛼 · ∇[ 𝒇 (𝝌)](𝒒) | 𝒅𝛼 ⊗ 𝒅𝛼

∥ [ 𝒇 (𝝌)](𝒒) 𝒅𝛼∥2

))
𝑑𝒒

−
2∑︁
𝛼=1

∫
B

𝑘b
2

((
[ 𝒇 (𝝌)](𝒒) 𝒅𝛼

∥ [ 𝒇 (𝝌)](𝒒) 𝒅𝛼∥
· ∇[ 𝒇 (𝝌)](𝒒) | 𝒅𝛼 ⊗ 𝒅𝛼

∥ [ 𝒇 (𝝌)](𝒒) 𝒅𝛼∥

)2
)
𝑑𝒒 ,

(3.23)

𝜓p (𝝌) =
∫
B

𝑘p

2

����arccos
(

[ 𝒇 (𝝌)](𝒒) 𝒅1
∥ [ 𝒇 (𝝌)](𝒒) 𝒅1∥

· [ 𝒇 (𝝌)](𝒒) 𝒅2
∥ [ 𝒇 (𝝌)](𝒒) 𝒅2∥

)
− 𝜋

2

����𝛾 𝑑𝒒 , (3.24)

in which 𝒅1 and 𝒅2 define the unit vectors parallel to the two orders of beams, [ 𝒇 (𝝌)](𝒒) =
∇𝝌(𝒒) is the gradient of the configuration field. The generic component 𝛽 of the vector
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∇[ 𝒇 (𝝌)] | 𝒅𝛼 ⊗ 𝒅𝛼, which is denoted by (∇[ 𝒇 (𝝌)] | 𝒅𝛼 ⊗ 𝒅𝛼)𝛽, is equal to the second
directional derivative of 𝜒𝛽 , (∇[ 𝒇 (𝝌)] | 𝒅𝛼 ⊗ 𝒅𝛼)𝛽 = 𝜕

(
𝜕𝜒𝛽/𝜕𝒅𝛼

)
/𝜕𝒅𝛼. The symbol “·”

is the standard Euclidean scalar product and the symbol ∥·∥ denotes the associated norm.
Eqs. (3.22), (3.23), and (3.24) are rewritten in the Levi-Civita notation, where the directions
of the beams are assumed to be constant in B:

𝜓a (𝝌) =
2∑︁
𝛼=1

∫
B

𝑘a
2

((
[𝛿]𝑖 𝑗

𝜕𝜒𝑖 (𝒒)
𝜕𝑞𝐴

𝜕𝜒 𝑗 (𝒒)
𝜕𝑞𝐵

𝑑𝐴𝛼 𝑑
𝐵
𝛼

) 1
2

−1

)2

𝑑𝒒 , (3.25)

𝜓b (𝝌) =
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𝜓p (𝝌) =
∫
B

𝑘p

2

��������arccos
©­­­«

[𝛿]𝑖 𝑗 𝜕𝜒
𝑖 (𝒒)
𝜕𝑞𝐴

𝜕𝜒 𝑗 (𝒒)
𝜕𝑞𝐵

𝑑𝐴1 𝑑
𝐵
2(

[𝛿]𝑘𝑚 𝜕𝜒
𝑘 (𝒒)
𝜕𝑞𝐶

𝜕𝜒𝑚 (𝒒)
𝜕𝑞𝐷

𝑑𝐶1 𝑑
𝐷
1

) 1
2
(
[𝛿]𝑛ℓ 𝜕𝜒

𝑛 (𝒒)
𝜕𝑞𝐸

𝜕𝜒ℓ (𝒒)
𝜕𝑞𝐹

𝑑𝐸2 𝑑
𝐹
2

) 1
2

ª®®®¬−
𝜋

2

��������
𝛾

𝑑𝒒 ,

(3.27)
where summation is intended over repeated indices. The constants 𝑘a, 𝑘b, 𝑘p, and 𝛾 are
the material parameters. Since 3D printing can cause defects in each subcomponent of
the pantographic sheets, uncertainties have to be taken into account and then each material
parameter is modeled by a random variable. In the following, the effect of local pivots-related
random defects on the mechanical response of pantographic sheets is investigated.

3.3.2 Deterministic theory-driven analytical relationship between defects-
related random variables and displacements

The main goal of the present section is to find a theory-driven analytical relationship to
describe the transformation between the input random variables associated with local defects
and the output random displacements of pantographic sheets. For this purpose, we use the
statistical analysis proposed in [48], which is devoted to uncertain computational models
generated by the finite element discretization of static linear elastic structures with uncertain
parameters.
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Implementation of the probabilistic model of uncertainties in the computational model

By using finite element discretization, it is known that the solution of a linear mechanical
system can be reduced to the solution of a linear system of equations. Typically, this linear
system of equations is written as [𝒌]𝒖 = 𝒈, where [𝒌] is the positive-definite stiffness matrix,
𝒖 is the vector of the nodal kinematic unknowns, and 𝒈 is related to the external applied loads.

On the one hand, let us assume that the mechanical system is affected by a single source
of material parameters-related uncertainty, and let us refer to the random variable associated
with this uncertainty as 𝑋 . In addition, let us suppose that matrix [𝒌] is a linear function
of random variable 𝑋 , [𝒌 (𝑋)] = [𝒌0] + 𝑋 [𝒌1] in which [𝒌0] is a positive-definite matrix
and where [𝒌1] is symmetric. It is assumed the probability distribution of 𝑋 is such that
the random matrix [𝒌 (𝑋)] is invertible almost surely and that the second-order moment of
the Frobenius norm of [𝒌 (𝑋)]−1 is finite. Since 𝑋 is a random variable, then 𝒖 (𝑋) is a
random vector. These hypotheses imply that 𝒖(𝑋) is a second-order random variable. The
vector 𝒖 (𝑋) can be written as the sum of a deterministic quantity 𝒖0 = 𝒖 (0), and a random
addend 𝒖1 (𝑋): 𝒖(𝑋)=𝒖0 +𝒖1 (𝑋). Let [𝝓] and [𝝀] be the matrices of the eigenvectors and
the eigenvalues of the generalized eigenvalue problem that is defined by

[𝒌1] [𝝓] = [𝒌0] [𝝓] [𝝀] . (3.28)

Since [𝒌0] is positive definite and [𝒌1] is symmetric, the eigenvalues are real and [𝝓] is such
that [𝝓]𝑇 [𝒌0] [𝝓] = [𝐼] and [𝝓]𝑇 [𝒌1] [𝝓] = [𝝀]. Let 𝒚0 and 𝒚1 be the solutions of the linear
matrix equations,

[𝝓] 𝒚0 = 𝒖0 , [𝝓] 𝒚1 (𝑋) = 𝒖1 (𝑋) . (3.29)

Consequently, component 𝑢ℓ (𝑋) of 𝒖(𝑋) can be written (see [48]) as

𝑢ℓ (𝑋) = −
𝑝∑︁

𝑚=1
𝑋 [𝜙]ℓ𝑚

1
1+ 𝑋 [𝜆]𝑚𝑚

[𝜆]𝑚𝑚 (𝑦0)𝑚 + (𝑢0)ℓ (3.30)

in which 𝑝 is the number of nonzero eigenvalues.
We now consider a system that depends on 𝑛 random variables 𝑋1, 𝑋2 , ... , 𝑋𝑛 such that(

[𝒌0] +
𝑛∑︁
𝑖=1

𝑋 𝑖 [𝒌𝑖]
)
𝒖 (𝑿) = 𝒈 . (3.31)

As for the case of single random variable 𝑋 , it assumed that the random Eq. 3.33 admits a
unique second-order solution. Let [𝝓𝑖] and [𝝀𝑖] be the matrices of the eigenvectors and the
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eigenvalues of the generalized eigenvalue problem that is defined by

[𝒌𝑖] [𝝓] = [𝒌0] [𝝓𝑖] [𝝀𝑖] . (3.32)

As previously, since [𝒌0] is positive definite and [𝒌𝑖] is symmetric, the eigenvalues are
real and [𝝓𝑖] is such that [𝝓𝑖]𝑇 [𝒌0] [𝝓𝑖] = [𝐼] and [𝝓𝑖]𝑇 [𝒌𝑖] [𝝓𝑖] = [𝝀𝑖]. Consequently,
component 𝑢ℓ (𝑿) of 𝒖(𝑋) can be written (see [48]) as

𝑢ℓ
(
𝑋1, 𝑋2 , ... , 𝑋𝑛

)
≈ −

𝑛∑︁
𝑖=1

𝑝𝑖∑︁
𝑚𝑖=1

𝑋 𝑖 [𝜙𝑖]ℓ𝑚𝑖

1
1+ 𝑋 𝑖 [𝜆𝑖]𝑚𝑖

𝑚𝑖

[𝜆i]𝑚𝑖
𝑚𝑖

(𝑦0𝑖)𝑚𝑖 + (𝑢0)ℓ , (3.33)

where 𝑝𝑖 is the number of nonzero eigenvalues of the matrices [𝝀𝑖], and 𝒚0𝑖 is the solutions
of the linear matrix equations,

[𝝓𝑖] 𝒚0𝑖 = 𝒖0 . (3.34)

The next Subsubsection discusses the range of applicability of Eq. (3.33) and, consequently,
the limitation and validity of the performed approximation.

Revisiting the hypotheses to obtain a second-order random solution using perturbation
analysis

The hypotheses made before imply that material parameters-related uncertainties are small
enough. Let us suppose that 𝑿 = 𝜀 ̂𝑿 with 𝜀≪ 1 and let us consider the Taylor expansion of
𝒖 (𝑿) truncated at the second order, yields

𝒖
(
𝜀 ̂𝑿

)
= 𝒖0 + 𝜀𝒖(1)

1

(
̂𝑿
)
+ 𝜀2 𝒖(2)

1

(
̂𝑿
)
+ 𝑜

(
𝜀3

)
. (3.35)

Eq. (3.31) writes(
[𝒌0] +

𝑛∑︁
𝑖=1
𝜀 𝑋 𝑖 [𝒌𝑖]

) (
𝒖0 + 𝜀𝒖(1)

1

(
𝑿̂
)
+ 𝜀2 𝒖(2)

1

(
𝑿̂
)
+ 𝑜

(
𝜀3

))
= 𝒈 . (3.36)

Since [𝒌0] 𝒖0 = 𝒈, algebraic calculations and polynomial equality leads to

𝒖(1)
1

(
𝑋1, 𝑋2 , ... , 𝑋𝑛

)
= −

𝑛∑︁
𝑖=1

𝑋 𝑖 [𝒌𝑖] 𝒖0 (3.37)
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and

𝒖(2)
1

(
𝑋1, 𝑋2 , ... , 𝑋𝑛

)
= −

𝑛∑︁
𝑗=1
𝑋 𝑗 [𝒌 𝑗 ]𝒖(1)

1

(
𝑋1, 𝑋2 , ... , 𝑋𝑛

)
=

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1
𝑋 𝑖 𝑋 𝑗 [𝒌𝑖] [𝒌 𝑗 ] 𝒖0 .

(3.38)

By replacing Eqs. (3.37) and (3.38) into Eq. (3.35), we get

𝒖
(
𝜀 𝑋1, 𝜀 𝑋2 , ... , 𝜀 𝑋𝑛

)
= 𝒖0 − 𝜀

𝑛∑︁
𝑖=1

𝑋 𝑖 [𝒌𝑖] 𝒖0 + 𝜀2
𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1
𝑋 𝑖 𝑋 𝑗 [𝒌𝑖] [𝒌 𝑗 ] 𝒖0 + 𝑜

(
𝜀3

)
.

(3.39)
Now, let us define 𝒖(1)

1𝑖 (𝑋
𝑖) as the first-order single response resulting from each random

variable 𝑋 𝑖 = 𝜀 𝑋 𝑖 acting independently, 𝒖(1)
1𝑖 (𝑋

𝑖) = −𝑋 𝑖 [𝒌𝑖] 𝒖0. It yields

𝒖
(
𝑋1, 𝑋2 , ... , 𝑋𝑛

)
= 𝒖0 +

𝑛∑︁
𝑖=1

𝒖(1)
1𝑖

(
𝑋 𝑖

)
+

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1
𝑋 𝑖 𝑋 𝑗 [𝒌𝑖] [𝒌 𝑗 ] 𝒖0 + 𝑜

(
𝜀3

)
. (3.40)

If Eq. (3.39) is considered and if the Taylor expansion of 𝒖1 (𝑿) is truncated at the first order,
we get

𝒖
(
𝑋1, 𝑋2 , ... , 𝑋𝑛

)
= 𝒖0 +

𝑛∑︁
𝑖=1

𝒖(1)
1𝑖

(
𝑋 𝑖

)
+ 𝑜

(
𝜀2

)
≈ 𝒖0 +

𝑛∑︁
𝑖=1

𝒖(1)
1𝑖

(
𝑋 𝑖

)
. (3.41)

Eq. (3.41) proves that if 𝜀 (i.e, the randomness of the system) is small enough to approximate
𝒖(𝑿) by means of a first-order polynomial, then Eq. (3.33) is valid and rational functions
describe the relationship between material parameters-related random variables 𝑿 and random
nodal displacements of a structure analyzed by means of FE methods 𝑢𝑙 (𝑿).

In contrast to the paper proposed in [48], Eq. (3.33) will not be used here for numerically
calculating the random response of the system, but this algebraic representation using rational
functions will be used instead of a polynomial representation.

3.3.3 Sentivity of pantographic sheets with respect to local random
pivots-related defects

To fabricate specimens of pantographic sheets, the limitations of 3D printing technology and
the inherent inhomogeneities of the material itself cause random variability in the mechanical
properties. In addition, this type of metamaterial is strongly affected by defects associated with
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pivots. For this reason, let us consider the energy functional (3.21) where the deterministic
parameter 𝑘p is replaced with the random field 𝜃 ↦→ {(𝑿 𝑝 (𝜃), 𝒒) ↦→ 𝜅p(𝑿 𝑝 (𝜃), 𝒒)}, which
is defined as a piecewise random field in the initial configuration B. The random variable
𝑿p = (𝑋1

p , 𝑋
2
p , 𝑋

3
p ) model local pivots-related defects.

Geometry, load, deterministic and random mechanical properties

A pantographic sheet is considered whose dimensions are ℓ1 = 6.8 × 10−2 m and ℓ2 =

2.04× 10−1 m. Three local defects are introduced that are supposed concentrated in the
bidimensional subdomains 𝜌

(
𝑞1
𝑖
, 𝑞2
𝑖

)
of B defined by

𝜌

(
𝑞1
𝑖 , 𝑞

2
𝑖

)
=

{(
𝑞1, 𝑞2

)
∈ B :

��𝑞1 − 𝑞1
𝑖

�� < 1
200

ℓ2 ,
��𝑞2 − 𝑞2

𝑖

�� < 1
200

ℓ2

}
, (3.42)

with 𝑖 = 1,2,3 (see Fig. 3.29) and where the couples (𝑞1
𝑖
, 𝑞2
𝑖
) are defined by(

𝑞1
1, 𝑞

2
1

)
=

(
ℓ2
2
− 𝑠

2
,
ℓ1
2
+ 𝑠

2

)
,

(
𝑞1

2, 𝑞
2
2

)
=

(
ℓ2
3
− 𝑠

2
,
ℓ1
3
− 𝑠

2

)
, (3.43)

(
𝑞1

3, 𝑞
2
3

)
=

(
ℓ2
3
+ 𝑠

2
,
ℓ1
3
+ 𝑠

2

)
, (3.44)

in which s is equal to ℓ2/200. About the boundary conditions, we assume

𝑢1
(
0, 𝑞2

)
= 0m , 𝑢1

(
ℓ2, 𝑞

2
)
= 5.63×10−2 m . (3.45)

Assume the axial and bending stiffnesses as well as the mean value of the torsional stiffness
field to be

𝑘a = 1.34×105 N/m , 𝑘b = 1.92×10−2 Nm , 𝑘̄p = 1.59×102 N/m , (3.46)

which are the values typically selected for polyamide pantographic sheets [33].

Noninformative prior probabilistic model for local random material-related defects

Let 𝒒 ↦→ 𝑟1 (𝒒) and 𝒒 ↦→ 𝑟2 (𝒒) two rectangular functions defined by

𝑟1

(
𝑞1 − 𝑞1

𝑖

2 𝑠

)
=H

(
𝑞1 −

(
𝑞1

1 − 𝑠
))

−H
(
𝑞1 −

(
𝑞1

1 + 𝑠
))
, (3.47)
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𝑟2

(
𝑞2 − 𝑞2

𝑖

2 𝑠

)
=H

(
𝑞2 −

(
𝑞2

1 − 𝑠
))

−H
(
𝑞2 −

(
𝑞2

1 + 𝑠
))
, (3.48)

where 𝑠 is equal to ℓ2/200 and H is the Heaviside function. Rectangular functions (3.47)
and (3.48) allow us to model the random stiffness field 𝜅p as

𝜅p
(
𝑿p, 𝒒

)
= 𝑘̄p

(
1+

3∑︁
𝑖=1

𝑋 𝑖p 𝑟1

(
𝑞1 − 𝑞1

𝑖

2 𝑠

)
𝑟2

(
𝑞2 − 𝑞2

𝑖

2 𝑠

))
, (3.49)

where 𝑿p = (𝑋1
p , 𝑋

2
p , 𝑋

3
p ), 𝒒 = (𝑞1, 𝑞2), 𝑘̄p is the mean values of the torsional random stiffness

field. The symbol 𝑋 𝑖p denotes uniformly distributed random variables on the interval [−1,1]
that are associated with the torsional random defects located in the region 𝜌(𝑞1

𝑖
, 𝑞2
𝑖
).

Deterministic relationship between defected-related random variables and displacements

We build functional relationships between the local horizontal displacements in some points
of the sample and the random variables associated with the torsional random defects located
in the regions 𝜌(𝑞1

𝑖
, 𝑞2
𝑖
) with 𝑖 = 1,2,3 (see Eqs. (3.43)-(3.44)). We choose five points 𝑞 𝑗

with 𝑗=A,B,C,D, and E (see Fig. 3.33 (a)) whose coordinates are(
𝑞1

A, 𝑞
2
A

)
=

(
4.284×10−2 m,6.610×10−3 m

)
, (3.50)(

𝑞1
B, 𝑞

2
B

)
=

(
7.337×10−2 m,4.173×10−2 m

)
, (3.51)(

𝑞1
C, 𝑞

2
C

)
=

(
9.792×10−2 m,1.981×10−2 m

)
, (3.52)(

𝑞1
D, 𝑞

2
D

)
=

(
1.122×10−1 m,6.470×10−2 m

)
, (3.53)

and (
𝑞1

E, 𝑞
2
E

)
=

(
1.448×10−1 m,4.819×10−2 m

)
. (3.54)

Let us consider each random variable 𝑋 𝑖p acting independently. The functional relationships
𝑋 𝑖p ↦→ 𝑢1

𝑗𝑖
(𝑋 𝑖p) are built by solving eleven deterministic finite element models for eleven

different values of 𝑋 𝑖p and then interpolating using rational functions. The use of rational
functions is led by Eq. (3.33). The deterministic numerical analyses are based on standard
energy minimization techniques through the application of the standard FEM packages in
COMSOL Multiphysics®. Regarding accuracy, a free tetrahedral mesh with 8470 domain
elements, 268 boundary elements, 78394 degrees of freedom, and discretization by means of
Argyris polynomials are chosen (see Fig. 3.30). In Fig. 3.31, the logarithm of the specific
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deformation energy obtained for 𝑋 𝑖p = 0 is shown. In Fig. 3.32, the difference between the
horizontal displacements obtained with 𝑋 𝑖p = 0 and the one obtained with only 𝑋1

p different
from zero, 𝑋1

p = 0.8, is shown. It is deduced that one portion of the sample stretches while
another portion contracts. Finally, the relationship (𝑋1

p , 𝑋
2
p , 𝑋

3
p ) ↦→ 𝑢1

𝑗123(𝑋
1
p , 𝑋p2 , 𝑋3

p ) with

Fig. 3.29 Position of defects.

𝑗=A,B,C,D, and E is approximated as

𝑢1
𝑗123

(
𝑋1

p , 𝑋
2
p , 𝑋

3
p

)
≈ −2𝑢1

𝑗0 +
3∑︁
𝑖=1
𝑢1
𝑗𝑖

(
𝑋 𝑖p

)
. (3.55)

where 𝑢1
𝑗0 is equal to 𝑢1

𝑗1(0), which, in turn, is equal to 𝑢1
𝑗2(0) and 𝑢1

𝑗3(0). Eq. (3.55) and
Monte Carlo numerical simulation allow us to approximately estimate the stochastic response
of the system. We call𝑈1

𝑗
the random variable defined by𝑈1

𝑗
= 𝑢1

𝑗123(𝑋
1
p , 𝑋

2
p , 𝑋

3
p ).

Monte Carlo numerical simulation as a stochastic solver

The construction of the probability density functions, mean values, and standard deviations
of the random horizontal displacements affected by local random torsional defects is based
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Fig. 3.30 Chosen mesh.

Fig. 3.31 Logarithm of the deformation energy without defect.
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Fig. 3.32 Difference between the horizontal displacements obtained without defects and
𝑋1

p = 0.8.

Fig. 3.33 Position of the points A, B, C, D, and E.
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on the use of the MC numerical simulation of Eq. (3.55). The steps of the stochastic solver
are as follows.

1. Generation of 𝑛 independent realizations of the uniformly distributed random variables
𝑋 𝑖p (𝜃1), 𝑋 𝑖p (𝜃2) , ... , 𝑋 𝑖p (𝜃𝑛) with 𝑖 = 1,2,3.

2. Computation of 𝑛 independent realizations𝑈1
𝑗
(𝜃1),𝑈1

𝑗
(𝜃2) , ... , 𝑈1

𝑗
(𝜃𝑛) using Eq. (3.55).

3. Computation of the numerical probability density functions 𝑝𝑈1
𝑗
(𝑢1

𝑗
), the mean values

𝜇𝑈1
𝑗
, the standard deviations 𝜎𝑈1

𝑗
, and the coefficients of variation Cv𝑈1

𝑗
of the random

variables𝑈1
𝑗

with 𝑗=A,B,C,D, and E.

Quantification of uncertainty propagation

In Table 3.3, mean values, coefficients of variation, and standard deviations of the random
variables 𝑈1

𝑗
are presented. Then, since we are facing a strongly nonlinear mechanical

problem, the numerical probability density functions 𝑢1
𝑗
↦→ 𝑝𝑈1

𝑗
(𝑢1

𝑗
) of the random variables

𝑈1
𝑗

are built and shown in Fig. 3.34. It is shown that local random torsional defects have very
little impact on the horizontal displacements, although the defect-related random variables
𝑋 𝑖p vary within a significant range [−1,1]. This is due to the redundant connections inside
pantographic sheets, which results in standard deviations of approximately -7. For the same
reason, local standard deviations are not strictly influenced by the distance from the location
of the defects. Counter-intuitively, the standard deviation of the horizontal displacement𝑈1

𝐸
,

denoted by 𝜎𝑈1
𝐸
, is bigger when the defect is placed in 𝑞1 rather than in 𝑞3. A significant

difference between the standard deviations of𝑈1
𝐶

and𝑈1
𝐷

, denoted by 𝜎𝑈1
𝐶

and 𝜎𝑈1
𝐷
, exists

when the defect is located in 𝑞2, although C and D are almost equally distant from the point 𝑞2

itself. The global behavior makes it difficult to predict the region most affected by torsional
defects and to hypothesize the localizations of imperfections for maximizing or minimizing
local standard deviations. A study on this problem will be considered in the future.

Exploring Alternatives in Modeling Random Defects

In this section, random defects have been modeled as uniformly distributed random variables
to maximize the randomness of the system. However, this model can be improved by
incorporating several constraints.

Under the hypothesis of 𝑘𝑎, 𝑘𝑏, and 𝑘𝑠 modeled as random variables 𝐾𝑎, 𝐾𝑏, and 𝐾𝑠, we
assume that 𝐾𝑎, 𝐾𝑏, and 𝐾𝑠 are defined in R+, their mean values E{𝐾𝑎}, E{𝐾𝑏}, and E{𝐾𝑠}
are finite, and log(𝐾𝑎𝐾𝑏𝐾𝑠) is finite for physical consistency. Following the same steps as in
Section 4.2.2, it can be easily proven that 𝐾𝑎, 𝐾𝑏, and 𝐾𝑠 result in statistically independent
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Table 3.3 Mean values 𝜇𝑈1
𝑗
, standard deviations 𝜎𝑈1

𝑗
, and coefficients of variation Cv𝑈1

𝑗
of the

random variables𝑈1
𝑗

with 𝑗=A,B,C,D, and E.

𝜇𝑈1
𝐴

𝜇𝑈1
𝐵

𝜇𝑈1
𝐶

𝜇𝑈1
𝐷

𝜇𝑈1
𝐸

7.64×10−3 m 1.69×10−2 m 2.65×10−2 m 3.21×10−2 m 4.49×10−3 m
𝜎𝑈1

𝐴
𝜎𝑈1

𝐵
𝜎𝑈1

𝐶
𝜎𝑈1

𝐷
𝜎𝑈1

𝐸

3.65×10−7 m 8.08×10−7 m 9.85×10−7 m 6.64×10−7 m 7.21×10−7 m
Cv𝑈1

𝐴
Cv𝑈1

𝐵
Cv𝑈1

𝐶
Cv𝑈1

𝐷
Cv𝑈1

𝐸

4.78×10−3 % 4.78×10−3 % 3.71×10−3 % 2.07×10−3 % 1.60×10−3 %

Gamma-distributed random variables, whose statistical fluctuations are described by a single
parameter.

