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ABSTRACT
In the present study, the temporal and spatial dynamics of the
post-fire recovery of different Mediterranean vegetation types dur-
ing the three years after the fire event were analyzed, according
to different fire severity categories, integrating the use of
Synthetic Aperture Satellite Radar (SAR) (Sentinel-1) and optical
(Sentinel-2) image time series. The results showed that
Mediterranean forest species and shrub/herbaceous species are
adapted to fire, with high efficiency in restoring the vegetation
cover. Differently, the ecological vulnerability of non-native euca-
lyptus plantations was found in a lower recovery trend during the
observation period. The use of optical short-wave infrared (SWIR)
and SAR C-band-based data revealed that some ecological charac-
teristics, such as the woody biomass and structure, recovered at
slower rates, comparing to those suggested by using near-infrared
(NIR) and red-edge data. An optimized burn recovery ratio (BRR)
was proposed to estimate and map the spatial distribution of the
degree of vegetation recovery.
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Introduction

Mediterranean ecosystems are critical at the European level due to their high biodiversity
and intense interaction with human activities (Aragones et al. 2019; Moreira et al. 2020).
The typical climatic regime of the Mediterranean region, characterized by long periods of
summer drought, entails an increasing wildfire risk in terms of frequency, extension, and
severity (Chuvieco 2009; Moreira et al. 2020). This latter factor, defined as the degree of
environmental chemical-physical alterations, decomposition, and loss of above/below-
ground organic matter caused by fire (Key and Benson 2006; Keeley 2009), plays a critical
role in the sustainability of Mediterranean habitats, influencing the competitive interac-
tions between species and their post-fire recovery capability (Tanase et al. 2011; Frazier
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et al. 2015; Fern�andez-Garc�ıa et al. 2018; Morresi et al. 2019; Lacouture et al. 2020).
Moreover, the widespread accumulation of woody fuel, consequent to the abandonment
of the semi-natural and agricultural areas that have been occurring in Mediterranean ter-
ritories, causes suitable conditions for the ignition and the progress of such high inten-
sity/severity fires (Xofis et al. 2022). After a forest fire, the spatial and temporal analysis
of both the fire severity and the vegetation response and recovery is a crucial step for
assessing the fire impact on ecosystems and their capacity to repristinate the ecosystem
services partially lost due to the fire (Ryu et al. 2018; Semeraro et al. 2019; Huang et al.
2020). The post-fire recovery of vegetation cover structure promotes the restoration of
numerous ecosystem services, such as the carbon sequestration induced by the regenerat-
ing process of forest vegetation, which mitigates the carbon emissions to the atmosphere
due to fire (Frolking et al. 2009; Morresi et al. 2019; Semeraro et al. 2019; Huang
et al. 2020).

The efficiency of remotely sensed data applied to wildfire assessment has increased sig-
nificantly in the last decade, thanks to the availability of satellite imagery at increasing
spatial, spectral, and temporal resolutions (Gitas et al. 2012; Chu and Guo 2013; Mallinis
et al. 2018; Chuvieco et al. 2019; Garc�ıa-Llamas et al. 2019). Remote sensing techniques
based on time-series of optical vegetation indices (VIs) have been widely used for post-
fire analysis and monitoring (Gouveia et al. 2010; Gitas et al. 2012; Chu and Guo 2013;
Frazier et al. 2015; Chompuchan and Lin 2017; Meng et al. 2018; Ryu et al. 2018; Morresi
et al. 2019; Semeraro et al. 2019; Huang et al. 2020). VIs maximize the sensitivity to plant
biophysical characteristics and reduce the effects of atmosphere, surface topography and
soil variability (Morresi et al. 2019; Xofis et al. 2022). The normalized difference vegeta-
tion index (NDVI) is widely employed to detect and examine the post-fire vegetation
recovery using a multi-temporal approach (Goetz et al. 2005; Mitri and Gitas 2013; ;
Polychronaki et al. 2014; Fern�andez-Garc�ıa et al. 2018; Ryu et al. 2018; Morresi et al.
2019; Semeraro et al. 2019; Lacouture et al. 2020). Other VIs based on shortwave infrared
(SWIR) bands are also applied for long-term post-fire vegetation monitoring (Epting et al.
2005; Chen et al. 2011; Kennedy et al. 2012; Chompuchan and Lin 2017; Ryu et al. 2018;
Morresi et al. 2019; Semeraro et al. 2019; Grabska et al. 2020). Semeraro et al. (2019)
showed that integrating NIR and SWIR data improved vegetation water content retrieval.
Morresi et al. (2019) also used the NDVI and SWIR-based indices (normalized burn ratio,
NBR and normalized difference moisture index, NDMI) to analyze the post-fire recovery
dynamics in Mediterranean landscapes; the latter indices are more sensitive to
those purposes.

Despite their proven efficiency in fire effects analysis, optical data have some limita-
tions, namely the presence of clouds (Minchella et al. 2009; Morresi et al. 2019; Huang
et al. 2020; Lacouture et al. 2020). Also, the spectral confusion between cloud shadows
and burned areas creates considerable difficulties in discriminating one from the other
(Pereira et al. 1999; Chuvieco et al. 2005). Furthermore, NIR-based VIs can be affected by
earlier saturation already at relative low conditions of vigorous photosynthetic activity
and growth of the leaf structure due to their high sensitivity to the chlorophyll content
and their high correlation with the leaf area index (LAI) (Wang et al. 2005; Minchella
et al. 2009; Chompuchan and Lin 2017; Huang et al. 2020). Moreover, the optical waves
do not penetrate the canopy, only providing information on the regeneration of the most
superficial vegetation layers (Chompuchan and Lin 2017). In the context of post-fire mon-
itoring, this translates into a fast recovery of the VIs values, close to those of pre-fire con-
ditions, corresponding to an overestimation of full recovery of the ecosystem and a not
entirely realistic relationship between fire severity and post-fire regrowth dynamics (Wang
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et al. 2005; Tanase et al. 2011; Meng et al. 2015, 2018; Zhou et al. 2019). Some studies
(e.g., Ryu et al. 2018; Morresi et al. 2019), analysing long-term post-fire spectral dynamics,
observed that SWIR-based VIs express a more gradual temporal recovery rate than
NDVI. The latter was 1-5 years earlier due to its greater sensitivity to photosynthetically
active vegetation, combining the red and NIR bands. However, other scholars stated that
spectral optical signals remain coherent only when restricted to the first decade after the
disturbance (Tanase et al. 2011; Kennedy et al. 2012; Frazier et al. 2015).

In this context, active synthetic aperture radar (SAR) can integrate optical information
in vegetation recovery analysis and mapping (Minchella et al. 2009; Tanase et al. 2015;
Martins et al. 2016; Chen et al. 2018). Its high sensitivity to the structural properties of
the vegetation, with a generally linear correlation between backscatter and vegetation bio-
mass (Quegan et al. 2000; Saatchi et al. 2012; Martins et al. 2016; Yu and Saatchi 2016;
Chen et al. 2019; Saatchi 2019), and its capabilities for all-weather and solar radiation
independency, make the SAR backscatter complementary information with optical data
(Minchella et al. 2009; Tanase et al. 2011; Polychronaki et al. 2014; Zhou et al. 2019).
SAR data, however, has its challenges. The complex interactions between the backscatter
and scattering components of the soil and vegetation affected by the fire are influenced by
intrinsic SAR sensor/signal parameters (e.g., wavelength, polarization, incidence angles,
look direction), structural/geometrical (objects structure, amount of scattering elements,
surface roughness, geometry and topography of study area) and dielectrics characteristics
of the affected surfaces, as well as environmental conditions (e.g., soil moisture, rain,
wind) (Tanase, Santoro, De La Riva, et al. 2010; Tanase, Santoro, Wegm€uller, et al. 2010;
Tanase et al. 2014; Chen et al. 2018; Ban et al. 2020; De Luca, Silva, et al. 2021). Among
these factors, the wavelength is the one that most influences the ability of waves to pene-
trate vegetation cover, and thus the type and amount of information that can be derived
about the impact of disturbance on it (Tanase et al. 2011). SAR shorter wavelengths (e.g.,
C-band, 3.8-7.5 cm) mainly interact with vegetation scattering elements such as leaves/
needles, twigs and small branches, or herbaceous vegetation; this reduces the capacity to
penetrate the regrowing dense forest canopy, meanwhile becoming less sensitive to struc-
tural modifications of vegetation strata (Paloscia et al. 1999; Minchella et al. 2009; Tanase
et al. 2011; Santi et al. 2017; Chen et al. 2018; Saatchi 2019). Moreover, the different
polarizations of the SAR signal affect the interaction with the forest surface.

Immediately after a disturbing event and for the first year after, the scattering effect of
the damaged vegetation structure is lacking/decreasing. At the same time, the contribution
to the back diffusion by the humidity and the roughness of the exposed soil is higher. In
Mediterranean ecosystems, this generally results in a lowering of the cross-polarized sig-
nal, interacting with multiple scattering within the forest canopies (volume scattering),
and an increase in the co-polarized signal, interacting with small branches, stems and,
principally, the ground surface (direct and specular backscatter) (Richards 2009b;
Imperatore et al. 2017; Saatchi 2019; De Luca, Silva, et al. 2021). The backscatter, indeed,
typically increasing with forest biomass, has been found more directly correlated to
above-ground biomass at cross-polarization than co-polarizations (Saatchi et al. 2012; Yu
and Saatchi 2016; Saatchi 2019). Both polarizations can be decisive in detecting better the
different effects of fire on vegetation (Tanase et al. 2014; Chen et al. 2018). SAR polari-
metric indices were generally employed for environment monitoring (Kim et al. 2014;
Periasamy 2018; Nasirzadehdizaji et al. 2019; Pipia et al. 2019; Saatchi 2019; Mandal et al.
2020; De Luca, Silva, Oom et al. 2021; De Luca, Silva, et al. 2021).

