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Abstract: Background: Mast cells (MCs) contain proangiogenic factors, in particular tryptase, associ-
ated with increased angiogenesis in several tumours. With special reference to pancreatic cancer, few
data have been published on the role of MCs in angiogenesis in both pancreatic ductal adenocarci-
noma tissue (PDAT) and adjacent normal tissue (ANT). In this study, density of mast cells positive
for c-Kit receptor (MCDP-c-KitR), density of mast cells positive for tryptase (MCDPT), area of mast
cells positive for tryptase (MCAPT), and angiogenesis in terms of microvascular density (MVD) and
endothelial area (EA) were evaluated in a total of 45 PDAT patients with stage T2–3N0–1M0. Results:
For each analysed tissue parameter, the mean ± standard deviation was evaluated in both PDAT
and ANT and differences were evaluated by Student’s t-test (p ranged from 0.001 to 0.005). Each
analysed tissue parameter was then correlated to each other one by Pearson t-test analysis (p ranged
from 0.01 to 0.03). No other correlation among MCDP-c-KitR, MCDPT, MCAPT, MVD, EA and the
main clinical–pathological characteristics was found. Conclusions: Our results suggest that tissue pa-
rameters increased from ANT to PDAT and that mast cells are strongly associated with angiogenesis
in PDAT. On this basis, the inhibition of MCs through tyrosine kinase inhibitors, such as masitinib, or
inhibition of tryptase by gabexate mesylate may become potential novel antiangiogenetic approaches
in pancreatic cancer therapy.

Keywords: mast cells; c-Kit receptor; tryptase; angiogenesis; microvascular density; endothelial area;
pancreatic cancer tissue; adjacent normal tissue
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1. Background

Pancreatic cancer (PC) is an infrequent tumour, but at the same time, it corresponds to
the fourth most common cause of cancer mortality, with a 5-year survival rate of only 8%
and a 10-year survival of just 3%. In its early stages, surgery and adjuvant chemotherapy
represent the gold-standard treatment, but nevertheless the relapse rate is 60–70% after
2 years. In the metastatic setting, the FOLFIRINOX regimen is the common first-line
treatment for fit patients (Eastern Cooperative Oncology Group Performance Status 0–1
and aged ≤ 75 years), improving median progression-free survival (mPFS) compared to
gemcitabine alone (6.4 months vs 3.3 months; p < 0.0001) and median overall survival
(mOS) up to 11.6 months (versus 6 months for the gemcitabine-alone group; p = 0.001) [1].
A multicentre, double-blind phase III study evaluated 154 patients with metastatic PC and
BRCA 1–2 germline mutation without disease progression during at least 4 months of first-
line platinum-based chemotherapy. This study showed that the median PFS was longer
in the olaparib group than in the control group (median 7.4 months versus 3.8 months,
respectively; p = 0.004) [2].

Computed tomography (CT) diagnoses PC with sensitivity and specificity from 70%
up to 100%, and therefore it is always indicated in suspected PC [3]. In patients with
clinical and radiological suspicion of PC, the preoperative diagnosis (histological or cyto-
logical) should be considered in the absence of clear signs of malignancy and in patients
not eligible for surgery. From a pathological point of view, pancreatic ductal adenocar-
cinoma is the most frequent histotype (85%); it derives from the pancreatic ductal tree
and has a glandular differentiation. According to the World Health Organization (WHO),
pancreatic ductal adenocarcinoma has been classified into eight variants: colloid carci-
noma, signet-ring cell carcinoma, adenosquamous carcinoma, undifferentiated carcinoma
with osteoclast-like giant cells, undifferentiated carcinoma, and medullary, rhaboid and
hepatoid carcinomas.

Mast cells (MCs) are bone marrow-derived cells, which are found in many human
organs and tissues and contain a lot of pre-existing and de-novo-formed secretory granules
with peculiar pleiotropic functions [4]. MC activity is mainly regulated by its membrane
tyrosine kinase receptor, the c-Kit receptor (c-Kit-R), identified and classified in the cluster
of differentiation 117 (CD-117) and binding the stem cell factor (SCF) as its natural ligand [5].
MCs can be activated by several stimuli, including the binding between immunoglobulin
E and its antigenic epitope and the interaction between c-Kit-R and SCF [6,7]. After their
activation, MCs release their secretory granules in the microenvironment, involved both
in allergic reaction and anaphylaxis and in induced immunity [8,9]. In the last decades,
several studies have demonstrated that mast cells contain several proangiogenic factors,
such as vascular endothelial growth factor (VEGF), fibroblast growth factor-2 (FGF-2) and
platelet-derived endothelial cell growth factor/thymidine phosphorylase (PDEC-GF/TP),
but their ability to synthesize and secrete a non-classical potent proangiogenic factor called
tryptase has only recently become a focus of researchers’ attention [10–12]. Tryptase is
the most abundant factor stored in mast cell secretory granules. It is a serine protease
that has been demonstrated to enhance [13–15] endothelial cell (EC) and microvascular
proliferation in animal models in several in vitro and in vivo studies [16,17]. Through its
binding to protease-activated receptor-2 (PAR-2) on endothelial cells, tryptase can stimulate
microvascular formation [18–21].