If 𝑘𝑎, 𝑘𝑏, and 𝑘𝑠 are modeled as random fields {𝒒 ↦→ 𝐾𝑎 (𝒒)}, {𝒒 ↦→ 𝐾𝑏 (𝒒)}, and
{𝒒 ↦→ 𝐾𝑠 (𝒒)}, preserving at 𝒒 the same hypotheses as before, these random fields can be
constructed using the same technique as presented in Section 4.3.2, which requires the
construction of a homogeneous, second-order, non-Gaussian random fields.

Numerous probabilistic models could be proposed for 𝑘𝑎, 𝑘𝑏, and 𝑘𝑠. Here, we have
discussed some of the many possible ones.

3.4 Summarizing the main results

◦ In Section 3.1, the two-parameter shear energy given in [33] has been improved to
precisely represent experimental bias tests on PA and ME pantographic sheets. The
proposed shear energy (see Eq. (3.6)) captures the high changes in concavity in the
force-elongation curve experimentally observed.

◦ Overcoming some issues related to the model proposed in [33] for pantographic sheets,
the torsional energy introduced in Section 3.1 does not have the numerical disadvantage
of an infinite value for the second derivative of the shear energy with respect to the
initial equilibrium configuration.

◦ Although the torsional energy proposed in Section 3.1 has been developed to characterize
the mechanical response of pantographic sheets for monotonic loadings in bias-extension
tests, it is also applicable to model their mechanical behavior under combinations of
shear and axial loadings for which experimental campaigns are currently underway.

◦ For isotropic and linear elastic materials subjected to 3-point flexure, the coupling
between local transverse elongation and flexure induces anticlastic curvatures. The latter
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is described by the Saint-Venant solution [98, 80, 120]. Conversely, second-gradient
materials are governed by strain energies that are more general. In Section 3.2, DVC
analyses have proven that a pantographic block, when subjected to 3-point flexure with
prescribed displacements parallel to the pantographic plane, experiences deformations
are well approximated by a monoclastic mode for the top surface, while the bottom
surface remains essentially flat.

◦ The second-order continuum model introduced and described in Section 3.2 for the
pantographic block exhibits a rather satisfactory agreement with the experimental data,
especially in predicting the displacements and the monoclastic deformation mode.
The model parameters have been globally calibrated using the force vs. stroke curve.
Further kinematic data should be used in the future to calibrate the parameters. A
generalization is expected of the results already described in [49, 55, 103, 59].

◦ In Section 3.2, after investigating the flexural response of a pantographic block with
prescribed displacements in the pantographic plane, it has been natural to explore
its deformation mode with displacements applied in the direction orthogonal to
the pantographic plane. An anticlastic mode has been predicted. This difference
is not unexpected given that the pantographic block is modeled here by second-
order derivatives of displacements along the pantographic planes and first-order
derivatives along its thickness. Further tests are required to confirm these theoretical
results. Additional experimental efforts will examine the dynamic behavior of such
metamaterials (see also [20, 47]).

◦ Large displacements and periodicity of pantographic structures have caused difficulties
in performing DVC analysis. The model-driven initialization of the DVC analyses
has proven to be highly successful in overcoming these problems. The model-driven
initialization of the DVC analysis may also be used when initialization is complicated
by other factors, such as the onset of damage or fracture, by employing more precise
models [148, 105].

◦ Finally, in Section 3.3, the effect of local uncertainties on pantographic sheets has
been investigated. It is shown that a small number of pivot-related imperfections have
negligible influence on the mechanical response of the system. This influence should
increase when the number of defects is increasing.



Chapter 4

Particle-based materials

In Chapter 2, we have dealt with the foundations of generalized continua. Among these, the
micropolar continuum, the micromorphic continuum, the second-gradient continuum, and the
second-gradient-micropolar continuum have been uniformly presented. In Chapter 3, we have
experimentally validated the capability of second-gradient models to predict the mechanical
behavior of pantographic sheets and pantographic blocks, and we have investigated the effects
of pivots-related random defects on the mechanical response of pantographic sheets. This
chapter is composed of sections 4.1, 4.2, and 4.3. Two models for particle-based materials
are presented. The first section is derived from the papers [75, 74], the second from the
paper [72], and the third from a collaboration with Professor Christian. Soize.

4.1 Response and identification of random micropolar
Timoshenko-Ehrenfest beams

In this section, the derivation of the Timoshenko-Ehrenfest beam equations is introduced
within the framework of linear elasticity, starting from the 3D micropolar continuum model
presented in Section 2.1. Two novel closed-form solutions of these equations are proposed
that are useful for a preliminary study on uncertainty propagation. In [99, 117], more complex
deterministic micropolar beam models for lattice beams have been developed. Despite
the advancements in complex 3D numerical calculations, the study of beam theory (1D)
remains highly relevant. Beam theory simplifies structural analysis, offering foundational
insights, efficient computations for limited resources, and fundamental concepts essential
for various practical scenarios. It remains valid in cases where one dimension significantly
dominates, providing accurate results without the need for 3D models. While 3D models
are indispensable for complexity, beam theory continues to serve as a practical and crucial
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tool in understanding basic principles and streamlining analyses for specific engineering
applications.

This section is organized as follows. In Subsection 4.1.1, the Timoshenko-Ehrenfest beam
equations are derived for the micropolar continuum within the framework of linear elasticity.
Under the assumption of continuously varying material properties along the axis, we propose
three approximated closed-form solutions. Typically, with such material properties, beams
are referred to as axially functionally graded beams [69, 119]. Subsection 4.1.2 deals with
these mechanical properties that are modeled by random fields and constitute a preliminary
study for the uncertainty propagation using a noninformative prior probability model. The
proposed results also find application in the analysis of step beams [88, 39].

Notation

Below 𝑖 is an integer belonging to {1,2,3} and 𝑗 is an integer belonging to R.

A lowercase letter such as 𝑥, 𝜂, 𝑢 is a real deterministic variable except when used as
an integer as 𝑖, 𝑗 , etc.

An upper case letter such us 𝑋 , 𝐻,𝑈 is a real random variable except when used as an
integer index as 𝐴, 𝐵, etc.

1𝐵: indicator function of a set 𝐵.

Tr (𝐴): trace of a matrix 𝐴.

∥𝐴∥: Frobenius norm of a matrix 𝐴.

H : Heaviside function.

𝑓 (𝑘): function whose 𝑘-th derivative is function 𝑓 .

𝑥, 𝑦, 𝑧: Lagrangian coordinates.

𝑣𝑖: component 𝑖 of the local displacement field 𝑣.

𝜙𝑖: component 𝑖 of the local microrotation field 𝜙.

𝑄: microrotation tensor.

𝑢: beam transversal displacement field.
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𝑤: beam horizontal displacement field.

𝜑: beam rotation field.

𝑓 : externally applied axial load.

𝑞: externally applied transversal load.

𝜀: linearized strain tensor.

Ω: linearized macrorotation tensor.

𝔎: linearized wryness tensor.

𝜄: deterministic moment of beams inertia.

𝜎: deterministic area of the beams cross-section.

4.1.1 Micropolar Timoshenko-Ehrenfest beam equations

Deformation energy for the linear micropolar continuum

Within the framework of the linear micropolar continuum, under the hypothesis of isotropy
with respect to the stretch and wryness tensors, the deformation energy density is written as

𝑊def (𝜀, 𝔨) = 𝜆𝐸
2

(Tr (𝜀))2 + 𝜇𝐸 ∥𝑆𝜀∥2 + 𝜉R ∥𝐴𝜀∥2

+𝜆Γ
2

(Tr (𝔨))2 +
(
𝜇Γ + 𝜉Γ

2

)
∥𝑆𝔨∥2 +

(
𝜇Γ − 𝜉Γ

2

)
∥𝐴𝔨∥2

(4.1)

where 𝜀 is the linearized form of the micropolar stretch tensor defined in Eq. (2.11), and 𝔨

is the linearized form of the micropolar wryness tensor defined in Eq. (2.13). The stiffness
fields 𝑧 ↦→ 𝜆𝐸 (𝑧) and 𝑧 ↦→ 𝜇𝐸 (𝑧) defines the Lamé parameters. The stiffness field 𝑧 ↦→ 𝜉R (𝑧)
stands for the material parameter related to the micro-macro relative rotation, and the stiffness
fields 𝑧 ↦→ 𝜆Γ (𝑧) and 𝑧 ↦→ 𝜇Γ (𝑧) define the material parameters related to wryness tensor.
The pre-subscripts 𝑆 and 𝐴 distinguish the symmetric and skewsymmetric parts of 𝜀 and
𝔨. On the one hand, micropolar stretch tensor 𝜀 depends on the local displacement 𝑣
and on the microrotation tensor 𝑄. On the other hand, wryness tensor 𝔨 depends on the
gradient of microrotation field 𝑄. We denote by 𝜙(𝑥, 𝑦, 𝑧) the axial vector associated with the
skewsymmetric part 𝐴𝑄(𝑥, 𝑦, 𝑧) of 𝑄(𝑥, 𝑦, 𝑧), 𝜙(𝑥, 𝑦, 𝑧) = axl(𝐴𝑄(𝑥, 𝑦, 𝑧)). We refer to 𝜙 as
the local microrotation field.
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Defining the deterministic micropolar beam model

Within the framework of the micropolar continuum and Timoshenko-Ehrenfest beam, it
is natural to approximate the local displacement field components 𝑣𝑖 (𝑥, 𝑦, 𝑧) and the local
microrotation field components 𝜙𝑖 (𝑥, 𝑦, 𝑧) as below,

𝑣1(𝑥, 𝑦, 𝑧) = 0 , 𝑣2(𝑥, 𝑦, 𝑧) = 𝑢(𝑧) , 𝑣3(𝑥, 𝑦, 𝑧) = 𝑤(𝑧) + 𝑦 𝜑(𝑧) , (4.2)

𝜙1(𝑥, 𝑦, 𝑧) = 𝜑(𝑧) , 𝜙2(𝑥, 𝑦, 𝑧) = 0 , 𝜙3(𝑥, 𝑦, 𝑧) = 0 , (4.3)

where 𝑧 ↦→ 𝑤 (𝑧) and 𝑧 ↦→ 𝑢 (𝑧) are the beam axial and transversal displacement fields,
𝑧 ↦→ 𝜑 (𝑧) denotes the beam microrotation field. By replacing Eqs. (4.2) and (4.3) into
Eq. (4.1), and by evaluating the first variation, yield the equilibrium equations of the
micropolar Timoshenko-Ehrenfest beams in the area of linear elasticity. We get

𝑑

𝑑𝑧

(
𝑒 (𝑧)𝜎𝑑𝑤 (𝑧)

𝑑𝑧

)
+ 𝑓 (𝑧) = 0 , (4.4)

𝑑

𝑑𝑧

[
𝑔̄ (𝑧)𝜎

(
𝑑𝑢 (𝑧)
𝑑𝑧

+𝜑 (𝑧)
)]

+ 𝑞 (𝑧) = 0 , (4.5)

𝑑

𝑑𝑧

[
(𝑐 (𝑧)𝜎 + 𝑒 (𝑧) 𝜄) 𝑑𝜑 (𝑧)

𝑑𝑧

]
− 𝑔̄ (𝑧)𝜎

(
𝑑𝑢 (𝑧)
𝑑𝑧

+𝜑 (𝑧)
)
= 0 , (4.6)

with the boundary conditions[
𝑒 (𝑧)𝜎𝑑𝑤 (𝑧)

𝑑𝑧
𝛿𝑤 (𝑧)

]ℓ
0
= 0 ,

[
𝑔̄ (𝑧)𝜎

(
𝑑𝑢 (𝑧)
𝑑𝑧

+𝜑 (𝑧)
)
𝛿𝑢 (𝑧)

]ℓ
0
= 0 , (4.7)

[
(𝑐 (𝑧)𝜎 + 𝑒 (𝑧) 𝜄) 𝑑𝜑 (𝑧)

𝑑𝑧
𝛿𝜑 (𝑧)

]ℓ
0
= 0 , (4.8)

where 𝑧 ↦→ 𝑓 (𝑧) and 𝑧 ↦→ 𝑞 (𝑧) are the axial and transversal external loads, 𝜎 is the beam
area, 𝜄 is the beam moment of inertia, and ℓ the beam length. The stiffness fields 𝑧 ↦→ 𝑒 (𝑧)
and 𝑧 ↦→ 𝑔̄ (𝑧) are defined by

𝑒 (𝑧) = 𝑒 (𝑧) 𝜂 (𝑧) , 𝑔̄ (𝑧) = 𝑔 (𝑧) + 𝜉R (𝑧) , 𝑐(𝑧) = 𝜇Γ (𝑧) /2 , (4.9)

where 𝑒 (𝑧) is the Young modulus and 𝑔 (𝑧) is the shear deformation modulus at 𝑧. It is
natural to refer to 𝑒 (𝑧) as the generalized Young modulus at 𝑧, to 𝑔̄ (𝑧) as the generalized
shear deformation modulus at 𝑧, and to 𝑐 (𝑧) as the generalized micropolar modulus at 𝑧.
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Since 𝜆𝐸 (𝑧) and 𝜇𝐸 (𝑧) are the classical Lamé parameters at 𝑧, we have

𝜇𝐸 (𝑧) = 𝑔 (𝑧) , 𝜆𝐸 (𝑧) =
𝜈 (𝑧) 𝑒 (𝑧)

(1+ 𝜈 (𝑧)) (1−2𝜈 (𝑧)) , (4.10)

where 𝜈 (𝑧) is the Poisson coefficient at 𝑧. The field 𝑧 ↦→ 𝜂 (𝑧) is defined by

𝜂 (𝑧) = 1− 𝜈 (𝑧)
(1+ 𝜈 (𝑧)) (1−2𝜈 (𝑧)) . (4.11)

The shear stiffness at 𝑧, 𝑔̄ (𝑧)𝜎, can be divided by a parameter 𝜒 (𝑧), known as the shear
correction factor, although this is not a direct result of the monodimensional approximation
of Eq. (4.1). More generally, one can introduce an axial stiffness field 𝑧 ↦→ 𝑎 (𝑧), a bending
stiffness field 𝑧 ↦→ 𝑏 (𝑧), and a shear stiffness field 𝑧 ↦→ 𝑡 (𝑧). The micropolar Timoshenko-
Ehrenfest beam equations are then rewritten as

𝑑

𝑑𝑧

(
𝑎 (𝑧) 𝑑𝑤 (𝑧)

𝑑𝑧

)
+ 𝑓 (𝑧) = 0 , (4.12)

𝑑

𝑑𝑧

[
𝑡 (𝑧)

(
𝑑𝑢 (𝑧)
𝑑𝑧

+𝜑 (𝑧)
)]

+ 𝑞 (𝑧) = 0 , (4.13)

𝑑

𝑑𝑧

[
𝑏 (𝑧) 𝑑𝜑 (𝑧)

𝑑𝑧

]
− 𝑡 (𝑧)

(
𝑑𝑢 (𝑧)
𝑑𝑧

+𝜑 (𝑧)
)
= 0 , (4.14)

with the boundary conditions[
𝑎 (𝑧) 𝑑𝑤 (𝑧)

𝑑𝑧
𝛿𝑤 (𝑧)

]ℓ
0
= 0 ,

[
𝑡 (𝑧)

(
𝑑𝑢 (𝑧)
𝑑𝑧

+𝜑 (𝑧)
)
𝛿𝑢 (𝑧)

]ℓ
0
= 0 , (4.15)

[
𝑏 (𝑧) 𝑑𝜑 (𝑧)

𝑑𝑧
𝛿𝜑 (𝑧)

]ℓ
0
= 0 , (4.16)

where
𝑎 (𝑧) = 𝑒 (𝑧)𝜎 , 𝑏 (𝑧) = 𝑐 (𝑧)𝜎 + 𝑒 (𝑧) 𝜄 , 𝑡 (𝑧) = 𝑔̄ (𝑧)𝜎

𝜒(𝑧) . (4.17)

On the one hand, if 𝑒 (𝑧) and 𝑐 (𝑧) have the same order of magnitude, for microbeams, the
magnitude of the moment of inertia 𝜄 is negligible in comparison to that of area 𝜎. We have

𝑏 (𝑧) = 𝑐 (𝑧)𝜎 + 𝑒 (𝑧) 𝜄 ≈ 𝑐 (𝑧)𝜎 . (4.18)
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On the other hand, for macrobeams, we get

𝑏 (𝑧) = 𝑐 (𝑧)𝜎 + 𝑒 (𝑧) 𝜄 ≈ 𝑒 (𝑧) 𝜄 . (4.19)

These remarks imply that the introduced model, despite its simplicity, can capture scale
effects. It predicts an increasing bending stiffness by decreasing the dimensions of the
cross-section with respect to the classical models.

Approximated closed-form solutions

Following are closed-form relationships between displacements 𝑤 (𝑧) and 𝑢 (𝑧), and axial,
bending, and shear stiffness 𝑎 (𝑧), 𝑏 (𝑧), and 𝑡 (𝑧). These relationships can be considered as
an approximation of the solution of the system of equations (4.12), (4.13), and (4.14) with
the boundary conditions (4.15) and (4.16). The stiffness fields are stepwise defined by means
of the Heaviside function H as follows,

𝑎 (𝑧) ≈ 𝑎̂1 +
𝑛∑︁
𝑖=2

(𝑎̂𝑖 − 𝑎̂𝑖−1)H (𝑧− 𝑧𝑖) , (4.20)

𝑏 (𝑧) ≈ 𝑏̂1 +
𝑛∑︁
𝑖=2

(
𝑏̂𝑖 − 𝑏̂𝑖−1

)
H (𝑧− 𝑧𝑖) , (4.21)

𝑡 (𝑧) ≈ 𝑡̂1 +
𝑛∑︁
𝑖=2

(̂
𝑡𝑖 − 𝑡̂𝑖−1

)
H (𝑧− 𝑧𝑖) , (4.22)

where 𝑛 is the number of intervals and 𝑧𝑖 = 𝑧𝑖−1 + ℓ/𝑛 with 𝑧1 = 0. In the following, given a
generic function 𝑓 : 𝑧 ↦→ 𝑓 (𝑧), the symbol 𝑓 (𝑖) represents a function whose 𝑖-th derivative is
𝑓 .

Simply supported micropolar beams

The integration of Eq. (4.13) with respect to z yields

𝑡 (𝑧)
(
𝑑𝑢 (𝑧)
𝑑𝑧

+𝜑 (𝑧)
)
= −𝑞 (1) (𝑧) + 𝑘1 . (4.23)

By adding Eq. (4.23) to Eq. (4.14), we obtain

𝑑

𝑑𝑧

[
𝑏 (𝑧) 𝑑𝜑 (𝑧)

𝑑𝑧

]
= −𝑞 (1) (𝑧) + 𝑘1 . (4.24)
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Eq. (4.24) can be integrated to obtain

𝑑𝜑 (𝑧)
𝑑𝑧

=
−𝑞 (2) (𝑧) + 𝑘1 𝑧+ 𝑘2

𝑏(𝑧) . (4.25)

Replacing Eq. (4.21) into Eq. (4.25), it can be written as

𝑑𝜑 (𝑧)
𝑑𝑧

≈ −𝑞 (2) (𝑧1) + 𝑘1 𝑧1 + 𝑘2

𝑏̂1
+

𝑛∑︁
𝑖=2

(
−𝑞 (2) (𝑧𝑖) + 𝑘1𝑧𝑖 + 𝑘2

𝑏̂𝑖

−−𝑞
(2) (𝑧𝑖−1) + 𝑘1𝑧𝑖−1 + 𝑘2

𝑏̂𝑖−1

)
H (𝑧− 𝑧𝑖) . (4.26)

Since for a simply supported beam, two of the four boundary conditions are

𝑑𝜑 (𝑧)
𝑑𝑧

����
𝑧=0

= 0 ,
𝑑𝜑 (𝑧)
𝑑𝑧

����
𝑧=ℓ

= 0 , (4.27)

we get also

𝑘1 =
𝑞 (2) (ℓ)
ℓ

, 𝑘2 = 0 . (4.28)

To shorten the equations writing, it is useful to introduce the function

𝑞 (2) (𝑧) = −𝑞 (2) (𝑧) + 𝑞
(2) (ℓ)
ℓ

𝑧 . (4.29)

Eqs. (4.26), (4.28), and (4.29) lead to

𝑑𝜑 (𝑧)
𝑑𝑧

≈ 𝑞 (2) (𝑧1)
𝑏̂1

+
𝑛∑︁
𝑖=2

(
𝑞 (2) (𝑧𝑖)
𝑏̂𝑖

− 𝑞
(2) (𝑧𝑖−1)
𝑏̂𝑖−1

)
H (𝑧− 𝑧𝑖) (4.30)

that can be integrated to give:

𝜑 (𝑧) ≈ 𝑘3 +
𝑞 (2) (𝑧1)
𝑏̂1

𝑧+
𝑛∑︁
𝑖=2

(
𝑞 (2) (𝑧𝑖)
𝑏̂𝑖

− 𝑞
(2) (𝑧𝑖−1)
𝑏̂𝑖−1

)
R (𝑧− 𝑧𝑖) , (4.31)

where R (𝑧) is the generalized 1-th order Ramp function, which is defined as follows:

R (𝑧− 𝑧𝑖) =
{

0 , 𝑧 ≤ 𝑧𝑖 ,
𝑧− 𝑧𝑖 , 𝑧 > 𝑧𝑖 ,

(4.32)
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Replacing Eq. (4.31) into Eq. (4.23) yields

𝑑𝑢 (𝑧)
𝑑𝑧

≈ −𝑘3 +
𝑞 (1) (𝑧1)
𝑡̂1

+
𝑛∑︁
𝑖=2

(
𝑞 (1) (𝑧𝑖)
𝑡̂𝑖

− 𝑞
(1) (𝑧𝑖−1)
𝑡̂𝑖−1

)
H (𝑧− 𝑧𝑖)

−𝑞
(2) (𝑧1)
𝑏̂1

𝑧−
𝑛∑︁
𝑖=2

(
𝑞 (2) (𝑧𝑖)
𝑏̂𝑖

− 𝑞
(2) (𝑧𝑖−1)
𝑏̂𝑖−1

)
R (𝑧− 𝑧𝑖) .

(4.33)

Eq. (4.33) can be integrated and an explicit expression of the transversal displacement is
achieved,

𝑢 (𝑧) ≈ −𝑘3𝑧+ 𝑘4 +
𝑞 (1) (𝑧1)
𝑡̂1

𝑧+
𝑛∑︁
𝑖=2

(
𝑞 (1) (𝑧𝑖)
𝑡̂𝑖

− 𝑞
(1) (𝑧𝑖−1)
𝑡̂𝑖−1

)
R (𝑧− 𝑧𝑖)

−𝑞
(2) (𝑧1)
𝑏̂1

𝑧2

2
−

𝑛∑︁
𝑖=2

(
𝑞 (2) (𝑧𝑖)
𝑏̂𝑖

− 𝑞
(2) (𝑧𝑖−1)
𝑏̂𝑖−1

)
Q (𝑧− 𝑧𝑖) ,

(4.34)

where Q denotes the 2-th order ramp function defined by

Q (𝑧− 𝑧𝑖) =
{

0 , 𝑧 ≤ 𝑧𝑖 ,
(𝑧−𝑧𝑖)2

2 , 𝑧 > 𝑧𝑖 .
(4.35)

Since we are dealing with a simply supported beam, we have

𝑢 (𝑧) = 0 , 𝑢 (ℓ) = 0 , (4.36)

and the integration constant 𝑘3 is given by

𝑘3 =
1
ℓ

[
𝑞 (1) (𝑧1)
𝑡̂1

ℓ +
𝑛∑︁
𝑖=2

(
𝑞 (1) (𝑧𝑖)
𝑡̂𝑖

− 𝑞
(1) (𝑧𝑖−1)
𝑡̂𝑖−1

)
R (ℓ− 𝑧𝑖)

]
+1
ℓ

[
−𝑞

(2) (𝑧1)
𝑏̂1

ℓ2

2
−

𝑛∑︁
𝑖=2

(
𝑞 (2) (𝑧𝑖)
𝑏̂𝑖

− 𝑞
(2) (𝑧𝑖−1)
𝑏̂𝑖−1

)
Q (ℓ− 𝑧𝑖)

]
,

(4.37)

while the integration constant 𝑘4 is equal to zero. In the same way, it is possible to solve
the differential equation governing the axial behavior. By integrating twice Eq. (4.12) with
respect to z, we get

𝑤 (𝑧) ≈ −𝑘1𝑧+ 𝑘2 −
𝑓 (1) (𝑧1)
𝑎̂1

𝑧−
𝑛∑︁
𝑖=2

(
𝑓 (1) (𝑧𝑖)
𝑎̂𝑖

− 𝑓 (1) (𝑧𝑖−1)
𝑎̂𝑖−1

)
R (𝑧− 𝑧𝑖) . (4.38)
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The constants 𝑘1 and 𝑘2 are calculated by using the boundary conditions,

𝑤 (0) = 0 , 𝑤 (ℓ) = 0 . (4.39)

We obtain

𝑘2 = 0 , 𝑘1 =
1
ℓ

[
− 𝑓

(1) (𝑧1)
𝑎̂1

ℓ−
𝑛∑︁
𝑖=2

(
𝑓 (1) (𝑧𝑖)
𝑎̂𝑖

− 𝑓 (1) (𝑧𝑖−1)
𝑎̂𝑖−1

)
R (ℓ− 𝑧𝑖)

]
. (4.40)

Cantilever micropolar beams

The boundary conditions for a cantilever beam are written as

𝑢 (0) = 0 , 𝜑 (0) = 0 ,
𝑑𝜑 (𝑧)
𝑑𝑧

����
𝑧=ℓ

= 0 ,
𝑑𝑢 (𝑧)
𝑑𝑧

+𝜑 (𝑧)
����
𝑧=ℓ

= 0 . (4.41)

The procedures outlined in Subsection 4.1.1 is repeated. The the transversal displacement is
given by

𝑢 (𝑧) ≈ 𝑞 (1) (𝑧1)
𝑡̂1

𝑧+
𝑛∑︁
𝑖=2

(
𝑞 (1) (𝑧𝑖)
𝑡̂𝑖

− 𝑞
(1) (𝑧𝑖−1)
𝑡̂𝑖−1

)
R (𝑧− 𝑧𝑖)

−𝑞
(2) (𝑧1)
𝑏̂1

𝑧2

2
−

𝑛∑︁
𝑖=2

(
𝑞 (2) (𝑧𝑖)
𝑏̂𝑖

− 𝑞
(2) (𝑧𝑖−1)
𝑏̂𝑖−1

)
Q (𝑧− 𝑧𝑖) ,

(4.42)

where, in this case, 𝑞 (2) (𝑧) is defined by

𝑞 (2) (𝑧) = −𝑞 (2) (𝑧) + 𝑞 (1) (ℓ) 𝑧+ 𝑞 (2) (ℓ) − 𝑞 (1) (ℓ) ℓ . (4.43)

Similar relationships to those presented in Eqs. (4.34) and (4.42) can be also derived under
different constraint conditions.

