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School Choice provides students with the opportunity to attend better schools than those in their neigh-
borhood. This is crucial for students from disadvantaged areas where schools may be of lower quality. Our
theoretical model and numerical simulations show that the widely used Deferred Acceptance (DA) algorithm
has limitations in providing access to better schools (ABS). When schools have varying levels of quality and
when there are priorities linked to neighborhood schools, the DA algorithm experiences significant limitations
in providing ABS. Top Trading Cycles, when compared to DA, offers greater ABS, particularly for disadvan-
taged students.

1. introduction

In the last 20 years, a significant number of countries in the OECD have increased school
choice options. Historically, children were assigned to a school within their neighborhood, but
school choice policies now allow parents/guardians to select a school regardless of where they
live. The primary objective of these policies is to provide families, especially those from dis-
advantaged backgrounds, with access to better schools (ABS) than the ones available in their
local neighborhood. As noted on the Friedman Foundation for Educational Choice’s website,
the idea behind school choice is to facilitate access to better education opportunities.

We define ABS as the expected percentage of individuals who are assigned a place in a
school they prefer over their local neighborhood school.

This study demonstrates that in situations where there are clearly inadequate schools, if pri-
ority for neighborhood schools apply, and the market is sufficiently large, ABS may be negli-
gible using the commonly used Deferred Acceptance (DA) algorithm. This means that almost
all individuals may be assigned to their local neighborhood school, regardless of their prefer-
ences.

We compare the DA algorithm to the Top Trading Cycles (TTC) algorithm,1 both intro-
duced in the school choice literature by Abdulkadiroğlu and Sönmez (2003). Demand that ex-
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1470 calsamiglia and miralles

ceeds school capacity is rationed by ordering applicants according to priorities and random
lotteries. We consider the case with coarse priorities defined by residence in the neighborhood
of the school. We introduce stratification between schools: there is a bad school, a school that
all families believe is the worst. We study the extent to which families can obtain better place-
ment than their neighborhood school, the school they are given priority at by the authorities,
and the default school when there is no school choice.

An important and noteworthy result in this article is that, when all high-rated schools are
weakly overprioritized (i.e., they have weakly more students from the neighborhood than
their capacity), and the market is large, all students will be assigned by DA to their neighbor-
hood school regardless of their preferences. To explain why the DA algorithm fails in this sit-
uation, consider a scenario where all schools have equal capacity and an equal number of pri-
oritized students. In this case, no student in the catchment area of a good school can end up at
the bad school under DA (because access to the neighborhood school is guaranteed in every
round). In other words, all students who live in the catchment area of the bad school are stuck
there, regardless of their tie-breaking lottery number. Students with priority at different good
schools may want to “exchange” their slots, but if they apply to their preferred school without
priority, they will have to have a higher lottery number than any student from the bad neigh-
borhood. In a large enough market, the student with the highest lottery number in the bad
neighborhood will win and be given DA at the good school. But this assignment will never
be final if there is still a student with priority at a good school who has not been assigned to
a good school. This creates a continuous competition for good schools that blocks all school
exchanges, even among students with priority at good schools.

Hence, the well-known potential problem of interrupters reducing efficiency of the DA
(Kesten, 2010) has far-reaching consequences in most school choice environments. Stability in
the DA mechanism leads to low ABS.2 In sum, a stable allocation that provides limited good
placements for disadvantaged students results in low ABS in general.

Conversely, if good schools are underprioritized, meaning their capacity exceeds the num-
ber of students in the corresponding neighborhood, ABS delivered by DA is increased. Nev-
ertheless, we demonstrate that TTC is a superior alternative to DA as it surpasses DA in terms
of ABS. In TTC, individuals with a preference for each other’s schools can trade, thereby pre-
venting the blocking of trade among individuals with priority at good schools. TTC guaran-
tees Pareto-optimality of the final allocation as established by Gale and Shapley (1964), how-
ever, this does not mean that it Pareto-dominates DA. Our finding that TTC dominates DA in
terms of ABS is not a foregone conclusion.

Interestingly, we find that disadvantaged students (i.e., those with priority at bad schools)
have a higher chance of accessing better schools through TTC compared to DA. Not only is
TTC more efficient in terms of ABS, it is also fairer.

This result may seem surprising at first. TTC operates by enabling trades, but no one wants
to trade “priority rights” with disadvantaged students. As a result, disadvantaged students
would have a weakly lower chance of getting into a good school compared to other stu-
dents. However, TTC offers opportunities for disadvantaged students when assigning “left-
over” seats during the algorithm. As long as trade cycles occur during the implementation of
TTC, unassigned disadvantaged students keep better lottery numbers than unassigned advan-
taged students when distributing the remaining seats. By not blocking trades, disadvantaged
students have better access eventually to the still unassigned seats at good schools.

It should be noted that our findings do not suggest that the TTC allocation is always a bet-
ter option for all disadvantaged students compared to the DA allocation. Although TTC of-

2 Refer to Roth (2008) for more information on the limitations imposed by stability. This conclusion is similar to
the findings in Combe et al. (2022), who found that DA in teaching assignments to schools allows only a limited num-
ber of reassignments, assuming teachers cannot be forced to leave their current school. For DA to be individually ra-
tional, a guaranteed priority for the school the teacher is already assigned to before applying for a new school must be
in place. However, this limits access to different schools, similar to ABS. In this sense, their result is a special case of
ours, where the number of prioritized seats is equal to the number of available seats in schools.
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access to better schools 1471

fers better chances for disadvantaged students to attend a school better than their worst op-
tion, it may have a lower chance of assigning them to their preferred school.

Empirical evidence. The basis of our model is the differentiation of schools based on qual-
ity. In the United States, the notion of “failing schools” is widespread in both policy discus-
sions and media and refers to schools that have shown poor performance for two consecutive
years, making up 10% of all schools in the country.3 The media highlights the difficulties faced
by some families in leaving underperforming schools in their neighborhood, and the limita-
tions of school choice in improving opportunities for disadvantaged families. However, there
is limited evidence of these families having similar preferences for the worst schools. The main
issue is that preferences are not easily observable and the methods used to gather them can
be manipulated. As a result, evidence for this comes from estimates of individual preferences.
A study by He (2017) estimated preferences over four colleges in Beijing using the BM and
found that one school was ranked fourth by at least 58% of participants. The worst school in
terms of academic performance was also found to be the least preferred school by students.
Only 5% of students ranked it as their first choice.

A study by Calsamiglia et al. (2020) found that 44% of schools in Barcelona were filled in
the first round and 40% were never filled. Similarly, Agarwal and Somaini (2016) showed that
one preschool in Cambridge (USA), King Open Ola, was ranked only by five families whereas
the next best school already had 51 applicants. Combe et al. (2022) analyzed teacher assign-
ments to schools in France and found that some schools were unwanted by teachers. This is-
sue was partially resolved by granting priority to move to better preferred schools to teachers
previously assigned to these schools. This demonstrates that market stratification is not only
present in student school choice, but also among teachers.

Our results are further exacerbated by overprioritization, which occurs when the number of
applicants with priority for a school is equal to or greater than its capacity. This is common
in markets such as the teacher market in France or the school choice market in cities where
individuals have a guaranteed spot in their neighborhood school, as seen in the Charlotte-
Mecklenburg Public School District (Hastings and Weinstein, 2008). In most school choice
markets, there is a shift from a neighborhood-based assignment to a centralized assignment
with priorities for the neighborhood school, which becomes the prioritized school. Adminis-
trations aim to ensure families have access to a nearby school, so weak overprioritization is
likely, even in cases where it is not explicitly imposed through a default school assignment.