Recent preliminary data indicate that mast cells are so involved in pancreatic cancer
development that they can even be a therapeutic target, but in this context, very little
data have been published so far, as is also the case for the relationship between mast cells
density and angiogenesis, including their differences in both primary pancreatic ductal
adenocarcinoma tissue (PDAT) and adjacent normal tissue (ANT) [22–29]. MC infiltration
is higher in PDAT than in ANT [30,31], and increased MC infiltration directly correlates
with higher tumour grade and worse prognosis [32,33]. MCs contribute to the PDAT
progression through different mechanisms. For example, MCs express proangiogenic
factors such as VEGF, FGF-2 and PDGF, and MC-derived MMPs promote the release of
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extracellular matrix-bound angiogenic factors. On the other hand, pancreatic cancer cells
(PCCs) and stellate pancreatic cells (PSCs) recruit and activate MCs [34]. MCs release
IL-13 and tryptase, inducing activation and proliferation of PCCs and PSCs [35]. Moreover,
activated PSCs produce several proangiogenic factors and stimulate PCCs [36].

In this exploratory study, through immunohistochemistry and image analysis system,
we have examined the density of mast cells positive for c-Kit receptor (MCDP-c-KitR),
density of mast cells positive for tryptase (MCDPT), area of mast cells positive for tryptase
(MCAPT), microvascular density (MVD) and endothelial area (EA) in both PDAT and ANT,
in a series of pancreatic cancer patients who had undergone radical surgery. The correlation
between the studied parameters and the main clinical–pathological features has been
also investigated.

2. Results

Immunohistochemical staining of c-Kit receptor- and tryptase-positive mast cells, be-
sides MVD in PDAT versus ANT, are reported in Figure 1A, Figure 2A, Figure 3A, Figure 1B,
Figure 2B or Figure 3B, respectively (×400 magnification), Figures 4A, 5A, 6A, 4B, 5B and 6B
respectively (×1000 magnification).

All results are presented in Figure 7 and the acronyms are reported in the below leg-
end. Data demonstrated that MCDP-c-KitR, MCDPT, MCAPT, MVD and EA significantly
increased from ANT to PDAT. Differences in terms of mean value ± SD between PDAT
and ANT were significant for each analysed tissue biomarker (p ranged from 0.001 to 0.005
by t-test analysis).

Statistical evaluation by Pearson analysis in PDAT showed a significant correlation
between all parameters, as reported in the caption of Figure 8.

No other correlation among MCDP-c-KitR, MCDPT, MCAPT, MVD, EA and the main
clinical–pathological characteristic was found.

Figure 1. Magnification ×400, 0.19 mm2 area, immunostaining with the anti-CD117 antibody. (A) High MCDP-c-KitR
in primary PDAT section. Small arrows indicate single red-stained MCs. The big arrow indicates tumour epithelium.
(B) Low MCDP-c-KitR in ANT section. Small arrows indicate single red-stained MCs. Big arrows indicate normal pancreatic
epithelium. Scale bar corresponds to 125 µm. MCDP-c-KitR, density of mast cells positive for c-Kit receptor; PDAT,
pancreatic ductal adenocarcinoma tissue; MCs, mast cells; ANT, adjacent normal tissue.
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Figure 2. Magnification ×400, 0.19 mm2 area, immunostaining with the anti-tryptase antibody. (A) High MCDPT in
primary PDAT section. Small arrows indicate single red-immunostained MCs. The big arrow indicates tumour epithelium.
(B) Low MCDPT in ANT section. The small arrow indicates just one red-stained MC. Big arrows indicate normal pancreatic
epithelium. Scale bar corresponds to 125 µm. MCDPT, density of mast cells positive for tryptase.

Figure 3. Magnification ×400, 0.19 mm2 area, immunostaining with the anti-CD31 antibody. (A) High MVD in primary
PDAT section. Single small arrows indicate single red-stained microvessels. Double small arrows indicate a single red-
stained microvessel with a red blood cell in its lumen as a positive internal control. Single big arrows indicate tumour
epithelium. Double big arrows indicate a vessel with a lot of tumour cells in its lumen. (B) Low MVD in ANT section.
Small arrows indicate a single red-stained microvessel. The big arrow indicates normal pancreatic epithelium. Scale bar
corresponds to 125 µm. MVD, microvascular density.
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Figure 4. Magnification ×1000 in oil, 0.06 mm2 area, immunostaining with the anti-CD117 antibody. (A) Very high MCDP-
c-KitR in primary PDAT section. Small arrows indicate single red-immunostained MCs. The big arrow indicates tumour
epithelium. (B) Low MCDP-c-KitR in ANT section. Small arrows indicate single red-stained mast cells. Please note the
filiform membranes in immunostaining. Scale bar corresponds to 150 µm.