4.1.2 Random solution of micropolar Timoshenko-Ehrenfest beam
model with material uncertainties in the application framework

In this section, the random fields are defined on a probability space (Θ,T ,P), and any element
of Θ is denoted by 𝜃. The deterministic fields 𝑒 : 𝑧 ↦→ 𝑒 (𝑧), 𝑔̄ : 𝑧 ↦→ 𝑔̄ (𝑧), and 𝑐 : 𝑧 ↦→ 𝑐 (𝑧) are
modeled by the random fields 𝐸̄ : 𝜃 ↦→

{
𝑧 ↦→ 𝐸̄ (𝑧, 𝜃)

}
, 𝐺̄ : 𝜃 ↦→ {𝑧 ↦→ 𝐺̄ (𝑧, 𝜃)}, and 𝐶 : 𝜃 ↦→

{𝑧 ↦→ 𝐶 (𝑧, 𝜃)}. Hence, the axial stiffness 𝑎 : 𝑧 ↦→ 𝑎 (𝑧), the bending stiffness 𝑏 : 𝑧 ↦→ 𝑏 (𝑧),
and the shear stiffness 𝑡 : 𝑧 ↦→ 𝑡 (𝑧) are modeled by the random fields 𝐴 : 𝜃 ↦→ {𝑧 ↦→ 𝐴 (𝑧, 𝜃)},
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𝐵 : 𝜃 ↦→ {𝑧 ↦→ 𝐵 (𝑧, 𝜃)}, and 𝑇 : 𝜃 ↦→ {𝑧 ↦→ 𝑇 (𝑧, 𝜃)}. We assume that these fields are stepwise
random functions defined into five intervals whose steps are identified by the coordinates
𝑧̂2 = ℓ/5, 𝑧̂3 = 𝑧̂2 + ℓ/5, 𝑧̂4 = 𝑧̂3 + ℓ/5, and 𝑧̂5 = 𝑧̂4 + ℓ/5,

𝐸̄ (𝑧) = 𝐸̄1 +
5∑︁
𝑖=2

(
𝐸̄𝑖 − 𝐸̄𝑖−1

)
H (𝑧− 𝑧̂𝑖) , (4.44)

𝐺̄ (𝑧) = 𝐺̄1 +
5∑︁
𝑖=2

(
𝐺̄𝑖 − 𝐺̄𝑖−1

)
H (𝑧− 𝑧̂𝑖) , (4.45)

𝐶 (𝑧) = 𝐶1 +
5∑︁
𝑖=2

(𝐶𝑖 −𝐶𝑖−1)H (𝑧− 𝑧̂𝑖) . (4.46)

We define 𝐵̄𝑖 = 𝐸̄𝑖 𝜄+𝐶𝑖𝜎 and 𝑇𝑖 = 𝐺̄𝑖𝜎/𝜒 with 𝑖 = 1,2 , ... , 5, and consequently,

𝐵 (𝑧) = 𝐵1 +
5∑︁
𝑖=2

(𝐵𝑖 −𝐵𝑖−1)H (𝑧− 𝑧̂𝑖)

= 𝐵1 +
𝑛∑︁
𝑖=2

(
𝐵𝑖 −𝐵𝑖−1

)
H (𝑧− 𝑧𝑖) ,

(4.47)

𝑇 (𝑧) = 𝑇1 +
5∑︁
𝑖=2

(𝑇𝑖 −𝑇𝑖−1)H (𝑧− 𝑧̂𝑖)

= 𝑇1 +
𝑛∑︁
𝑖=2

(
𝑇𝑖 −𝑇𝑖−1

)
H (𝑧− 𝑧𝑖) ,

(4.48)

where 𝑛 = 100. The displacement fields 𝑤 : 𝑧 ↦→ 𝑤 (𝑧) and 𝑢 : 𝑧 ↦→ 𝑢 (𝑧) are replaced with
the random displacement fields 𝑊 : 𝜃 ↦→ {𝑧 ↦→𝑊 (𝑧, 𝜃)} and 𝑈 : 𝜃 ↦→ {𝑧 ↦→𝑈 (𝑧, 𝜃)}. Our
problem consists in estimating the probability density functions (pdfs) of the random variables
𝑊 (𝑧) and𝑈 (𝑧) given the prior pdfs of 𝐸̄𝑖, 𝐺̄𝑖 and 𝐶𝑖, and viceversa.

Noninformative prior probabilistic model for random material parameters

We suppose that 𝐸̄1, 𝐸̄2 , ... , 𝐸̄5 are independent positive-valued random variables whose
prior probability density functions defined by

𝑝𝐸̄𝑖
(𝑒𝑖) =

1R+ (𝑒𝑖) 1√
2𝜋𝜎𝐸̄𝑖

exp
{
− 1

2𝜎2
𝐸̄𝑖

(
𝑒𝑖 −𝑚𝐸̄𝑖

)2
}

∫ +∞
0

1√
2𝜋𝜎𝐸̄𝑖

exp
{
− 1

2𝜎2
𝐸̄𝑖

(
𝑒𝑖 −𝑚𝐸̄𝑖

)2
}
𝑑𝑒𝑖

, (4.49)
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where 𝜎𝐸̄𝑖
and 𝑚𝐸̄𝑖

are the standard deviations and mean values of 𝐸̄𝑖. In the same way,
we suppose that 𝐺̄1, 𝐺̄2 , ... , 𝐺̄5 and 𝐶1, 𝐶2 , ... ,𝐶5 are independent positive-valued random
variables whose prior probability density functions are defined by

𝑝𝐺̄𝑖
(𝑔̄𝑖) =

1R+ (𝑔̄𝑖) 1√
2𝜋𝜎𝐺̄𝑖

exp
{
− 1

2𝜎2
𝐺̄𝑖

(
𝑔̄𝑖 −𝑚𝐺̄𝑖

)2
}

∫ +∞
0

1√
2𝜋𝜎𝐺̄𝑖

exp
{
− 1

2𝜎2
𝐺̄𝑖

(
𝑔̄𝑖 −𝑚𝐺̄𝑖

)2
}
𝑑𝑔̄𝑖

, (4.50)

𝑝𝐶𝑖
(𝑐𝑖) =

1R+ (𝑐𝑖) 1√
2𝜋𝜎𝐶𝑖

exp
{
− 1

2𝜎2
𝐶𝑖

(
𝑐𝑖 −𝑚𝐶𝑖

)2
}

∫ +∞
0

1√
2𝜋𝜎𝐶𝑖

exp
{
− 1

2𝜎2
𝐶𝑖

(
𝑐𝑖 −𝑚𝐶𝑖

)2
}
𝑑𝑐𝑖

, (4.51)

where 𝜎𝐺̄𝑖
and 𝑚𝐺̄𝑖

are the standard deviations and mean values of 𝐺̄𝑖, and 𝜎𝐶𝑖
and 𝑚𝐶𝑖

are
the standard deviations and mean values of 𝐶𝑖. Assuming that the random variables 𝐸̄𝑖, 𝐺̄𝑖,
and 𝐶𝑖 are independent, the prior model of the joint probability density function of 𝐸̄𝑖, 𝐺̄𝑖,
and 𝐶𝑖 is written as

𝑝𝐸̄𝑖𝐺̄𝑖𝐶𝑖
(𝑒𝑖, 𝑔̄𝑖, 𝑐𝑖) = 𝑝𝐸̄𝑖

(𝑒𝑖) 𝑝𝐺̄𝑖
(𝑔̄𝑖) 𝑝𝐶𝑖

(𝑐𝑖) . (4.52)

Geometry, load, deterministic and random mechanical properties

Simply supported and clamped macro and microbeams are studied in the following. The values
of the geometry parameters are 𝑑macro

1 = 3×10−1 m, 𝑑macro
2 = 6×10−1 m, and ℓmacro = 5𝑑macro

2
and 𝑑micro

1 = 3× 10−6 m, 𝑑micro
2 = 6× 10−6 m, and ℓmicro = 5𝑑micro

2 , where 𝑑macro
1 and 𝑑micro

1
denote the thickness of cross-sections, 𝑑macro

2 and 𝑑micro
2 denote the bases of cross-sections,

and ℓmacro and ℓmicro the length of the beams. Concerning the means values and standard
deviations of 𝐸̄𝑖, 𝐺̄𝑖, and 𝐶𝑖, we refer to Tables 1 and 2, where the following reference values
are chosen

𝜇𝐸̄𝑟
= 1.76×1011 Pa , 𝜇𝐺̄𝑟

= 6.7692×1010 Pa , 𝜇𝐶𝑟
= 8.6×1010 N . (4.53)

The applied external load is 𝑞(𝑧) = 1×106 N/m for microbeams and 𝑞(𝑧) = 1×103 N/m for
microbeams. The shear correction factor 𝜒 is chosen equal to 1 for simplicity.

Stochastic solver

The stochastic solver used is based on the Monte Carlo numerical simulation method. The
steps of this stochastic are defined below.
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Table 4.1 Dimensionless mean values of the random variables 𝐸̄𝑖, 𝐺̄𝑖, 𝐶̄𝑖 with 𝑖 = 1,2 , ... , 5.

𝜇𝐸̄1/𝜇𝐸̄𝑟
𝜇𝐸̄2/𝜇𝐸̄𝑟

𝜇𝐸̄3/𝜇𝐸̄𝑟
𝜇𝐸̄4/𝜇𝐸̄𝑟

𝜇𝐸̄5
/𝜇𝐸̄𝑟

2.5 % 1 % 2 % 1.5 % 2.5 %
𝜇𝐺̄1

/𝜇𝐺̄𝑟
𝜇𝐺̄2

/𝜇𝐺̄𝑟
𝜇𝐺̄3

/𝜇𝐺̄𝑟
𝜇𝐺̄4

/𝜇𝐺̄𝑟
𝜇𝐺̄5

/𝜇𝐺̄𝑟

2.5 % 1 % 2 % 1.5 % 2.5 %
𝜇𝐶1/𝜇𝐶𝑟

𝜇𝐶2/𝜇𝐶𝑟
𝜇𝐶3/𝜇𝐶𝑟

𝜇𝐶4/𝜇𝐶𝑟
𝜇𝐶5/𝜇𝐶𝑟

2.5 % 1 % 2 % 1.5 % 2.5 %

Table 4.2 Coefficients of variation Cv𝐸̄𝑖
, Cv𝐺̄𝑖

, and Cv𝐶𝑖
of the random variables 𝐸̄𝑖, 𝐺̄𝑖, and

𝐶𝑖 with 𝑖=1,2 , ... , 5.

Cv𝐸̄1 Cv𝐸̄2 Cv𝐸̄3 Cv𝐸̄4 Cv𝐸̄5
0.9 0.8 0.85 0.9 0.95
Cv𝐺̄1

Cv𝐺̄2
Cv𝐺̄3

Cv𝐺̄4
Cv𝐺̄5

0.9 0.8 0.85 0.9 0.95
Cv𝐶1 Cv𝐶2 Cv𝐶3 Cv𝐶4 Cv𝐶5

0.9 0.8 0.85 0.9 0.95

1. Generation of 𝑚 independent realizations 𝑋𝑖 (𝜃1), 𝑋𝑖 (𝜃2) , ... , 𝑋𝑖 (𝜃𝑚) of the random
variables 𝑋𝑖 using the probability distributions defined in Eq. (4.52) in which 𝑋𝑖 =(
𝐸̄𝑖, 𝐺̄𝑖, 𝐶̄𝑖

)
.

2. Computation of𝑚 independent realizations𝑈 (𝜃1),𝑈 (𝜃2) , ... , 𝑈 (𝜃𝑚) using Eqs. (4.34)
and (4.42) for both micro and macrobeams.

3. Estimation of the pdfs of the quantities of interest that are limited to the displacements
at points 𝑧̃𝑖, with 𝑖 = 1,2 , ... , 10, such that 0 < 𝑧̃1 < 𝑧̃6 < 𝑧̂1, 𝑧̂1 < 𝑧̃2 < 𝑧̃7 < 𝑧̂2, 𝑧2 < 𝑧̃3 <

𝑧̃8 < 𝑧̂4, 𝑧4 < 𝑧̃4 < 𝑧̃9 < 𝑧̂5, and 𝑧̂5 < 𝑧̃5 < 𝑧̃10 < ℓ. Using the realizations computed in
step 2, the probability density functions of the displacements𝑈𝑖 = 𝑢 (𝑋1, 𝑋2, ... , 𝑋5, 𝑧̃𝑖)
with 𝑖 = 1,2 , ... , 10 have been estimated with the Kernel Density Estimation (KDE)
method from nonparametric statistics.

The same steps are adapted for the solution of the inverse problem, which consists in giving
the pdfs of the displacements in several points of the beam axis and in estimating the pdfs of
the material parameters in the same points.

Uncertainty propagation

For the simply supported micropolar macrobeams, simply supported micropolar microbeams,
cantilever micropolar macrobeams, and cantilever micropolar microbeams, we show in



4.1 Response and identification of random micropolar Timoshenko-Ehrenfest beams 103

Fig. 4.1 the probability density functions (pdfs) of the vertical displacements obtained in the
4-th interval of the beams denoted by𝑈4. The pdfs are estimated by using the realizations
computed with the Monte Carlo (MC) simulation method and the kernel density estimation
(KDE) method. Once the direct problem is solved, starting from the pdfs of the displacements,
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Fig. 4.1 Graph 𝑢4 ↦→ 𝑝𝑈4 (𝑢4) of the pdf of𝑈4 obtained for (a) simply supported macrobeam
(b) simply supported microbeam (c) cantilever macrobeam (d) cantilever microbeam. The
pdfs have been built by means of MC numerical simulations and the KDE method. The
random variable𝑈4 model the displacement at 𝑧̃4 = 3ℓ/5+1/9ℓ/5 of the 4-th interval of the
beams.

the pdfs of 𝐵𝑖 and 𝑇𝑖 are derived. As shown in Fig. 4.2, by recalling that 𝐵𝑖 = 𝐸̄𝑖 𝜄+𝐶𝑖𝜎 and
𝑇𝑖 = 𝐺̄𝑖𝜎/𝜒, we can conclude that

◦ if a macrobeam is analyzed, the pdf of 𝐵𝑖/𝜄 approximates the pdf of 𝐸̄𝑖;

◦ if a microbeam is analyzed, the pdf of 𝐵𝑖/𝜎 approximates the pdf of 𝐶𝑖;

◦ in both cases, the pdf of 𝑇𝑖𝜒/𝜎 approximates the pdf of 𝐺̄𝑖;
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◦ if 𝑀Γ𝑖 is the random variable associated with 𝜇Γ𝑖 (see Eq. (4.1)), the pdf of 𝑀Γ𝑖 can be
obtained using the relationship,

𝑝𝑀Γ𝑖

(
𝜇Γ𝑖

)
=

1
2
𝑝𝐶𝑖

( 𝜇Γ𝑖
2

)
. (4.54)

We want to underline that 𝑀Γ𝑖 is a material parameter related to the 3D mechanical behavior
of the micropolar continuum.
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Fig. 4.2 (a) Comparison between the graph 𝑒4 ↦→ 𝑝𝐸̄4 (𝑒4) of the prior pdf of 𝐸̄4 (dashed
line) and the graph 𝑏̄4/𝜄 ↦→ 𝑝𝐵4/𝜄 (𝑏4/𝜄) ≈ 𝑝𝐸̄4 (𝑒4) obtained by analyzing the macrobeam
(solid line). (b) Comparison between the graph 𝑔̄4 ↦→ 𝑝𝐺̄4

(𝑔̄4) of the prior pdf of 𝐺̄4 (dashed
line) and the graph 𝑡4𝜒/𝜎 ↦→ 𝑝𝑇4𝜒/𝜎 (𝑡4𝜒/𝜎) ≈ 𝑝𝐺̄4

(𝑔̄4) obtained by analyzing the macro or
microbeam (solid line). (c) Comparison between the graph 𝑐4 ↦→ 𝑝𝐶4 (𝑐4) of the prior pdf of
𝐶4 (dashed line) and the graph 𝑏̄4/𝜎 ↦→ 𝑝𝐵4/𝜎 (𝑐4/𝜎) ≈ 𝑝𝐶4 (𝑐4) obtained by analyzing the
microbeam (solid line). (d) Graph 𝜇Γ4 ↦→ 𝑝𝑀Γ4

(
𝜇Γ4

)
of the pdf of 𝑀Γ4 obtained by means of

Eq. (4.54) and the prior (dashed line) and identified (solid line) pdfs of 𝐶4. The pdfs have
been estimated using MC numerical simulations and the KDE method.
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4.2 Sensitivity of a particle-based homogeneous and isotropic
second-gradient continuum model with respect to un-
certain parameters

This section concerns the probabilistic analysis of particle-based materials. More precisely,
this section is devoted to the stochastic modeling of the particle-based geometric and material
microscale parameters associated with particle-pair interactions of an existing particle-
based second gradient model. Such an issue is addressed with a probabilistic methodology
that relies on the maximum entropy (MaxEnt) principle from information theory. After
defining and improving the chosen particle-based second gradient continuum model, it is
shown that for micro-homogeneous and micro-isotropic materials, the involved microscale
parameters turn out to be statistically independent. More precisely, the particle-pair distance
between two consecutive particles is a uniformly distributed random variable and the specific
microscale stiffness parameters are Gamma-distributed random variables. For illustration
purposes, a micro-homogeneous, micro-isotropic, macro-homogeneous, and macro-isotropic
2D concrete plate subjected to an axial load is considered. A stochastic solver based on Monte
Carlo numerical simulations is chosen whose convergence is studied. Finally, uncertainties
propagation is discussed, and statistical fluctuations in the macro mechanical response are
found to be significant.

Notation

Below 𝐴, 𝐵, 𝐶, 𝐷, 𝐸 , 𝐹, and 𝑖 are integers belonging to {1,2,3}.

A lowercase letter such as 𝑥, 𝜂, 𝑢 is a real deterministic variable except when used as an
integer index as 𝑖, 𝑗 , etc. Greek letters 𝛼, 𝛽, 𝜂 and 𝜏 are neither deterministic variables
or integers as subscripts.

A boldface lower case letter such as 𝒙, 𝜼, 𝒖 is a real deterministic vector.

An upper case letter such as 𝑋 , 𝐻,𝑈 is a real random variable except when used as an
integer index as 𝐴, 𝐵, etc.

A boldface upper case letter such as 𝑿, 𝑯, 𝑼 is a vector random variable.

A lower case letter between brackets such as [𝑥], [𝜂], [𝑢] is a real deterministic
second-order tensor.
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A boldface upper case letter between brackets such as [𝑿], [𝑯], [𝑼] is a real random
second-order tensor.

A lower case Gothic letter between brackets such as [𝔵], [𝔥], [𝔲] is a real deterministic
third-order tensor.

A boldface upper case Gothic letter between brackets such as [𝖃], [𝕳], [𝖀] is a real
random third-order tensor.

A lower case letter between two brackets such as [[𝑥]], [[𝑧]], [[𝑢]] is a real deterministic
fourth-order tensor.

A lower case Gothic letter between two brackets such as [[𝔵]], [[𝔥]], [[𝔲]] is a real
deterministic fifth-order tensor.

A lower case letter between three brackets such as [[[𝑥]]], [[[ℎ]]], [[[𝑢]]] is a real
deterministic sixth-order tensor.

E: Mathematical expectation.

The Levi-Civita tensor calculus is used. Indices denoted by upper case letters are chosen
to indicate components in the initial (or Lagrangian) configuration and lowercase letters
to indicate components in the Eulerian (or current) one. Summation over the repeated
Latin indices is used. There is no summation over repeated Greek indices. Superscripts
denote the contravariant components, and subscripts denote the covariant ones.

∥𝒙∥: Euclidean norm of 𝒙 ∈ R𝑛

∥𝐴∥: Sup∥𝒙∥≤1 ∥𝐴𝒙∥ operator norm of linear operator 𝐴.

[𝑔]𝐷𝐶 : component (𝐷,𝐶) of the metric tensor [𝑔].

[𝛿]𝐴𝐵: component (𝐴, 𝐵) of the second-order identity tensor [𝐼].

[𝑥]𝑇 : transpose of the second-order tensor [𝑥], and
[
𝑥𝑇

]
is the second-order tensor of

the transposition.

1𝐵: indicator function of a set 𝐵.

𝑟𝑖: component 𝑖 of the deterministic configuration field 𝒓.

𝑣𝑖: component 𝑖 of the deterministic displacement field 𝒗.
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[ 𝑓 ]𝑖𝐴: deterministic gradient of the configuration field [ 𝑓 ].

𝑛̂𝐴: component 𝐴 of the unit vector 𝒏̂ defining the orientaton of one pair (𝛼, 𝛽).

𝑢𝐶 : component 𝐶 deterministic objective deformation vector 𝒖.

𝜙: deterministic specific deformation energy

𝑤: deterministic deformation energy

[𝑒]𝐶𝐵 : component (𝐶, 𝐵) of the deterministic Cauchy-Green tensor [𝑒].

[𝔥]𝐷
𝐸𝐹

: component (𝐷,𝐸,𝐹) of the deterministic second-gradient deformation tensor
[𝔥].

4.2.1 Defining a deterministic particle-based continuum

Discrete model

We summarize the model proposed in [13, 136, 104]. Let 𝛽 be a rigid particle and let
us build a discrete set of 𝑛 rigid particles at distance ℓ from 𝛽 (same arguments can be
generalized for ℓ variable along the spatial directions). Let us consider the discrete system
of rigid particles obtained by assembling 𝑠 of these sets. It is a discrete grid of rigid
particles within a bounded domain B of R3 such that the distance between two consecutive
particles in the grid is ℓ. Although any particle shape is acceptable, particle sizes must be
sufficiently small to justify the passage from the discrete to the equivalent continuum model
in Subsection 4.2.1. Let 𝛼 and 𝛽 be two consecutive particles in the grid, whose coordinate
vectors are 𝒒𝛼 = (𝑞1

𝛼, 𝑞
2
𝛼, 𝑞

3
𝛼) and 𝒒𝛽 = (𝑞1

𝛽
, 𝑞2
𝛽
, 𝑞3
𝛽
) in a given fixed coordinate system defined

by a generic basis of R3. In this section, stochastic considerations are introduced, wherein the
symbol 𝒒 is preferred for denoting the Lagrangian coordinates, as the symbol 𝑋 is reserved
for the random quantities. We define 𝒓 = (𝑟1, 𝑟2, 𝑟3) : 𝒒 ↦→ 𝒓 (𝒒) as the configuration field and
we introduce the second-order tensor valued-function [ 𝑓 ] such as

[ 𝑓 ] : 𝒒 ↦→ [ 𝑓 (𝒒)] = {[ 𝑓 (𝒒)]𝑖𝐴 =
𝜕𝑟𝑖 (𝒒)
𝜕𝑞𝐴

, 𝑖 = 1,2,3; 𝐴 = 1,2,3} (4.55)

and we define [ 𝑓𝛽] = [ 𝑓 (𝒒𝛽)]. Let 𝒖𝛼𝛽 be the objective deformation vector such that 1

𝒖𝛼𝛽 =
[
𝑓 𝑇𝛽

] (
𝒓
(
𝒒𝛼

)
− 𝒓

(
𝒒𝛽

))
−

(
𝒒𝛼 − 𝒒𝛽

)
. (4.56)

1In components: 𝑢𝐶
𝛼𝛽

=

[
𝑓 𝑇
𝛽

]𝐶
𝑖

(
𝑟 𝑖

(
𝒒𝛼

)
− 𝑟 𝑖

(
𝒒𝛽

))
−

(
𝑞𝐶𝛼 − 𝑞𝐶

𝛽

)
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Truncated at the second-order, the Taylor expansion of 𝒓 in the neighborhood of 𝒒𝛽 yields

𝑟𝑖
(
𝒒𝛼

)
≈ 𝑟𝑖

(
𝒒𝛽

)
+ 𝜕𝑟

𝑖 (𝒒)
𝜕𝑞𝐴

����
𝒒=𝒒𝛽

(
𝑞𝐴𝛼 − 𝑞𝐴𝛽

)
+ 1

2
𝜕2𝑟𝑖 (𝒒)
𝜕𝑞𝐴𝜕𝑞𝐵

����
𝒒=𝒒𝛽

(
𝑞𝐴𝛼 − 𝑞𝐴𝛽

) (
𝑞𝐵𝛼 − 𝑞𝐵𝛽

)
. (4.57)

Let 𝒏̂𝛼𝛽 be the unit vector defining the orientation of one pair (𝛼, 𝛽) of two consecutive
particles such as

𝒒𝛼 − 𝒒𝛽 = 𝒏̂𝛼𝛽 ℓ . (4.58)

Substituting Eqs. (4.57) and (4.58) in Eq. (4.56) yields

𝑢𝐶𝛼𝛽 =

[
𝑓 𝑇𝛽

]𝐶
𝑖

( [
𝑓𝛽

] 𝑖
𝐵
𝑛̂𝐵𝛼𝛽 ℓ +

1
2
𝜕2𝑟𝑖 (𝒒)
𝜕𝑞𝐴𝜕𝑞𝐵

����
𝒒=𝒒𝛽

𝑛̂𝐵𝛼𝛽 ℓ 𝑛̂
𝐴
𝛼𝛽 ℓ

)
− [𝛿]𝐶𝐵 𝑛̂𝐵𝛼𝛽 ℓ

=

( [
𝑓 𝑇𝛽

]𝐶
𝑖

[
𝑓𝛽

] 𝑖
𝐵
− [𝛿]𝐶𝐵

) (
𝑛̂𝐵𝛼𝛽 ℓ

)
+ 1

2

[
𝑓 𝑇𝛽

]𝐶
𝑖

𝜕2𝑟𝑖 (𝒒)
𝜕𝑞𝐴𝜕𝑞𝐵

����
𝒒=𝒒𝛽

𝑛̂𝐵𝛼𝛽 𝑛̂
𝐴
𝛼𝛽 ℓ

2 .