Our results indicate that under both DA and with neighborhood priorities for all seats, a
significant portion of families will be assigned to their neighborhood school. This is also true
with other mechanisms like the BM, which we discuss further in Section 7. Calsamiglia and
Güell (2018) found that in Barcelona, priorities have a major impact on the list of schools par-
ents apply for under BM. They discovered that a large number of parents apply for the neigh-
borhood school, regardless of their preferences, due to a change in the definition of neigh-
borhoods in Barcelona. On the other hand, Calsamiglia et al. (2020) also conduct counter-
factual analysis to determine the allocation results if DA or TTC were implemented instead.
Around 40% of families in Barcelona prefer a school outside of their neighborhood, illustrat-
ing that ABS is a quantitatively relevant aim. Table 19 in their paper reveals that for families
whose favorite school is not in their neighborhood, both BM and DA assign them to their fa-
vorite school less frequently than TTC, with the proportions being 47.2%, 41.8%, and 58.9%
for BM, DA, and TTC, respectively. Despite the fact that families can be truthful and express
their desire to leave their neighborhood under DA, the mechanism most often assigns them
to the neighborhood school. On the other hand, TTC clearly makes it easier for families to
leave their neighborhood, more so than DA and BM. Thus, the excessive assignment to the

3 The U.S. No Child Left Behind (NCLB) Public Choice Program mandates that local school districts permit stu-
dents attending academically unacceptable schools (F-rated) to switch to higher performing schools in the same dis-
trict, if space is available. This requirement is outlined in the Title I Public School Choice for low-performing schools,
see: http://www.ncpie.org/nclbaction/publicchoice.html.
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1472 calsamiglia and miralles

neighborhood school imposed by both DA and BM limits the ability of families’ preferences
to determine the allocation of students to schools.4

The evidence offered does not directly confirm our assumptions or conclusions, however it
suggests that our analysis may offer insight into why some cities with stratified school systems
and neighborhood priorities in school choice have limited school choice options.

Literature. The literature on school assignment mechanisms has focused on three main
properties: strategy-proofness, stability, and efficiency. Strategy-proofness means that it is the
best strategy for individuals to submit their true preferences. DA is favored for not only being
strategy-proof but also for producing a stable allocation. Stability requires that no individual
would prefer a different school and that the preferred school has no one with lower priority
admitted. The results of this article apply to any stable mechanism, but DA’s allocation is not
always Pareto-efficient, except for certain priority structures (Ergin, 2002). Pareto-efficiency
means that it is not possible to make one individual better off without making another worse
off. The TTC mechanism is strategy-proof and efficient but not stable. No mechanism has all
three properties (Kesten, 2010). However, the efficiency costs of DA, as demonstrated in ex-
periments such as Chen and Sönmez (2006), are minimal, leading to its adoption in cities like
New York and Boston, where it has replaced the BM.5

Both DA and BM, or a combination of the two (see Chen and Kesten, 2013) have been the
most debated alternatives by far.6 TTC has been used in New Orleans, and for some time in
San Francisco, as far as the authors are aware. 7 This article adds an important reason to ques-
tion the adequacy of DA given its limited ABS in very realistic education markets.

An important reference is the seminal paper (Kesten, 2010), which shows that for any vec-
tor of school capacities and any set of students, there are priority structures and individual
preferences such that the Pareto-dominant stable allocation gives each student one of her two
worst options.8 Kesten addresses this issue in his paper by proposing the Efficiency-Adjusted
Deferred Acceptance Mechanism (EADAM). This mechanism requires students to give up
priority rights that have no effect on their own assignment, but may harm other students’ as-
signments. Our article takes a similar approach, but with some key differences. We demon-
strate that if there is a commonly ranked low school (bad school) and there are neighborhood
priorities, individuals will be assigned to their neighborhood school, regardless of their prefer-
ences for other schools. In addition, we highlight that the problem pointed out by Kesten has
a significant impact in the realistic education market depicted in our model.

Our article explores priority structures in school choice that lie between two extremes in
the literature: the strict priority model (e.g., Ergin and Sönmez, 2006; Pathak and Sönmez,
2008) and the no-priorities model (Miralles, 2008; Abdulkadiroğlu et al., 2011). Although
these papers discuss their models beyond the adopted extreme assumptions, their most no-
table proofs are based on these assumptions. Ergin and Erdil (2008) is an exception in that
it analyzes weak priority structures, but focuses on improving the assignment after ties have
been resolved in a specified manner. In contrast, our article accounts for the randomness of
tiebreakers. Troyan (2012) is another exception, in that it compares the ex ante efficiency of
BM and DA when coarse priorities are included.

4 Recently, Terrier et al. (2021) found that banning a more general version of the BM in the United Kingdom,
which led to an expansion of the DA, did not benefit families of disadvantaged backgrounds. It is worth noting that
the mechanism was changed but most school districts preserved neighborhood priorities.

5 Experiments evaluating the efficiency cost have been done in the lab, and the simulated environments used did
not contain bad schools, as we model them here or are found in the data. This article suggests that under the presence
of bad schools efficiency losses may be very large, since preferences may have a rather small effect on the final alloca-
tion.

6 Important contributions to this debate include Abdulkadiroğlu and Sönmez (2003), Abdulkadiroğlu et al. (2006),
Ergin and Sönmez (2006), Miralles (2008), Pathak and Sönmez (2008), and Abdulkadiroğlu et al. (2011).

7 Actually, the mechanism used in San Francisco was a manipulable variant of TTC. It was substituted by DA
in 2019.

8 Following Kesten, there is recent literature advocating for a relaxation of the stability concept (Ehlers and Mor-
rill, 2019; Troyan et al., 2020)
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access to better schools 1473

This article’s findings are relevant for the field of economics of education, which studies the
impact of school choice on school outcomes, as seen in studies like Lavy (2010) and Hast-
ings et al. (2010). These studies assume that choice affects the allocation of students to schools
based on their preferences, but they overlook the impact of priority structures on the alloca-
tion mechanism. The results of this article may shed light on potential misattributions of ef-
fects in the empirical literature.

In addition, the article’s results support recent insights by Abdulkadiroğlu et al. (2020),
who found that among strategy-proof and Pareto-optimal mechanisms, TTC minimizes justi-
fied envy, making DA’s main advantage over unstable mechanisms redundant.

Outline of the article. The article clarifies the meaning of ABS in Section 2 and explores its
alternatives. In Section 3, the mechanisms being compared are introduced. Section 4 provides
two examples to show how the mechanisms lead to different ABS outcomes due to main driv-
ing forces. The results in the article are presented in a simplified model for easy understanding
in Section 5. This model is inspired by Aumann (1964) and assumes the allocation of a contin-
uum of individuals to a limited number of schools. Example 1 and further simulations indicate
that the results from the continuum model also apply to realistic scenarios with limited school
capacities. Section 6 extends the findings and offers observations for models with additional
schools, supported by numerical simulations. Section 7 evaluates the BM and the stratification
assumption. The article concludes in Section 8. Appendices A.1 and A.2 contain a discussion
of the discrete model example and all proofs, respectively. An online appendix9 contains simu-
lation codes and detailed results.

2. access to better schools

ABS refers to the percentage of individuals who are assigned to a school that is preferred
over their neighborhood school. The standard for measuring ABS is neighborhood assign-
ment, where before a centralized school choice program was introduced, children were as-
signed to their local school when possible. ABS shows the proportion of students who have
benefited from the school choice program.

ABS is particularly relevant for individuals living in areas with so-called failing schools, as it
provides access to quality education. Low ABS is a measure of the influence of neighborhood
priorities. When ABS is close to zero, students’ choices are restricted to their neighborhood
schools. As ABS increases, the impact of neighborhood priorities on students’ assignments de-
creases. Some families may attempt to move to a neighborhood with their preferred school,
but this option is only feasible for wealthy families. An assignment process that results in high
ABS levels equalizes educational opportunities.10

A valid criticism of the concept of ABS is that it disregards the possibility of choice making
some individuals worse off, that is, assigning them to a school that is less preferred than their
neighborhood school. To account for this, Access to Worse Schools (AWS) could be used to
calculate a “net” ABS, NABS = ABS − AWS.

In a stratified model of school choice, as discussed in later sections, there may be a bad
neighborhood with a school that everyone dislikes. To minimize AWS, one could argue that
students from such a neighborhood should have no chance of attending other schools and
should be confined to that poor school. However, if a student from this neighborhood gains
access to a better school, a student from a better neighborhood and school must be assigned
to the poor school, resulting in a net count of zero. This means that Net Access to Better
Schools (NABS) does not reward mechanisms that allow children to escape from disadvan-
taged areas, due to a crowding-out effect. Despite this, ABS is deemed crucial for families
from disadvantaged neighborhoods, as per the NCLB initiative.