This work builds on previous research based on Sentinel-1 (S1) adapted dual-polari-
metric SAR indices (dual-polarization SAR vegetation index, DPSVI; the radar vegetation
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index, RVI) applied to burned areas detection (De Luca, Silva, et al. 2021), with the add-
ition of the radar forest degradation index (RFDI), for burn severity estimation and map-
ping (De Luca, Silva, Oom, et al. 2021).

Among the several space agencies providing satellites platforms operating both optical
and SAR sensors at different spatial, temporal and spectral resolutions (Chuvieco et al.
2019), the Copernicus missions by European Space Agency (ESA) include in its fleet both
C-band band (centre wavelength of 5.6 cm) SAR (S1), with both cross- (VH) and co-
(VV) polarizations, and multispectral (Sentinel-2, S2) sensors, each of which consists of
two polar-orbiting satellites (S1A/B and S2A/B, respectively) (ESA Sentinel Homepage
2022). The high spatial and temporal resolution makes the Copernicus constellation par-
ticularly suitable for mapping, quantitative-qualitative characterization, and temporal
monitoring of the effects of fire on ecosystems; its free availability, moreover, is a funda-
mental attribute in risk management and monitoring framework (Tanase et al. 2011;
Gitas et al. 2012; Verhegghen et al. 2016; Martinis et al. 2017; Tanase et al. 2020; De
Luca, Silva, Oom, et al. 2021; De Luca, Silva, et al. 2021).

Although numerous studies are using SAR C-band S1 or/and optical S2 imagery for
burned area detection (Donezar et al. 2019; Roteta et al. 2019; Ban et al. 2020; Carreiras
et al. 2020; Pulvirenti et al. 2020; Tanase et al. 2020; De Luca, Silva, et al. 2021) or burn
severity estimation (Fern�andez-Manso et al. 2016; Mallinis et al. 2018; Amos et al. 2019;
Quintano et al. 2019; De Luca, Silva, et al. 2021; Morresi et al. 2022), the contributions
concerning their combined use in assessing and monitoring the temporal response of
ecosystems to fire effects and the subsequent recovery patterns are very scarce
(Evangelides and Nobajas 2020; Han et al. 2021; Zhang et al. 2021); even less in
Mediterranean ecosystems.

Understanding the spectral interactions between these patterns and the main factors
that influence the damage and recovery processes is also important. Depending on fire
severity, type of vegetation and climate conditions, recovery processes can be very hetero-
geneous, with large changes in forest structure and species composition (Morresi et al.
2019; Lacouture et al. 2020). Considering the post-fire recovery as a homogeneous and
predictable process is almost unrealistic, as stated by Morresi et al. (2019). Understanding
the quantitative relationship between post-fire vegetation recovery and fire severity allows
the assessment of the temporal effects of fire on ecosystem characteristics such as bio-
diversity, evapotranspiration, carbon cycling, soil chemical and physical properties (Hill
et al. 2008; Chuvieco 2009; Kasischke et al. 2011; Chuvieco et al. 2014; H€ausler et al.
2018; Meng et al. 2018). Some authors evaluated post-fire recovery processes in relation
to the fire severity category (Fern�andez-Manso et al. 2016; Martins et al. 2016; Viana-Soto
et al. 2017; Meng et al. 2018; Ryu et al. 2018). However, few studies have analysed both
S1 and S2 data on different fire severity categories and different types of forest cover in
the Mediterranean region.

The spatial assessment of the post-fire recovery temporal rates was also explored by
several authors proposing and applying recovery indices to both optical (Lin et al. 2004;
Chou et al. 2009; Chompuchan and Lin 2017; Meng et al. 2018; Ryu et al. 2018;
Morresi et al. 2019) and SAR (Minchella et al. 2009). Some of these indices considered
the effects of delayed vegetation mortality (Chompuchan and Lin 2017), of annually
varying meteorological effects (Ryu et al. 2018), or inter-annual modifications of natural
phenological cycles (Morresi et al. 2019) by adding approximate parameters based on
the generalization of the surrounding unburned vegetation. However, further investiga-
tions are needed given the increased availability of better resolution satellite images,
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such as S1 and S2, and performant open-source prediction algorithms based on machine
learning.

The present study aims to:

� Assess post-fire forest recovery dynamics and their spatial patterns in a Mediterranean
ecosystem, using S1 and S2 spectral vegetation indices;

� Assess the relationship between the recovery rate, the type of vegetation, and the fire
severity level, by also taking into consideration the climatic conditions;

� Estimate and map the spatial distribution of recovery degree through the burn recov-
ery ratio (BBR), based on pre- and post-fire conditions and optimized through
machine learning regressors.

Materials and methods

Study area

The study area is the Serra de Monchique mountain chain, located in the Algarve region,
south of Portugal (37� 18’N; 08� 30’W), part of which is included in the European Natura
2000 network as a Special Area of Conservation (SAC) (Natura 2000 Site Code:
PTCON0037). The climate is typically Mediterranean, with hot, dry summers and mild
humid winters, with oceanic influences given by the relative proximity of the Atlantic
Ocean and the heights of the mountain range that intercept the humidity (Martins et al.
2015). Considering the surface occupied, the forest cover is mainly composed of
Eucalyptus plantations (Eucalyptus globulus, Labill. 1800) and cork oak forests (Quercus
suber L.), part of which consists of the typical semi-natural agro-forestry system (montado
in Portuguese), and part consisting of more close forest stands. Typical meso-
Mediterranean forest ecosystem with other Mediterranean oaks species (e.g., Quercus ilex
L.) and other secondary Mediterranean autochthonous broad-leaves trees are also present.
A small part of the forest cover is also composed of isolated areas of Mediterranean coni-
fers (Pinus pinea L., Pinus pinaster Aiton.) (Alves et al. 2007; Catry et al. 2015; San-
Miguel-Ayanz et al. 2016; H€ausler et al. 2018; De Luca et al. 2022). However, the largest
part of the study area is covered by heathlands and pastures, composed of typical herb-
aceous and sclerophyllous shrubby flora alternating with agricultural fields surrounding
small urban areas (Mitchell et al. 2009; San-Miguel-Ayanz et al. 2016; De Luca
et al. 2022).

Description of the fire event

The fire event (Figure 1) occurred in August 2018 from the 3rd to the 10th, affecting
268.9 km2, almost entirely represented by herbaceous, shrub and forest areas (De Luca,
Silva, et al. 2021). For most of the burnt surface (> 50%), the event was of high sever-
ity where, regardless of the type of vegetation, only the residues of the burned biomass
(ash and coal) remained on the ground, and the bare ground was left exposed. Where
the fire had moderate-high severity, the vegetation structure was, however, affected at
various levels, with the consumption of the lower layers (grass and shrubs) and a pre-
dominant crown fire occurrence, which did not destroy all the canopy structure. In
moderate and low severity categories, representing less than 15% of the burned surface,
the fire affected the vegetation partially, with part of the canopy killed by heat proxim-
ity and the other amount remaining alive (De Luca, Silva, Oom, et al. 2021).
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Dataset and pre-processing

Sentinel-1 (S1) dataset and pre-processing
The SAR dataset was composed of S1-A/B Level-1 high-resolution ground range detected
(GRDH) time-series, acquired in interferometric wide (IW) mode, dual-polarized avail-
able: co-polarized VV and cross-polarized VH. The time series covered a period of four
years (April 2017-Jun 2021) and, considering that the fire event time occurred in the first
days of August 2018, the timeframe was split into a pre-fire (from April 2017 to July
2018) and post-fire (from the second half of August 2018 to June 2021) periods.
Moreover, the Long-Term Access policy of the ESA (Copernicus Long Term Archive
Access 2022) makes very time-expensive the massive download of images from the official

Figure 1. Location of the study area in Portugal (top-left). Overview of the study area (top-right) using the Google
Earth Satellite map as a base map; the wildfire perimeter of August 2018 is overlaid in light blue. The landscape of
the burned area (bottom) where all the categories of fire severity are observable.
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Copernicus Open Access Hub platform. Therefore, the S1 images were downloaded using
the Alaska Satellite Facility (ASF) interface (ASF 2022), which also provides the python
code for bulk-downloading. The S1 time series comprised 273 images, including ascend-
ing (51 pre-fire and 88 post-fire) and descending (49 pre-fire and 85 post-fire)
flight paths.