(4.59)

Let us define the two deformation tensors [𝑒] : 𝒒 ↦→ [𝑒] (𝒒) and [𝔥] : 𝒒 ↦→ [𝔥] (𝒒) such that

[𝑒]𝐶𝐵 =
1
2

( [
𝑓 𝑇

]𝐶
𝑖
[ 𝑓 ]𝑖𝐵 − [𝛿]𝐶𝐵

)
, (4.60)

[𝔥]𝐶𝐴𝐵 =
[
𝑓 𝑇

]𝐶
𝑖

𝜕2𝑟𝑖

𝜕𝑞𝐴𝜕𝑞𝐵
. (4.61)

We introduce the notation
[
𝑒𝛽

]
= [𝑒]

(
𝒒𝛽

)
and

[
𝔥𝛽

]
= [𝔥]

(
𝒒𝛽

)
. The tensor [𝑒] is the

Cauchy–Green tensor. Substituting Eqs. (4.60) and (4.61) into Eq. (4.59) yields

𝑢𝐶𝛼𝛽 = 2
[
𝑒𝛽

]𝐶
𝐵
𝑛̂𝐵𝛼𝛽 ℓ +

1
2

[
𝑓 𝑇𝛽

]𝐶
𝑖

𝜕2𝑟𝑖 (𝒒)
𝜕𝑞𝐴𝜕𝑞𝐵

����
𝒒=𝒒𝛽

𝑛̂𝐵𝛼𝛽 𝑛̂
𝐴
𝛼𝛽 ℓ

2

= 2
[
𝑒𝛽

]𝐶
𝐵
𝑛̂𝐵𝛼𝛽 ℓ +

1
2

[
𝔥𝛽

]𝐶
𝐴𝐵
𝑛̂𝐵𝛼𝛽 𝑛̂

𝐴
𝛼𝛽 ℓ

2 .

(4.62)

Eq. (4.61) can be written (see [37]) as

[
𝔥𝛽

]𝐶
𝐴𝐵

=
1
2
[𝑔]𝐷𝐶

(
𝜕 [𝑒]𝐴𝐷 (𝒒)

𝜕𝑞𝐵

����
𝒒=𝒒𝛽

+ 𝜕 [𝑒]𝐵𝐷 (𝒒)
𝜕𝑞𝐴

����
𝒒=𝒒𝛽

− 𝜕 [𝑒]𝐵𝐴 (𝒒)
𝜕𝑞𝐷

����
𝒒=𝒒𝛽

)
. (4.63)

Let us define the elastic energy function Δ𝑤𝛼𝛽 : 𝒖𝛼𝛽 ↦→ Δ𝑤𝛼𝛽
(
𝒖𝛼𝛽

)
related to the interaction

of the pair (𝛼, 𝛽) of consecutive particles. Since 𝒖𝛼𝛽 is an objective function, it is considered
as a measure of deformation (see Eq. (4.56)). Among all possible choices for the function
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Δ𝑤𝛼𝛽, it is chosen such that

Δ𝑤𝛼𝛽
(
𝒖𝛼𝛽

)
= Δ𝑤𝛼𝛽𝜂

(
𝒖𝛼𝛽

)
+Δ𝑤𝛼𝛽𝜏

(
𝒖𝛼𝛽

)
, (4.64)

in which

Δ𝑤𝛼𝛽𝜂
(
𝒖𝛼𝛽

)
=

1
2
𝑘𝛼𝛽𝜂



𝒖𝛼𝛽𝜂

2
, Δ𝑤𝛼𝛽𝜏

(
𝒖𝛼𝛽

)
=

1
2
𝑘𝛼𝛽𝜏



𝒖𝛼𝛽𝜏

2
, (4.65)

and where
𝒖𝛼𝛽𝜂 =

1
2

(
𝒖𝛼𝛽 · 𝒏̂𝛼𝛽

)
𝒏̂𝛼𝛽 , 𝒖𝛼𝛽𝜏 = 𝒖𝛼𝛽 −

(
𝒖𝛼𝛽 · 𝒏̂𝛼𝛽

)
𝒏̂𝛼𝛽 , (4.66)

in which 𝑘𝛼𝛽𝜂 and 𝑘𝛼𝛽𝜏 are two given positive local microscale material parameters, and in
which 𝒖𝛼𝛽𝜂 and 𝒖𝛼𝛽𝜏 are the vector decomposition of the deformation vector 𝒖𝛼𝛽 parallel and
orthogonal to 𝒏̂𝛼𝛽, respectively. The vector decomposition of 𝒖𝛼𝛽 in 2𝒖𝛼𝛽𝜂 and 𝒖𝛼𝛽𝜏 with
respect to the local coordinates system

(
𝑞1(lc) , 𝑞2(lc) , 𝑞3(lc)

)
is shown in Fig. 4.3. For technical

uαβ
2uαβηuαβτ β

α

l

q1

q2

q3

q2(lc)

q1(lc)
q3(lc)

Fig. 4.3 Vector decomposition of 𝒖𝛼𝛽 in the local coordinates system described by
𝒒 (lc)=(𝑞1(lc) , 𝑞2(lc) , 𝑞3(lc)), in which 2𝒖𝛼𝛽𝜂 is the projection of 𝒖𝛼𝛽 with respect to 𝒏̂𝛼𝛽
and 𝒖𝛼𝛽𝜏 is the projection on the plane defined by 𝒖𝛼𝛽 and 𝒖𝛼𝜏. Particles can have different
sizes and different shapes. Any particle shape is admissible. Particle sizes need to be small
enough to pass from the discrete to the equivalent continuum model. The quantities 𝒖𝛼𝛽,
𝒖𝛼𝛽𝜂, and 𝒖𝛼𝛽𝜏 have been defined in Eqs. (4.61) and (4.66). They represent deformation
measures of the particle-pair (𝛼,𝛽).

needs, no coupling energetic term, such as


𝒖𝛼𝛽𝜂



𝒖𝛼𝛽𝜏

, is considered between 𝒖𝛼𝛽𝜂 and

𝒖𝛼𝛽𝜏. It allows us to state a relationship between the microscale material parameters, 𝑘𝛼𝛽𝜂 and
𝑘𝛼𝛽𝜏, and the macroscale material parameters, and to obtain an equivalent second-gradient
continuum model for particle-based based materials that generalizes the classical (or Cauchy)
continuum model. Due to the interactions between all the 𝑛 consecutive particles of 𝛽, the
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total energy Δ𝑤𝛽 is written as

Δ𝑤𝛽 =

𝑛𝛽∑︁
𝛼=1𝛽

Δ𝑤𝛼𝛽
(
𝒖𝛼𝛽

)
=

𝑛𝛽∑︁
𝛼=1𝛽

(
1
2
𝑘𝛼𝛽𝜂



𝒖𝛼𝛽𝜂

2 + 1
2
𝑘𝛼𝛽𝜏



𝒖𝛼𝛽𝜏

2
)
, (4.67)

Finally, the total energy related to the considered system of particles is equal to

𝑤 =

𝑠∑︁
𝛽=1

𝑛𝛽∑︁
𝛼=1𝛽

Δ𝑤𝛼𝛽 =

𝑠∑︁
𝛽=1

𝑛𝛽∑︁
𝛼=1𝛽

(
1
2
𝑘𝛼𝛽𝜂



𝒖𝛼𝛽𝜂

2 + 1
2
𝑘𝛼𝛽𝜏



𝒖𝛼𝛽𝜏

2
)
. (4.68)

Equivalent continuum model

If the distance ℓ between two consecutive particles is small enough with respect to the smaller
characteristic dimension of domain B, we can replace the discrete model by an equivalent
continuum model. Let 𝒏̂ :𝝎 ↦→ 𝒏̂ (𝝎) be the orientation field in which𝝎 ∈Ω= [0, 𝜋] × [0,2𝜋]
and let 𝒖 : 𝒒 ↦→ 𝒖 (𝒒) such that

𝑢𝐶 (𝒒,𝝎) = 2 [𝑒]𝐶𝐵 (𝒒) 𝑛̂𝐵(𝝎) ℓ + 1
2

[
𝑓 𝑇 (𝒒)

]𝐶
𝑖

𝜕2𝑟𝑖 (𝒒)
𝜕𝑞𝐴𝜕𝑞𝐵

𝑛̂𝐵(𝝎) 𝑛̂𝐴(𝝎) ℓ2

= 2 [𝑒]𝐶𝐵 (𝒒) 𝑛̂𝐵(𝝎) ℓ + 1
2
[𝔥]𝐶𝐴𝐵 (𝒒) 𝑛̂

𝐵(𝝎) 𝑛̂𝐴(𝝎) ℓ2 .

(4.69)

For the continuum model, the deformation energy 𝑤 is written as

𝑤 =

∫
B
𝜙 (𝒒) 𝑑𝒒 =

∫
B

∫
Ω

𝜓 (𝝎, 𝒒) 𝑑𝝎 𝑑𝒒

=

∫
B

∫
Ω

(
1
2
𝑘̃𝜂 (𝝎, 𝒒)



𝒖𝜂 (𝝎, 𝒒)

2 + 1
2
𝑘̃𝜏 (𝝎, 𝒒) ∥𝒖𝜏 (𝝎, 𝒒)∥2

)
𝑑𝝎 𝑑𝒒 ,

(4.70)

where 𝜙 : 𝒒 ↦→ 𝜙 (𝒒) is the specific deformation energy and 𝜓 : (𝝎, 𝒒) ↦→ 𝜓(𝝎, 𝒒) is the
specific deformation energy per unit direction, such that

𝜙 (𝒒) =
∫
Ω

𝜓 (𝝎, 𝒒) 𝑑𝝎 , 𝜓 (𝝎, 𝒒) = 1
2
𝑘̃𝜂 (𝝎, 𝒒)



𝒖𝜂 (𝝎, 𝒒)

2 + 1
2
𝑘̃𝜏 (𝝎, 𝒒) ∥𝒖𝜏 (𝝎, 𝒒)∥2 ,

(4.71)
in which 𝒖𝜂 : (𝝎, 𝒒) ↦→ 𝒖𝜂 (𝝎, 𝒒) and 𝒖𝜏 : 𝒒 ↦→ 𝒖𝜏 (𝝎, 𝒒) are such that

𝒖𝜂 (𝝎, 𝒒) =
1
2
(𝒖 (𝒒) · 𝒏̂ (𝝎)) 𝒏̂ (𝝎) , 𝒖𝜏 (𝝎, 𝒒) = 𝒖 (𝒒) −𝒖𝜂 (𝝎, 𝒒) . (4.72)
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The mappings 𝑘̃𝜂 : (𝝎, 𝒒) ↦→ 𝑘̃𝜂 (𝝎, 𝒒) and 𝑘̃𝜏 : (𝝎, 𝒒) ↦→ 𝑘̃𝜏 (𝝎, 𝒒) are the specific stiffness
fields per unit direction. The specific deformation energy 𝜙 (𝒒) is written as

𝜙 (𝒒) = 1
2
[[𝑐]]𝐵𝐿𝐶𝑀 (𝒒) [𝑒]𝐶𝐵 (𝒒) [𝑒]

𝑀
𝐿 (𝒒) + 1

2
[[𝔠]] 𝐵𝐸𝐹𝐶𝐷 (𝒒) [𝑒]𝐶𝐵 (𝒒) [𝔥]

𝐷
𝐸𝐹 (𝒒)

+1
2
[[[𝑎]]]𝐴𝐵𝐹𝐿𝐶𝑀 (𝒒) [𝔥]𝐶𝐴𝐵 (𝒒) [𝔥]

𝑀
𝐹𝐿 (𝒒) ,

(4.73)

in which [[𝑐]], [[[𝑎]]] and [[𝔠]] are the tensors of the material parameters that are detailed
in [13] and where [[𝑐]] is the classical fourth-order tensor of material parameters.

Case of a homogeneous and isotropic equivalent continuum model

Let us call “micro-homogeneous” a continuum characterized by constant specific microscale
stiffness fields along spatial direction 𝒒, i.e., 𝑘̃𝜂 (𝝎, 𝒒) = 𝑘̃ (ℎ𝑜𝑚)𝜂 (𝝎) and 𝑘̃𝜏 (𝝎, 𝒒) = 𝑘̃ (ℎ𝑜𝑚)𝜏 (𝝎).
Let us call “micro-isotropic” a continuum in which the specific microscale stiffness fields
are constant along the direction of interaction 𝝎, i.e, 𝑘̃𝜂 (𝝎, 𝒒) = 𝑘 (𝑖𝑠𝑜)𝜂 (𝒒) and 𝑘̃𝜏 (𝝎, 𝒒) =
𝑘
(𝑖𝑠𝑜)
𝜏 (𝒒). If the continuum is micro-homogeneous and micro-isotropic, we have 𝑘̃𝜂 (𝝎, 𝒒) = 𝑘𝜂

and 𝑘̃𝜏 (𝝎, 𝒒) = 𝑘𝜏, where 𝑘𝜂 and 𝑘𝜏 belongs toR+. At the macroscale, choosing the coordinate
system defined by the canonical (or standard) basis of R3, it is proven in [13, 136, 104] that
the homogeneous and isotropic continuum is characterized by the specific deformation energy
𝜙 (𝒒) defined by

𝜙 (𝒒) = 𝜉2 [𝑒]𝐴𝐵 (𝒒) [𝑒]𝐵𝐴 (𝒒) +
1
2
𝜉1 [𝑒]𝐴𝐴 (𝒒) [𝑒]

𝐵
𝐵 (𝒒)

+2𝜉3 [𝔥]𝐴𝐴𝐵 (𝒒) [𝔥]
𝐵
𝐶𝐶 (𝒒) +

1
2
𝜉4 [𝔥]𝐴𝐴𝐵 (𝒒) [𝔥]

𝐶
𝐶𝐵 (𝒒)

+2𝜉5 [𝔥]𝐴𝐵𝐴 (𝒒) [𝔥]
𝐵
𝐶𝐶 (𝒒) + 𝜉6 [𝔥]𝐴𝐵𝐶 (𝒒) [𝔥]

𝐴
𝐵𝐶 (𝒒) +2𝜉7 [𝔥]𝐴𝐵𝐶 (𝒒) [𝔥]

𝐶
𝐴𝐵 (𝒒) .

(4.74)

The symbols 𝜉1 and 𝜉2 are the Lamé coefficients in classical elasticity. The term homogeneous
is used here to underline that 𝜉1, 𝜉2 , ... , and 𝜉7 are constant. The term isotropic is used here to
underline that the specific deformation energy is invariant under coordinates rotation (see [2]
for more details). By adding the hypotheses of micro-isotropic and micro-homogeneous
continua, the functions 𝜉1 and 𝜉2 are defined by

𝜉1 = 𝜉1
(
ℓ, 𝑘𝜂, 𝑘𝜏

)
=

4𝜋 ℓ2

15
(
𝑘𝜂 −4𝑘𝜏

)
, 𝜉2 = 𝜉2

(
ℓ, 𝑘𝜂, 𝑘𝜏

)
=

4𝜋 ℓ2

15
(
𝑘𝜂 +6𝑘𝜏

)
. (4.75)
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The remaining parameters 𝜉3, 𝜉4, 𝜉5, 𝜉6 and 𝜉7 depend on 𝜉1 and 𝜉2, which, in turn depend
on ℓ, 𝑘𝜂 and 𝑘𝜏,

𝜉3 = 𝜉3
(
ℓ, 𝑘𝜂, 𝑘𝜏

)
=
ℓ2

112
𝜉1

(
ℓ, 𝑘𝜂, 𝑘𝜏

)
= 𝜉4 , (4.76)

𝜉5 = 𝜉5
(
ℓ, 𝑘𝜂, 𝑘𝜏

)
=

ℓ2

1120

(
7𝜉2

(
ℓ, 𝑘𝜂, 𝑘𝜏

)
+3𝜉1

(
ℓ, 𝑘𝜂, 𝑘𝜏

) )
= 𝜉7 , (4.77)

𝜉6 = 𝜉6
(
ℓ, 𝑘𝜂, 𝑘𝜏

)
=

ℓ2

1120

(
7𝜉2

(
ℓ, 𝑘𝜂, 𝑘𝜏

)
−4𝜉1

(
ℓ, 𝑘𝜂, 𝑘𝜏

) )
. (4.78)

In the following, a probabilistic model is proposed for ℓ, 𝑘𝜂 and 𝑘𝜏 under the hypotheses of
micro-homogeneity and micro-isotropy. Then, the random mechanical response of continua
described by Eqs. (4.74), (4.76), (4.77), and (4.78) is studied.

4.2.2 Defining the random particle-based continuum

Let 𝑿 : 𝜃 ↦→ 𝑿 (𝜃) =
(
𝐿 (𝜃) ,𝐾𝜂 (𝜃) ,𝐾𝜏 (𝜃)

)
be the random variable with values in R3, defined

on the probability space (Θ,T ,P), whose probability distribution is 𝑃𝑿 on R3. The random
variable 𝐿 describes the random particle-pair distance between two consecutive particles,
𝐾𝜂 and 𝐾𝜏 are the random microscale stiffness fields modeling interactions between two
consecutive particles. Under the hypotheses of micro-homogeneity and micro-isotropy, 𝐿,
𝐾𝜂, and 𝐾𝜏 are assumed to be independent of the spatial and interaction directions. Eq. (4.75)
allows us to define the random variables Ξ1 : 𝜃 ↦→ Ξ1 (𝜃) = 𝜉1

(
𝐿 (𝜃) ,𝐾𝜂 (𝜃) ,𝐾𝜏 (𝜃)

)
and

Ξ2 : 𝜃 ↦→ Ξ2 (𝜃) = 𝜉2
(
𝐿 (𝜃) ,𝐾𝜂 (𝜃) ,𝐾𝜏 (𝜃)

)
such that

Ξ1 =
4𝜋𝐿2

15
(
𝐾𝜂 −4𝐾𝜏

)
, Ξ2 =

4𝜋𝐿2

15
(
𝐾𝜂 +6𝐾𝜏

)
. (4.79)

The symbols Ξ1 and Ξ2 correspond to the random Lamé coefficients in classical elasticity.
Eqs. (4.76) and (4.77) lead us to define the random variables Ξ3 = Ξ4 : 𝜃 ↦→ Ξ3 (𝜃) =
Ξ4 (𝜃) = 𝜉3

(
𝐿 (𝜃) ,𝐾𝜂 (𝜃) ,𝐾𝜏 (𝜃)

)
, Ξ5 : 𝜃 ↦→ Ξ5 (𝜃) = Ξ7 (𝜃) = 𝜉5

(
𝐿 (𝜃) ,𝐾𝜂 (𝜃) ,𝐾𝜏 (𝜃)

)
and

Ξ6 : 𝜃 ↦→ Ξ6 (𝜃) = 𝜉6
(
𝐿 (𝜃) ,𝐾𝜂 (𝜃) ,𝐾𝜏 (𝜃)

)
.

At 𝒒, the random specific deformation energy Φ (𝒒) : 𝜃 ↦→ Φ (𝒒, 𝜃) is obtained by
substituting the deterministic quantities (𝜉1, 𝜉2, [𝒆] (𝒒) , [𝖍] (𝒒)) in Eq. (4.74) by the random
ones (Ξ1 (𝜃) ,Ξ2 (𝜃) , [𝑬] (𝒒, 𝜃) , [𝕳] (𝒒, 𝜃)), and is given by

Φ (𝒒) = Ξ2 [𝐸]𝐴𝐵 (𝒒) [𝐸]𝐵𝐴 (𝒒) + 1
2
Ξ1 [𝐸]𝐴𝐴 (𝒒) [𝐸]

𝐵
𝐵 (𝒒)

+2Ξ3 [ℌ]𝐴𝐴𝐵 (𝒒) [ℌ]
𝐵
𝐶𝐶 (𝒒) +

1
2
Ξ4 [ℌ]𝐴𝐴𝐵 (𝒒) [ℌ]

𝐶
𝐶𝐵 (𝒒)

+2Ξ5 [ℌ]𝐴𝐵𝐴 (𝒒) [ℌ]
𝐵
𝐶𝐶 (𝒒) +Ξ6 [ℌ]𝐴𝐵𝐶 (𝒒) [ℌ]

𝐴
𝐵𝐶 (𝒒) +2Ξ7 [ℌ]𝐴𝐵𝐶 (𝒒) [ℌ]

𝐶
𝐴𝐵 (𝒒) ,

(4.80)
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where [𝑬] (𝒒) : 𝜃 ↦→ [𝑬] (𝒒, 𝜃) is the random Cauchy–Green deformation tensor and [𝕳] (𝒒) :
𝜃 ↦→ [𝕳] (𝒒, 𝜃) is the random second-gradient deformation tensor, which depend on the
random configuration field 𝑹 : 𝜃 ↦→ {𝒒 ↦→ 𝑹 (𝒒, 𝜃)}. The random deformation energy per
unit direction, Ψ (𝝎, 𝒒) : 𝜃 ↦→ Ψ (𝝎, 𝒒, 𝜃), is given by

Ψ (𝝎, 𝒒) = 1
2
𝐾𝜂



𝑼𝜂 (𝝎, 𝒒)


2 + 1

2
𝐾𝜏 ∥𝑼𝜏 (𝝎, 𝒒)∥2 , (4.81)

in which

𝑼𝜂 (𝝎, 𝒒) =
1
2
(𝑼 (𝒒) · 𝒏̂ (𝝎)) 𝒏̂ (𝝎) , 𝑼𝜏 (𝝎, 𝒒) =𝑼 (𝒒) −𝑼𝜂 (𝝎, 𝒒) , (4.82)

and where 𝑼 : 𝜃 ↦→ {𝒒 ↦→𝑼 (𝒒, 𝜃)} is the random field defined by

𝑈𝐶 (𝒒) = 2 [𝐸]𝐶𝐵 (𝒒) 𝑛̂𝐵(𝝎) ℓ + 1
2

[
𝐹𝑇(𝒒)

]𝐶
𝑖

𝜕2𝑅𝑖(𝒒)
𝜕𝑞𝐴𝜕𝑞𝐵

𝑛̂𝐵(𝝎) 𝑛̂𝐴(𝝎) ℓ2

= 2 [𝐸]𝐶𝐵 (𝒒) 𝑛̂𝐵(𝝎) ℓ + 1
2
[ℌ]𝐶𝐴𝐵 (𝒒) 𝑛̂

𝐵(𝝎) 𝑛̂𝐴(𝝎) ℓ2 ,

(4.83)

where [𝑭(𝒒)] : 𝜃 ↦→ [𝑭(𝒒)](𝜃) = {[𝐹 (𝒒)]𝑖
𝐴
(𝜃) = 𝜕𝑅𝑖 (𝒒,𝜃)

𝜕𝑞𝐴
, 𝑖 = 1,2,3; 𝐴 = 1,2,3}. The ap-

proach proposed in [65] for classical linear elasticity is used in Subsection 4.2.2. In
Subsection 4.2.2, the maximum entropy (MaxEnt) principle is used to define a prior proba-
bility model for 𝑿 =

(
𝐿,𝐾𝜂,𝐾𝜏

)
, which are the only source of uncertainty of the analyzed

continuum model. In the spirit of the previous deterministic model, since we analyze the
equivalent continuum model, the geometry of the single rigid particles, which are modeled
as material points, are not considered here. The connectivity of the particles is modeled
by means of the microscale stiffness parameters 𝐾𝜂 and 𝐾𝜏. The random variables 𝐿, 𝐾𝜂,
and 𝐾𝜏 are assumed to be independent of the spatial and orientation directions. If we
wish to apply the exposed second-gradient continuum model for particle-based materials
to granular materials, remarks should be added concerning the geometry and shapes of the
grains, granulometry involved, geometry disorder, and structure of the granular medium. The
application is immediate for composite materials.

Maximum entropy principle for constructing the prior probability distribution of
uncertain parameters

The Shannon entropy E(𝑝𝑿) of a probability density function (pdf) 𝑝𝑿 on R𝑛 is defined by
E(𝑝𝑿) = −

∫
R𝑛
𝑝𝑿 (𝒙) log (𝑝𝑿 (𝒙)) 𝑑𝒙, which measures the level of uncertainties. Higher

uncertainty results in a larger Shannon entropy.
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In accordance with the MaxEnt principle, the pdf of the R3-valued random variable
𝑿 =

(
𝐿,𝐾𝜂,𝐾𝜏

)
maximizes the Shannon entropy under the constraints defined by the available

information (see for instance [129]) that are given as follows:

(Q1) The support of 𝑝𝑿 is

Supp 𝑝𝑿 = S𝑿 , S𝑿 ⊆ [𝜁1, 𝜁2] ×R+×R+ ⊂ R3 , (4.84)

where 0 < 𝜁1 < 𝜁2 < +∞.