9 Available at https://sites.google.com/view/antoniomiralles.
10 We thank a referee for the ideas in this paragraph.
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1474 calsamiglia and miralles

The ideas of the NCLB initiative are reflected in some school districts’ policies, where stu-
dents from areas with “bad schools” are given priority over students from areas with “good
schools” in the allocation of school places. For example, the San Francisco Unified School Dis-
trict used to prioritize families living in areas with “bad schools” (the lowest 20 percentile of
average test scores) in all schools. 11

To better take all these arguments into account, one could suggest an aggregated welfare in-
dicator of the type

W = ABS − δAWS + γ ABSw,

where δ is a penalty factor for each student who obtains an allocation worse than her priority-
giving school, and γ is a redistribution premium for each student with priority at a worst
school who obtains a better allocation. Therefore, for each student who obtains a worse place-
ment than her priority-giving school, we require a compensation of δ students from good
catchment areas obtaining a better placement, or δ

1+γ
if the students improving their positions

come from disadvantaged areas. NABS would be a special case of this formula with δ = 1 and
γ = 0.

Our simulations in Section 6 yield that, even if we suppress the redistribution premium
(γ = 0) and we introduce a penalty factor δ = 2, TTC W-dominates DA in all of the environ-
ments we consider. A factor δ = 4 still allows TTC to W-dominate DA in 90% of the scenar-
ios we consider in which TTC and DA do not yield identical assignments.

There are various ways to compare the satisfaction of families under different school choice
mechanisms. One approach is to use Pareto-domination, which guides the comparison of out-
comes. Another criterion is rank domination (Featherstone, 2014), which considers one mech-
anism’s outcome as rank-dominating another if a higher percentage of students is allocated to
better ranked schools at every position. Pareto-dominance implies rank dominance, and rank
dominance implies a higher ABS. However, the reverse implications are not necessarily true.
ABS is a measure that provides a way to compare outcomes, whereas alternative domination
criteria may not always provide clear rankings.

3. the mechanisms

The mechanisms we compare in this article are DA and TTC. In both mechanisms, students
submit a ranked list of schools they prefer. Their strategy space is the set of all possible school
rankings. School catchment area is the primary priority criteria when demand exceeds supply,
and in case of ties, a unique lottery number per student is used to break the tie. The outcome
of the lottery is unknown at the time students submit their lists.

Deferred Acceptance:

• In every round, each student applies for the highest school in her submitted list that has
not rejected her yet.

• For every roundk, k ≥ 1: Each school tentatively assigns seats to the students that apply
to it or that were preaccepted in the previous round following its priority order (break-
ing ties through a fair lottery).12 When the school capacity is attained the school rejects
any remaining students that apply to it in that round.

• The DA mechanism terminates when no student is rejected. The tentative matching be-
comes final.13

11 http://www.sfusd.edu/en/assets/sfusd-staff/enroll/files/2012-13/annual_report_march_5_2012_FINAL.pdf, page
81.

12 We assume that there is a single tiebreaker that serves to break ties when necessary at all schools. In the absence
of priorities, a single tiebreaker guarantees ex post efficiency, whereas a separate tiebreaker per school cannot guar-
antee such a property (Abdulkadiroğlu et al., 2015).

13 Abdulkadiroğlu et al. (2015) show that this algorithm converges to an assignment in big continuum economies,
even though not necessarily in finite time.
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access to better schools 1475

Table 1
expected percentage of students who get access to better school (abs)

Mechanism↓ \ n→ 1 2 5 10 20 ∞
DA 22 13.3 6.3 3.4 1.77 0

TTC 66.7 66.7 66.7 66.7 66.7 66.7

Top-Trading Cycles:

• In each round, a cycle is initiated by selecting a school s that has available seats. The first
student in its priority list, i, is selected, and the school that this student prefers the most,
s′, is then selected. This process continues until a cycle is formed.

• Students in the cycle are assigned to the schools they point at. We remove these students
and slots.

• The process is repeated until all students have been assigned, with schools that are filled
to capacity being removed from both students’ lists and schools’ priority lists.14

4. two examples and two intuitions

4.1. No ABS in Moderately Large Markets with Bad Schools and Neighborhood Priorities.
To illustrate our findings, we present an example with a finite set of individuals. Our model
features three neighborhoods, each with n families and a school with a capacity of n. Neigh-
borhood i ∈ {i1, i2, i3} gives priority to school s ∈ {1, 2, 3}, and in case of ties, a unique fair lot-
tery is used.

In this example, all students rank school 3 as the worst, with student i1 favoring school 2,
and the rest preferring school 1.

Under the DA mechanism, students with priority at a desirable school are assured a place
at that school. This means that all students in the i3 category will eventually be assigned to
the worst school. For instance, if n = 1, students i1 and i2 would like to swap their guaranteed
slots. However, since they do not have priority at their preferred school, this exchange will
only occur if both i1 and i2 get better lottery numbers than the i3 student with the highest lot-
tery number. The i3 student blocks this trade with a probability of 2/3, which is a specific case
of the well-known interrupter problem (Kesten, 2010).

Appendix A.1 shows how, for n > 1, the probability of blocking the xth exchange rapidly in-
creases with x = 1, .., n, since not doing so requires both xth best lottery numbers in i1 and i2
to beat the best lottery number in i3.

The results from determining the expected percentage of students who get into a better
school than the one in their neighborhood are presented in Table 1. As n increases, this per-
centage decreases quickly to zero. Even when n is small, the percentage is very low, at 1.77%
when there are 20 students per school.15

14 TTC converges in the continuum (Leshno and Lo, 2021). An idea is to discretize both the mass of applicants and
school capacity and to show that the discrete version converges as the size of the units goes to 0. To do this on the
demand side, define a given type t by individuals with particular preferences and priorities (before ties are broken).
Since the set of priorities and schools is finite, so is the set of orderings and types. Next, divide each type into units of
size 1/n. Let n be a natural number such that each type and each school capacity is larger than 1/n, so that each type
and school is composed of at least one unit un . However, each type and school capacity may not be divisible by an
integer number of units. Note that the total mass of leftovers on the demand side is divisible by an integer number of
units, since the total mass is of unit 1. Similarly for the supply side. Now define the preference ordering for the left-
over units on demand side as a random preference ordering of the leftover types in that unit. Similarly distort capaci-
ties so that the remaining seats are all of one of the schools. We can now run TTC on units of individuals and schools.
The assignment is distorted by mass of the leftovers. But one can show that the mass of leftovers on both sides goes to
0 as n goes to infinity.

15 Table A6 in the Online Appendix contains similar results with four good schools and one worst school.
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1476 calsamiglia and miralles

Table 2
mass of students who get access to better school (abs)

Assigned to↓ Priority at→ 1 2 b w

1 6,2 0,4 0,0 0,0
2 4

3 ,4 4,0 4
3 ,2 4

3 ,2
b 0,0 0,0 6,6 0,0
w 2

3 ,2 0,0 2
3 ,0 6+ 2

3 ,6

Under TTC, the blocking of an “exchange” between students of type i1 and i2 does not oc-
cur. Schools 1 and 2 form a cycle, with school 1 pointing at a student of type i1 and school 2
pointing at a student of type i2, who then points back to school 1. Regardless of the lottery
numbers for students of type i3, students of types i1 and i2 are assigned to schools better than
their priority-giving schools.

Table 1 summarizes the expected number of students who access to a better preferred
school (weighted by the size 3n of the market).

The expected percentage of students who secure a better school assignment than their
neighborhood school decreases quickly to zero in the DA mechanism. Even with only 10 stu-
dents per school, only 3.4% are expected to receive a better placement outside their catch-
ment areas. With 20 students per school, this percentage drops to just 1.77%, showing that
the poor results of DA seen later in the model are not simply due to the use of a continuum
model in Section 5.

4.2. More Access to “Leftovers”. Under TTC, a student’s chances of getting assigned to
their top-preferred school depend on how popular the school giving them priority is to oth-
ers. This means that a disadvantaged student has weaker chances of getting assigned to a good
school compared to others. DA is seen as more equal as it does not rely on trading ideas and
gives disadvantaged students the same chances at good schools as any nonprioritized student.
Counterintuitively, it is actually the opposite–disadvantaged students are more likely to be as-
signed to better schools under TTC than under DA.

Let us observe the following example: We have four schools, two good (1 and 2), one “bad”
(b) and one “worst” (w). Consider the set of good schools to be G = {1, 2, b} in the sense that
everyone wants to avoid the worst school. However, inside G, nobody likes the bad school. In-
deed, everyone ranks schools b and w third and fourth, respectively.