The pre-processing of the S1 dataset was carried out using the Sentinel-1
Toolboxes, implemented in the SNAP v.8.0.3 open-source software (ESA SNAP
Homepage 2022), and performed via the SNAP-Python interface (Snappy), the access
provider to SNAP Java API (ESA SNAP Cookbook 2022). Starting by applying the
auto-downloaded orbit information file and the removal of the thermal noise, the SAR
data pre-processing involved the radiometric calibration to beta (b0) noughts backscat-
ter standard conventions (Small 2011) and the radiometric terrain correction (RTC)
process. RTC consists of the radiometric terrain flattening and the geometric terrain
correction of the images using a digital elevation model (DEM) to reduce the geomet-
ric and radiometric distortions due to the rough surface topography. The shuttle radar
topography mission (SRTM) DEM at 1 arc-second spatial resolution (Farr et al. 2007)
was resampled using the bilinear interpolation method (Mendes et al. 2019; De Luca,
Silva, et al. 2021); no pixel resampling was instead necessary to the GRDH image
products, already available in 10m x 10m resampled pixel spacing (ground range x
azimuth) (ESA Sentinel-1 User Guide 2016). Subsequently, the stack of all the time
series was carried out separately for each of the two flight paths. The geolocation of a
master image (automatically chosen by the model among the time series) was adopted
in this phase. An image Refined-Lee speckle filter (Lee and Pottier 2009), with a 7� 7
pixel window size, was applied to reduce the first speckle-noise effects. Finally, a back-
scatter monthly time average was computed for each month. The backscatter time
average, besides reducing the massive amount of the images compositing the time ser-
ies, further minimize the adverse effects of speckle noise and environmental variables
affecting the SAR signal (Tanase et al. 2015; Zhang et al. 2019; Lapini et al. 2020; De
Luca, Silva, et al. 2021).

Sentinel-2 (S2) dataset and pre-processing
The optical time series was composed of 253 (60 pre-fire and 193 post-fire) S2-A/B Level-
2A (Bottom-Of-Atmosphere, BOA) multispectral images. These images cover the same
period of the S1 dataset (April 2017-Jun 2021), excluding the first half of August 2018
(when the fire occurred). Due to the same problem concerning the oldest-acquisition
image accessibility from the official Copernicus database (section 2.3.1), the S2 dataset
was downloaded from the Google Earth Engine (GEE) collections database and executed
through the GEE Python API (Google Earth Engine Guides 2022). The GEE Python API
was also employed for S2 image pre-processing before the download, including resam-
pling all S2 bands to 10m of GSD using the nearest neighbour resampling algorithm.
Additionally, the S2-Cloud Probability was used to mask each pixel of the time-series
images by cloudiness probability (scaled from 0 to 100). The S2-Cloud Probability mask
is available in the GEE Data catalog (GEE Data Catalog: Copernicus S2-Cloud Probability
2022), sampled to 10m of GSD, generated using the automatic pixel-based sentinel2-
cloud-detector package (s2cloudless) (Sentinel Hub’s cloud detector repository 2022),
developed by Sentinel Hub’s research team (Sentinel Hub Homepage 2022) and based on
the LightGBM machine learning library (LightGBM documentation 2022). Higher values
of cloud probability have a higher ability to detect dense clouds or highly reflective surfa-
ces, but the omission of less dense clouds could be equally high. Lower values allow the
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possibility of detecting all the clouds on the scene; however, they increase the risk of
more frequent commission errors due to the confusion between clouds and medium-high
reflectance surfaces, masking them from the resulting image. To this end, a pixel probabil-
ity threshold of 10 was set based on previous experiences in the same study area (De
Luca et al. 2022). The masked pixels are replaced by applying a temporal linear interpol-
ation involving all the time-series images, differentiating pre-fire and post-fire sub-sets.
After the cloud masking, the images were averaged each month using the criterion
adopted for the S1 time series.

Land use land cover (LULC) and fire severity mapping

The temporal analysis of post-fire vegetation recovery was applied to three main LULC
classes representing the vegetation of the study area: the eucalyptus (Euc) plantations;
the autochthonous forest (AuFor), both natural and the semi-natural, consisting of two
dominant species, Quercus suber and Q. ilex, and other secondary broadleaves; heath-
lands, shrublands or pastures vegetation (Pas/Shr). The pine class was excluded in this
study due to its limited representativeness in the study area. The definition of the pri-
mary reference LULC classes was carried out using a classified LULC map retrieved
from a supervised machine learning-based classification processing developed by De
Luca et al. (2022) and based on the combined use of both SAR S1 and optical S2 data.
The LULC map has a spatial resolution of 10m x 10m, and its overall accuracy is
higher than 90%.

The burned vegetation was monitored based on the fire severity. The spatial distribu-
tion of fire severity was retrieved from De Luca et al. (2021), obtained applying the ran-
dom forest (RF) machine learning model on a dataset constituted by an S1þ S2 dataset
and derived indices, and trained using a set of field measurements of the composite burn
index (CBI) (Key and Benson 2006). Based on the CBI sampling protocol, six conven-
tional fire severity categories were detected (Key and Benson 2006), and five of them were
considered in the further analyses: a) unburned soil/rock (not taken into consideration);
b) unburned vegetation; c) low severity: low impact of the fire, which was mainly kept at
ground level with low levels of alteration of the shrub and/or tree cover; d) moderate
severity: level of alteration of the vegetation higher than in low severity category, with the
fire reaching the lower layers of the forest canopy, resulting in a mixture of scorch and
green vegetation; e) moderate-high severity: predominance of burnt vegetation with a
high percentage of tree foliage affected by scorch, and a part of the woody components of
the canopy partially or totally consumed by fire; f) high severity: the short vegetation is
consumed, as well as most of the tree’s foliage, the surface is mainly covered with ash
and charcoal.

Climate variables

Two datasets with monthly climate variables series were retrieved, from April 2017 to
January 2021, to analyse the relationship with the temporal profiles of vegetation affected
by fire: monthly rainfall (mm) and average monthly temperature (�C). After analysing the
meteorological stations’ spatial distribution, the data were retrieved from 16 stations dis-
tributed over the study area (Sistema Nacional de Informaç~oes de Recursos H�ıdricos,
SNIRH 2022).
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Data preparation and analysis

Vegetation indices (VIs) calculation
Three S1-adapted dual-polarimetric SAR indices were computed for each resulting month
averaged image of the S1 time series: the RVI (Eq. 1), the RFDI (Eq. 2) and the DPSVI
(Eq. 3) (Nasirzadehdizaji et al. 2019; Saatchi 2019; Mandal et al. 2020; Nicolau et al.
2021).

RVIt ¼ 4 � VHt= VVt þ VHtð Þ (1)

RFDIt ¼ VVt � VHtð Þ = VVt þ VHtð Þ (2)

DPSVIt ¼ VVt þ VHtð Þ = VVtÞ (3)

Where t represents the corresponding image date (months) constituting the time series
(April 2017 - June 2021), and VV and VH represent the respective single-polarized back-
scatters. Besides the SAR VIs, computed separately for orbit path (RVI_As, RVI_Ds,
RFDI_As, RFDI_Ds, DPSVI_As, DPSVI_Ds), the backscatter time-series for the single co-
and cross-polarization (VH_As, VH_Ds, VV_As, VV_Ds) were also involved to compone
the final SAR dataset.

A similar procedure was carried out for each month image of the S2 time-series, for
which five spectral indices were calculated: the NDVI (Eq. 4), the green normalized vege-
tation index (GNDVI) (Eq. 5), the normalized red-edge vegetation index (NDRE) (Eq. 6),
the normal burn index (NBR) (Eq. 7) and the normalized difference water index (NDWI)
(Eq. 8).

NDVI ¼ B8t– B4tð Þ = B8t þ B4tð Þ (4)

GNDVI ¼ B8t– B3tð Þ = B8t þ B3tð Þ (5)

NDRE ¼ B6t– B5tð Þ = B6t þ B5tð Þ (6)

NBR ¼ B8t– B12tð Þ = B8t þ B12tð Þ (7)

NDWI ¼ B8At– B11tð Þ = B8At þ B11tð Þ (8)

B3, B4, B5, B6, B8, B11 and B12 represent the S2 bands conventionally named (ESA
Sentinel Homepage 2022). The final optical dataset was composed of the monthly time
series of the VIs above.

ROIs collection and temporal profiles extraction
The temporal analysis of vegetation dynamics affected by the fire was divided according
to the LULC class and the fire severity category. A series of square 3� 3 pixel regions of
interest (ROIs) were collected to fulfil these criteria. Each ROI was homogeneous regard-
ing LULC class and fire severity; the whole dataset covered the spatial distribution of the
land cover and fire severity. The ROIs were retrieved by visual assessment of LULC and
fire severity maps and the Esri ArcGIS World Imagery high-resolution satellite map (Esri
ArcGIS World Imagery 2022). A total of 700 ROIs were collected and distributed: 50
ROIs for each fire severity category for both forest LULC classes and the high severity cat-
egory of Past/Shr class; 25 ROIs for each low, moderate and moderate-high fire severity
category for Past/Shr LULC. The choice of 25 ROI was due to the difficulty of finding
homogeneous areas of Past/Shr vegetation belonging to these three severity categories.
Using the mean value of ROIs allows to examine the overall change occurring inside these
sampling units through the entire observation period and compare the different profiles,
avoiding the influence of the values of single pixels (Lacouture et al. 2020).
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Correlation between temporal profiles and climate variables
The monthly temporal profiles of rainfall and temperature were constructed and com-
pared to the temporal profiles of each S1 and S2 spectral index to investigate the influence
that the climate variables had on the dynamics of post-fire vegetation recovery. To define
the relationship with the vegetation dynamics of post-fire recovery, we implemented a
Pearson’s correlation analysis (r) between the temporal profiles of each S1 and S2 index
and the climate variables.