(Q2) The mean value of 𝐾𝜂 and 𝐾𝜏 are given and finite,

E
{
𝐾𝜂

}
= 𝛾𝜂 < +∞ , 𝛾𝜂 ∈ R+ , (4.85)

E {𝐾𝜏} = 𝛾𝜏 < +∞ , 𝛾𝜏 ∈ R+ . (4.86)

(Q3) The inverse of the random matrix [𝑲] such that

[𝑲]=
[
𝐾𝜂 0
0 𝐾𝜏

]
, (4.87)

has a finite second-order moment (for physical consistencies),

E
{

𝑲−1

2}

< +∞ . (4.88)

This property can be stated as suggested in [125, 126] and can be replaced by the
following one: the random variable log (det ( [𝑲])) has a given mean value whose
absolute value is finite,

E {log (det ( [𝑲]))} = 𝛾det , |𝛾det | < +∞ . (4.89)

Since the random variable det ( [𝑲]) = 𝐾𝜂𝐾𝜏, Eq. (4.89) can be rewritten as

E
{
𝜇
(
𝐾𝜂,𝐾𝜏

)}
= 𝛾det , 𝜇

(
𝐾𝜂,𝐾𝜏

)
= log

(
𝐾𝜂𝐾𝜏

)
. (4.90)

We now consider the R2-valued random variable
(
𝐾𝜂,𝐾𝜏

)
defined on (Θ,T ,P). The

constraints stated by propositions (Q2) and (Q3) read

E
{
𝒉

(
𝐾𝜂,𝐾𝜏

)}
= 𝜸 , (4.91)
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where 𝜸 =
(
𝛾𝜂, 𝛾𝜏, 𝛾det

)
and 𝒉 : R2 ↦→ R3 such that

𝒉(𝑘𝜂, 𝑘𝜏) = (𝑘𝜂, 𝑘𝜏, log(𝑘𝜂 𝑘𝜏)) . (4.92)

Let Cfree (see [129]) be the set of functions on R3, defined by

Cfree =
{
𝑝 ∈ 𝐿1

(
R3,R+

)
, Supp 𝑝 = S𝑿

}
. (4.93)

The set Cad of the admissible probability density functions 𝑝 : (ℓ, 𝑘𝜂, 𝑘𝜏) ↦→ 𝑝(ℓ, 𝑘𝜂, 𝑘𝜏) of
𝑿 = (𝐿,𝐾𝜂,𝐾𝜏) is defined by

Cad =

{
𝑝 ∈ Cfree ,

∫
R3
𝑝
(
ℓ, 𝑘𝜂, 𝑘𝜏

)
𝑑ℓ 𝑑𝑘𝜂 𝑑𝑘𝜏 = 1 ,∫

R3
𝒉

(
𝑘𝜂, 𝑘𝜏

)
𝑝
(
ℓ, 𝑘𝜂, 𝑘𝜏

)
𝑑ℓ 𝑑𝑘𝜂 𝑑𝑘𝜏 = 𝜸

}
. (4.94)

Under the constraints defined by (Q1), (Q2), and (Q3), and using the MaxEnt principle, it
is possible to prove that pdf 𝑝𝑿 of 𝑿 is the unique solution of the following optimization
problem,

𝑝𝑿 = arg max
𝑝∈Cad

E (𝑝) , (4.95)

where 𝑝 ↦→ E(𝑝) is the Shannon entropy defined by

E(𝑝) = −
∫
R3
𝑝
(
ℓ, 𝑘𝜂, 𝑘𝜏

)
log

(
𝑝
(
ℓ, 𝑘𝜂, 𝑘𝜏

) )
𝑑ℓ 𝑑𝑘𝜂 𝑑𝑘𝜏 . (4.96)

Effective construction of the prior probability distribution of uncertain parameters

Proposition1 For the micro-homogeneous and micro-isotropic continuum in the field of the
particle-based theory presented in Section 3.1.1, the expression of the joint probability density
function of the random variables 𝐿, 𝐾𝜂, and 𝐾𝜏, constructed using the MaxEnt principle
under the constraints defined by (Q1), (Q3), and (Q3), shows that random variables 𝐿, 𝐾𝜂
and 𝐾𝜏 are statistically independent. It also shows that the random variable 𝐿 is uniformly
distributed in [𝜁1, 𝜁2], and that 𝐾𝜂 and 𝐾𝜏 are Gamma distributed in R+, whose parameters
are (

𝛼𝜂, 𝛽𝜂
)
=

(
1−𝜆𝑐,

𝑚𝐾𝜂

1−𝜆𝑐

)
and (𝛼𝜏, 𝛽𝜏) =

(
1−𝜆𝑐,

𝑚𝐾𝜏

1−𝜆𝑐

)
. (4.97)

In Eq. (4.97), 𝑚𝐾𝜂
= E

{
𝐾𝜂

}
and 𝑚𝐾𝜏

= E {𝐾𝜏} are the given mean values of 𝐾𝜂 and 𝐾𝜏,
and 𝜆𝑐 ∈ ]−∞,1[ controls the statistical fluctuations. The parameters

(
𝛼𝜂, 𝛽𝜂

)
and (𝛼𝜏, 𝛽𝜏)

can be expressed as a function of the mean values 𝑚𝐾𝜂
and 𝑚𝐾𝜏

and of the coefficients of
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variation cv𝐾𝜂
= 𝜎𝐾𝜂

/𝑚𝐾𝜂
and cv𝐾𝜏

= 𝜎𝐾𝜏
/𝑚𝐾𝜏

of 𝐾𝜂 and of 𝐾𝜏,

𝑚𝐾𝜂
= 𝛼𝜂𝛽𝜂 , 𝑚𝐾𝜏

= 𝛼𝜏𝛽𝜏 , cv𝐾𝜂
= cv𝐾𝜏

=
1

√
1−𝜆𝑐

. (4.98)

Note that the statistical fluctuations of 𝐾𝜂 and 𝐾𝜏, which are driven by their coefficients of
variation, depend only on the same single parameter 𝜆𝑐.
Proof The following proof is inspired from [65]. The solution of the optimization problem
defined by Eq. (4.95) is written as

𝑝𝐿𝐾𝜂 𝐾𝜏

(
ℓ, 𝑘𝜂, 𝑘𝜏

)
= 1S𝑿 (ℓ, 𝑘𝜂, 𝑘𝜏) 𝑐sol

0 exp(−⟨𝝀sol, 𝒉
(
𝑘𝜂, 𝑘𝜏

)
⟩) , ∀

(
ℓ, 𝑘𝜂, 𝑘𝜏

)
∈ R3 ,

(4.99)
where 𝒉 : R2 ↦→ R3 is such that 𝒉(𝑘𝜂, 𝑘𝜏) = (𝑘𝜂, 𝑘𝜏, log(𝑘𝜂 𝑘𝜏)) (see Eq. (4.92)), the positive
normalization constant 𝑐sol

0 and the Lagrange multiplier 𝝀sol =
(
𝜆𝜂,𝜆𝜏,𝜆𝑐

)
must be such that

𝑝𝐿,𝐾𝜂 ,𝐾𝜏 belongs to the admissible set Cad defined by Eq. (4.94). An algebraic calculation
shows that the support S𝑿 introduced in Eq. (4.84) can be written as S𝑿 = [𝜁1, 𝜁2] ×R+×R+

and that, substuiting Eq. (4.92) into (4.99), 𝑝𝐿𝐾𝜂 𝐾𝜏
can be written as

𝑝𝐿𝐾𝜂 𝐾𝜏

(
ℓ, 𝑘𝜂, 𝑘𝜏

)
= 𝑝𝐿 (ℓ) 𝑝𝐾𝜂

(
𝑘𝜂

)
𝑝𝐾𝜏

(𝑘𝜏) . (4.100)

in which
𝑝𝐿 (ℓ) = 1[𝜁1,𝜁2] (ℓ) 𝑐1 , (4.101)

𝑝𝐾𝜂

(
𝑘𝜂

)
= 1R+

(
𝑘𝜂

)
𝑐2 𝑘

−𝜆𝑐
𝜂 exp

{
−𝜆𝜂 𝑘𝜂

}
, (4.102)

and
𝑝𝐾𝜏

(𝑘𝜏) = 1R+ (𝑘𝜏) 𝑐3 𝑘
−𝜆𝑐
𝜏 exp {−𝜆𝜏 𝑘𝜏} , (4.103)

where 𝑐1, 𝑐2, and 𝑐3 are positive normalization constants such that 𝑐sol = 𝑐1 𝑐2 𝑐3. Hence,
𝐿 is uniformly distributed, 𝐾𝜂 and 𝐾𝜏 are Gamma distributed with parameters

(
𝛼𝜂, 𝛽𝜂

)
=(

1−𝜆𝑐,1/𝜆𝜂
)

and (𝛼𝜏, 𝛽𝜏) = (1−𝜆𝑐,1/𝜆𝜏). Since

1 =

∫
[𝜁1,𝜁2]

1[𝜁1,𝜁2] (ℓ) 𝑐1 𝑑ℓ = 𝑐1 (𝜁2 − 𝜁1) , (4.104)

1 = 𝑐2

∫
R+
𝑘−𝜆𝑐𝜂 exp

{
−𝜆𝜂𝑘𝜂

}
𝑑𝑘𝜂 = 𝑐2

𝛤 (1−𝜆𝑐)
𝜆

1−𝜆𝑐
𝜂

, (4.105)

1 = 𝑐2

∫
R+
𝑘−𝜆𝑐𝜏 exp {−𝜆𝜏𝑘𝜏} 𝑑𝑘𝜏 = 𝑐2

𝛤 (1−𝜆𝑐)
𝜆

1−𝜆𝑐
𝜏

, (4.106)
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where 𝛤 : 𝑧 ↦→ 𝛤 (𝑧) =
∫ +∞

0 𝑠𝑧−1exp (−𝑠) 𝑑𝑠 is the Gamma function. The normalization
constants are found to be

𝑐1 =
1

𝜁2 − 𝜁1
, 𝑐2 =

𝜆
1−𝜆𝑐
𝜂

𝛤 (1−𝜆𝑐)
, 𝑐3 =

𝜆
1−𝜆𝑐
𝜏

𝛤 (1−𝜆𝑐)
, (4.107)

while it can be deduced that 1/𝜆𝜂 = 𝑚𝐾𝜂
/(1−𝜆𝑐) and 1/𝜆𝜏 = 𝑚𝐾𝜏

/(1−𝜆𝑐). To guarantee
the finite value of the integrals in Eqs. (4.105) and (4.106), we must have 1−𝜆𝑐 > 0, 𝜆𝜂 > 0
and 𝜆𝜏 > 0. Using the argument presented in Appendix B of [65], it can be seen that this
algebraic solution is the unique solution of the optimization problem defined by Eq. (4.94).

Let us emphasize that the outcomes presented in this section are the result of applying the
MaxEnt principle with the available information (Q1), (Q2), and (Q3).

4.2.3 Stochastic boundary value problem and its random solution de-
fined in the application framework

In order to simplify the presentation, for constructing and analyzing the boundary value
problem (BVP) for the random particle-based continuum model exposed in Section 4.2.2,
the methodology is directly applied to a particular particle-based sample and not presented
in a general case. We consider a plate with a hole located in the middle whose mechanical
properties are those of concrete and that is subjected to a numerical axial traction test. The
domain of this plate is denoted by B and its boundary is 𝜕B = 𝜕B0 ∪ 𝜕B𝑡 ∪ 𝜕B1. Zero
Dirichlet conditions are applied on 𝜕B0 and 𝜕B𝑡 (left end and right end), where the body is
clamped. A Neumann boundary condition is applied on 𝜕B𝑡 (right end), where the uniaxial
traction is applied. The displacement field is free on 𝜕B1 (see Fig. 4.11).

Geometry, load, deterministic and random mechanical properties

The values of the geometry parameters defined in Fig. (4.11) are 𝑏1 = 3×10−1𝑚, 𝑏2 = 5×
10−2 m, and 𝑏3 = 1×10−2 m. The amplitude of the uniaxial traction load is 𝑡 = 1.5×109 N/m2.
The mean values 𝑚Ξ1 = E {Ξ1} and 𝑚Ξ2 = E {Ξ2} of the random Lamé coefficients Ξ1 and Ξ2

are such that 𝑚Ξ1 = 3.529×109 N/m2 and 𝑚Ξ2 = 1010 N/m2. Using Eq. (4.79) and because
𝐿 is independent on 𝐾𝜂 and 𝐾𝜏, then, solving the linear equations for the mean values of 𝐾𝜂
and 𝐾𝜏 yields

𝑚𝐾𝜂
= E

{
𝐾𝜂

}
= 8.613×1015 N/m4 , 𝑚𝐾𝜏

= E {𝐾𝜏} = 1.029×1015 N/m4 . (4.108)
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Let 𝜎𝐾𝜂
and 𝜎𝐾𝜏

be the standard deviations of the random variables 𝐾𝜂 and 𝐾𝜏. Following
Proposition 1 we have now to choose the value of cv𝐾 := cv𝐾𝜂

= cv𝐾𝜏
, and of 𝜁1 and 𝜁2. Since 𝐿

is uniformly distributed in [𝜁1, 𝜁2], we have𝑚𝐿 = (𝜁1 + 𝜁2) /2 and𝜎𝐿 = (𝜁2 − 𝜁1) /(2
√

3). Thus,
one has 𝜁1 = 𝑚𝐿 − cv𝐿𝑚𝐿

√
3 and 𝜁2 = 𝑚𝐿 + cv𝐿𝑚𝐿

√
3. In this application, 𝑚𝐿 = 1×10−4 m.

The sensitivity in the mechanical response of the analyzed continuum sample with respect to
cv𝐿 and cv𝐾 is investigated.

b1

b3 b2

t=1 500 N/mm2

q1

q2

Fig. 4.4 Numerical axial traction test on a plate made of particle-based materials with
uncertainties. In the application, the material parameters are the ones of concrete. In the
present figure, the red points are used to underline that we are dealing with a particle-based
material and, more specifically, with a composite material whose particles (or inclusions)
have a random distance that is independent of the spatial and orientation directions. These
assumptions on the distance between particles may be relaxed to describe more complex
microstructures in which the particle-pair distance, and consequently ℓ, would depend on the
spatial directions.

Strong stochastic solution of the weak formulation of the boundary value problem

In this section, first we summarize the weak formulation of the deterministic BVP, which
will be used for constructing the computational model based on the mixed Finite Element
(FE) method. Then, we introduce stochasticity in this weak formulation yielding the random
weak formulation. The strong stochastic solution of this random weak formulation will be
searched. Note that such a formulation is adapted to a stochastic solver based on Monte Carlo
(MC) numerical simulation that will be introduced in Section 4.2.3.

Derivation of the weak formulation of the deterministic boundary value problem

Let C𝑽 be the admissible space of sufficiently differentiable functions 𝒗 : 𝒒 ↦→ 𝒗 (𝒒) defined
on B with values in R2 satisfying the zero Dirichlet conditions on 𝜕B0 and 𝜕B𝑡 . Since the
right-hand side of Eq. (4.74) exhibits the deformation tensors that are a function of 𝒗 and
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since coefficients 𝜉1 to 𝜉7 depend on 𝒙 = (ℓ, 𝑘𝜂, 𝑘𝜏), we rewrite function 𝜙(𝒒) as 𝜙(𝒗,𝒙) (𝒒)
in order to explicit the dependencies in 𝒗 and 𝒙, where 𝜙 : (𝒗,𝒙) ↦→ 𝜙 (𝒗,𝒙) is such that
𝜙 (𝒗,𝒙) (𝒒) = 𝜙 (𝒒). The weak formulation of the deterministic BVP is: find 𝒗 in C𝑽 such that

(𝛿𝜋) (𝒗, 𝛿𝒗;𝒙) = 0 , ∀𝛿𝒗 =
{
𝛿𝑣1, 𝛿𝑣2, 𝛿𝑣3} ∈ C𝑽 , (4.109)

where 𝛿𝜋 is the first variation of the energy functional 𝜋 defined by

𝜋 (𝒗;𝒙) =
∫
B
𝜙 (𝒗,𝒙) (𝒒) 𝑑𝒒 −

∫
𝜕B𝑡

𝑡 𝑣1(𝒒) 𝑑𝑠(𝒒) , (4.110)

in which 𝑑𝑠(𝒒) is the surface element.

Random weak formulation and its strong stochastic solution

The random weak formulation is derived from Eqs. (4.109) and (4.110) in substituting 𝒙 by
the random vector 𝑿 whose probability model is defined in Proposition 1. Consequently,
displacement field 𝒗 becomes a random displacement field 𝑽 : 𝜃 ↦→ {𝑽 (𝜃) : 𝒒 ↦→ 𝑽 (𝒒, 𝜃)}
such that 𝑽 (𝜃) belongs to C𝑽 and configuration 𝒓 becomes the random configuration field
𝑹 : 𝜃 ↦→ {𝒒 ↦→ 𝑹 (𝒒, 𝜃)} defined in Section 4.2.2. The strong stochastic solution consists in
finding 𝑽 (𝜃), for 𝜃 in Θ, with values in C𝑽 such that

(𝛿𝜋) (𝑽 (𝜃), 𝛿𝒗;𝑿 (𝜃)) = 0 , ∀𝛿𝒗 ∈ C𝑽 , 𝑎.𝑠. (4.111)

Monte Carlo numerical simulation as stochastic solver

The construction of the strong stochastic solution of the random weak formulation is based
on the use of the MC numerical simulation and on Eq. (4.111). Consequently, the steps of
the stochastic solver are as follows.

1. Generation of 𝑛 independent realizations 𝑿 (𝜃1), 𝑿 (𝜃2) , ... , 𝑿 (𝜃𝑛) of random variable
𝑿 using the probability distribution 𝑃𝑋 (𝑑𝒙) = 𝑝𝑿 (𝒙)𝑑𝒙 defined in Proposition 1, in
which 𝑿 = (𝐿,𝐾𝜂,𝐾𝜏).

2. Computation of 𝑛 independent deterministic solutions 𝑽 (𝜃1), 𝑽 (𝜃2) , ... ,𝑽 (𝜃𝑛) that
satisfy Eq. (4.111). In fact, the mixed FE method is used for each computation, where
the displacement field and its gradient are solved both as unknowns under constraints
imposed by means of Lagrange multipliers. In the formulation used, the definition
of the stress tensors is not required and related issues are avoided. In this regard,
one should mention the important issue of symmetry loss of the Cauchy stress tensor
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within the framework of second gradient continuum models [14]. For second gradient
continuum models, details concerning the application of mixed FE method are presented
in [121]. In the present application, the weak formulation of the equivalent continuum
model is discretized using finite elements. We are simulating a particle-based material
not with a random microstructure, but with random particle-pair distance between
consecutive particles and random microscale stiffness parameters. As previously
explained, the mesh size does not depend on the random medium properties. Although
the equivalent continuum model is derived from the discrete model, this is not a classical
homogenization procedure in which the microstructure is a random medium represented
by apparent mechanical properties and in which the macrostructure has effective
mechanical properties that are deterministic for scale separation. As a consequence,
the random fluctuations of the mechanical response do not depend on the mesh size All
simulations are performed by a computing node using Intel Xeon E7-4850, in total
64 cores each with a 40 MB cache, equipped with 256 GB memory in total, running
Linux Kernel 5 Ubuntu 20.04. The code is written in Python by using multithreading
such that thousands of computations are distributed asynchronously to the available
resources efficiently. The code in Python is wrapped by the FEniCS software into a C++
code and is solved as a compiled program. Therefore, yet efficient in developing the
code in Python, solution is highly optimized by using a massive parallelization under
the current implementation. The Python code, generated during the current study, is
part of the FEniCS project available at http://www.fenicsproject.org/download, and an
example for the computational implementation is available in [1] to be used under the
GNU Public license [GNU Public].

3. We consider a finite set of scalar observations expressed in terms of 𝑽, for instance the
energy and some components of the displacement field at a given point 𝒒. Let 𝑍 be the
real valued-random variable representing one of the considered observations. For any
fixed value 𝑛, we estimate the mean value 𝑚 (𝑛)

𝑍
and the standard deviation 𝜎 (𝑛)

𝑍
.

4. The convergence of the stochastic solver with respect to 𝑛 is performed for each random
variable 𝑍 by estimating the quantity 𝜀(𝑛)

𝑍
= 𝜂𝜎𝑍/

√
𝑛 following the procedure in ([129]

pp. 35) based on the central limit theorem. For that, we will plot the dimensionless
quantity 𝜀̃(𝑛)

𝑍
/𝑚 (𝑛)

𝑍
where 𝜀̃(𝑛)

𝑍
= 𝜂𝜎

(𝑛)
𝑍

/
√
𝑛.

Convergence analysis and quantification of uncertainty propagation

Let us define two points 𝒒1 = (𝑏1/2, 𝑏3/2,0) and 𝒒2 = (𝑏1,0,0). As a function of the number
𝑛 of realization, we compute the mean value 𝑚Φ1 and the standard deviation 𝜎Φ1 of the

http://www.fenicsproject.org/download
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specific deformation energy in 𝒒1, where Φ1 = Φ (𝒒1). We also evaluate the mean values 𝑚𝑉1
1

and 𝑚𝑉1
2

and the standard deviations 𝜎𝑉1
1

and 𝜎𝑉1
2

of the horizontal displacements at 𝒒1 and
𝒒2, where 𝑉1

1 =𝑉1 (𝒒1) and 𝑉1
2 =𝑉1 (𝒒2). Finally, we compute the mean value 𝑚𝑉2

1
and the

standard deviation 𝜎𝑉2
1

of the transversal displacement in 𝒒1, where 𝑉2
1 = 𝑉2 (𝒒1). Fig. 4.5

displays the dimensionless quantities defined by

𝜀̃
(𝑛)
Φ1

(𝜂)

𝑚
(𝑛)
Φ1

=
𝜂𝜎

(𝑛)
Φ1√

𝑛𝑚
(𝑛)
Φ1

,

𝜀̃
(𝑛)
𝑉1

1
(𝜂)

𝑚
(𝑛)
𝑉1

1

=

𝜂𝜎
(𝑛)
𝑉1

1√
𝑛𝑚

(𝑛)
𝑉1

1

,

𝜀̃
(𝑛)
𝑉1

2
(𝜂)

𝑚
(𝑛)
𝑉1

2

=

𝜂𝜎
(𝑛)
𝑉1

2√
𝑛𝑚

(𝑛)
𝑉1

2

,

𝜀̃
(𝑛)
𝑉2

1
(𝜂)

𝑚
(𝑛)
𝑉2

1

=

𝜂𝜎
(𝑛)
𝑉2

1√
𝑛𝑚

(𝑛)
𝑉2

1

.

(4.112)

as a function of the number of realizations 𝑛. The value of 𝜂 has been chosen equal to
G−1 (0.95), 𝜂 = G−1 (0.95) = 1.64, where G is the standard normal cumulative distribution
function. The probability of committing at most an error of 0.49% with respect to the derived
mean values was estimated to be 0.95 by considering 𝑛 = 10000. The choice to analyze the
mechanical response at points 𝒒1 and 𝒒2 is due to two reasons: an energy concentration
occurs at 𝒒1 and the maximum displacement occurs at 𝒒2. The coefficients of variation
cvΦ1 , cv𝑉1

1
, cv𝑉1

2
, and cv𝑉2

1
obtained for different values of cv𝐿 and cv𝐾 are shown in Fig. 4.6.

Moreover, the mean values 𝑚ΔΦ1
, 𝑚Δ

𝑉1
1
, 𝑚Δ

𝑉1
2
, 𝑚Δ

𝑉2
1

and the root mean square values rmsΔΦ1
,

rmsΔ
𝑉1

1
, rmsΔ

𝑉1
2
, rmsΔ

𝑉2
1

of the dimensionless random variables

ΔΦ1 =
Φ1 −Φ1

Φ1
, Δ𝑉1

1
=

𝑉1
1 −𝑉

1
1

𝑉1
1

, Δ𝑉1
2
=

𝑉1
2 −𝑉

1
2

𝑉1
2

, Δ𝑉2
1
=

𝑉2
1 −𝑉

2
1

𝑉2
1

(4.113)

obtained for different values of cv𝐿 and cv𝐾 are shown in Figs. 4.7 and 4.8, where Φ1, 𝑉1
1 ,

𝑉1
2 , and 𝑉2

1 are the specific deformation energy at 𝒒1, the horizontal displacements at 𝒒1 and
𝒒2, the vertical displacement at 𝒒1 corresponding to the nominal values of 𝐿, 𝐾𝜂 and 𝐾𝜏. For
different values of cv𝐿 and cv𝐾 , Fig. 4.9 shows the graph of the dimensionless quantities
defined by

rcvΦ1 =

���cvΦ1 − rmsΔΦ1

���
cvΦ1

, rcv𝑉1
1
=

���cv𝑉1
1
− rms𝑉1

1

���
cv𝑉1

1

,

rcv𝑉1
2
=

���cv𝑉1
2
− rms𝑉1

2

���
cv𝑉1

2

, rcv𝑉2
1
=

���cv𝑉2
1
− rms𝑉2

1

���
cv𝑉2

1

.

(4.114)
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Fig. 4.5 Graphs (a) 𝑛 ↦→ 𝜀̃Φ1/𝑚Φ1 , (b) 𝑛 ↦→ 𝜀̃𝑉1
1
/𝑚𝑉1

1
, (c) 𝑛 ↦→ 𝜀̃𝑉1

2
/𝑚𝑈1

2
, (d) 𝑛 ↦→ 𝜀̃𝑉2

1
/𝑚𝑉2

1
for different values of cv𝐿 and cv𝐾 to study the convergence with respect to 𝑛. Solid line:
results for cv𝐿 = 15% and cv𝐾 = 15% (yellow), cv𝐿 = 15% and cv𝐾 = 0 (red), cv𝐿 = 0 and
cv𝐾 = 15% (black). Dashed line: results for cv𝐿 = 10% and cv𝐾 = 10% (yellow), cv𝐿 = 10%
and cv𝐾 = 0 (red), cv𝐿 = 0 and cv𝐾 = 10% (black). Dotted line: results for cv𝐿 = 5% and
cv𝐾 = 5% (yellow), cv𝐿 = 5% and cv𝐾 = 0 (red), cv𝐿 = 0 and cv𝐾 = 5% (black).
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Fig. 4.6 Graphs of (a) cvΦ1 , (b) cv𝑉1
1
, (c) cv𝑉1

2
, (d) cv𝑉2

1
for different values of cv𝐿 and cv𝐾 .