Capacities and prioritized students are q1 = qb = 6, q2 = qw = 8, n1 = nb = nw = 8, n2 = 4.
These are treated as masses instead of nondivisible units. Students with priority at school 2
prefer school 1. Any other student prefers school 2.

Table 2 summarizes the mass of allocated students to each school, according to their prior-
ity group. In each cell, the first number corresponds to DA; the second number, to TTC.

In DA, it is observed that nonprioritized students will not have access to school 1. This is
because all students would like to attend school 2, except for those with priority there. If all of
these prioritized students take up four slots at school 2, the remaining four slots must be di-
vided among the nonprioritized students, all of whom have equal chances at school 2. A mass
4/3 of the prioritized students at school 1 occupy slots at school 2. Of the remaining priori-
tized students at school 1, six are assigned to all the slots of their second-choice school 1. This
means that school 1 will not be accessible to nonprioritized students. The rest of the assign-
ment is straightforward: students with priority at school b fill all its slots, whereas the remain-
ing students are placed at the worst school.

In contrast, TTC begins with a trade of slots between prioritized students from school 1 and
those from school 2. Half of the students with priority at school 1 receive slots at school 2, and
the minimum lottery number among unassigned students from this group becomes 1/2. The
next step is to assign the four remaining slots at school 2. These are divided equally among
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access to better schools 1477

students with priority at schools b and w, who enjoy an advantage over those prioritized by
school 1. The two remaining slots at school 1 are assigned to prioritized students, followed by
the six slots at school b and the remaining slots at school w.

This example highlights the differences between DA and TTC:

1. Under TTC, students with priority at underdemanded schools, including the worst
school, benefit from the trade among other students. When it is time to assign leftover
slots from underprioritized good schools, they have an advantage in the tiebreaker lot-
tery.

2. Under TTC, students with priority at highly demanded schools have better chances of
improving their assignments through trade, but also face a higher risk of being assigned
to the worst school.

This example also shows who would prefer DA to TTC: if a student’s top choice school is
also the priority-giving school and is highly sought after by other students, the trades carried
out in TTC would bring no benefits for the student and increase the likelihood of being placed
in a worse school.

5. model

We present a simple model in order to illustrate our insights.16 We have a mass N of
students i ∈ I = [0, N], each of them to be allocated to one of three schools. I is endowed
with the uniform Lebesgue measure λ. Two of the schools are “good” and one is “bad,” in
the sense that all students rank it as worst. Good schools are labeled 1 and 2, respectively,
whereas the bad school is labeled w (as for “worst”). Schools have strictly positive capacities
q1, q2, and qw that add up to N. Students i ∈ I have preferences 	i over the schools. No stu-
dent is indifferent between any two schools.

There is a measurable catchment area function π : I → {1, 2,w}. Each student has a unique
catchment area where she has priority over students outside the catchment area. There is a
mass n1, n2, and nw of students for the catchment areas of schools 1, 2, and w, respectively. We
denote with �s = {i ∈ I : π (i) = s} the set of students prioritized by school s. Students living in
the catchment area have priority over students living outside.

Student i’s preferences over schools 	i could be summarized by the identity of the most-
preferred school, since w is ranked last by everyone. Therefore, �ss′ denotes the set of stu-
dents with priority at school s whose favorite school is s′, and nss′ denotes its associated mass.

Other ties are resolved when needed using a fair17 lottery outcome l : I → [0, 1] that assigns
one number to each student. We apply the convention that a lower lottery number beats a
higher lottery number.

For each school s, define ρs = qs/ns. We say school s is overprioritized if ρs < 1 (capacity is
smaller than the number of individuals with priority in the school), and underprioritized in the
opposite case. Notice that we cannot have the three schools being either all overprioritized or
all underprioritized, since we have assumed that total capacity is equal to total mass of stu-
dents. For two schools s and s′, we say that s is more prioritized than s′ if ρs < ρs′ .

A matching18 is a function μ = I → {1, 2,w}. For each matching μ, we compute the mass of
students who obtain a slot in a school preferred to that of their catchment areas, as a measure
of students’ real choice. We call this measure Access to Better Schools, denoted ABS. We also

16 In previous versions of this article, we use a more general model with an arbitrary number of schools. Results are
qualitatively similar to the ones we find here. For DA, there is an upper bound to ABS that collapses to zero when
good schools are weakly overprioritized.

17 “Fair” meaning that for every interval [l ′, l ′′] ⊂ [0, 1] and every group �ss′ we have λ({i ∈ �ss′ : l(i) ∈ [l ′, l ′′]}) =
nss′ (l ′′ − l ′).

18 In this article, we use the terms matching, assignment, and allocation indistinctively.
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1478 calsamiglia and miralles

compute ABS for priority groups �s. More formally:

ABS(μ) = λ
({

i ∈ I : μ(i) 	i π (i)
})

ABSs(μ) = λ
({

i ∈ �s : μ(i) 	i π (i)
})

.

We compare two matchings: the one induced by truth telling in DA (the DA matching), and
that induced by truth telling in TTC (the TTC matching).

We find the following result:

Proposition 1. For every school s ∈ {1, 2,w}, we have ABSs(TTC) ≥ ABSs(DA).

Note that the statement is also true for the set �w of disadvantaged students. Thus, TTC
is superior to DA in terms of allocative efficiency, as measured by ABS. Furthermore, it pro-
vides more opportunities for disadvantaged students to enhance their positions. The proof for
this can be found in Appendix A.2, where a range of scenarios are analyzed individually. The
challenge in extending this result to models with an increased number of good schools arises
from the increased number of cases that need to be considered. The following section uses
numerical simulations to demonstrate that our conclusions are not limited to the two-good-
school model.

6. more good schools

6.1. Numerical Simulations. We compute numerical simulations19 in which we consider
four good schools G = {1, 2, 3, 4} and one worst school w. Each school has 20 slots and there
are 100 students. Students’ valuations for schools have three components: (1) an extra for
neighborhood school (a neighborhood effect caused by geographical proximity), (2) an inde-
pendent value component ui, and (3) a common value component c,

vis = 1
{
π (i) = s

} + αuis + βcs, i ∈ I, s ∈ G.

All values viw are zeros. All cs and uis, ∀i ∈ I, s ∈ G, are independently drawn from the uni-
form distribution. The common vector c is then sorted so that c1 > c2 . . .. Therefore, schools
are numbered according to their popularity.

Simulations are programmed and computed with MATLAB R2022a, with default seed for
random number generation. We consider a grid of scenarios varying according to:

1. The overprioritization of the two most popular schools compared to the other less pop-
ular good schools, combined with different levels of overall underprioritization of good
schools (overprioritization of the worst school), resulting in 12 possibilities: [40/30/20 stu-
dents prioritized by the worst school] × [large/small difference in number of prioritized
students among good schools20] × [the two most popular schools are the least/ the most
overprioritized].

2. Different values for α and β to change the importance of each component of vi, result-
ing in nine possibilities: [balance between neighborhood effect and other sources, more
weight to neighborhood effect, less weight to neighborhood effect] × [balance between
common component and independent component, more weight to common component,
less weight to independent component].

For each scenario, 50 valuation matrices and 50 single tiebreakers were computed for each
of the 50 calculated valuation matrices, resulting in a total of 2,500 computed assignments per

19 We thank Juan Sebastian Pereyra and Li Chen for the help with the simulations.
20 We alternate values of 10, 15, 20, and 25 prioritized students.
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access to better schools 1479

Figure 1

ABS(TTC) − ABS(DA) when allocations are not identical

scenario and mechanism (5,000 total assignments). Therefore, only 90 scenarios were consid-
ered,21 for a total of 450,000 computed assignments.

Twelve of the scenarios resulted in DA and TTC both collapsing into Serial Dictatorship
because the valuation generating formula gave too much weight to the neighborhood effect
and common value component.22 We will focus on the remaining cases, where differences
are observed.

Results are shown along the next tables. A complete deploy of all calculations and the
MATLAB code are shown in the Online Appendix. For each scenario, we compute ABS for
all students and for each priority group �1, . . . ,�4,�w, both under DA and under TTC, mea-
sured as the fraction of the considered group who obtain a slot in a school better than the
priority-giving school. We calculate the AWS for each student group, which represents the
proportion of students that get assigned to a school worse than their preferred one. In addi-
tion, we determine the fraction of students in each priority group who prefer their allocation
under DA over TTC and vice versa.