The burn recovery ratio (BRR)
The spatial distribution of the degree of vegetation recovery was estimated and mapped
using the burn recovery ratio (BRR) (Eq. 9), proposed by Chompuchan and Lin (2017),
in turn inspired by the recovery index of Chou et al. (2009) and Lin et al. (2004), which
represents the ratio between the value of a given VI at the time of assessment (VIpost-fire)
and its value at the reference pre-fire time (VIR_pre-fire).

BRR ¼ VIpost�fire= VIRpre�fire (9)

As further explained below, VIpost-fire and VIR_pre-fire values falling inside the burned
perimeter were predicted by the mean of a regression algorithm to minimize the inter-
annual biases.

Due to the natural inter-annual variations that may have occurred in unburned vegeta-
tion, if an image taken in the pre-fire period was used for BRR calculation, it would lead
to biases for each year of its estimation. Morresi et al. (2019), for example, exploiting the
concept already used in Miller and Thode (2007) for the computation of the relative
NBR, integrated their recovery index with a coefficient calculated by averaging the differ-
ence between pre-fire median and annual post-fire VI values of unburned vegetation to
account the inter-annual phenological changes. In this study, to cope with this aspect, the
unburned reference values for each index and each year of BRR assessment were esti-
mated using the RF machine learning regression model (Breiman 2001). To this end, 250
additional sample ROIs (ROIsBRR) (3� 3 pixels) were selected for each of the three LULC
classes in areas not affected by the fire (outside the fire perimeter). Their pixel values
were used as reference unburned training points for the RF model. For each year of calcu-
lation of the BRR, the respective ROIsBRR pixels of the same year were used as trainers;
meanwhile, all the pixels falling within the burned area were reconstructed by interpolat-
ing them with the individual pre-fire image values (June 2018). This month was chosen
since it was the closest to the fire event to also be present for all the observed following
years (2019, 2020 and 2021), implicating that the conditions of the vegetation were more
similar to those at the time of the fire event, as already considered by De Luca et al.
(2022). Furthermore, the cloud-free seasonal period was optimal to avoid using those pix-
els reconstituted from cloud gaps (Section 2.3.2) and the rain noise on the SAR signal.
Thus, the new unburned pixels for the BRR calculation have been predicted. The RF
regressor parameters values were set using those already calculated in De Luca et al.
(2021, 2022) and optimized for the study area through an exhaustive grid
search approach.

Based on the BRR results, six recovery rate categories were created, similar to those
proposed by Chompuchan and Lin (2017): very low (condition worse than before the
fire) (BRR< 0), low (0<BRR < 0.25), moderate (0.25<BRR < 0.50), moderate-high
(0.50<BRR < 0.75), high (0.75<BRR < 1) and very high (BRR > 1). The BRR was cal-
culated in June (springer greenness peak) of each year after the fire (2019, 2020, 2021) for
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NBR (BRRNBR), NDVI (BRRNDVI), NDRE (BRRNDRE) and RVI (ascending and descend-
ing; BRRRVI_As and BRRRVI_Ds).

Results

Vis temporal profiles

The temporal profiles of S1 and S2 spectral indices (Figures 2–4) show the mean reflect-
ance value of the pixels retrieved from ROIs, separated by LULC class and fire severity
category. The time series, divided between the pre-fire period (April 2017 - Jul 2018) and
the post-fire period (second half of August 2018 - Jun 2021), is composed of images rep-
resenting the monthly averages of the observed timeframe.

Figure 2. Temporal profiles of optical vegetation indices, for each of which a comparison between the three different
LULC classes is displayed.
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Different patterns are distinguishable in each temporal profile, with a common break-
point denoting the fire event in August 2018. An evident and expected difference between
the two types of sensors is also found. Other noticeable differences in the LULC class, fire
severity category, seasonal variability, and long-term trend are also observed. Large vari-
ability in the short-term post-fire behaviour (within the first year after the fire) is evident

Figure 3. Temporal profiles of SAR dual-polarized vegetation indices, for each of which a comparison between the
three different LULC classes is displayed.
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in both S1 and S2 indices but is significantly attenuated during the second and the third
post-fire year in the S2 time series.

Optical Sentinel-2 profiles

As expected, for each LULC class, similar behaviour is observed between the different
temporal profiles divided by fire severity category in the time frame preceding the fire
event. Such profiles thus outline LULC-specific spectral signatures, an aspect much more
evident in optical-based profiles than in SAR-based profiles (Figures 2–4).

After the fire event, different recovery patterns are recognizable according to the sever-
ity category in all the optical indices. Two common patterns are observed among all the
profiles. A pronounced drop of the Vis values, with a magnitude related to the fire sever-
ity, in the period immediately following the fire event and maintained for about a year; a
recovery of the pre-fire levels of spectral response (positive increasing trend) after the
first year.

Observing the unburned category, the three vegetation classes had specific seasonal pat-
terns during the observed period, with slight variations in the temporal dynamics between
the different spectral indices in specific years. The highest index values occur in the same

Figure 4. Temporal profiles of SAR single-polarization backscatter, for each of which a comparison between the three
different LULC classes is displayed.
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period for all the LULC classes: the autumn-winter period with peaks observed in
December in almost all periods of all spectral indices, with some variation found in the
two SWIR-based indices. The AuFor class showed less pronounced seasonal fluctuations
and lower amplitude of the curve, opposite to the Euc profiles characterized by higher
amplitude. Keeping the minimum values higher than the other classes, the AuFor second-
ary growth phase takes place in the earlier summer period between June and July, attrib-
utable to the growth of new leaves, with the only exception for the year 2019, in which
there is no summer increase in the values of all the analysed spectral indices. This phase
is anticipated by a minimum value occurring during the second half of May (NDVI,
GNDVI, NDRE) or April (NBR, NDWI). The Pas/Shr class, generally characterised by
lower VIs values compared to the forest classes, presents its single and regular period of
annual growth that goes from September-October (minimum value), when the autumnal
rains break the summer drought, through the whole winter, reaching the maximum peaks
in December-January, and until they start to dry again at the end of spring.

The AuFor and Past/Shr post-fire profiles relative to the low severity category profiles
present values very close to the reference unburned vegetation profiles in all the spectral
indices. The intra-annual variability of phenology is clear in the time series even after the
fire occurrence. The periods of growth and decrease are comparable between the two
severity categories along almost the entire post-fire period. The impact of the low severity
fire on the surface occupied by eucalyptus trees led to a lowering of the values of all the
calculated optical indices. However, the magnitude of the recovery is the same as the cor-
responding unburned profile. Noticeable is the higher amplitude of the Euc low-severity
profile compared to those falling into the other severity categories of the same LULC
class. After a detachment the first year after the fire event, the moderate-high and high
fire severity profiles showed similar values and followed the cyclical trend already
observed for the unburnt category. However, the spectral response of the high fire severity
category showed a steeper decrease immediately after the fire, more pronounced in
SWIR-related VIs. Concerning the recovery degree observed in the temporal profiles, a
complete recovery seems to be recorded for AuFor and Pas/Shr classes in all the VIs,
except for the SWIR-based indices, highlighting a slower recovery of AuFor vegetation.
Unlike what was observed for the other two classes, Euc profiles failed to restore the
respective pre-fire Vis values within the analysed post-fire period.

SAR Sentinel-1 profiles

The comparison of SAR-based profiles denotes significant differences in the interactions
between SAR indices and each LULC class, including those related to the ascending or
descending orbit paths (Figure 3). The characterization of specific pre-fire seasonality and
post-fire recovery patterns is complex in most profiles, mainly in the case of the single-
polarized VV backscatter signal (Figure 4). Indeed, the fire event is visually perceptible,
observing the profiles. A distinction between pre- and post-fire patterns is observed for all
the LULC and fire severity combinations except the VV-related profiles. Furthermore, co-
polarized profiles tend to slightly increase values in the post-fire period in all severity cat-
egories, but with an amplitude of the curve fluctuations that increase with fire severity.
The profiles of dual-polarized SAR indices (Figure 3) are similar to those of the optical
indices, exhibiting a better relationship between the fire severity category and the SAR sig-
nal (Figure 2). The RFDI represents an exception, which shows an expected increase after
the fire. The post-fire response of the SAR indices is more evident for high and moder-
ate-high severity categories than for moderate or low severity and stronger for Euc and
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Pas/Shr. Indeed, the SAR response of vegetation affected by low severity fire does not pre-
sent distinguishable traits from the unburned vegetation profile in most cases. Conversely,
Euc low severity profiles differ from unburned and high severity profiles during the first
post-fire year. The common characteristic of all SAR profiles for all LULC classes and fire
severity categories is a slower recovery trend than optical profiles. In the case of Euc,
even after three years, the indices’ values do not reach those of pre-fire situations (Figure
3). In the case of pre-fire or unburned vegetation, a general slight decrease is visible over
the whole period when DPSVI and RVI are used (resulting in an increasing trend for
RFDI), as observed in optical indices profiles. For the Euc class, the decreasing trend can
be observable until November 2019 - February 2020, after which a slight increase is
detectable. The same behaviour appears in ascending and descending VH backscatter pro-
files for all LULC classes and ascending VV backscatter for AuFor.

Climate variables and relationship with satellite temporal profiles

The Bagnouls-Gaussen Thermo-pluviometric diagram in Figure 5 shows the temporal
profiles (April 2017 - January 2021) of the monthly rainfall and monthly mean tempera-
tures, highlighting the Mediterranean climate of the study area (mild and rainy autumn,
winter and early spring seasons, dry summers). Notable decreases in rainfall are observed
in December 2018 (12.6mm), March 2019 (14.8mm) and February 2020 (3.96). Another
exceptionality is given by the maximum peak recorded in March 2018 (266.7mm); other
maximum peaks were observed in October 2018 (122.5mm), December 2019 (129.84mm)
and November 2020 (112.2mm). The seasonal thermal variation is not high, and this is
due to the oceanic influence that mitigates the average temperature during the year.