Solid line: results for cv𝐿 equal to cv𝐾 both different from zero. Dashed line: results for cv𝐿
different from zero and cv𝐾 equal to zero. Dotted line: results for cv𝐿 equal to zero and cv𝐾
different form zero.
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Fig. 4.7 Graphs of (a) 𝑚ΔΦ1
, (b) 𝑚Δ

𝑉1
1
, (c) 𝑚Δ

𝑉1
2
, (d) 𝑚Δ

𝑉2
1

for different values of cv𝐿 and cv𝐾 .
Solid line: results for cv𝐿 equal to cv𝐾 both different from zero. Dashed line: results for cv𝐿
different from zero and cv𝐾 equal to zero. Dotted line: results for cv𝐿 equal to zero and cv𝐾
different from zero.
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Fig. 4.8 Graphs of (a) rmsΔΦ1
, (b) rmsΔ

𝑉1
1
, (c) rmsΔ

𝑉1
2
, (d) rmsΔ

𝑉2
1

for different values of cv𝐿
and cv𝐾 . Solid line: results for cv𝐿 equal to cv𝐾 both different from zero. Dashed line:
results for cv𝐿 different from zero and cv𝐾 equal to zero. Dotted line: results for cv𝐿 equal to
zero and cv𝐾 different form zero.
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Equation (4.114) defines the relative differences between the coefficients of variation of Φ1,
𝑉1

1 , 𝑉1
2 , 𝑉2

1 and the coefficients of variation of the same variables that would result from
replacing their means values with the nominal ones.
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Fig. 4.9 Graphs of (a) rcvΦ1 , (b) rcv𝑉1
1
, (c) rcv𝑉1

2
, (d) rcv𝑉2

1
for different values of cv𝐿 and

cv𝐾 . Solid line: results for cv𝐿 equal to cv𝐾 both different from zero. Dashed line: results
for cv𝐿 different from zero and cv𝐾 equal to zero. Dotted line: results for cv𝐿 equal to zero
and cv𝐾 different from zero.

4.3 Sensitivity of a particle-based homogeneous and isotropic
second-gradient continuum model with respect to un-
certain constitutive fields

This section is the outcome of collaboration with Professor Christian Soize and continues
in line with Section 4.2. It presents a comprehensive study on the development and
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application of a stochastic second-gradient continuum model for particle-based materials,
with an application focused on disorder colloidal crystals. Colloidal crystals represent an
important class of particle-based materials. They find applications in material sciences
and Biomedical engineering [26], as optical materials [144], and have the potential to
improve 3D printing technologies due to their tunable electrical, optical, mechanical, and
rheological properties [150]. Currently, significant scientific efforts are underway to realize
complex colloidal crystals and novel colloidal crystal microsensing systems [143, 85]. In a
perfectly ordered colloidal crystal, particles are arranged in a regular, periodic lattice structure.
However, deviations from this ideal structure, such as sphere vacancies, line dislocations,
and random position errors, can degrade the optical properties, leading to disorder colloidal
crystals [101, 113]. Since we are dealing with particle-based materials and not granular
materials, factors such as the topology of contacts, granulometry, grain sizes, shapes, and
geometric structure are not considered. The model incorporates random fields to capture the
spatial variability and heterogeneity present in the geometric and material properties of these
materials. The computational framework is based on the mixed Finite Element (FE) method
applied to the equivalent second-gradient continuum. The Monte Carlo (MC) numerical
simulation method is used as a stochastic solver of the random formulation of the Boundary
Value Problem (BVP). The paper begins with an overview of an existing second-gradient
continuum model for particle-based materials. Then, it incorporates random fields into this
model to provide a more realistic representation of the geometric and material properties.
Finally, the resulting stochastic second-gradient model is applied to analyze disorder colloidal
crystals, which have wide-ranging applications.

4.3.1 Defining the stochastic particle-based second-gradient equivalent
continuum

We hereby introduce the key aspects of the stochastic particle-based second-gradient equivalent
continuum. Further details can be found in [94, 13, 136, 104].

Let us consider a particle 3D-lattice structure contained within an open bounded domain
B ⊂ R3 with a sufficiently smooth boundary 𝜕B. The 3D-lattice structure is assumed to
be composed of 𝑛pts at constant spacing ℓ. Two particles at distance ℓ are here named
consecutive particles (see Fig. 4.10). Let 𝒒

𝑖
and 𝒒

𝑗
be two consecutive particles in the

nominal configuration. Let 𝒏̂(𝒒
𝑖
, 𝒒

𝑗
) be the unit vector that describes the direction of the

particle-pair consisting of the one at 𝒒
𝑖
and the other one at 𝒒

𝑗
. In this section, stochastic

considerations are introduced, wherein the symbol 𝒒 is preferred for denoting the Lagrangian
coordinates, as the symbol 𝑋 is reserved for the random quantities. For the stochastic
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qi

q j

 l
 nij

Fig. 4.10 Illustration of a 2D material made up of particles placed at constant spacing. We
depict the geometrical significance of ℓ and 𝒏̂

𝑖 𝑗
. The model takes into account both the

interactions in the direction described by 𝒏̂
𝑖 𝑗

and in the direction orthogonal to 𝒏̂
𝑖 𝑗

. In
particular, stiffness is assumed constant in the plane orthogonal to 𝒏̂

𝑖 𝑗
.
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description, 𝒒
𝑖
and 𝒒

𝑗
are modeled by the random variables 𝑸𝑖 and 𝑸 𝑗 . Let 𝐿𝑖 𝑗 (𝑸𝑖,𝑸 𝑗 ) be

the distance between 𝑸𝑖 and 𝑸 𝑗 , and let 𝑵̂𝑖 𝑗 (𝑸𝑖,𝑸 𝑗 ) describing the direction connecting 𝑸𝑖

and 𝑸 𝑗 , which can also be described by means of the random Euler angles 𝛀𝑖 𝑗 (𝑸𝑖,𝑸 𝑗 ). Let
𝐾𝜂𝑖 𝑗 (𝑸𝑖,𝑸 𝑗 ) and 𝐾𝜏𝑖 𝑗 (𝑸𝑖,𝑸 𝑗 ) be the random stiffnesses associated with the deformation in
the direction defined by 𝑵̂𝑖 𝑗 (𝑸𝑖,𝑸 𝑗 ) and any direction orthogonal to it, respectively. We
assume that the level of particle disordering is small enough to approximate the initial domain
transformed by the disordering as the initial domain itself. Let {{𝐿 (𝒒;𝜃) , 𝜃 ∈ Θ}, 𝒒 ∈ B} be
the random field defined such that, at 𝒒 = 𝑸𝑖 (𝜃),

𝐿
(
𝑸𝑖 (𝜃);𝜃

)
=

1
𝑛𝑖

∑︁
𝑗

𝐿𝑖 𝑗 (𝑸𝑖 (𝜃),𝑸 𝑗 (𝜃)) , (4.115)

with 𝑗 such that 𝒒
𝑗
is consecutive to 𝒒

𝑖
, 𝑛𝑖 being the number of particles consecutive to 𝒒

𝑖
. Let

{{𝐾𝜂 (𝒒;𝜃) , 𝜃 ∈ Θ}, 𝒒 ∈ B} and {{𝐾𝜏 (𝒒;𝜃) , 𝜃 ∈ Θ}, 𝒒 ∈ B} be the random fields associated
with the stiffnesses such that, at 𝒒 = 𝑸𝑖 (𝜃),

𝐾𝜂
(
𝑸𝑖 (𝜃);𝜃

)
=

1
𝑛𝑖

∑︁
𝑗

𝐾𝜂𝑖 𝑗 (𝑸𝑖 (𝜃),𝑸 𝑗 (𝜃)). (4.116)

𝐾𝜏
(
𝑸𝑖 (𝜃), 𝜃

)
=

1
𝑛𝑖

∑︁
𝑗

𝐾𝜂𝑖 𝑗 (𝑸𝑖 (𝜃),𝑸 𝑗 (𝜃)) . (4.117)

Using the same approach, which some authors refer to as the Piola Ansatz [36], we
introduce the deterministic field 𝒏̂(𝝎), where 𝝎 belongs to S = [0, 𝜋] × [0,2𝜋]. At 𝝎(𝜃) =
Ω𝑖 𝑗 (𝑸𝑖 (𝜃),𝑸 𝑗 (𝜃)), this field satisfies 𝒏̂(𝝎(𝜃)) = 𝑵̂𝑖 𝑗 (𝑸𝑖 (𝜃),𝑸 𝑗 (𝜃)). We also introduce the
random objective deformation field 𝑼(𝒒, 𝒒;𝝎) that is defined by

𝑈𝐶 (𝒒, 𝒒;𝝎) = 2 [𝐸]𝐶𝐵 (𝒒) 𝑛̂𝐵(𝝎) 𝐿 (𝒒, 𝒒) + 1
2
[ℌ]𝐶𝐴𝐵 (𝒒) 𝑛̂

𝐵(𝝎) 𝑛̂𝐴(𝝎) 𝐿2(𝒒, 𝒒) , (4.118)

where [𝑬] (𝒒) is the random Cauchy–Green deformation tensor defined by

[𝐸]𝐶𝐵 (𝒒) =
1
2
𝑔𝑀𝐶

(
𝜕𝑅𝑖 (𝒒)
𝜕𝑞𝐵

𝜕𝑅 𝑗 (𝒒)
𝜕𝑞𝑀

𝑔𝑖 𝑗 − 𝛿𝐵𝑀
)
, (4.119)

in which {{𝑹 (𝒒;𝜃) , 𝜃 ∈ Θ}, 𝒒 ∈ B} is the random configuration field defined by

𝑹
(
𝑸̃𝑖 (𝜃);𝜃

)
= 𝑹𝑖 (𝑸𝑖 (𝜃)) , (4.120)

where 𝑹𝑖 (𝑸𝑖 (𝜃)) defines the position of 𝑸𝑖 (𝜃), and [𝕳] (𝒒) is the random second-gradient
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deformation tensor defined by

[
ℌ𝛽

]𝐶
𝐴𝐵

(𝒒) = 1
2
[𝑔]𝐷𝐶 ©­«

𝜕 [𝐸]𝐴𝐷 (𝒒)
𝜕𝑞𝐵

�����
𝒒=𝒒𝛽

+ 𝜕 [𝐸]𝐵𝐷 (𝒒)
𝜕𝑞𝐴

����
𝒒=𝒒𝛽

− 𝜕 [𝐸]𝐵𝐴 (𝒒)
𝜕𝑞𝐷

����
𝒒=𝒒𝛽

ª®¬ .
(4.121)

For𝝎 inS, let us introduce the random deformation energy per unit direction, {Ψ (𝒒, 𝒒;𝝎) , 𝒒 ∈
B}, such that

Ψ(𝒒, 𝒒;𝝎)) = 1
2
𝐾𝜂 (𝒒, 𝒒)



𝑼𝜂 (𝒒, 𝒒;𝝎))


2 + 1

2
𝐾𝜏 (𝒒, 𝒒) ∥𝑼𝜏 (𝒒, 𝒒;𝝎)∥2

, (4.122)

in which

𝑼𝜂 (𝒒, 𝒒;𝝎)) = 1
2
(𝑼 (𝒒, 𝒒;𝝎) · 𝒏̂ (𝝎)) 𝒏̂ (𝝎) , 𝑼𝜏 (𝒒, 𝒒;𝝎)) =𝑼 (𝒒;𝒒;𝝎) −𝑼𝜂 (𝒒, 𝒒;𝝎) .

(4.123)
Hence, let us define the random fields {Ξ1(𝒒) , 𝒒 ∈ B} and {Ξ2(𝒒) , 𝒒 ∈ B} such that

Ξ1(𝒒) =
4𝜋𝐿2(𝒒)

15
(
𝐾𝜂 (𝒒) −4𝐾𝜏 (𝒒)

)
, Ξ2(𝒒) =

4𝜋𝐿2(𝒒)
15

(
𝐾𝜂 (𝒒) +6𝐾𝜏 (𝒒)

)
, (4.124)

which are the random Lamé coefficients. Let us define the random fields {Ξ3(𝒒) , 𝒒 ∈ B} to
{Ξ7(𝒒) , 𝒒 ∈ B} such that

Ξ3(𝒒) =
𝐿2(𝒒)
112

Ξ1(𝒒) , (4.125)

Ξ4(𝒒) = Ξ3(𝒒) , (4.126)

Ξ5(𝒒) =
𝐿2(𝒒)
1120

(7Ξ2(𝒒) +3Ξ1(𝒒)) , (4.127)

Ξ6(𝒒) =
𝐿2(𝒒)
1120

(7Ξ2(𝒒) −4Ξ1(𝒒)) , (4.128)

and
Ξ7(𝒒) = Ξ5(𝒒) . (4.129)

Let us define the random displacement field {𝑽 (𝒒) , 𝒒 ∈ B} such that 𝑹(𝒒) = 𝒒 +𝑽 (𝒒). Let
{Φ(𝒒) , 𝒒 ∈ B} be the random field associated with the specific deformation energy defined
by

Φ (𝒒) =
∫
S
Ψ (𝒒;𝝎) 𝑑𝝎. (4.130)

Considering that deformation tensors [𝑬] and [𝕳] depend on 𝑽, to explicitly represent
the dependencies of Φ(𝒒) on 𝑽, 𝐿, 𝐾𝜂, and 𝐾𝜏, we introduce the functional 𝜙 such that



4.3 Sensitivity of a particle-based homogeneous and isotropic second-gradient continuum
model with respect to uncertain constitutive fields 131

Φ (𝒒) = 𝜙
(
𝑽;𝐿,𝐾𝜂,𝐾𝜏

)
(𝒒). Searching for an equivalent continuum in the isotropic symmetry

class, Eq. (4.130) yields the following expression

Φ (𝒒) = Ξ2(𝒒) [𝐸]𝐴𝐵 (𝒒) [𝐸]𝐵𝐴 (𝒒) + 1
2
Ξ1(𝒒) [𝐸]𝐴𝐴 (𝒒) [𝐸]

𝐵
𝐵 (𝒒)

+2Ξ3(𝒒) [ℌ]𝐴𝐴𝐵 (𝒒) [ℌ]
𝐵
𝐶𝐶 (𝒒) +

1
2
Ξ4(𝒒) [ℌ]𝐴𝐴𝐵 (𝒒) [ℌ]

𝐶
𝐶𝐵 (𝒒)

+2Ξ5(𝒒) [ℌ]𝐴𝐵𝐴 (𝒒) [ℌ]
𝐵
𝐶𝐶 (𝒒) +Ξ6(𝒒) [ℌ]𝐴𝐵𝐶 (𝒒) [ℌ]

𝐴
𝐵𝐶 (𝒒) +2Ξ7(𝒒) [ℌ]𝐴𝐵𝐶 (𝒒) [ℌ]

𝐶
𝐴𝐵 (𝒒) .
(4.131)

The total deformation energy functional 𝑤 is obtained by integrating the specific deformation
energy as follows,

𝑤
(
𝑽;𝐿,𝐾𝜂,𝐾𝜏

)
=

∫
B
𝜙
(
𝑽;𝐿,𝐾𝜂,𝐾𝜏

)
(𝒒) 𝑑𝒒. (4.132)

In the same way as before, 𝑤 is written to explicitly show its dependencies on 𝑽, 𝐿, 𝐾𝜂, and
𝐾𝜏. It is crucial to emphasize that the introduced continuum model is not obtained by means
of a homogenization procedure. It serves as an equivalent continuum model at the same scale.

4.3.2 Constructing the prior probability model of the involved random
fields

Construction of the random field {𝐿 (𝒒) , 𝒒 ∈ B}

The objective is to define a prior probability model for the random field {𝐿 (𝒒) , 𝒒 ∈ B}.
Let 𝑸𝑖 denote the random variable describing the position of the 𝑖-th particle in the given
3D-lattice structure. Random variable 𝑸𝑖 is uniformly distributed within a sphere of diameter
𝜌max = ℓ/2− 𝑑max/2, centered at 𝒒

𝑖
(where 𝒒

𝑖
= (𝑞1

𝑖
, 𝑞2
𝑖
, 𝑞3
𝑖
) is the nominal position of

the 𝑖-th particle), and 𝜌max > 0. Here, ℓ denotes the nominal particle spacing, which is
assumed to be constant along the space, and 𝑑max represents the maximum diameter of
the particles. The assumptions on 𝜌max ensure that there is nneither overlap nor contact
among the particles. Let us introduce the random fields {𝐴 (𝒒) , 𝒒 ∈ B}, {𝔉1 (𝒒) , 𝒒 ∈ B},
and {𝔉2 (𝒒) , 𝒒 ∈ B}, related to spherical coordinates (one radius and two angles), which
are assumed to be independent. Each one of these three random fields is assumed to be
an uncountable collection of independent random variables having the same probability
distribution. For all 𝒒 in B, the real-valued random variable 𝐴 (𝒒) is uniformly distributed in
[0, 𝜌max], the real-valued random variable 𝔉1 (𝒒) is uniformly distributed in [0,2𝜋], and the
real-valued random variable 𝔉2 (𝒒) is uniformly distributed in [0, 𝜋]. The random position,
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𝑸𝑖 =
(
𝑄1
𝑖
,𝑄2

𝑖
,𝑄3

𝑖

)
, of the 𝑖-th particle, is defined by

𝑄1
𝑖 = 𝑞

1
𝑖
+ 𝐴(𝒒

𝑖
) cos(𝔉1(𝒒

𝑖
)) sin(𝔉2(𝒒

𝑖
)) , (4.133)

𝑄2
𝑖 = 𝑞

2
𝑖
+ 𝐴(𝒒

𝑖
) sin(𝔉1(𝒒

𝑖
)) sin(𝔉2(𝒒

𝑖
)) , (4.134)

and
𝑄3
𝑖 = 𝑞

3
𝑖
+ 𝐴(𝒒

𝑖
) cos(𝔉2(𝒒

𝑖
)) . (4.135)

For each realization 𝜃 ∈ Θ, the trajectories 𝒒 ↦→ 𝐿 (𝒒, 𝜃) of random field {𝐿 (𝒒) , 𝒒 ∈ B} are
constructed by means of Eq. (4.115).

Construction of random field {[𝑲 (𝒒)], 𝒒 ∈ B} and its generator of realizations at
sampling points

In accordance with the MaxEnt principle from information theory, our goal is to develop
a prior probability model for the random fields {𝐾𝜂 (𝒒) , 𝒒 ∈ B}, and {𝐾𝜏 (𝒒) , 𝒒 ∈ B}. To
achieve this, we construct the prior probability model for the matrix-valued random field
{[𝑲 (𝒒)] , 𝒒 ∈ B} such that

[𝑲 (𝒒)] =
[
𝐾𝜂 (𝒒) 0

0 𝐾𝜏 (𝒒)

]
, (4.136)

while taking into account the available information outlined below. Matrix-valued random
field {[𝑲 (𝒒)] , 𝒒 ∈ B} is a restriction to B of the homogeneous and second-order random
field {[𝑲 (𝒒)] , 𝒒 ∈ R3} indexed by R3. It must take values in the ensemble M+

2diag of
diagonal positive-definite random matrices. The mean function of {[𝑲 (𝒒)] , 𝒒 ∈ R3}, which
is independent of 𝒒, is a constant matrix given inM+

diag,

E {[𝑲 (𝒒)]} = [𝒌] ,
[
𝒌
]
=

[
𝑘
𝜂

0
0 𝑘

𝜏

]
∈M+

diag . (4.137)

The second-order moment of [𝑲 (𝒒)]−1 must be finite for physical consistency. Note that,
random matrix [𝑲 (𝒒)] is almost-surely invertible, which does not imply neither the existence
of a second-order moment of its inverse nor the existence of a deterministic lower bound.
Following the formulation proposed in [129], a deterministic lower bound is introduced,
which assures the existence of the second-order moment of the inverse. Consequently, the
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algebraic representation of [𝑲 (𝒒)] is defined as

[𝑲 (𝒒)] = 1
1+ 𝜀

(
𝜀 [𝒌] +

[
𝒌
]1/2 [𝑮 (𝒒)]

[
𝒌
]1/2

)
. (4.138)

In Eq. (4.138), 𝜀 is an arbitrarily sufficiently small positive number,
[
𝒌
]1/2 is the square root

of
[
𝒌
]
, and {[𝑮 (𝒒)] , 𝒒 ∈ R3} is a homogeneous, second-order, non-GaussianM+

diag-valued
random field, which must satisfies

E {[𝑮 (𝒒)]} = [𝐼2] , E {log(det [𝑮 (𝒒)])} = 𝜈, |𝜈 | < +∞ , ∀𝒒 ∈ R3, (4.139)

as proposed in [127] and where 𝜈 is independent of 𝒒. Matrix-valued random field
{[𝑮 (𝒒)] , 𝒒 ∈ R3} is constructed using the MaxEnt principle under constraints defined by
Eq. (4.139) following the methodology and developments proposed in [127, 66, 129], which
are summarized in the following.

Construction of random germ {𝑍 (𝒒) , 𝒒 ∈ R3} of random field {[𝑮 (𝒒)] , 𝒒 ∈ R3} and its
generator at sampling points

The random germ {𝑍 (𝒒) , 𝒒 ∈ R3} is a Gaussian, second-order, centered, homogeneous
random field for which the autocorrelation function is expressed as

𝑅𝑍 (𝜼) =
3∏
𝑗=1

𝜚 𝑗
(
𝜂 𝑗

)
, ∀𝜼 = (𝜂1, 𝜂2, 𝜂3) ∈ R3 , (4.140)

where, for all 𝑗 = 1,2,3,

𝜚 𝑗 (0) = 1 , 𝜚 𝑗
(
𝜂 𝑗

)
=

4𝜆2
𝑗

𝜋2𝜂2
𝑗

sin2
(
𝜋𝜂 𝑗

2𝜆 𝑗

)
for 𝜂 𝑗 ≠ 0 . (4.141)

The symbols 𝜆1, 𝜆2, 𝜆3 denote positive real numbers that represent the spatial correlation
lengths of random germ {𝑍 (𝒒) , 𝒒 ∈ R3}. Since the objective is to simulate {𝑍 (𝒒) , 𝒒 ∈ R3}
at given points 𝒒1,. . . , 𝒒𝑚 of B ⊂ R3, we define the random vector 𝒁 =

(
𝑍 (𝒒1) , . . . , 𝑍

(
𝒒𝑚

) )
that belongs to R𝑚. Different procedures exist in the literature. As explained in [127], we
can use neither the method proposed in [122–124] adapted for large values of 𝑚 or a method
adapted for small values of 𝑚, which involves the Cholesky factorization of the covariance
matrix of 𝒁 [127]. Below, we summarize the procedure adapted for small values of 𝑚 that
will be used in Section 4.2.3, devoted to the numerical application. Since random vector 𝒁 is
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centered, the covariance matrix [𝐶𝒁] ∈M+
𝑚 of 𝑍 is given by the formula

[𝐶𝒁]𝑖 𝑗 = 𝑅𝑍
(
𝒒𝑖 − 𝒒 𝑗

)
. (4.142)

Then, the Cholesky factorization [𝐶𝒁] = [𝐿𝒁]𝑇 [𝐿𝒁] can be performed. We can express the
random vector 𝒁 as the linear transformation

𝒁 = [𝐿𝒁]𝑇 𝒁̃ , (4.143)

in which 𝒁̃ = (𝑍1, . . . , 𝑍𝑚) is a R𝑚-random variable whose components 𝑍1, . . . , 𝑍𝑚 are 𝑚
independent normalized Gaussian random variables, i.e., E{𝑍 𝑗 } = 0 and E{(𝑍 𝑗 )2} = 1 for
𝑗 = 1, . . . ,𝑚. To finish the construction of the family of random matrices {[𝑮

(
𝒒𝑖

)
], 𝑖 =

1, . . . ,𝑚} as a function of the family of random matrices {𝒁
(
𝒒𝑖

)
, 𝑖 = 1, . . . ,𝑚}, it is necessary

to introduce a family of functions {𝑦 ↦→ ℎ (𝛼, 𝑦)}𝛼>0 defined in Section 4.3.2.