The overall observation is that ABS under TTC is always superior. ABS dominance tends
to be minor when ordinal preferences are highly correlated among individuals and there is a
high weight of the neighborhood effect (e.g., α = 0.5, β = 1.5). In such a case, the allocations
under TTC and under DA tend to coincide, and to collapse into a serial dictatorship alloca-
tion.

Figure 1 displays the comparison of ABS between TTC and DA in scenarios where the
mechanisms produce different matchings. Figure 2 uses a simple linear regression to approx-
imately link this difference to the parameters of each scenario, as presenting all the results
would take up a lot of space (the complete results can be found in the Online Appendix).

The size of the ABS domination of TTC over DA becomes enormous in some cases. See,
for instance, Table A10.c in the Appendix (n1 = n2 = 10, n3 = n4 = 20, particularly when α =
6, β = 2.) We see differences of the order of 0.32 (from 12.6% under DA to 44.6% under
TTC).

From the estimation, we see that increasing the level of overprioritization in either most
popular or less popular good schools has a similar effect. By increasing by one the number

21 Criteria (1) and (2) should yield 108 scenarios. In using criterion set (1), we considered two kinds of scenarios in
which all good schools have the same number of prioritized students. In such cases, the criterion of giving the high-
est number of prioritized seats to popular/less popular good schools does not bite. This is the reason why we have 90
scenarios to consider.

22 For a Serial Dictatorship, one needs to have a linear ordering of all students. We refer to the linear ordering
in which students are first ordered according to the priority-giving school (being school 1 first, school 2 second, …)
breaking ties thereafter with the lottery number. In those scenarios, all students from �1 preferred school 1 the most,
then all students from �2 ranked school 2 first or immediately after school 1, etc.
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1480 calsamiglia and miralles

Figure 2

regression of ABS(TTC) − ABS(DA) over the parameters of each scenario, when the mechanisms deliver
unidentical allocations

notes: n12 stands for n1 and n2, whereas n34 stands for n3 and n4.

of prioritized students, the difference between ABS(TTC) and ABS(DA) slightly increases
0.5%. This is in line with the idea that overprioritization is bad news for DA concerning ABS.
The effect of α, the weight of i.i.d. preferences, is clear: an increase in one unit enlarges the
difference regarding ABS by 4.85%. The coefficient associated to β, the weight of common
values, has the expected negative sign. An increase in one unit shrinks the difference by 0.9%.
Decreasing the weight of the neighborhood effect by increasing α + β while keeping α/β con-
stant has the expected positive effect as long as α/β > 0.9/4.85 ≈ 0.19. As an example, when
α = β, increasing α + β by one unit enlarges the difference in ABS by approximately 2%.

We wish to stress that α is the parameter that represents taste variety. It is in the context of
a high α that School Choice programs have a clearer purpose. And it is precisely in these sce-
narios that TTC dominates more strongly.

We notice that, as expected, ABS under DA collapses when all good schools are weakly
overprioritized, given the highly likely appearance of an interrupter, since disadvantaged stu-
dents obtain no chances at good schools (Table A6 in Online Appendix).

As for ABS for disadvantaged students (those in �w), it is clear that TTC is superior in all
cases. The difference with DA tends to zero when either one is true: (1) ordinal preferences
are perfectly correlated among individuals or there is a sufficiently high weight of the neigh-
borhood effect, (2) all good schools are weakly overprioritized (no access to good schools for
disadvantaged students), or (3) all good schools are weakly underprioritized (the amount of
disadvantaged students who obtain placement at a good school is mechanism-invariant).

The domination of TTC over DA regarding ABS for disadvantaged students is sizable in
the same cases in which the difference in overall ABS is high. In the example we were consid-
ering for the general case, disadvantaged students obtain ABS equal to 27.5% under DA and
49.7% under TTC.

Figure 3 presents a summary description of ABSw(TTC) − ABSw(DA), exception made for
the following cases: (1) when both TTC and DA deliver identical allocations coinciding to that
of Serial Dictatorship, (2) when both good schools are weakly underprioritized. In the latter
case, all students prioritized by a good school will certainly obtain a slot at a good school, un-
der both mechanisms. The number of slots available for disadvantaged students is identical
between mechanisms.

Figure 4 presents the results of a simple linear regression between ABSw(TTC) −
ABSw(DA) and the set of parameters characterizing each scenario, with a subsample that
skips cases (1) and (2) above.
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access to better schools 1481

Figure 3

summary description of ABSw(TTC) − ABSw(DA) for cases in which this value is not trivially 0

Figure 4

regression of ABSw(TTC) − ABSw(DA) on the parameters characterizing the different scenarios, for cases in
which the dependent variable is not trivially 0

ABSw(TTC) − ABSw(DA) behaves similarly to ABS(TTC) − ABS(DA), although with
lower intensities. The 95 percentile on ABSw gain is around 22.2% (27.2% for general ABS).
An increase in the number of prioritized students seems not to have a significant effect. An
increase of one unit in α rises the difference in ABSw by 3.88%, whereas an equivalent in-
crease in β reduces this difference by 1.3%. Decreasing the weight of the neighborhood ef-
fect by increasing α + β while keeping α/β constant has a positive effect on ABSw(TTC) −
ABSw(DA) as long as α/β > 1.3/3.88 ≈ 0.335. As an example, when α = β, increasing α + β

by one unit enlarges the difference in ABS by approximately 1.29%.
TTC obtains worse results than DA regarding AWS in general, exception being the cases

where the parameters forced one of these outcomes: (1) equivalent allocations in both mecha-
nisms, (2) weakly overprioritized good schools (no prioritized student could bear a risk of ob-
taining a worse placement in either of the mechanisms).

It is however noticeable that, in all cases considered, the unfavorable difference for TTC
in AWS is lower than the favorable difference in ABS. Figure 5 summarizes the ratio
AWS(TTC)−AWS(DA)
ABS(TTC)−ABS(DA) for cases in which the mechanisms do not deliver identical matchings.

In more than half of the cases considered, DA and TTC deliver identical AWS. This is not
that surprising because of the scenarios in which all good schools are weakly overprioritized.
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1482 calsamiglia and miralles

Figure 5

description of AWS(TTC)−AWS(DA)
ABS(TTC)−ABS(DA) for cases in which ttc and da do not deliver identical matchings

Figure 6

difference between the percentage of students who prefer ttc to da and the percentage of students who
prefer da to ttc, for cases in which ttc and da do not trivially yield identical allocations

In such scenarios, no student prioritized by a good school could ever obtain a worse alloca-
tion, in either of the mechanisms considered. The 95 percentile of this ratio is roughly below
27%.

With a welfare aggregator of the type

W (μ) = ABS(μ) − δAWS(μ) + γ ABSw(μ),

even if we suppress the bonus to ABSw (γ = 0), TTC would welfare-dominate DA in more
than 90% of the cases in which the allocations differ, even for penalties to AWS, δ, as big as
4. Such a value of δ indicates that in order to compensate for a student who obtains a worse
placement than her priority-giving school, we need at least four students who are assigned to a
better school than each one’s priority-giving school. With δ = 2, TTC would welfare-dominate
DA in all the simulations we computed.

The comparison of students’ preferences between TTC and DA assignments is presented in
Figure 6, with the difference between the percentages shown. For the scenarios where TTC
and DA do not match the Serial Dictatorship allocation, a linear regression of this differ-
ence on the parameters of each scenario is displayed in Figure 7. We do not extend on re-
dundant comments, since the behavior of this difference is so similar to that of ABS(TTC) −
ABS(DA).
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access to better schools 1483

Figure 7

regression of the variable described on the previous figure with respect to the parameters characterizing
each scenario

In all scenarios considered, the percentage of students who prefer the assignment under
TTC is at least slightly higher than the percentage of students who prefer the assignment un-
der DA.

This statement is not true for every priority group. Interestingly, we actually find cases in
which more students from �w prefer their DA assignment to their TTC assignment is higher
than the opposite. This finding is consistent with the observation that disadvantaged students
have increased access to good schools in general under TTC. The reason for this is that under
TTC, these students are unable to disrupt trades among other students, which decreases their
chances of getting into highly sought-after schools. However, as a trade-off, they have greater
access to good schools overall.