The Pearson’s correlation coefficient between climate variables and temporal trends of
both SAR and optical data was computed to investigate their linear relationship, consider-
ing the fire severity category, the LULC class and period considered (pre- or post-fire).
The resulting Pearson’s coefficient values are reported in the heatmaps of Figures 6–8.

Figure 5. Bagnouls-Gaussen Thermo-pluviometric diagram reporting the temporal profiles of the monthly rainfall and
monthly average temperatures. The precipitation axis (right) has an interval double compared to the temperature
axis (left).
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For optical datasets (Figure 6), a general positive correlation between rainfall and spec-
tral indices can be observed for most LULC classes and fire severity categories, higher for
Pas/Shr and the post-fire period. The NDRE index of non-forest vegetation was most

Figure 6. Heatmaps reporting the Pearson’s correlation coefficient performed between optical vegetation indices
(NDVI, GNDVI, NDRE, NBR and NDWI) and climate variables monthly rainfall (Rain) and monthly mean temperature
(Temperature). The correlation was carried out separately between the pre- and post-fire period and fire severity cate-
gories. The heat map colour palette gradient describes the Pearson’s values range from lower (dar blue) to higher
(yellow-light green).
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Figure 7. Heatmaps reporting the Pearson’s correlation coefficient performed between SAR single polarizations
(RVI_As, RVI_Ds, RFDI_As, RFDI_Ds, DPSVI_As, DPSVI_Ds) and climate variables monthly rainfall (Rain) and monthly
mean temperature (Temperature). The correlation was carried out separately between the pre- and post-fire period
and fire severity categories. The heat map colour palette gradient describes the Pearson’s values range from lower
(dar blue) to higher (yellow-light green).
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correlated with the rainfall in the pre-fire period, with values not lower than þ0.48. The
degree of correlation for the post-fire period decreases with increasing fire severity, with
the minimum value recorded for the NBR profile used AuFor class affected by high sever-
ity (þ0.087). The AuFor class mainly showed a lower correlation with rainfall than the
other two LULC classes. Oppositely, most of the correlations with temperature were nega-
tive, with values that reached �0.89 (Pas/Shr-GNDVI-moderate severity-pre-fire). The
AuFor class had some exceptions, presenting positive correlations for the SWIR-based
indices (NBR and NDWI), with a higher positive correlation (þ0.38 to þ0.46) for low
fire severity.

Figure 8. Heatmaps reporting the Pearson’s correlation coefficient performed between SAR dual-polarized vegetation
indices (VH_As, VH_Ds, VV_As, VV_Ds) and climate variables monthly rainfall (Rain) and monthly mean temperature
(Temperature). The correlation was carried out separately between the pre- and post-fire period and fire severity cate-
gories. The heat map colour palette gradient describes the Pearson’s values range from lower (dar blue) to higher
(yellow-light green).
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Concerning SAR datasets (Figure 7), the RVI and DPSVI indices reached a similar cor-
relation in their respective orbit path. For AuFor class, these indices had a higher correl-
ation with the rainfall variable in the pre-fire condition, showing values between þ0.14
(RVI ascending) and þ0.67 (DPSVI ascending). This class reached a higher correlation in
the two indices in post-fire conditions. For Ecu and Pas/Shr the highest positive and/or
negative correlation was observed in pre-fire conditions, ranging from �0.47 (RVI
descending) to þ0.5 (DPSVI ascending). During the post-fire period, both Ecu and Pas/
Shr achieved values not exceeding þ0.2 in any case. The RFDI showed values of opposite
correlations to RVI for both orbit paths in Euc and Pas/Shr classes. Considering the
AuFor class, the RFDI reached a similar and opposite to the DPSVI. A higher correlation
was found between single-polarization profiles and the rain variable. Noticeable is the
high level of r reached by VV_Ds in all three LULCs during the post-fire period
(0.24< r< 0.75). Except for some cases (e.g., VV_Asc for Pas/Shr; VH_Ds for Euc), the
other single-polarized combinations followed this trend in both pre-fire and post-
fire periods.

A divergence was observed between dual-polarized indices and single-polarized back-
scatter and between ascending and descending orbit paths when correlated with the
monthly mean temperature. After the fire event, the unburned and low severity categories
correlated to the pre-fire period using dual-polarized VIs in descending mode. With
ascending VIs, a slight divergence was observable for the low severity category. The other
fire severity categories registered similar behaviour, except AuFor, which changed signs
from negative (pre-fire) to positive (post-fire) or vice versa (RVI_Ds). Generally, pre-fire
condition guaranteed highest correlation coefficient (e.g., r¼ 0.81, RVI_As, Euc; 0.77,
DPSVI_As, Euc; 0.61, DPSVI_Ds, Pas/Shr). Dissimilar behaviours were found using sin-
gle-polarized backscatter profiles. The unburned vegetation did not maintain its correl-
ation level with the climatic variable in all the cases. The VH_As was an exception,
although this data presented the highest continuity between pre-fire and post-fire values
in almost all the categories. The VV_Ds showed the highest negative correlation with
temperature in the post-fire period, totally contrasting with the values expressed before
the fire event.

Spatial distribution of recovery rate: the BRR

Figure 9 shows the spatial distribution of the general recovery rate of vegetation for the
three VIs NDVI, NBR and RVI_As. Areas in dark red (BRR < 0) denote slow/absent
recovery, with values of the VIs lower than in the pre-fire conditions; conversely, where
the BRR was more than one (light green areas), the recovery condition was higher than
the pre-fire condition. Considering the different VIs, the three maps showed noticeable
differences, with BRRNBR reporting recovery levels much lower than BRRNDVI. This dis-
parity is kept during subsequent years, although the spatial pattern of re-greenness is
quite similar, with a recovery distribution starting from the area around the unburned
island (Monchique town) located on the west side of the study area toward the easter and
north part/side of the study area. Other high-recovery areas are patchy, and spread
throughout the 2021 map. Concerning SAR BRR, the recovery level has higher absolute
values starting from 2019, and its spatial distribution is more homogeneous across the
area. However, comparing the two highest recovery categories during the temporal pro-
gression from 2019 to 2021, the SAR shows a lower and more gradual regrowth rate than
BRRNDVI. Some dark red areas are viewable in the year after the fire, recognizable by a
sudden decrease in BRR values compared to the previous year, resulting from other fires’
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recurrence after August 2018. Although present on the map (Figure 9), these fires have
been detected in advance and excluded from any calculation (ROIsBRR and pixel
distribution).

Figure 10 reports the proportion of the area occupied by each BRR category for each
LULC class and year, assessed for the NBR, NDVI and RVI_As indices (BRRNDRE and
BRRRVI_Ds are shown in Figure 1S of Supplementary Material since they displayed similar
values of BRRNDVI and BRRRVI_As, respectively).

Figures 9 and 10 show that the BRRNBR points out lower degrees of recovery for all
the LULC classes. The substantial difference is denoted in the percentage values of pixel

Figure 9. Burn recovery ratio (BRR) was separately calculated for NDVI (BRRNDVI; first row), NBR (BRRNBR; second row)
and RVI_As (BRRRVI_As; third row). The columns separate the three post-fire dates of observation: June 2019 (first col-
umn), 2020 (second column), and 2021 (third column). The colour palette represents a recovery gradient from very
low (dark red) to very high (light green).
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distribution in the two lowest recovery classes (very low and low), for Euc (40.88% and
27.36%) and Pas/Shr (55.50% and 16.44%) classes on the first date after the fire (Jun
2019). For AuFor class, the pixels falling in the Very low category were only 4.15%, but

Figure 10. Distribution of the number of pixels (%) falling in every burn recovery ratio (BRR) category, separately cal-
culated for: vegetation index, NDVI (BRRNDVI; first row), NBR (BRRNBR; second row) and RVI_As (BRRRVI_As; third row);
date of observation, June 2019 (internal ring), June 2020 (medium ring), 2021 (external ring); LULC class, AuFor (first
column), Euc (second column) and Pas/Shr (third column). The colour palette represents a recovery gradient from very
low (dark red) to very high (light green).
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the 23.25% resulted in low recovery on the same date. The other optical and SAR VIs did
not classify pixels into the very low BRR category, while the number of pixels labelled as
low recovery was less than 1%. However, as expected, in all the cases, a positive recovery
trend was detected; indeed, a shift in the distribution of pixels from lower to higher
recovery categories when increasing years after the fire is observable. Concerning SAR-
based BRRRVI_As, although it appears that most of the pixels fell within higher recovery
levels already starting from the first year after the fire, the relative increase in the number
of pixels within the same BRR category for each observation year is significantly lower
than that observed in the optical data. Looking at the categories of high and very high
recovery, respectively, the AuFor went from 10.99% (2019) to 59.26% (2021) and from
2% (2019) to 13% (2021) for BRRNBR; from 38.13% (2019) to 43.06% (2021) and from
5.60% (2019) to 52.82% (2021) for BRRNDVI; while for BRRRVI_As from 41.17% (2019) to
40.44% (2021) and from 26.16% (2019) to 39.91% (2021).