Definition of the family of functions {𝑦 ↦→ ℎ (𝛼, 𝑦)}𝛼>0

Let us consider a positive real number 𝛼. Let 𝑦 ↦→ ℎ (𝛼, 𝑦) be a function from R into ]0,+∞[
such that 𝛤𝛼 = ℎ (𝛼,𝑌 ) is a Gamma random variable with parameter 𝛼 and 𝑌 is a normalized
Gaussian random variable, i.e., E {𝑌 } = 0 and E

{
𝑌2} = 1. For all 𝑦 ∈ R, mapping ℎ(𝛼, ·) is

written as

ℎ (𝛼, 𝑦) = 𝐹−1
𝛤𝛼

(𝐹𝑌 (𝑦)) , (4.144)

in which 𝛾 ↦→ 𝐹𝛤𝛼 (𝛾) is the cumulative distribution of random variable 𝛤𝛼, 𝑦 ↦→ 𝐹𝑌 (𝑦) is the
cumulative distribution of random variable 𝑌 ,

𝐹𝛤𝛼 (𝛾) =
∫ 𝛾

0

1
𝛤 (𝛼) 𝑡

𝛼−1 𝑒−𝑡 𝑑𝑡 , 𝐹𝑌 (𝑦) =
∫ 𝑦

0

1
√

2𝜋
𝑒−𝑡

2/2 𝑑𝑡 , (4.145)

𝛼 ↦→ 𝛤 (𝛼) is the Gamma function defined by

𝛤 (𝛼) =
∫ +∞

0
𝑡𝛼−1 𝑒−𝑡 𝑑𝑡 , (4.146)

in which 𝐹−1
𝛤𝛼

is the inverse function of 𝐹𝛤𝛼 .
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Construction of the family of matrices {[𝑮
(
𝒒𝑖

)
], 𝑖 = 1, . . . ,𝑚} and {[𝑲

(
𝒒𝑖

)
], 𝑖 = 1, . . . ,𝑚}

Let 𝑍11
(
𝒒𝑖

)
and 𝑍22

(
𝒒𝑖

)
be two independent copies of the random variable 𝑍

(
𝒒𝑖

)
, with

𝑖 = 1, . . . ,𝑚, built as in Section 4.3.2. Eq. (4.143) impliesE
{
𝑍 𝑗 𝑗

(
𝒒𝑖

)}
= 0 andE

{
𝑍2
𝑗 𝑗

(
𝒒𝑖

)}
= 1.

Let 𝛿[𝑮] be a real number independent of 𝒒𝑖 such that 0 < 𝛿[𝑮] <
√︁

3/7, which enables to
control the statistical fluctuation of the random field {[𝑮 (𝒒)] , 𝒒 ∈ R3}. Let us define the
random matrix

[
𝑳2

(
𝒒𝑖

) ]
such that

[
𝑳2

(
𝒒𝑖

) ]
=


𝜎2

√︃
2ℎ

(
𝛼1, 𝑍11

(
𝒒𝑖

) )
0

0 𝜎2

√︃
2ℎ

(
𝛼2, 𝑍22

(
𝒒𝑖

) )  , (4.147)

in which 𝜎2 = 𝛿[𝑮]/
√

3, 𝛼1 = 3/(2𝛿2
[𝑮]), 𝛼2 = 3/(2𝛿2

[𝑮]) −1/2, and ℎ (𝛼, 𝑦) is defined by Eq.
(4.144). Finally, the random matrix

[
𝑮

(
𝒒𝑖

) ]
is given by[

𝑮
(
𝒒𝑖

) ]
=

[
𝑳2

(
𝒒𝑖

) ]𝑇 [
𝑳2

(
𝒒𝑖

) ]
. (4.148)

The objective is to simulate the family of random matrices {[𝑲
(
𝒒𝑖

)
], 𝑖 = 1, . . . ,𝑚}. Taking

into account Eq. (4.138), the random matrix
[
𝑲

(
𝒒𝑖

) ]
is written as,[

𝑲
(
𝒒𝑖

) ]
=

1
1+ 𝜀

(
𝜀 [𝒌] +

[
𝒌
]1/2 [

𝑳2
(
𝒒𝑖

) ]𝑇 [
𝑳2

(
𝒒𝑖

) ] [
𝒌
]1/2

)
, (4.149)

which depends on three correlation lengths 𝜆1,𝜆2,𝜆3 and dispersion parameter 𝛿[𝑮] .

Weak formulation of the stochastic boundary value problem and its strong stochastic
solution

Let C𝒗 representing the set of admissible displacements 𝒗 : 𝒒 ↦→ 𝒗 (𝒒) defined on B with values
in R3 satisfying the zero Dirichlet conditions on 𝜕B0 and 𝜕B𝑡 in 𝜕B. Let H = L2(Θ,C𝒗)
be the set of the random fields 𝑽 = {𝑽 (𝒒), 𝒒 ∈ B} defined on probability space (Θ,T ,P)
with values in C𝒗 , which are of second-order: for all 𝒒 in B, E{∥𝑽 (𝒒)∥2} < +∞. The strong
stochastic solution of the weak formulation of the stochastic BVP is: find 𝑽 in H, such that

𝛿𝜋
(
𝑽, 𝛿𝒗;𝐿,𝐾𝜂,𝐾𝜏

)
= 0 , ∀𝛿𝒗 ∈ C𝒗 , 𝑎.𝑠. , (4.150)

where 𝛿𝜋 is the first variation of the energy functional 𝜋 defined on C𝒗 by

𝜋
(
𝒗;𝐿,𝐾𝜂,𝐾𝜏

)
= 𝑤

(
𝒗;𝐿,𝐾𝜂,𝐾𝜏

)
− 𝑠(𝒗) , 𝒗 ∈ C𝒗 , (4.151)
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in which the functional 𝑤 is defined in Eq. (4.132), and where the functional 𝑠 is defined by

𝑠 (𝒗) = −
∫
𝜕B

⟨̃𝒕 ext(𝒒), 𝒗 (𝒒)⟩ 𝑑𝜎(𝒒) , (4.152)

where 𝒕̃ ext(𝒒) denotes the vector of the external actions at 𝒒, and 𝑑𝜎(𝒒) is the surface
element. It is assumed that there is a unique strong solution 𝑽 in H. In Section 4.2.3, this
strong stochastic solution is constructed using a stochastic solver based on Monte Carlo (MC)
numerical simulation [118, 115].

4.3.3 Application to 2D disorder colloidal crystals

Colloidal crystals consist of particles arranged in ordered arrays. However, imperfections
can occur, causing perturbations in the ordered structure. When perturbations occur,
we refer to the resulting structure as disordered colloidal crystals. Hereafter, we study
a rectangular 2D disorder colloidal crystal using the random particle-based equivalent
continuum model presented in Section 4.3.1, where random fields are built as described in
Section 4.2.2. The rectangular domain is denoted by B ⊂ R2 and its boundary is represented
by 𝜕B = 𝜕B0 ∪ 𝜕B𝑡 ∪ 𝜕B1. Zero Dirichlet conditions are applied on the left-end boundary
denoted as 𝜕B0 and on the right-end boundary denoted as 𝜕B𝑡 . A uniaxial traction force is
applied on 𝜕B𝑡 . The displacement field is free on the boundaries 𝜕B1 as shown in Fig. 4.11.

q1

q2

textb1

b2

Fig. 4.11 Scheme of the considered colloidal crystal and of the simulated axial traction test.
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Geometry characteristics, load magnitude, and random fields parameters

The 2D domain B occupied by the colloidal crystal is defined as a rectangle (see Fig. 4.11)
whose dimensions are 𝑏1 = 1.38×10−5 m and 𝑏2 = 5.52×10−6 m. Regarding the diameters of
the colloidal particles, the particle spacing, and the mechanical properties, we refer to [84]. 2D
samples are considered, consisting of particles with a diameter of 1.09×10−7 m (0.109𝜇m)
forming a 2D triangular lattice structure. We examine the impact of three different values of
nominal particle spacing ℓ = E {𝐿 (𝒒)}, which is assumed to remain constant throughout the
space. The investigated values are 2.76× 10−7 m (0.276𝜇m), 2.3× 10−7 m (0.23𝜇m), and
2.1×10−7 m (0.21𝜇m). When considering ℓ = 2.76×10−7 m, these samples correspond to
an area fraction of 0.12 and a particle concentration of 1.2×1014 particles/cm3 (for density
calculation, we consider a thickness equal to the particle diameter). The mean shear modulus
of the equivalent continuum is Ξ1 = 20Pa (200dyn/cm2). Moreover, we choose Ξ2 = 8Pa
(80dyn/cm2), resulting in a ratio between the bulk modulus and shear modulus of 1.06.
This choice corresponds to a physical state that is far from the melting point of the phase
transition [149]. It is important to note that there exists a wide range of studies investigating
the mechanical properties of colloidal crystals. These properties can vary due to factors
such as particle size and shape, interparticle interactions, packing, ordering, temperature,
surface effects, external environment, and more. One of the advantages of the equivalent
second-gradient continuum model summarized in Section 4.3.1, together with the probability
model introduced in Section 4.2.2, is its applicability to any colloidal crystal. The effect of line
forces 𝑡ext of different amplitudes ranging from zero to 2.5×10−6 N/m is investigated. Using
Eq. (4.79), choosing ℓ = 2.76×10−7 m, considering that 𝐿 (𝒒) is statistically independent on
𝐾𝜂 (𝒒) and 𝐾𝜏 (𝒒), and solving the linear equations for the mean values 𝑘

𝜂
= E

{
𝐾𝜂 (𝒒)

}
and

𝑘
𝜏
= E {𝐾𝜏 (𝒒)} yield

𝑘
𝜂
= 1.47×10−13 N/m4 , 𝑘

𝜏
= 1.57×10−14 N/m4 , (4.153)

which are used in all the computations. We consider two different scenarios: one with random
stiffnesses and deterministic particle spacing (i.e., without disordering), and another with
random stiffnesses and random particle spacing (i.e., with disordering). Random stiffnesses
are controlled by the dispersion parameter 𝛿[𝑮] and the two correlation lengths 𝜆1 and 𝜆2

in the two directions defined by the global Cartesian coordinate system. We assume that
the two correlation lengths are equal and we introduce the correlation length 𝜆 defined by
𝜆 := 𝜆1 = 𝜆2. A parametric study is conducted for three different values of 𝛿[𝑮] , 0.1,0.2,0.3
(10%,20%,30%), and three different values of 𝜆, 10−3 ℓ, ℓ, and 2ℓ. The sensitivity of
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the mechanical response of the disordered colloidal crystal is investigated with respect to
variations in 𝛿[𝑮] and 𝜆.

Computational model and Monte Carlo numerical simulation

As explained in Section 4.3.2, the strong stochastic solution is obtained via a stochastic
solver based on Monte Carlo (MC) numerical simulation. The domain B is divided into 𝑚
subdomains, and their centroids are denoted as 𝒒1, . . . , 𝒒𝑚. After selecting the parameters 𝛿[𝑮]
and 𝜆 for the random fields {𝐾𝜂 (𝒒) , 𝒒 ∈ B} and {𝐾𝜏 (𝒒) , 𝒒 ∈ B}, we generate 𝑛 independent
realizations of them at 𝒒1, . . . , 𝒒𝑚. Similarly, if the particle spacing is assumed to be random,
then we compute 𝑛 realizations of the random field {𝐿 (𝒒) , 𝒒 ∈ B}. Conversely, if the
particle spacing is assumed to be deterministic, then we replace random field 𝐿 with its
nominal value ℓ. For each realization 𝜃, the trajectories of random fields 𝐾𝜂, 𝐾𝜏, and 𝐿 are
constructed as piecewise constant functions. For the 𝑖-th subdomain, we assume that the
values are constant and equal to 𝐿 (𝒒𝑖) (𝜃), 𝐾𝜂 (𝒒𝑖) (𝜃), and 𝐾𝜏 (𝒒𝑖) (𝜃). Using the mixed FE
method with a 2D triangular mesh, we compute 𝑛 independent realizations of the strong
solution of the BVP. The convergence of the obtained results is monitored by selecting
three different values for the characteristic mesh length ℎmesh: 2.76×10−7 m, 2.3×10−7 m,
and 2.1× 10−7 m. These values correspond to 2 408, 3 248, and 4 108 mesh elements, as
well as 24 646, 33 134, and 41 822 degrees of freedom. The displacement field 𝑽 and
its gradient ∇𝒒𝑽 are treated as unknowns, subject to constraints imposed via Lagrange
multipliers. The Python code used in this study is based on the FEniCS project, accessible at
http://www.fenicsproject.org/download. To perform massive parallelization, the MPI library
is used. An example of the computational implementation is provided in [1] and is available
for use under the GNU Public License [GNU Public]. We use SNES (Scalable Nonlinear
Equations Solvers) as a nonlinear solver for the computations.

The sensitivity of the mechanical response with respect to uncertainties is analyzed
by examining a finite set of scalar observations that are expressed in terms of 𝑽. These
observations include certain components of the displacement field at a specific point 𝒒. Let
𝑋 be the real valued-random variable that represents one of these observations. Let E(𝑛){𝑋}
and 𝛿(𝑛)

𝑋
be the estimation of the mean value E{𝑋} and coefficient of variation 𝛿𝑋 performed

with 𝑛 realizations. For each random variable 𝑋 , the convergence of the stochastic solver with
respect to 𝑛 is monitored by the quantity 𝜀(𝑛)

𝑋
/E(𝑛){𝑋} that can be expressed as = 𝜂 𝛿(𝑛)

𝑋
/
√
𝑛

with 𝜂 = G−1 (0.95), in which G is the standard normal cumulative distribution function (see
([129] pp. 35)). The probability density function of 𝑋 is estimated using the Gaussian Kernel
Density Estimation (KDE) method with 𝑛 = 10000 realizations. Moreover, we analyze the
graph 𝑥(𝑝) ↦→ 𝑡ext = 𝑡̃ext

1 (𝑥(𝑝)), where 𝑥(𝑝) is the 𝑝-th percentile of 𝑋 and 𝑡ext defines the axial
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external load, to determine whether the crystal exhibits hardening or softening mechanical
behavior. Confidence intervals are constructed for these graphs. Finally, we introduce the
random variable Keff defined as the ratio between the effective axial stiffness Keff = 𝑡ext/𝑉1

2 ,
where 𝑉1

2 is the horizontal displacement at the middle point of the right-end boundary 𝜕B𝑡 ,
and its mean value E{Keff},

Keff =
Keff

E{Keff}
, Keff =

𝑡ext

𝑉1
2

, E{Keff} = 𝑡ext

E{𝑉1
2 }
. (4.154)

Random variable Keff provides insight into the fluctuations of effective global axial stiffness
relative to the mean value. To estimate the pdf k ↦→ 𝑝Keff (k) of Keff , we use the Gaussian
KDE method. Additionally, we integrate the obtained pdf of Keff to estimate the cumulative
distribution function (cdf) k ↦→ FKeff (k). Following the approach in [128], we define the
function 𝛽 ↦→ P(𝛽) such that

P(𝛽) = P(1− 𝛽 < Keff ≤ 1+ 𝛽) = FKeff (1+ 𝛽) −FKeff (1− 𝛽) . (4.155)

The value P(𝛽) represents the probability that Keff lies within the interval ]1− 𝛽,1+ 𝛽].
Probability P(𝛽) allows for quantifying the level of the statistical fluctuations of Keff with
respect to its mean value.

Analyzing convergences and quantifying uncertainty propagation

Let 𝒒1 = (𝑏1/2, 𝑏2/2) represent a point inside domain B ∈ R2 and 𝒒2 = (𝑏1,0) represent a
point on the boundary 𝜕B. Let 𝑉2

1 = 𝑉2(𝒒1) and 𝑉1
2 = 𝑉1(𝒒2) denote the horizontal and

transversal displacements at 𝒒1 and 𝒒2, respectively.

Convergence of stochastic solver

We check the convergence of the results as a function of the number 𝑛 of realizations increases
by evaluating the quantities 𝜀̃ |𝑉2

1 |/E
(𝑛){

��𝑉2
1
��} and 𝜀̃𝑉1

2
/E(𝑛){𝑉1

2 } defined as

𝜀̃
(𝑛)
|𝑉2

1 |
(𝜂)

E(𝑛){
��𝑉2

1

��} =

𝜂 𝛿
(𝑛)
|𝑉2

1 |√
𝑛

,

𝜀̃
(𝑛)
𝑉1

2
(𝜂)

E(𝑛){𝑉1
2 }

=

𝜂 𝛿
(𝑛)
𝑉1

2√
𝑛
. (4.156)

Fig. 4.5 shows that there is the 95% probability of having an error of at most 0.51% in
the mean values of 𝑉2

1 , and an error of at most 0.03% in the mean values of 𝑉1
2 when

considering the number of realizations 𝑛 = 10000. Hence, good convergence is obtained.
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The results are provided for axial external load 𝑡ext = 1×10−8 N/m, nominal particle spacing
ℓ = 2.76× 10−7 m (0.276𝜇m), mesh size ℎmesh = ℓ, correlation length 𝜆 = 10−3 ℓ and 𝛿[𝑮]
less than or equal to 30%.
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Fig. 4.12 Convergence analysis of the stochastic solver. Graphs (a) 𝑛 ↦→ 𝜀̃ |𝑉2
1 |/E{

��𝑉2
1
��}, (b)

𝑛 ↦→ 𝜀̃𝑉1
2
/E{𝑉1

2 }, obtained for 𝑡ext = 1×10−8 N/m, nominal particle spacing ℓ = 2.76×10−7 m,
mesh size ℎmesh = ℓ, correlation length 𝜆 = 10−3 ℓ, and 𝛿[𝑮] = 30% (yellow), 𝛿[𝑮] = 20%
(red), 𝛿[𝑮] = 10% (black), for both without disordering (dashed line) and with disordering
(solid line).

Probability density functions and coefficients of variation of 𝑉1
2 and

��𝑉2
1
�� for fixed

correlation length 𝜆

We build the pdfs 𝑣1
2 ↦→ 𝑝𝑉1

2
(𝑣1

2) and 𝑣2
1 ↦→ 𝑝 |𝑉2

1 | (𝑣
2
1) using the Gaussian KDE method based

on a number of realizations 𝑛 = 10000. We assume axial external load 𝑡ext = 1×10−8 N/m,
nominal particle spacing ℓ = 2.76× 10−7 m (0.276𝜇m), mesh size ℎmesh = ℓ, correlation
length 𝜆 = 10−3 ℓ, and 𝛿[𝑮] less than or equal to 0.3. Concerning component 𝑉1

2 , in Fig. 4.13,
it can be observed, that the mean value and the standard deviation are increasing with the
values of 𝛿[𝑮] , but the mean value is smaller for disordering while the standard deviation is
greater. Concerning component 𝑉2

1 , in Fig. 4.14, it can be observed that, for both disordering
and without disordering, the mean value is approximately constant as a function of 𝛿[𝑮] ,
while the standard deviation is increasing with 𝛿[𝑮] . These remarks are further supported
by Fig. 4.15 displaying the coefficients of variation 𝛿𝑉1

2
and 𝛿|𝑉2

1 | of 𝑉1
2 and 𝑉2

1 , respectively.
In this figure, it can be seen that, for the longitudinal component of the displacement, the
dispersion is larger with disordering than without disordering. It is approximately the same
for the transversal component of the displacement. In addition, we observe that 𝛿|𝑉2

1 | is much
larger than 𝛿𝑉1

2
. This result can be attributed to the comparable standard deviations 𝜎|𝑉2

1 |
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of
��𝑉2

1
�� and 𝜎𝑉1

2
of 𝑉1

2 , as shown in Fig. 4.16, despite the much smaller mean value of
��𝑉2

1
��

compared to the mean value of 𝑉1
2 . Continuing our analysis with Fig. 4.16, we notice that

𝜎𝑉1
2

is slightly larger than 𝜎|𝑉2
1 | since the horizontal particle spacing, ℓ, is slightly larger than

the vertical particle spacing, ℓ
√

3/3 (see red dotted line). In particular, without disordering,
the ratio 𝜎𝑉1

2
/𝜎|𝑉2

1 | remains approximately constant as well as the coefficient of variation
𝛿[𝑮] increases since the system characteristics (particle spacing and correlation length of
stiffness random fields) remain unchanged. With disordering, the ratio 𝜎𝑉1

2
/𝜎|𝑉2

1 | increases
compared to the case without disordering. The lower horizontal particle spacing compared to
the vertical one contributes to the increase in the ratio. As the randomness associated with
the stiffness parameters, controlled by 𝛿[𝑮] , becomes dominant, the ratio decreases towards a
constant value.
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Fig. 4.13 Graphs of 𝑣1
2 ↦→ 𝑝𝑉1

2
(𝑣1

2): (a) without disordering and (b) with disordering. External
load 𝑡ext = 1× 10−8 N/m, nominal particle spacing ℓ = 2.76× 10−7 m, mesh size ℎmesh = ℓ,
correlation length 𝜆 = 10−3 ℓ, 𝛿[𝑮] = 10% (dotted line), 𝛿[𝑮] = 20% (dashed line), and
𝛿[𝑮] = 30% (solid line).

Accuracy of the computational model with respect to mesh size ℎmesh

The accuracy of the computational model with respect to the mesh size is analyzed by
considering ℎmesh equal to ℓ, 0.83ℓ, and 0.76ℓ, where ℓ is the nominal particle spacing chosen
as 2.76×10−7 m (0.276𝜇m). Fig. 4.17 shows the sensitivity to the mesh size ℎmesh of the
coefficients of variation 𝛿|𝑉2

1 | and 𝛿𝑉1
2
. The results are obtained for number of realizations

𝑛 = 10000, 𝑡ext = 1×10−8 N/m, correlation length 𝜆 = 10−3 ℓ, with disordering, and 𝛿[𝑮] = 0.3.
Choosing ℎmesh = ℓ, it can be concluded that the results are sufficiently accurate.
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Fig. 4.14 (a) Graphs of 𝑣2
1 ↦→ 𝑝 |𝑉2

1 | (𝑣
2
1): (a) without disordering (b) with disordering that

are obtained for 𝑡ext = 1×10−8 N/m, nominal particle spacing ℓ = 2.76×10−7 m, mesh size
ℎmesh = ℓ, correlation length 𝜆 = 10−3 ℓ, for 𝛿[𝑮] = 10% (dotted line), 𝛿[𝑮] = 20% (dashed
line), and 𝛿[𝑮] = 30% (solid line).
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Fig. 4.15 Graphs of (a) 𝛿|𝑉2
1 | and (b) 𝛿𝑉1

2
as a function of 𝛿[𝑮] obtained for 𝑡ext = 1×10−8 N/m,

nominal particle spacing ℓ = 2.76×10−7 m, mesh size ℎmesh = ℓ, correlation length 𝜆 = 10−3 ℓ,
with disordering (solid line), without disordering (dashed line).
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Fig. 4.16 Graphs of 𝜎|𝑉2
1 |/𝜎𝑉1

2
as a function of 𝛿[𝑮] obtained for 𝑡ext = 1×10−8 N/m, nominal

particle spacing ℓ = 2.76×10−7 m, mesh size ℎmesh = ℓ, correlation length 𝜆 = 10−3 ℓ, with
disordering (black solid line), without disordering (black dashed line). The red dotted line
represents the ratio between the horizontal and vertical particle spacing.

Accuracy of the computational model with respect to mesh size ℎmesh

The accuracy of the computational model with respect to the mesh size is analyzed by
considering ℎmesh equal to ℓ, 0.83ℓ, and 0.76ℓ, where ℓ is the nominal particle spacing chosen
as 2.76×10−7 m (0.276𝜇m). Fig. 4.17 shows the sensitivity to the mesh size ℎmesh of the
coefficients of variation 𝛿|𝑉2

1 | and 𝛿𝑉1
2
. The results are obtained for number of realizations

𝑛 = 10000, 𝑡ext = 1×10−8 N/m, correlation length 𝜆 = 10−3 ℓ, with disordering, and 𝛿[𝑮] = 0.3.
Choosing ℎmesh = ℓ, it can be concluded that the results are sufficiently accurate.
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Fig. 4.17 Graphs of (a) 𝛿 |𝑉2
1 | and (b) 𝛿𝑉1

2
for different values of ℎmesh obtained for 𝑡ext =

1× 10−8 N/m, nominal particle spacing ℓ = 2.76× 10−7 m, with disordering, correlation
length 𝜆 = 10−3 ℓ, and 𝛿[𝑮] = 30%. The symbol 𝑏2 = 20ℓ denotes the vertical side of the
rectangular crystal.
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Effects of the correlation length 𝜆 on the axial displacements 𝑉1
2

Let us consider 𝑡ext = 1×10−8 N/m, nominal particle spacing ℓ = 2.76×10−7 m (0.276𝜇m),
mesh size ℎmesh = ℓ, and 𝛿[𝑮] = 30%, with disordering, and number of realizations 𝑛 = 10000.
Fig. 4.18 shows how the probability density function 𝑣1

2 ↦→ 𝑝𝑉1
2
(𝑣1

2) of 𝑉1
2 changes as the

correlation length 𝜆 changes. These functions are built using the Gaussian KDE method.
The differences are negligible when 𝜆 = 10−3ℓ and 𝜆 = ℓ. They become significant when
𝜆 = 2ℓ. The results are consistent with the used continuum model. For 𝜆 = 10−3ℓ and
𝜆 = ℓ, consecutive particles are uncorrelated. For 𝜆 = 2ℓ, correlation occurs contributing
to an increase in the randomness of the system. This analysis is improved by quantifying
the deviation of the effective stiffness from its mean value in terms of probability. To this
aim, in Fig. 4.18, we show the function 𝛽 ↦→ P(𝛽) defined in Eq. 4.155 obtained under
the same conditions as before regarding geometry, applied load, 𝛿[𝑮] , mesh size, and the
number of realizations. The value P(𝛽) gives the probability that 1− 𝛽 < Keff < 1+ 𝛽, where
Keff = Keff/E{Keff} and Keff is the global axial stiffness of the analyzed crystal as defined in
Eq. 4.154.
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Fig. 4.18 Graph of (a) 𝑣1
2 ↦→ 𝑝𝑉1

2
(𝑣1

2) and (b) 𝛽 ↦→ P(𝛽) for 𝑡ext = 1× 10−8 N/m, nominal
particle spacing ℓ = 2.76×10−7 m, mesh size ℎmesh = ℓ, 𝛿[𝑮] = 30%, with disordering, number
of realizations 𝑛 = 10000, and for 𝜆 = 10−3ℓ (solid line), 𝜆 = ℓ (dashed line), and 𝜆 = 2ℓ
(dotted line).