6.2. Other Observations for Arbitrarily Many Good Schools.

6.2.1. A lower bound for ABS under DA. It is easy to compute a preference-independent
upper bound for ABS under DA. It is clear that, from each priority group �s, s ∈ G, the min-
imum mass of students in the group obtaining a slot at a good school is min{qs, ns}. So the
maximum mass of good school slots available to disadvantaged students is

∑
s∈G max{0, qs −

ns}. The infimum lottery number among students from �w that are assigned to the worst
school, namely, lw, is not higher than 1

nw

∑
s∈G max{0, qs − ns}.

Here is where stability imposes its cost to ABS. Since the allocation is stable, every student
who obtains a better allocation than her priority-giving school must at the very least have a
lottery number below lw. Hence:

Proposition 2. ABS(DA) ≤ N
nw

∑
s∈G max{0, qs − ns}.

Corollary 1. ABS(DA) = 0 if all schools are weakly overprioritized.

We end this subsection by noting that the TTC allocation, as it is not necessarily stable, is
not bound by this upper limit.

6.2.2. Accessibility. Another way to look at ABS would be to determine how many non-
prioritized students receive slots from a school they like more than their assigned priority
school. We consider a school to be accessible in a particular match if it assigns at least one
slot to these nonprioritized students. A school is considered more accessible in one match
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1484 calsamiglia and miralles

compared to another if it assigns a greater number of slots to these students in the former
match. We have a few observations to make about accessibility.

Proposition 3. If the worst school is weakly underprioritized, there is at least one good
school that is not accessible under DA.

We provide an informal proof here. Suppose all good schools are accessible under DA.
This implies all students prioritized by some good school must be allocated to a good school.
Again, this is a feature of stability: a prioritized student that is assigned to the worst school
blocks accessibility. Therefore, the number of slots at good schools remaining for disadvan-
taged students is

∑
s∈G(qs − ns) = nw − qw. This makes the infimum lottery number among

students from �w that are assigned to the worst school, namely, lw, equal to 1 − ρw. Since
ABS(DA) ≤ Nlw, ρw ≥ 1 gives us a contradiction.

Proposition 4. There is at least a school that is weakly more accessible under TTC than un-
der DA.

Here, the proof is based on the Pareto-optimality of the TTC assignment. By Pareto-
optimality, there must be a school s that gives all its slots only to students regarding that
school as favorite. This implies that, among students from �s, only students from �ss could
obtain a slot at s. Now, suppose school s is accessible under DA, otherwise we would be triv-
ially done. This means that qs > nss, since all students from �ss must be assigned to s in order
to allow for accessibility (again this being a consequence of stability). But then, the mass of
slots that school s gives to nonprioritized students wishing to be assigned there under TTC is
qs − nss, a number that cannot be exceeded by DA.

7. discussion

7.1. The Boston Mechanism. In earlier drafts of this manuscript, there was a greater fo-
cus on contrasting the Boston Mechanism (BM) and DA, which were then the two most com-
monly used mechanisms in practice. The aim was to demonstrate that both mechanisms could
fall short in providing ABS due to various reasons. However, in the present version, we only
briefly mention ABS under BM and do not include formal proofs in the main text.23

BM operates similarly to DA, with a key difference in the assignment algorithm. Unlike
DA where all acceptances are provisional, BM requires each acceptance to be final during the
allocation process. This makes BM manipulable. In previous versions of this article, we argued
that if students have a relatively positive view of their priority-giving school, ABS could de-
cline. A single Nash equilibrium could arise in which all students would rank their priority-
giving school first, even if they prefer another school. As a result, good schools would be ac-
cessible to only a limited extent, if at all. This reasoning is different from that of DA, which
may fail to provide ABS due to stability. BM, on the other hand, may fail because it could
lead risk-averse families to adopt safe strategies, as noted in the empirical findings of Cal-
samiglia and Güell (2018).

7.2. The Need for Stratification. A common question is whether the results would change
if the underlying assumptions of the model were altered. Specifically, one might question if
the stratification assumption is too strict. It is possible that some students from disadvantaged
areas might prefer a nearby worst school.

However, it is important to note that the worst school does not necessarily need to be the
least preferred by all, in order to keep the results unchanged. It just needs to be not better
than the priority-giving school for anyone, for DA to perform poorly in terms of ABS.

23 We are thankful to referees that suggested a change of focus of the article.
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access to better schools 1485

Table 3
preferences, priority, and allocation under ttc

First Second Third

i b aπ
TTC w

j wTTC bπ a
k bTTC a wπ

If we were to relax this assumption, it would be possible to construct an example where a
nonstratified district would yield opposite results to what was presented here, with DA out-
performing TTC in terms of ABS. Consider a finite-economy example where DA outperforms
TTC even when the economy is replicated many times.

Example 1. There are three schools a, b, and w with one slot each. There are three students
i, j, and k with schools ranked as in Table 3. The superscript π indicates where the student has
priority. The subscript TTC indicates the allocated slot under such mechanism.

ABS(TTC) = 2/3 (replica-invariant).
In this example, school w is better than the priority-giving school for one student. DA yields

the allocation (i → b, j → w, k → a) (ABS = 1) with probability 1/2 (i’s lottery number bet-
ter than k’s) and the TTC allocation in all other cases. Hence, ABS(DA) = 5/6 (even with any
number of replicas).

We nevertheless argue that it is rather easy to come up with a relaxation of stratification,
and still find large economies in which ABS collapses under DA. We say that the school dis-
trict is weakly stratified when there is a set G of “good” schools for which the union of all of its
prioritized students prefer all schools in G to all other schools. Notice that hierarchies are not
that clear here. We allow for (some) nonprioritized students to actually dislike some schools
in G.

Consider a large economy (with a continuum of agents), not necessarily with a worst school.
But there is a group of “good” schools G for which, for prioritized students, these are actually
superior to a set of “bad schools” B. However, for students from B, other factors (e.g., geo-
graphical proximity) might make some schools outside G preferred to those on G.

We say that s ∈ G is chain-linked to another set B with G ∩ B = ∅ if there is an array
of positive-measured sets of agents I0, I1, . . . , IK and schools {s1, . . . , sK} ⊂ G such that: (1)
I0 ⊂ �B = ∪s∈B�s, (2) Ik ⊂ �sk ∀k = 1, . . . , K, (3) s1 	i s′ ∀s′ /∈ G,∀i ∈ I0, (4) sk 	i sk−1 ∀i ∈
Ik−1,∀k = 2, . . . , K, and (5) sK = s.

Proposition 5. Consider a continuum, weakly stratified school district with a set of weakly
overprioritized good schools G. Assume that every s ∈ G is chain-linked to a set of schools B
such that G ∩ B = ∅. Then ABSs(DA) = 0 for all s ∈ G.

The proof is rather short. Stability and (1) imply that no student in �B can obtain a slot in
G. But then, since inf{l(i) : i ∈ I0, DA(i) �= s1} = 0 and by stability, no slot at s1 is occupied but
for prioritized students. Recursively, we find that DA−1(sk) = �sk for all k = 2, . . . , K.

8. conclusions

Since Abdulkadiroğlu and Sönmez (2003), the BM has received widespread criticism in the
school choice literature. As a result, many cities have replaced it with the Gale–Shapley DA
mechanism.24 DA was adopted as a better alternative because it is not manipulable, protects

24 See Pathak and Sönmez (2013) for evidence on the number of cities around the word where the BM has
been banned.
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1486 calsamiglia and miralles

nonstrategic parents, and provides more efficient assignments in setups with strict priorities.
However, the debate between these two mechanisms was based on models that did not con-
sider important realities about the school system, such as the differentiation between good
and bad schools.

In this article, we study a simple model of school choice with coarse residential priori-
ties and vertical differentiation between good and bad schools. Our findings suggest that if
the goal of school choice is to improve ABS, DA may perform poorly. The priority struc-
ture, in the presence of a stratified school system, can greatly influence the final allocation in
both mechanisms.