Discussion

Optical time-series

This study reveals a strong relationship between vegetation recovery rate and fire severity
category (Figure 2), as expected based on existing literature (Meng et al. 2018; Ryu et al.
2018; Morresi et al. 2019). In higher severity categories the maintenance of lower values
of the profiles during most of the observation period is due to the double effect of the
loss of photosynthetic vegetation and the presence of charcoal and ash (Pereira et al.
1999). Each LULC class showed a specific temporal pattern. Typically, tree species’ predis-
position to fire resistance and/or adaptation affects the recovery rate and patterns ( Catry
et al. 2012; Filipe X Catry, Pausas, et al. 2013; Chompuchan and Lin 2017; Gouveia et al.
2010 ), especially for low and moderate fire severity. The seasonal stability of AuFor vege-
tation, characterizing the unburned vegetation, and the highest annual variability of Pas/
Shr, with the relative differences detected by NIR- or SWIR-based VIs, comply with what
was observed by Soares et al. (2022) concerning the phenology adaptation strategies of
Portuguese cork oak ecosystems.

Generally, a gradual spectral post-fire recovery is displayed in almost all cases at the
end of the observing period, mainly when the species are characterized by a high regener-
ation capacity and vegetative growth (Semeraro et al. 2019). In the final monitoring year,
the optical profiles no longer present dynamic patterns and differences between the vari-
ous severity categories. Similar behaviour of recovery patterns of the photosynthetic activ-
ity and the ecosystem’s physiological cycles after a few years from the fire event was
reported in other studies (Chompuchan and Lin 2017) using optical profiles based on
NIR and SWIR bands. As expected, the lower and moderate severity categories faster
achieved advanced recovery stages in AuFor and Pas/Shr, near or equal to the initial
unburned VIs values. This is supposed to be due to vegetation generally remaining totally
or partially unburned, contributing positively to the optical reflectance. Meng et al. (2018)
observed that a low level of fire-inducted damage does not induce such a significant
reconstruction action by tree species to be detected by the VIs. This statement could jus-
tify the Euc low severity profile behaviour, characterized by a parallel pattern to the
unburned profile; however, further and longer-time investigations are needed to explain
these aspects.

Additionally, Catry et al. (2013) demonstrated in their study that although Eucalyptus
spp. has a general fire-resistant behaviour, it presents higher fire-susceptivity when placed
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in artificial plantations. It should be considered the result reported by Hausler et al.
(2018), where it was observed that four years after the fire event, many eucalyptus surfa-
ces have not yet fully recovered the levels of evapotranspiration, thus suggesting that it
may take longer for a full recovery. These results highlight the higher efficiency of native
species in restoring the ecological equilibrium. These observations are corroborated by the
spatial distribution of recovery rate, represented by the BRR, as better illustrated in
Section 4.5.

Regarding the interpretation of forest LULC classes profiles, a specific influence of the
underlying vegetation should be considered (Meng et al. 2018). Where plant structural
layers are vertically superimposed, gaps between the dominant foliage that leave the
underlying vegetation uncovered make it very difficult to distinguish the unique spectral
signatures of each vegetation layer by optical sensors. (Lacouture et al. 2020). This is com-
monly observable in moderately burnt areas, where the gaps in the foliage caused by the
fire expose the underlying vegetation that has regrowth in the meantime (Polychronaki
et al. 2014; Meng et al. 2018). This behaviour can be ascribed to the ability of optical sen-
sors to detect only the external reflective surface of objects and to the saturation of the
optical VIs at relatively low levels of LAI, with an increased rate that could be induced by
the rapid colonization of herbaceous and shrubby vegetation. (Frazier et al. 2015; Zhao
et al. 2016).

The gradual declension of the VIs profiles perceptible in the unburned forest classes
(AuFor and Euc), opposite to the increasing trend associated with a frequent and growing
fire disturbance regime, was already observed and described in other studies (Goetz et al.
2005; Ryu et al. 2018; Semeraro et al. 2019). The stasis in the physiological trend may be
due to a combination of different factors. The reaching of the point of maximum vegeta-
tion increase in which the levels of competition between plants are lowered, and the rain-
fall decrease, lengthening the drought period (Figure 5).

Although annual optical fluctuations seem more influenced by season-specific pheno-
logical dynamics than by rainfall’s direct effect, it should be considered that plant phen-
ology is closely related to the climatic variables, and this is reflected in all-optical VIs
(Song and Woodcock 2003; Fern�andez-Garc�ıa et al. 2018; Poon and Kinoshita 2018; Ryu
et al. 2018; Morresi et al. 2019). The correlation indices displayed in the heatmaps (Figure
6) show that precipitation positively impacts physiological activity, especially for Pas/Shr
and Euc vegetation. Significant drops in optical VIs occurred in these two LULCs classes
between the end of June and August, corresponding to a sharp decrease in total rainfall
during these months, highlighting that some vegetation types may be more sensitive to a
meteorological parameter than another. The lower correlation with rainfall regimes of
AuFor describes the low susceptibility to water stress that characterized Mediterranean
corks, corroborating what was found by the recent study of Soares et al. (2022) and what
was observed by Vidal-Macua (2017). The former study observed a high sensitivity of
herbaceous species and shrubs belongings to the cork oak ecosystems to high tempera-
tures (negatively) and precipitations (positively), supporting our findings (Figure 6).
Concerning the temperatures, the greater susceptibility to high summer temperatures is
confirmed, concomitant with a phase of vegetative stasis.

Focusing on the observation, the NIR- and RedEdge-based VIs showed faster recovery
trends than SWIR-based VIs. This confirms what other scholars (Wang et al. 2005;
Tanase et al. 2011; Frazier et al. 2015; Zhao et al. 2016; Ryu et al. 2018; Morresi et al.
2019) stated concerning, on the one hand, the greater sensitivity of the combination of
the Red and NIR bands to photosynthetically active vegetation and the LAI, induced by
the rapid regrowth of vegetation canopy; on the other hand, the complementary SWIR-
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based VIs sensitivity the immediate damage caused by the fire on the forest cover and to
the gradual development of the canopy cover, which might take even a few years longer
(1-4) than the NIR-based ones, as observed in other studies.

SAR time-series

The comparison of the different profiles shows how the interactions of the SAR signal,
both individual polarized backscatter (Figure 4) and dual-polarimetric VIs (Figure 3), are
not so easy to interpret as in the case of optical reflectance. Generally, our results show
that the cross-polarized backscatter and dual-polarized index (RVI and DPSVI) values of
the burned areas initiate an incremental trend phase, representing the beginning of the
vegetation recovery phase, starting from the first year after the fire event in a way that is
directly proportional to the fire severity category and as a function of the type of vegeta-
tion (LULC class). This was after an initial decrease immediately after the fire event,
which was also proportional to the fire severity. However, the recovery dynamics are dif-
ferent between the type of VI used, and the characterization of specific phenological pat-
terns is complex. This was expected given the greater sensitivity of the SAR signal to local
environmental parameters. In particular, surface and soil moisture can heavily influence
SAR recovery backscatter (Kasischke et al. 2011; Tanase et al. 2011; Hachani et al. 2019;
Zhou et al. 2019), while less influential seems to be the biochemical composition of the
exposed soil (Minchella et al. 2009). Nonetheless, geomorphology and topography can dir-
ectly or indirectly affect hydrological processes and, consequentially, vegetation recovery
dynamics (Vidal-Macua et al. 2017). The drainage or retention capacity of the rock base-
ment or the slope’s orientation towards the sun’s direct radiation determines local ground
water balance and evapotranspiration (R€oder et al. 2008; Viana-Soto et al. 2017;
Christopoulou et al. 2019).

The indirect effects that fires of this size and severity can cause surrounding unburned
vegetation should also be considered. The micro-climatic conditions and the hydrological
balance are altered by the destruction of the proximal coverings, whose mitigating and
balancing properties are well known (shading, wind repair, humidity balance, rainfall
interception, etc.). The artificial ecosystems (such as eucalyptus plantations) used for bio-
mass production are more susceptible to these alterations, both for their ecological vulner-
ability and higher nutritional needs (Catry et al. 2015; H€ausler et al. 2018). This could
partly explain the decline in the unburned SAR curve of the Euc. Differentially, native
species in a natural or semi-natural environment are predisposed to adaptive strategies to
environmental adversities (Catry, Pausas, et al. 2013; Soares et al. 2022).