Effects of the number of particles on the coefficients of variation of 𝑉1
2 and

��𝑉2
1
��

Let us consider 𝑡ext = 1×10−8 N/m, 𝛿[𝑮] = 30%, with disordering, number of realizations
𝑛 = 10000, 𝑘

𝜂
and 𝑘

𝜏
as given in Eq. 4.153. In this case, we consider three different values

of the nominal distance ℓ between consecutive particles in order to progressively increase the
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number of particles, considering the same domain B. The mesh size ℎmesh is chosen equal
to ℓ. In Fig. 4.19, we show that the coefficients of variation of 𝑉1

2 and
��𝑉2

1
�� decrease as the

nominal distance ℓ between particles decreases. As expected, the randomness of the system
decreases as the number of particles increases.
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Fig. 4.19 Graphs of (a) 𝛿|𝑉2
1 | and (b) 𝛿𝑉1

2
for different values of nominal distance ℓ between

consecutive particles. The results are obtained for 𝑡ext = 1×10−8 N/m, mesh size ℎmesh = ℓ,
correlation length 𝜆 = 10−3ℓ, with disordering, and 𝛿[𝑮] = 30%. The symbol 𝑏2 = 20ℓ denotes
the short side of the rectangular crystal, 𝑏1 = 50ℓ the vertical side.

Graphs of the force-displacement relationships and their confidence regions

Fig. 4.20 displays the confidence regions with the probability level 95% of the force-
displacement relationships

𝑣1
2(𝑝)/𝑏1 ↦→ 𝑡ext(𝑣1

2(𝑝)/𝑏1)/𝑡 ext
, (4.157)

and
|𝑣2

1(𝑝) |/𝑏1 ↦→ 𝑡ext( |𝑣2
1(𝑝) |/𝑏1)/𝑡 ext (4.158)

where 𝑡 ext
= 1×10−8 N/m, 𝑣2

1(𝑝) and 𝑣1
2(𝑝) are the 𝑝-th percentile of 𝑉2

1 and 𝑉1
2 . The results

are obtained for nominal particle spacing ℓ = 2.76×10−7 m (0.276𝜇m), mesh size ℎmesh = ℓ,
correlation length 𝜆 = 10−3 ℓ, 𝑛 = 10000 realizations, 𝛿[𝑮] = 30%, and with disordering. The
confidence region for the relationship related to displacement in the axial direction 𝑉1

2 is
smaller due to the smaller coefficient of variation 𝛿𝑉1

2
compared to 𝛿 |𝑉2

1 |
. The relationship

related to 𝑉1
2 exhibits a hardening behavior, where the strength increases with displacement.

This behavior is attributed to the presence of nonlocal grid effects considered in a second-
gradient model, which are plausible in small specimens like those analyzed in this application.
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In the literature, we have not found results regarding force-displacement curves of colloidal
crystals. However, it is plausible to expect a hardening behavior, as evidence of hardening
has been observed in colloidal gels with increasing shear deformation [29] and in colloidal
crystals with increasing temperature [9].
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Fig. 4.20 Confidence regions with the probability level 95% (a) for the graphs 𝑣1
2(𝑝)/𝑏1 ↦→

𝑡ext(𝑣1
2(𝑝)/𝑏1)/𝑡 ext truncated at 𝑡ext(𝑣1

2(𝑝)/𝑏1)/𝑡 ext
= 30 and (b) for the graph |𝑣2

1(𝑝) |/𝑏1 ↦→
𝑡ext( |𝑣2

1(𝑝) |/𝑏1)/𝑡 ext truncated at 𝑡ext( |𝑣2
1(𝑝) |/𝑏1)/𝑡 ext

= 250, where 𝑡 ext
= 1×10−8 N/m, and

𝑣1
2(𝑝) correspond to the 𝑝-th percentile of 𝑉1

2 , |𝑣2
1(𝑝) | correspond to the 𝑝-th percentile of |𝑉2

1 |.
The results are obtained considering nominal particle spacing ℓ = 2.76×10−7 m, mesh size
ℎmesh = ℓ, correlation length 𝜆 = 10−3 ℓ, 𝑛 = 10000 realizations, and 𝛿[𝑮] = 30%. The solid
line represents the statistical mean value. The dashed line represents the linearized statistical
mean value.

4.4 Summarizing the main results

◦ In Section 4.1.1 the equilibrium equations of the axially functionally graded micropolar
Timoshenko-Ehrenfest beams have been derived. The presented simplified model can
predict scale effects. Novel solutions have been presented for simply supported and
cantilever beams (see Eqs.(4.34) and (4.42)).

◦ In Section 4.1.2 the random response and identification of the micropolar Timoshenko-
Ehrenfest beams have been analyzed via a prior noninformative probabilistic model.
It has been proven that the study of an isotropic microbeam allows us to derive the
stochastic information of a nonclassical material parameter of the 3D micropolar model.
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◦ Section 4.2 has been devoted to the construction of a probabilistic model for the
geometric and material microscale parameters of the particle-based second-gradient
model. In Section 4.2.1, the literature-proposed relationship between the Cauchy
deformation tensor and the second-gradient deformation tensor has been improved (see
Eq. (4.63)).

◦ In Section 4.2.2, for the micro-homogeneous and micro-isotropic continuum model
developed for particle-based materials, the statistical dependence between the particle-
pair distance between two consecutive particles and the microscale-specific stiffness
parameters has been investigated.

◦ A probabilistic model for these uncertain parameters has been developed using the
maximum entropy principle. Using the available information, it has been shown
that the three considered uncertain parameters are statistically independent. The
particle-pair distance between two consecutive particles is uniformly distributed, and
the microscale-specific stiffness parameters are Gamma-distributed (see Eq. (4.97)).

◦ For the application under consideration, it has been proven that the random mechanical
response, such as the specific deformation energy and displacements at certain points,
exhibits significant statistical fluctuation with respect to the level of uncertainties.
Observations indicate that the particle-pair distance between two consecutive particles
of a particle-based material has a greater effect on the statistical fluctuations of random
mechanical responses.

◦ Section 4.3 has been devoted to developing random field models for disorder particle-
based materials, which have been described using an equivalent second-gradient
continuum model at the same scale. The construction of these random field models
has been based on the Maximum Entropy principle (see Section 4.3.1). Numerical
simulations have been conducted on disordered colloidal crystals.

◦ In Section 4.3.2, a simulated axial test shows that the mean value of axial displacements
and their fluctuations increase as the fluctuations of mesoscale stiffness parameters and
positions increase. The mean value of transversal displacements remains relatively
constant, while its fluctuations increase with fluctuations in mesoscale stiffness param-
eters and positions. The coefficients of variation for displacements decrease as the
number of particles increases, indicating higher homogenization levels. Fluctuations
in effective macroscale axial stiffness increase as the correlation lengths of mesoscale
stiffness fields increase.
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◦ The techniques employed in Sections 4.2 and 4.3 can also be used to construct a
stochastic model for the second-gradient continuum recently introduced by [106].



Chapter 5

Conclusion and perspectives

5.1 General conclusion

This dissertation is devoted to the mechanics of generalized continua. The foundations of the
micropolar continuum, the micromorphic continuum, the second-gradient continuum, and
the second-gradient-micropolar continuum have been presented in detail. A comprehensive
discussion of stress and strain measures and the derivation of the Euler-Lagrange equations
are included. The treatment is organized to emphasize the connection between the various
analyzed continuum models. Euler-Lagrange equations have been derived using the least
action principle (or the principle of virtual work) and the Levi-Civita tensor calculus.
Throughout the text, it is emphasized that least action principle entails the type of admissible
external loads for the various continuum models and the type of static actions exchanged by
the continuum subdomains.

Generalized continua are widely used in the analysis of architectured metamaterials.
Since pantographic structures represent a paradigmatic case, pantographic sheets (2D) and
pantographic blocks (3D) have been investigated. First, we have proposed and experimentally
validated a novel torsional energy for modeling the torsional behavior of pivots of polyamide
and metallic pantographic sheets. Although the proposed energy has been developed within
the framework of discrete mechanics (Hencky-Type discrete models), it is still applicable
within the framework of second-gradient continua. Then, a novel second-gradient continuum
model for modeling pantographic blocks has been proposed. Digital volume correlation
techniques have been applied to experimentally validate the theoretical model. The proposed
continuum model is capable to reproduce the nonclassical mechanical behavior of pantographic
blocks that exhibit synclastic deformation rather than anticlastic deformation under a 3-point
flexural test. Finally, the effect of material-related local defects in the mechanical response
of pantographic sheets has been analyzed in which the mechanical properties have been
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considered uncertain. A prior noninformative probabilistic model has been constructed and
a stochastic solver has been developed. Due to redundant connections inside pantographic
sheets, it has been demonstrated that pivots-related local defects have minimal influence on
the random horizontal displacements of pantographic sheets.

Generalized continua are also suitable for the analysis of particle-based materials. Microp-
olar beams and particle-based second-gradient continuum models have been investigated to
encourage engineering applications. First, equilibrium equations for micropolar Timoshenko-
Ehrenfest beams have been derived under the assumption of continuously varying material
parameters along the axis. Novel approximated closed-form solutions have been derived.
The derived solutions have been used to perform the response and identification of beams
characterized by material-related uncertainties that have been modeled by means of prior
noninformative probabilistic models. On the one hand, it has been shown that the statistical
inverse analysis of macrobeams permits the identification of the probability density functions
of the Young modulus at various points along the beam axis. On the other hand, the statistical
inverse analysis of microbeams enables us to identify the probability density functions at
various points along the beam axis of one 3D micropolar parameter responsible for scale
effects. Second, the sensitivity of a previously published particle-based second-gradient
continuum model with respect to material-related uncertainties has been performed. The
deterministic model is theoretically refined by improving the relationship between the first-
and second-gradient deformation measures. The sensitivity analysis has been approached
using the maximum entropy principle from information theory. First, it is assumed that
particle-pair distance and microscale stiffness parameters are independent of spatial and
orientation directions. Using the available information, it has been demonstrated that the
particle-pair distance between two consecutive particles and the microscale stiffness parame-
ters are, respectively, uniformly and Gamma-distributed. For the considered application, it
has been proven that the random mechanical response is subjected to significant fluctuations
due to uncertainties. In addition, it is shown that the particle-pair distance has a greater effect
on the statistical fluctuations of mechanical response. Second, particle-pair distance and
microscale stiffness parameters are modeled as random fields. In contrast to the previous
scenario, the performed numerical application shows that fluctuations in microscale stiffness
have a more substantial impact on the statistical fluctuations in mechanical response.

5.2 Future perspectives

Throughout this thesis, the focus has been on gradient-type nonlocal theories rather than
integral nonlocal theories [70]. Integral nonlocal theories are suitable for continua where
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interaction forces rapidly diminish with distance, following the attenuating neighborhood
hypothesis [45]. Furthermore, assuming a smooth neighborhood, these integral theories
lead to gradient-type nonlocal theories [92]. Eringen nonlocal elasticity stands as one of
the prominent integral nonlocal theories, extensively used for analyzing nanomaterials and
microstructured materials [44, 15, 107, 7]. This dissertation chooses to not deal with integral
nonlocal elasticity acknowledging that the topic deserves additional exploration.

Recently, in collaboration with Professor Christian Soize, we have introduced a model
for particle-based materials capable of encompassing Piola peridynamics and Eringen
nonlocal elasticity [77]. Furthermore, we have adapted this novel model into a stochastic
formulation [78] based on the Maximum Entropy principle, following a similar procedure as
in Section 4.3. Papers [77] and [78] are currently under revision. Moreover, our ongoing
work addresses dynamic aspects and identification issues.

Additionally, it is necessary to spend some more words on the modeling of pivots in
pantographic structures. As previously highlighted, we distinguish three analysis scales: a
macroscopic scale viewing the pantographic structure as a continuous medium, a mesoscopic
scale where the pantographic structure is modeled as a set of extensional and rotational
springs, and finally, a microscopic scale wherein the pantographic structure is represented
as a collection of beams and pivots. In Section 3.1, it has been proposed a novel model for
describing pivots at the mesoscale. However, together with Professor Boris Desmorat, we
are concurrently working on a novel mesoscale model corresponding to a microscale plastic
model within the framework of generalized standard materials featuring von Mises yield
surface and isotropic hardening. The following research directions can be also identified.

◦ Investigating the ability of the proposed generalized continua with uncertainties to
characterize the mechanical behavior of biological tissues.

◦ Designing novel architectured metamaterials with nonclassical mechanical behaviors
using the proposed generalized continua.

◦ Performing design optimization under uncertainties of architectured metamaterials
requiring the use of probabilistic machine learning tools.

In future works, the author of this dissertation will further investigate the role of probabilistic
machine learning tools [130] in the theory of generalized continua.
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Appendix A

A few mathematical tools

A.1 Tensor algebra

This section is derived from the course given by Francesco dell’Isola at the University of
L’Aquila. The presented tools have been used to derive the Euler-Lagrange equations for
second-gradient continuum models.

A.1.1 Levi-Civita tensor algebra

Let us analyze how the components of a vector V belonging to the subspace V of R𝑁 change
when the basis 𝐸 = {𝐸𝑖}𝑖=1,..,𝑁 of V changes. The following rules underlie the Levi-Civita
tensor algebra:

1. for any given equality, the number of free (i.e., uninvolved in a summation) subscripts or
superscripts on the right must be equal to the number of free subscripts or superscripts
on the left;

2. for any given equality, it is possible to change the symbol of the indices involved in
a summation without consequences. It is always better to change the symbol if it is
possible.

Using the convention of summation on repeated indices, the summation is implied over a term
in which an index variable appears twice as subscript and superscript and is not otherwise
defined. It holds

𝑉 =

𝑁∑︁
𝑖=1
𝑉 𝑖𝐸𝑖 =𝑉

𝑖𝐸𝑖 =𝑉
𝑗𝐸 𝑗 = ... (A.1)
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Let us introduce a change of basis from {𝐸𝑖}𝑖=1,...,𝑁 to
{
𝐸′
𝑖

}
𝑖=1,...,𝑁 using the transformation

matrix 𝑇 defined by

𝐸′
𝑗 ′ = 𝑇

𝑖
𝑗 ′𝐸𝑖 , 𝐸𝑖 =

(
𝑇−1

) 𝑗 ′
𝑖
𝐸′
𝑗 ′ . (A.2)

Since {𝐸𝑖}𝑖=1,...,𝑁 and
{
𝐸′
𝑖

}
𝑖=1,...,𝑁 are both bases of V, the vector 𝑉 is a linear combination

of {𝐸𝑖}𝑖=1,...,𝑁 and
{
𝐸′
𝑖′
}
𝑖′=1,...,𝑁 . It is

𝑉 =𝑉 𝑗 ′𝐸′
𝑗 ′ =𝑉

𝑗𝐸 𝑗 . (A.3)

Eq. (A.2) implies

𝑉 =𝑉 𝑗 ′𝐸′
𝑗 ′ =𝑉

𝑗
(
𝑇−1

) 𝑗 ′
𝑗
𝐸′
𝑗 ′ (A.4)

and (
𝑉 𝑗 ′ −𝑉 𝑗

(
𝑇−1

) 𝑗 ′
𝑗

)
𝐸′
𝑗 ′ = 0 . (A.5)

Thanks to the linear independence of
{
𝐸′
𝑖′
}
𝑖′=1,...,𝑁 , we arrive to

𝑉 𝑗 ′ =

(
𝑇−1

) 𝑗 ′
𝑗
𝑉 𝑗 . (A.6)

Since when the basis changes, the components of𝑉 change in accordance with the matrix 𝑇−1,
we say that the components of 𝑉 vary in a contravariant way, or that they are contravariant
components of the vector 𝑉 .

A.1.2 Covariant components of a covector

Let us consider the algebraic dual space V∗ of subspace V of R𝑁 . The elements of V are
named covectors or linear forms. For any covector ℓ in V∗, we have

ℓ (𝑉) = ℓ
(
𝑉 𝑖𝐸𝑖

)
=𝑉 𝑖ℓ (𝐸𝑖) . (A.7)

Let ℓ𝐸 be the standard representation of the covector ℓ with respect to the basis 𝐸 defined by

ℓ
𝑗

𝐸
:𝑉 ↦→ ℓ

𝑗

𝐸
(𝑉) =𝑉 𝑗 (A.8)

such that 𝑉 =𝑉 𝑗 𝐸 𝑗 . It yields

ℓ (𝑉) = ℓ
(
𝑉 𝑖𝐸𝑖

)
= ℓ𝑖𝐸 (𝑉) ℓ (𝐸𝑖) . (A.9)
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Eq. (A.9) implies that ℓ is a linear combination of
{
ℓ𝑖
𝐸

}
𝑖=1,...,𝑁 . In addition, since it is

𝛼𝑖 ℓ
𝑖
𝐸 (𝑉) = 𝛼𝑖𝑉

𝑖 = 0 ⇔ 𝛼𝑖 = 0 , (A.10)

thanks to the arbitrariness of 𝑉 , the elements
{
ℓ𝑖
𝐸

}
𝑖=1,...,𝑁 are linearly independent and define

a basis of V∗. Now, our main purpose is to study how the components ℓ (𝐸𝑖) change if the
basis changes from {𝐸𝑖}𝑖=1,...,𝑁 to

{
𝐸′
𝑖

}
𝑖=1,...,𝑁 following transformation (A.2). It is

ℓ (𝑉) =𝑉 𝑖 ℓ (𝐸𝑖) , ℓ (𝑉) =𝑉 𝑖
(
𝑇−1

) 𝑗 ′
𝑖
ℓ

(
𝐸′
𝑗 ′

)
, (A.11)

and, thanks to the arbitrariness of 𝑉 , we get

ℓ

(
𝐸′
𝑗 ′

)
= 𝑇 𝑖𝑗 ′ ℓ (𝐸𝑖) . (A.12)

Since the components of covector ℓ with respect to the basis
{
ℓ𝑖
𝐸

}
𝑖=1,...,𝑁 vary in accordance

with the matrix 𝑇 , we say that they change in a covariant way.

A.1.3 Definition of tensor

Two distinct but equivalent definitions are provided below.

Definition 1. A tensor is a linear function 𝔏 that arranges 𝑘 − copies of V and ℎ− copies of
V∗ to a scalar quantity 𝛼 ∈ R ,

𝔏 :
©­­«V× ...×V︸       ︷︷       ︸

𝑘−𝑐𝑜𝑝𝑖𝑒𝑠

×V∗× ...V∗︸       ︷︷       ︸
ℎ−𝑐𝑜𝑝𝑖𝑒𝑠

ª®®¬ → R . (A.13)

The linear function 𝔏 acts on the elements of V and V∗, therefore, the image of 𝔏 is
independent of the bases considered in V and V∗. A multi-index function 𝐿 can be
associated to 𝔏 defined by

𝐿 : (𝑖1, ..., 𝑖𝑘 ; 𝑗1, ..., 𝑗ℎ) ↦→ 𝐿
𝑗1,..., 𝑗ℎ
𝑖1,...,𝑖𝑘

(A.14)

such that

𝐿
𝑗1,..., 𝑗ℎ
𝑖1,...,𝑖𝑘

𝑉 𝑖1 ...𝑉 𝑖𝑘ℓ 𝑗1 ...ℓ 𝑗ℎ = 𝔏

(
𝑉 𝑖1𝐸𝑖1 , ...,𝑉

𝑖𝑘𝐸𝑖𝑘 , ℓ 𝑗1ℓ
𝑗1
𝐸
, ..., ℓ 𝑗ℎℓ

𝑗ℎ
𝐸

)
. (A.15)

We are naturally led to the second definition of a tensor as a multi-index function.
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Definition 2. A tensor is a multi-index function 𝐿 defined by

𝐿 : (𝑖1, ..., 𝑖𝑘 ; 𝑗1, ..., 𝑗ℎ) ↦→ 𝐿
𝑗1... 𝑗ℎ
𝑖1...𝑖𝑘

, (A.16)

where 𝐿 𝑗1... 𝑗ℎ
𝑖1...𝑖𝑘

arranges 𝑘-contravariant components of a vector 𝑉 of V and ℎ-covariant
components of a covector ℓ of V∗ to the element of R given by

𝐿
𝑗1... 𝑗ℎ
𝑖1...𝑖𝑘

𝑉 𝑖1 ...𝑉 𝑖𝑘ℓ 𝑗1 ...ℓ 𝑗ℎ (A.17)

that is basis independent.

A.1.4 Scalar product and covariant components of a vector

Scalar product

Let V be a real vector space of dimension 𝑁 equipped with the scalar product ⟨·, ·⟩V :
V×V → R. Let {𝐸𝑖}1,...,𝑁 be a basis of V. Given two vectors 𝑉 and𝑊 of V, we have

⟨𝑉,𝑊⟩V =
〈
𝑉 𝑖𝐸𝑖,𝑊

𝑗𝐸 𝑗
〉
V =

〈
𝐸𝑖, 𝐸 𝑗

〉
V𝑉

𝑖𝑊 𝑗 . (A.18)

Let 𝑔 be the metric tensor defined by

𝑔𝑖 𝑗 =
〈
𝐸𝑖, 𝐸 𝑗

〉
V , (A.19)

we get
⟨𝑉,𝑊⟩V = 𝑔𝑖 𝑗𝑉

𝑖𝑊 𝑗 . (A.20)

If basis {𝐸𝑖}𝑖=1,...,𝑁 is orthonormal in V, then 𝑔𝑖 𝑗 is equal to the Kronecker delta 𝛿𝑖 𝑗 . With
an abuse of notation, it is usually written (𝑔−1)𝑖 𝑗 = 𝑔𝑖 𝑗 .

Covariant components of a vector

Let V a subspace of R𝑁 and V∗ its dual. Let us consider the function 𝜑 defined by

𝜑 : V →V∗ , 𝜑(𝑉) :𝑊 ↦→ ⟨𝑉,𝑊⟩V , (A.21)

with 𝑉 and𝑊 in R𝑁 . The function 𝜑 is bĳective and we have ⟨𝑉,𝑊⟩V = 𝑔𝑖 𝑗𝑉
𝑖𝑊 𝑗 , where 𝑉 𝑖

and𝑊 𝑗 are the components of 𝑉 and𝑊 with respect to a basis of V. Consequently, given a
vector 𝑉 in R𝑁 , there exists a one-to-one relationship between 𝑉 and the covector defined by
𝑔𝑖 𝑗𝑉

𝑖. with an abuse of nomenclature, the quantities 𝑉 𝑗 = 𝑔𝑖 𝑗𝑉 𝑖 are usually named covariant
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components of vector 𝑉 . In our notation, superscripts denote the contravariant components
of a vector, and subscripts denote the covariant ones.

A.2 Gauss divergence theorem for bounded surfaces

Theorem 1. Let us consider a basis {𝑒𝑖}𝑖=1,2,3 of R3. All tensor fields inR3 will be represented
by their components with respect to this basis. LetM be a compact subset of R3 with a smooth
boundary 𝜕M. Let 𝑁 be the outward-pointing unit normal of 𝜕M. For any differentiable
vector field𝑊 , it yields ∫

M

𝜕𝑊𝑎

𝜕𝑥𝑎
𝑑𝑉 =

∫
𝜕M

𝑊𝑎 𝑁𝑎 𝑑𝑠 . (A.22)

Hereafter, the generalization of the divergence theorem for bounded surfaces is given. This
result is fundamental for deriving boundary conditions in second-gradient continuum models.

Theorem 2. Let us consider a basis {𝑒𝑖}𝑖=1,2,3 of R3. All tensor fields inR3 will be represented
by their components with respect to this basis. Let 𝜕M be a smooth bounded surface of R2

and let 𝜕𝜕M its smooth boundary. Let 𝑃 be the field of projection operator on tangent space
and let 𝜈 be the outward-pointing unit normal of 𝜕𝜕M. For any vector field𝑊 , it yields∫

𝜕M

𝜕𝑊𝑎
∥

𝜕𝑥𝑐
𝑃𝑐𝑎 𝑑𝑠 =

∫
𝜕𝜕M

𝑊𝑎
∥ 𝜈𝑎 𝑑ℓ , (A.23)

where𝑊𝑎
∥ = 𝑃𝑎

𝑏
𝑊𝑏.





Appendix B

DVC additional details

B.1 DVC hardware and DVC parameters

Table B.1 reports the hardware parameters of the experiment, and Table B.2 the DVC
parameters.

Table B.1 DVC hardware parameters

Tomograph North Star Imaging X50+
X-ray source XRayWorX XWT-240-CT
Target / Anode W (reflection mode)
Filter none
Voltage 120 kV
Current 180 µA
Tube to detector 500 mm
Tube to object 272.685 mm
Detector Dexela 2923
Definition 1536×1944 pixels (2×2 binning)
Number of projections 1200
Angular amplitude 360°
Frame average 5 per projection
Frame rate 10 fps
Acquisition duration 25 min 58 s
Reconstruction algorithm filtered back-projection
Gray Levels amplitude 8 bits
Volume size 1723×491×813 voxels (after crop)
Field of view 143×40.75×67.48 mm3 (after crop)
Image scale 83 µm/voxel
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Table B.2 DVC analysis parameters.

DIC software Correli 3.0 [83]
Image filtering none
Element length (mean) 6 vx
Shape functions linear (T4 elements [68])
Mesh see Figure 3.16
Matching criterion penalized sum of squared differences
Regularization length ℓ𝑚 = 25 vx
Interpolant cubic

B.2 Gray level residuals

The gray level residual fields are reported in Figure B.1 for each loading step. The residual
field was fairly homogeneous, except in the immediate vicinity of the supports (particularly at
the top and bottom right), where high local flexure of the beam ends was not fully captured,
partly because of the presence of cardboard. Higher RMS residuals found for the fourth scan
were due to a residual field that had larger values on average throughout the sample. In that
case, the larger deflection and especially more significant flexure of the beams produced a
larger residual over the whole specimen.
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(a) (b)

(c) (d)

Fig. B.1 Gray level residual fields for the different considered loading steps: (a) 24 mm,
(b) 29 mm, (c) 34 mm and (d) 39 mm deflections. Axis labels are expressed in voxels, the
dynamic range for registered volumes was 255 (8 bits). The residuals are shown on the
meshes in their deformed configuration.
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