We also analyze TTC, an alternative that was previously considered by Abdulkadiroğlu and
Sönmez (2003), but discarded due to its lack of stability. Our article highlights how stability
can limit the ability of DA to improve ABS in the presence of bad schools and neighborhood
priorities. TTC is more resilient to the priority structure because students at good schools
can trade their slots without interference from the catchment area of bad schools. Our results
show that TTC provides disadvantaged students with better access to good schools than DA,
making it both more efficient and fair under the measure of ABS.

Our model does not include minority reserves as suggested by Hafalir et al. (2013). Further
research should examine the comparison between mechanisms with and without reserves.25

This article highlights the significant impact that neighborhood priorities can have on the fi-
nal allocation of students to schools, limiting the influence of student preferences. Although
these priorities are often considered exogenous, they are actually a crucial aspect of the final
assignment that can be adjusted by administrators.

Future studies should incorporate the design of these priorities as a crucial part of the
mechanism design problem.

A.1. Access to Better Schools (ABS) under Deferred Acceptance (DA) in the Finite-
Economy Example. As said in the main text, students with priority at different good schools
would like to “exchange” their guaranteed slots, yet then the students from the bad school
catchment area may block this trade. We want to derive the chances of exactly a number x
of exchanges occurring. To gain more understanding, we illustrate a simple case where n = 2
and x = 1. We calculate all the cases in which this event happens. It could be that the two
top-ranked students in the tie-breaking lottery are one student of type i1 and another one of
type i2, and the third-ranked student is i3. We could have picked

(2
1

) = 2 students from each
type, and the order between types i1 and i2 does not matter (there are 2! = 2 ways to ar-
range them). There are also (6 − 3)! ways to arrange the remaining students among them-
selves. Hence, we find 2 · 2 · 2 · 2! · 3! = 96 lottery outcomes satisfying this condition. But we
have not covered all cases. It could also be that two students of type i1 and another one of
type i2 occupy the first three positions in the lottery ranking, whereas the fourth position is oc-
cupied by an i3 student. In this case, there is only one way, or

(2
2

)
, to pick two students out of

the two existing i1 students. We could still pick
(2

1

) = 2 students from each of the other types.
The way we arrange the two i1 students and the i2 student does not matter (there are 3! com-
binations). There are (6 − 4)! ways to arrange the remaining students. We have found other
1 · 2 · 2 · 3! · 2! = 48 such lottery outcomes. This number has to be multiplied by 2, to cover the
final yet symmetric case in which two students of type i2 and another one of type i1 occupy
the first three positions in the lottery ranking, whereas the fourth position is occupied by an
i3 student. We obtain a total of 192 favorable cases out of 6! = 720 possible lottery outcomes.
The probability of exactly one exchange with two students per school is P(1, 2) = 4

15 . More

25 Preliminary simulations show that the qualitative results (TTC provides more ABS in general and particularly
for disadvantaged students) hold. Related material is posted on https://sites.google.com/view/antoniomiralles.
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access to better schools 1487

generally,

P(x, n) = 1
(3n)!

[
(

n
x

)(
n
x

)
n(2x)!(3n − 2x − 1)! +

+2
n∑

i=x+1

(
n
x

)(
n
i

)
n(x + i)!(3n − x − i − 1)!]

=
(

n
x

)[
n

3n − 2x

(n
x

)
(3n

2x

) + 2
n∑

i=x+1

n
3n − x − i

(n
i

)
( 3n

x+i

)
]
.

Let X (n) denote the expected percentage of students that obtain a slot in a school better
than their catchment area school under DA, when each school has n slots and n prioritized
students. Then

X (n) = 2
3

1
n

n∑
x=1

xP(x, n).

The 2
3 fraction appears because one-third of students (those with priority at the bad school)

have no chance to escape from the bad school. Values for X (n) are reported in Table 1 (main
text). It can be shown that X (n) → 0, in fact quite fast (e.g., X (20) = 0.0177).26

A.2. Proof of Proposition 1. We will divide the main theoretical result of the current ar-
ticle into two parts. In the first one, we show that Top- Trading Cycles (TTC) ABS dominates
DA for disadvantaged students. In the second part, we show that the same result follows for
all priority groups. The proof of the latter part uses the former one. That is the reason why we
split the proof.

We will use the notation ks′′
ss′ = sup{l(i) : i ∈ �ss′ , TTC(i) = s′′} as the maximum (worst) lot-

tery allowing for a student with priority at s and preferred school s′ to obtain a slot at s′′.

Remark A.1. ks′′
ss′ ≥ ks′′

ws′ for every s′′ ∈ G.

We do not provide a formal proof, since this remark stems from a trivial observation. Stu-
dents from �s, s ∈ G could get access to another good school though trading of preexisting
priorities or either through being pointed by means of the lottery number. Students from �w

only count on the latter source, if any, for being assigned to a good school.
We regard school s ∈ G as accessible under matching μ if λ({i /∈ �s, s 	i π (i) : μ(i) = s}) >

0. Otherwise we regard it as inaccessible under μ.

Proposition A.1. When |G| = 2, ABSw(TTC) ≥ ABSw(DA).

Proof. There are three cases to consider, of which the first two are immediate.
Case 1 No good schools are accessible under DA. It obviously yields ABSw(DA) = 0 ≤

ABSw(μ) for every other μ.
Case 2 Both good schools are accessible under DA. For every accessible school, it must be

the case that all of its prioritized students obtain a slot at a good school, by means of stabil-
ity. This means that q1 + q2 ≥ n1 + n2 and that the amount of good slots available to students
from �w is simply q1 + q2 − n1 − n2. No other matching could yield less good slots available
to such students when q1 + q2 ≥ n1 + n2, therefore ABSw(DA) ≤ ABSw(μ) for every other μ.

26 In a previous version of this article, we show that if we fix a proportion of agents wishing to exchange good
school slots, the probability they all do so shrinks to zero at factorial speed as n grows.
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1488 calsamiglia and miralles

Case 3 One good school (say school 1) is inaccessible under DA whereas the other one (say
school 2) is accessible. Notice first that it must be the case that q1 ≤ n1 and that q2 > n2. If it
where the case that q1 > n1, school 1 would be accessible. Provided that school 1 is not acces-
sible and that school 2 is, all students prioritized by school 2 must end up assigned there and
besides some other slots should be available to others, concluding that q2 > n2.

We calculate c2 ≡ sup{l(i) : i /∈ �2, DA(i) = 2}. Let c̃1 ≡ sup{l(i) : i ∈ �1, DA(i) = 1}. If
c̃1 ≥ c2, students from �11 that do not obtain a slot at school 1 would not have a chance at
school 2. Therefore, c2 = q2−n2

n12+nw
, where the numerator takes into account that a mass n2 of

slots at school 2 are assigned to prioritized students. If c̃1 ≤ c2, then no students from �12 that
do not obtain a slot at school 2 could have a chance at school 1. This yields c̃1 = q1/n11. More-
over, we have q2 − n2 = c2(n12 + nw) + (c2 − c̃1)n11, or c2 = q1+q2−n2

n1+nw
. Indeed,

c2 = min
{

q1 + q2 − n2

n1 + nw

,
q2 − n2

n12 + nw

}
.

Note that ABSw(DA) = c2λ(�w).
We proceed to calculate ABSw(TTC). We aim to obtain the value of k2

w2. Since
ABSw(TTC) ≥ k2

w2λ(�w), we just need to show that k2
w2 ≥ c2. We run the TTC algorithm

by letting school 2 be the first in pointing a student, as long as it keeps available slots (such
choice does not alter the final allocation, which is unique). This does not necessarily imply
that school 2 assigns all slots before school 1 does so. School 2 could point at a student that
points at school 1, creating a cycle in which school 1 gives a slot.

We denote with t a mass of slots of school 2 assigned using this approach, which we use as
a measure of time. If slots at school 1 are still unassigned when school 2 has filled capacity, we
continue our measure of time from then on by means of counting assigned slots of school 1.

We use the notation ls(t) for the infimum lottery number among students from �s that are
still unassigned at time t. There is t > 0 for which lw(t) < ls(t) ∀s ∈ G, since the first cycles in-
volve students from �1 and �2 only.

We finally use ts for the moment at which school s has given all of its slots, also called school
s termination time. Clearly, t2 = q2. We consider subcases depending on whether termination
time for school 1 is below or above t2.