The results of the interactions between SAR polarization and surface dynamics can
have different meanings depending on the observation biome (Tanase et al. 2011; Chen
et al. 2018). For this reason, coupling climate variables profiles (Figure 5) to spectral SAR
response is helpful. The interception of rain by vegetation, especially by the forest cover,
plays a fundamental role in the water balance of the ecosystem, resulting in a difference
between the total rainfall recorded and that reached the ground, which would greatly
influence the SAR signal (Frison et al. 2018; Ban et al. 2020). Although few intra-seasonal
dynamic fluctuations were found in the SAR profiles, many of them (e.g., all the dual-
polarization combinations: RVI, DPSVI, and RFDI ascending for AuFor and Pas/Shr;
RVI, DPSVI and RFDI descending for AuFor class) showed evident inter-seasonal pat-
terns driven by humidity conditions, in particular by rain (Figure 5) when compared to
the relative plot (Figure 4). Noticeable are the effects of the exceptional amount of rain
that fell in March 2018 and of that rainfall that fell in November-December 2017 on the
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response of the SAR signal, observable in all combinations. The peak of the SAR curve
relative to June 2017, noticeable in most of the profiles, is difficult to interpret; this behav-
iour, among other things, is not found in the patterns following the fire event both for
the unburned vegetation and that affected by low/moderate severities. A notable detail is
a minimum value that is observed in many SAR profiles (VH, DPSVI, RFDI, RVI_As/Ds
for AuFor and Euc; VV_Ds for all the LULCs; VV_As for AuFor and Euc) and almost all
related severity categories, and all the relative categories of severity in the months of
January-February 2020. Observing the plots of the climatic variables (Figure 5), this can
be correlated to an exceptional decrease in rainfall (3.11mm in February 2020) that
occurred in conjunction with exceptionally mild temperature levels (14.35 �C in February
2020: þ1.75� C compared to February 2019; þ 7.85� C compared to February 2018).
However, the co-polarised signal seems to have been perceptibly driven by the rainfall in
all the possible path-severity-LULC combinations, and more than the other profiles, with
parallelism between curve fluctuations and a general increasing trend after the fire event.
Ban et al. (2020) explained that the rain events after the fire and intercept bare soil,
encountering little or no interception by the destroyed vegetation, influence the co-polar-
ized signal inducing its increase.

Furthermore, the same authors observed that the VV backscatter values were generally
higher than VH, an aspect also found in the profiles of the current study. Minchella et al.
(2009) also observed increasing VV backscatter using C-band in Mediterranean forest
ecosystems affected by the fire. The VV dynamic patterns of burned vegetation were
driven by soil moisture fluctuations during the monitored five years after the fire event,
especially at high fire severity. Periods at a lower soil dielectric constant, such as summer,
resulted in lower VV backscatter values. Indeed, rapid re-growth of forest cover increases
the similarity to herbaceous vegetation patterns (Minchella et al. 2009). These observa-
tions could explain the presence of high amplitudes (high fluctuations) during the differ-
ent seasons of VV profiles, in some cases proportional to the fire severity category.
However, given the relatively short observation period (three years), the attenuation
effects given by the increasing vegetation recovery were not observed.

SAR polarization dependency

The abovementioned aspects concern the more general topic of differences between cross-
and co-polarization in interacting with the surfaces covered by forest. Immediately after a
severe fire event and for the first post-fire year, oppositely to the perceptible increase
already described for VV backscatter, a noticeable decrease in the VH backscatter is
observable (Figure 4). This opposite behaviour of the two polarizations accords with other
studies (Imperatore et al. 2017; Mari et al. 2017; De Luca, Silva, et al. 2021). The burn of
stems and large branches reduces the volumetric backscattering contribution of these
structural vegetation components (i.e., scatterers), to which the cross-polarized signal is
sensitive. Consequently, as microwave penetration through the damaged canopy increases,
the effect of surface and double bounce dispersion on total backscatter is more prominent,
induced by the greater proportion of exposed soil moisture components and the underly-
ing soil (to which the co-polarized signal is sensitive) (Tanase, Santoro, De La Riva, et al.
2010; Tanase et al. 2011; Martins et al. 2016; Chen et al. 2018). In unburned forested
areas, the high reflection pattern of VV co-polarized signal is instead associated with
backscattering returned from vertical stand largest trees and trunks (Martins et al. 2016).

As expected, except for the VV_Ds profile for Euc class, no ability to distinguish
between different severity categories was observed in all co-polarized combinations. When
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the severity of the fire that affected the forest vegetation was moderate, the decrease in
VH is more gradual as the trees most affected are those of the intermediate vertical layer,
which contribute less to the total AGB than the specimens of the dominant layer.
Regarding the VH profile for the Pas/Shr class, it is more difficult to interpret its patterns,
especially for the higher severity categories.

Due to their biases, a clear conclusion cannot be obtained when only using single-
polarization temporal backscattering, despite the higher overcome of cross-polarized
already observed in other studies (Tanase et al. 2011; Martins et al. 2016). Agree with
Chen et al. (2018). Instead, dual-polarized VIs improved the delineation of the propor-
tionality between fire severity and time profiles, demonstrating their attitude to decrease
the cross- and co-polarized biases.

SAR orbit path dependency

The separate analysis of the orbit paths made it possible to delineate the divergences aris-
ing from the sensor geometry on the temporal profiles. This was due to the look direction
of the SAR, which causes the signal to interact geometrically differently with the local
structural orientation of the regrowing forest (M. Tanase et al. 2011). A fundamental role
is played by the effects of the terrain, which determines the local angle of incidence of the
microwave beam (Gimeno and San-Miguel-Ayanz 2004; Tanase, Santoro, De La Riva,
et al. 2010; Kurum 2015). The presence of reliefs can cause radar shadow effects, for
which some areas facing the side opposite the radar beam are not detected by one of the
two paths (Richards 2009a), as well as directly influencing the local soil water balance
(R€oder et al. 2008; Viana-Soto et al. 2017; Christopoulou et al. 2019). This confirms the
need to use both orbit paths to construct complete information about what is observed.
Some authors have highlighted the role of both orbits in increasing the detection capabil-
ities of burned areas (Donezar et al. 2019; De Luca, Silva, et al. 2021) or the LULC classi-
fication (Sayedain et al. 2020). A further observation is that the differences between orbit
paths are noticeable when the single polarizations are compared. Integrating these two in
the dual-polarized indexes seems to attenuate the look direction effects.

Spatial distribution of vegetation recovery rate, the BRR

The spatial distribution of the vegetation recovery categories, represented by the optical
BRR (Figures 9 and 10), complies with what emerges from the analysis of the temporal
profiles. The BRR results (Figure 10) demonstrated that the surface occupied by native
forest reaching the highest recovery level was more than Euc vegetation at the end of the
observed period (2021). Even observing the map of Figure 9, it is clear that the west-east
development track, spatially and temporally traced by the vegetation regrowth, follows the
disposition of the areas occupied by AuFor vegetation when compared to the LULC map
presented in De Luca et al. (2022). When optical VIs based on NIR (BRRNDVI) and
RedEdge (BRRNDRE, in supplementary material) are used, most pixels fell into the higher
recovery categories since the first year after the fire event than when using the index
NBR. Furthermore, the SWIR-based index includes most of the pixels within the lowest
recovery classes (Very low and Low) in the first two post-fire years. The other optical
indices did not detect pixels in the very low category, while less than 1% of the pixels fell
in the low category. The season of occurrence of the fire also influences the characteristics
with which it affects the vegetable fuel. A higher humidity of the fuel could increase the
variability of the fire and, equivalently, of the VIs responses (Lacouture et al. 2020),
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especially of SWIR-based ones. Although, in the present study, having the fire occurred
during the dry season (August 2018), it was characterized by homogeneous severity and
intensity over large and contiguous areas (De Luca, Silva, Oom, et al. 2021).

The relative increase of BRRRVI recovery in the subsequent year was noticeable com-
pared to the respective optical indices. The BRR relative to the RVI index showed that
most of the pixels already fell into higher recovery categories in the first year after the
fire. However, the spatial distributional track of the recovery adheres to that of optical
BRRs. Anyway, if the relative change over time is analyzed and compared to the
BRRNDVI, a more gradual recovery is detectable for the BRRRVI_As, as already found in
the temporal profile. However, the more complex interpretation of the SAR makes it
more challenging to characterise specific spatial patterns. Factors such as the different
influence exerted by the remaining charcoal on the fire-affected surfaces, the high sensitiv-
ity to humidity, and the wavelength used suggest that a further examination is needed
concerning the efficiency of using the SAR-based BRR.

Final considerations

Considering the findings of the present study, as well as the consulted literature, we found
that the optical S2 and SAR S1 VIs appeared to have a higher aptitude for monitoring
vegetation regrowth, which can be used effectively as complementary information to
assess and monitor the short-term response of ecosystems to fire. Some limitations persist,
such as the predisposition of optical data to reach saturation, partially compensated by
the weak SAR C-band penetration capacity through the forest canopy. Further literature
examination and considerations concerning the SAR wavelength dependency are reported
in the supplementary material. Integrating multi-frequency SAR (L-band and/or P-band),
VHR data, or LiDAR information can optimize the capture of the spectral and structural
properties of the regrowth vegetation and quantify the understory seedling recovery rate
more precisely (Meng et al. 2018).

Besides those already argued, many factors influence the SAR results or help their
interpretation. The behaviour of the SAR depends very much on the environmental con-
ditions, and further investigations will have to be carried out. In this study, two climatic
variables are taken into consideration. However, we would like to suggest other parame-
ters that should be investigated and compared, including pedological and lithological
characteristics, soil moisture, topography, and territory geomorphology. Besides the het-
erogeneity of LULCs analyzed (especially AuFor and Pas/Shr), the topographical variabil-
ity of the Mediterranean ecosystem strongly influences the microwave signal (Tanase,
Santoro, De La Riva, et al. 2010; Tanase, Santoro, Wegm€uller, et al. 2010; Tanase et al.
2011), as highlighted by the differences resulted from the dependent analysis of the orbital
path. The use of averaged ROIs value for both the optical and SAR dataset, added to the
speckle noise filter applied to SAR, attenuated the variability of each curve (Minchella
et al. 2009; Tanase et al. 2011; Frazier et al. 2015; Martins et al. 2016). Several studies
investigated how topographical and geomorphological variables positively or negatively
influence local vegetation recovery dynamics and population post-fire biodiversity and
how they are affected in turn (R€oder et al. 2008; Diakakis et al. 2017; Vidal-Macua et al.
2017; Viana-Soto et al. 2017; Christopoulou et al. 2019). Slope and aspect, for example,
determine solar wave incidence radiation, which largely influences both water/moisture
balance, evapotranspiration, and photosynthetic activity (R€oder et al. 2008). On the other
hand, slope and lithology affect erodibility, water drainage/accumulation, as well as root
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penetration capacity (Christopoulou et al. 2019). More considerations based on current
literature are reported in the supplementary material.