Case 3.1 t1 < t2.
Suppose that l1(t) > lw(t) for all t ∈ (0, t1). This means that students from �1 have been so

far allocated though cycles in which school 1 pointed them, implying l1(t1) = ρ1.
All the students from �2 that are still unassigned (if any) are now assigned to school 2.

There remains a mass q2 − n2 of slots of school 2 to allocate, along with the slots of the bad
school. Since school 2 is the last good school still assigning slots, and thus all unassigned stu-
dents point at it, we have k2

ws = k2
1s′ for every s, s′ ∈ G. In such a case, we have q2 − n2 =

k2
w2nw + max{0, k2

w2 − l1}n1, or

k2
w2 = min

{
q2 − n2 + q1

n1 + nw

,
q2 − n2

nw

}

≥ min
{

q2 − n2 + q1

n1 + nw

,
q2 − n2

n12 + nw

}
= c2.

Suppose instead that we reach a point in time t ′ < t1 in which l1(t ′) = lw(t ′). Once this
equality arises, it holds for the rest of the assignment algorithm, since school 2 does not dis-
criminate among nonprioritized students other than by the lottery number. This implies that
k2

1s = k2
ws′ = k for every s, s′ ∈ G. Therefore, we have the simple feasibility equation

q1 + q2 = n2 + k(n1 + nw)
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access to better schools 1489

yielding k2
w2 = q2−n2+q1

n1+nw
≥ c2.

Case 3.2 t2 ≤ t1.
Since q2 > n2, all students from �2 have been assigned already. At the point at which the

last student from �2 has been assigned, a mass n21 of slots of school 2 have been assigned
to students from �12, thus l1(n2) = n21/n12. Note lw(n2) = 0 (no disadvantaged students have
been assigned so far). We study the continuation of the TTC algorithm from then on, with a
mass q2 − n2 of pending slots of school 2 to be assigned.

By school 2 being the first in giving all slots, we have k2
h1 = 0 for all schools h. If a stu-

dent from �h1 were pointed by school 2, this student would point at school 1, which has avail-
able slots.

We calculate the value of k2
w2. Let δ ∈ [0, q2 − n2] be a mass of pending slots from school 2.

While lw(n2 + δ) < l1(n2 + δ), we have

l1(n2 + δ) = n21 + δ nw1
nw

n12
,

lw(n2 + δ) = δ

nw

.

While lw(n2 + δ) < l1(n2 + δ), each remaining slot of school 2 is assigned through cycles
where school 2 points at a student from �w, yet with probability nw1

nw
it points to a student from

�w1 thus yielding a cycle where the slot is assigned to a student from �1.
Since lw(n2) < l1(n2), school 2 starts pointing at a student from �w, and keeps doing so un-

til lw and l1 coincide (if it does). If lw(q2) ≤ l1(q2), then all q2 − n2 remaining slots are as-
signed through cycles in which a student from �w is involved, hence:

k2
w2 = q2 − n2

nw

≥ q2 − n2

n12 + nw

≥ c2.

Let us instead suppose that there is δ∗ ∈ [0, q2 − n2) such that lw(n2 + δ∗) = l1(n2 + δ∗) =
l∗, or δ∗ = n21nw

n12−nw1
and l∗ = n21

n12−nw1
. From then on, there remains a mass q2 − n2 − n21nw

n12−nw1
slots

of school 2 to assign. Notice that, in this case, k2
w2 = k2

12 (once lottery numbers are tied, they
keep tied until school 2 fills capacity). Since k2

h1 = 0 for all h, and since all students from �2

are already assigned,

q2 − n2 − n21nw

n12 − nw1
=

(
k2

w2 − n21

n12 − nw1

)
(nw2 + n12)

giving

k2
w2 = q2 − n22

nw2 + n12
≥ q2 − n2

nw2 + n12
≥ c2.

�

Proposition A.2. When |G| = 2, ABSs(TTC) ≥ ABSs(DA) for every s ∈ G.

Proof. Also here we consider three cases, of which two of them are immediate:
Case 1 No good school is accessible under DA. Trivially, TTC cannot provide less ABS.
Case 2 One good school (say school 1) is not accessible and the other (school 2) is, under

DA. In such a case, we have c1 = 0 so obviously TTC cannot provide less access to school 1.
As for school 2, we use the result of Proposition 6 (k2

w2 ≥ c2). Since k2
12 ≥ k2

w2 (Remark 1),
TTC provides more access to school 2 from any other school.
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1490 calsamiglia and miralles

Case 3 Both good schools are accessible under DA. Let us assume without loss of generality
that c1 ≤ c2. Since all good schools are accessible, all students prioritized there obtain a slot at
a good school, leaving exactly a mass q1 + q2 − n1 − n2 = nw − qw of slots for students from
the bad school. We then have

c2 = nw − qw

nw

= 1 − ρw.

As for c1, it is calculated using

q1 − n11 − (1 − c2)n12 = c1(n21 + nw1)

or

c1 = q1 − n11 − ρwn12

n21 + nw1
.

Notice that

c2 ≤ q2 − n22 − ρwn21

n12 + nw2

as an implication of c1 ≤ c2 = 1 − ρw. In other words, for each s ∈ G :

cs = min
{

1 − ρw,
qs − nss − ρwnss′

ns′s + nws

}
.

As for the comparison to TTC: We analyze ks
s′s, where s and s′ are both good schools. Along

the proof, we assume that ks
s′s < 1, otherwise we would be trivially done.

We model the TTC algorithm as always making school s be the first in pointing at a student,
as long as it has available slots. This is innocuous in that it does not affect the final allocation.

We denote with t a mass of slots of school s assigned using this approach, which we use as a
measure of time. If some slots at school s′ are still unassigned when school s has filled capacity,
we continue our measure of time from then on by means of counting assigned slots of school
s′.

We finally use ts for the moment at which school s has given all of its slots, also called school
s termination time. Clearly, ts = qs. We consider subcases depending on whether termination
time for school s′ is below or above ts.

Case 3.1 ts < ts′ .
This implies that ks

hs′ = 0 for all schools h. If school s points at a student from �hs′ , she will
point at school s′, since it still has available slots.

But then, qs = nss + ks
s′sns′s + ks

wsnws, and ks
s′s ≥ ks

ws implies

ks
s′s ≥ qs − nss

ns′s + nws
≥ qs − nss − ρwnss′

ns′s + nws
≥ cs.

Case 3.2 ts′ < ts.
This implies qs′ < ns′ provided ks

s′s < 1. (If qs′ ≥ ns′ we have that every student from �s′

is assigned to a good school, and since ts′ < ts we have ks′
s′s = 0—a student from �s′s cannot

point at s′ since she prefers s which has pending unassigned slots—and then ks
s′s = 1). Since

max{c1, c2} = 1 − ρw > 0, or qw < nw, we must have qs > ns (provided
∑

h qh = ∑
h nh).

Because s is the last good school in assigning remaining slots to students, qs > ns implies
that school s eventually points at students according only to their lottery number. Conse-
quently, ks

wh ≥ ks′
wh, for both h ∈ G. Because of the lottery number criterion, ks

ws = ks
ws′ . With
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access to better schools 1491

this and Proposition 6 implying ABSw(TTC) ≥ ABSw(DA) = nw(1 − ρw), we must have that
ks

ws = max
g,h∈G

kg
wh ≥ 1 − ρw. But then, by Remark 1, ks

s′s ≥ ks
ws ≥ 1 − ρw ≥ cs.

This completes all relevant cases (the remaining knife-edge case in which slots from
schools 1 and 2 are exhausted simultaneously can be treated as part of subcases 3.1 or 3.2,
indistinctively). �

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information sec-
tion at the end of the article.

Table A1: n1 = n2 = 10; n3 = n4 = 20
Table A2: n1 = n2 = 15; n3 = n4 = 15
Table A3: n1 = n2 = 10; n3 = n4 = 25
Table A4: n1 = n2 = 15; n3 = n4 = 20
Table A5: n1 = n2 = 15; n3 = n4 = 25
Table A6: n1 = n2 = 20; n3 = n4 = 20
Table A7: n1 = n2 = 20; n3 = n4 = 10
Table A8: n1 = n2 = 25; n3 = n4 = 10
Table A9: n1 = n2 = 20; n3 = n4 = 15
Table A10: n1 = n2 = 25; n3 = n4 = 15
Data S1
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