Conclusions

The results reported in this study show that Mediterranean ecosystems respond rapidly to
disturbances, initiating effective restoration processes. However, earlier recovery of
unburned values is attributable to a premature saturation affecting both NIR-based indices
and SAR C-band wavelength. Regrowth trends are observable from the first months after
the fire event reaching an apparent almost complete recovery occurring by the three years
of analysis in optical and SAR VIs. The vegetation type influences the time and the mag-
nitude of recovery temporal activity in terms of spectral response, with a noticeable differ-
ence between native and non-native forest vegetation. However, the proportionality
between recovery pattern and fire severity categories was kept. The higher degree of
recovery occurred for the autochthonous forest class (AuFor), followed by Pas/Shr,
reflected the higher adaptability of these ecosystems to stress regimes and efficiency in
restoring the ecological equilibrium, directly proportional to their more differentiated
structure and biodiversity compared to the area occupied by eucalyptus plantations. These
observations were corroborated by the BRR, representing the spatial distribution of recov-
ery rate, whose outcomes demonstrated that the surface occupied by highly and very
highly recovered AuFor vegetation was more than that occupied by Euc vegetation during
the three years of observation; even more evident when optical indices were used
(BRRNBR, BRRNDVI and BRRNDRE). In order to account for the natural phenological tem-
poral effects, the BRR calculation was optimized using the RF machine learning regressor
with which the hypothetical unburned conditions of the fire-affected area for each time of
estimation of the index were predicted and reconstructed. However, although optical BRR
has been demonstrated to be effective, the SAR-based needs further studies for its
interpretation.

A high proportionality was found between the fire severity and the recovery profiles
during the first two post-fire years, following an equally proportionated sharp decrease in
optical and SAR values. Some exceptions persisted, such as for the SAR co-polarized
(VV) profiles, due to their high moisture and exposed soil dependency. In fact, from the
comparison and correlation of climate variables and temporal profiles, it has been clear
that the precipitation events directly affected the C-band SAR profiles, especially in the
categories of higher severity, where the interception of the vegetation cover guarantees the
precipitation attenuation had been lacking. This denotes the menace of fire events toward
the hydrological balance of the soil.

Considering these aspects, the management of SAR images required greater attention
due to the higher presence of outliers and speckle noise caused by the intrinsic nature of
the data. Using long time-series, the biases are more evident; however, several pre-proc-
essing processes were used to optimize the workflow and mitigate these issues, such as
the speckle filter and the time average. Optical-related biases were also finely addressed,
such as eliminating the clouds through the new product provided by Sentinel Team
(s2cloudless) and subsequent linear interpolation to reconstruct the fill gaps.

Generally, this study demonstrated that the combined use of different sensors is essen-
tial to correctly delineate the dynamics that occur in Mediterranean fire-frequented habi-
tats, compensating for the limitations of the single sensor, especially when a small
temporal scale is needed. Moreover, the integration of free and open-source analysis
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software with equally free-available high temporal and spatial resolution data enables the
accessibility by a wider audience involved in the forest risks monitoring framework.

However, the dynamics of post-fire Mediterranean vegetation must be further exam-
ined in long-term monitoring protocols in this and other study areas to assess the com-
plete response even to delayed effects. Moreover, additional indicators and sensors may
be necessary to determine which combination of temporal patterns best reflects the real
post-fire dynamics in the Mediterranean ecosystems and their chemical, physiological and
structural features. Focusing on SAR data, medium-long term monitoring may require the
integration of multifrequency techniques with longer wavelengths (L-, P-band), able to
penetrate further into the regenerated canopy, thus enabling in better understanding of
forest recovery processes. The imminent availability of new data types (e.g., ESA
BIOMAASS mission, Le Toan et al. 2011) and the development of cloud platforms (e.g.,
multi-mission algorithm and analysis platform, MAAP 2022) will optimize the perform-
ance and the already high inter-compatibility of these resources.

Further investigation could also involve the machine learning regression models to pre-
dict temporal and spatial recovery patterns, basing the regression on the values of the
recovery metrics calculated. In this regard, we believe our results will efficiently provide
helpful information.
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Portugal (UIDB/00239/2020), and by the project FireCast - Forecasting fire probability and characteristics
for a habitable pyroenvironment, funded by FCT (PCIF/GRF/0204/2017).

ORCID

Giandomenico De Luca http://orcid.org/0000-0002-4740-6468
Jo~ao M. N. Silva http://orcid.org/0000-0001-5201-9836
Giuseppe Modica http://orcid.org/0000-0002-0388-0256

Data availability statement

The data that support the findings of this study are available from the corresponding author upon reason-
able request. These data were derived from the following resources available in the public domain, ESA
Sentinel Homepage, https://sentinel.esa.int/web/sentinel/home.

References

Alves AM, Pereira JS, Silva JMN. 2007. O Eucaliptal em Portugal: Impactes Ambientais e Investigaç~ao
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Sistema Nacional de Informaç~oes de Recursos H�ıdricos (SNIRH). 2022. [accessed 2022 January 5]. https://
snirh.apambiente.pt/

Copernicus Long Term Archive Access. 2022. [accessed 2022 January 5]. https://scihub.copernicus.eu/
userguide/LongTermArchive

Alaska Satellite Facility (ASF) 2022. [accessed 2022 January 5]. https://asf.alaska.edu/.
ESA Sentinel Homepage. 2022. [accessed 2022 January 5]. https://sentinel.esa.int/web/sentinel/home.
ESA Sentinel-1 User Guide. 2016. [accessed 2022 January 5]. https://sentinel.esa.int/web/sentinel/user-

guides/sentinel-. 1-sar/resolutions/level-1-ground-range-detected.
ESA SNAP Cookbook. 2022. [accessed 2022 January 5]. https://senbox.atlassian.net/wiki/spaces/SNAP/

pages/24051769/Cookbook
ESA SNAP Homepage. 2022. [accessed 2022 January 5]. http://step.esa.int/main/toolboxes/snap/
Esri ArcGIS World Imagery. 2022. [accessed 2022 January 5]. https://www.arcgis.com/home/item.html?id=

10df2279f9684e4a9f6a7f08febac2a9
Google Earth Engine Guides. 2022. [accessed 2022 January 5]. https://developers.google.com/earth-engine/

guides.
LightGBM documentation. 2022. [accessed 2022 January 5]. https://lightgbm.readthedocs.io/en/latest/

index.html
Sentinel Hub Homepage. 2022. [accessed 2022 January 5]. https://www.sentinel-hub.com/.

15462 G. DE LUCA ET AL.

https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_CLOUD_PROBABILITY
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_CLOUD_PROBABILITY
https://earthdata.nasa.gov/esds/maap
https://earthdata.nasa.gov/esds/maap
https://github.com/sentinel-hub/sentinel2-cloud-detector
https://github.com/sentinel-hub/sentinel2-cloud-detector
https://snirh.apambiente.pt/
https://snirh.apambiente.pt/
https://scihub.copernicus.eu/userguide/LongTermArchive
https://scihub.copernicus.eu/userguide/LongTermArchive
https://asf.alaska.edu/
https://sentinel.esa.int/web/sentinel/home
https://sentinel.esa.int/web/sentinel/user-guides/sentinel-
https://sentinel.esa.int/web/sentinel/user-guides/sentinel-
https://senbox.atlassian.net/wiki/spaces/SNAP/pages/24051769/Cookbook
https://senbox.atlassian.net/wiki/spaces/SNAP/pages/24051769/Cookbook
http://step.esa.int/main/toolboxes/snap/
https://www.arcgis.com/home/item.html?id=10df2279f9684e4a9f6a7f08febac2a9
https://www.arcgis.com/home/item.html?id=10df2279f9684e4a9f6a7f08febac2a9
https://developers.google.com/earth-engine/guides
https://developers.google.com/earth-engine/guides
https://lightgbm.readthedocs.io/en/latest/index.html
https://lightgbm.readthedocs.io/en/latest/index.html
https://www.sentinel-hub.com/

	Abstract
	Introduction
	Materials and methods
	Study area
	Description of the fire event
	Dataset and pre-processing
	Sentinel-1 (S1) dataset and pre-processing
	Sentinel-2 (S2) dataset and pre-processing

	Land use land cover (LULC) and fire severity mapping
	Climate variables
	Data preparation and analysis
	Vegetation indices (VIs) calculation
	ROIs collection and temporal profiles extraction
	Correlation between temporal profiles and climate variables
	The burn recovery ratio (BRR)


	Results
	Vis temporal profiles
	Optical Sentinel-2 profiles
	SAR Sentinel-1 profiles
	Climate variables and relationship with satellite temporal profiles
	Spatial distribution of recovery rate: the BRR

	Discussion
	Optical time-series
	SAR time-series
	SAR polarization dependency
	SAR orbit path dependency
	Spatial distribution of vegetation recovery rate, the BRR
	Final considerations

	Conclusions
	Disclosure statement
	Funding
	Orcid
	References
	Websites