Figure 5. Magnification ×1000 in oil, 0.06 mm2 area, immunostaining with the anti-tryptase antibody. (A) High MCDPT in
primary PDAT section. Small arrows indicate single red-immunostained MCs. Magnification ×1000 in oil. (B) Low MCDPT
in ANT section. Small arrows indicate red-stained MCs. Scale bar corresponds to 150 µm.
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Figure 6. Magnification ×1000 in oil, 0.06 mm2 area, immunostaining with the anti-CD31 antibody. (A) High MVD in
primary PDAT section. Small arrows indicate single red-stained microvessels. Big arrows indicate single microvessels with
tumour cells in their lumen. (B) Low MVD in ANT section. Small arrows indicate immunostained endothelium of a large
vessel; the big arrow indicates the lumen of the vessel. Scale bar corresponds to 150 µm.

Figure 7. Boxes plot indicate mean ± standard deviation of (A) MCDP-c-KitR, (B) MCDPT, (C) MCAPT, (D) MVD and
(E) EA in PDAT and ANT, respectively, and corresponding differences by Student’s t-test in terms of p-value.
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Figure 8. Correlations by Pearson analysis between MCDPT and MCAPT (r = 0.85, p = 0.01), MVD
and EA (r = 0.82, p = 0.01), EA and MCAPT (r = 0.66, p = 0.03), MCAPT and MVD (r = 0.76, p = 0.02),
EA and MCDPT (r = 0.69, p = 0.03), MCDPT and MVD (r = 0.72, p = 0.02), EA and MCD-c-KitR
(r = 0.73, p = 0.02), MCDP-c-KitR and MVD (r = 0.74, p = 0.02), MCDP-c-KitR and MCDPT (r = 0.87,
p = 0.01) and MCDP-c-KitR and MCAPT (r = 0.81, p = 0.01).
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3. Discussion

Several published studies suggest that an increased mast cell density is associated
with increased MVD in different animal and human malignancies, but to this regard,
very little data have been published for PDAT [37–58]. In the literature, there are some
data about the correlation between MVD, evaluated with anti-CD31, and the survival of
resected pancreatic cancer patients, demonstrating that high MVD expression is strongly
associated with poorer prognosis [59]. At the same time, Strouch et al. [26] showed that the
prognosis of resected pancreatic cancer patients with high mast cell count in cancer tissue
section, evaluated with anti-tryptase, was significantly worse than those with low mast
cell count.

Mast cells migration in the tumour microenvironment is induced by the expression of
several growth factors, molecules and proinflammatory cytokines, such as SCF, TGF, TNF,
FES kinase, protein kinase D, CXCL12, eicosanoids, chemokines and prostaglandins, and
by the activation of subcellular pathways, such as ERβ/CCL2/CCR2, EMT/MMP9 and
PI3K/AK. Cells in both the cancer and tumour microenvironment can participate in the
production of chemotactic agents for MCs, depending on the tumour type and the specific
microenvironment [20,60–65]. From a functional point of view, MCs’ activities are mainly
regulated by c-Kit-R, known also as CD-117, that binds its ligand SCF, and as a consequence
of this interaction, MCs can degranulate [7,25,66–68]. It has been well established that MCs
can synthesize and then release a plethora of classical proangiogenic factors such as VEGF,
FGF-2, sphingosine-1-phosphate (S1P), TNF-α and IL-1, 6 and 8, which may stimulate the
proliferation, migration and differentiation of ECs [69–72]. In particular, S1P synthesis is
upregulated upon mast cell activation. Its signalling results in a substantial amount of
VEGF-A release and triggers both transcriptional upregulation of VEGF-A and MMP-2
mRNA and protein secretion from mast cells [73]. The proangiogenic effect of MCs is also
related to the production of gelatinase A (matrix metalloproteinase-2) and gelatinase B
(matrix metalloproteinase-9) that degrade the extracellular matrix, releasing the prestored
VEGF that, in turn, stimulates EC proliferation [74–76]. MCs also synthesize tryptase, a
non-classical potent proangiogenic factor, which represents the most abundant biological
substance in MCs’ secretory granules [14,15]. From a biological point of view, tryptase is a
trypsin-like neutral serine protease and selective component of the secretory granules of
all human MCs, accounting for almost 25% of cell protein (10–35 pg per mast cell) [15]. It
consists of four monomers, each of which is stabilized in its active conformation and its
tetrameric form by heparin–proteoglycan complexes [20,77,78]. Because of its proteolytic
activity, tryptase acts as an agonist of the protease-activated receptor-2 (PAR-2), a G protein
expressed on ECs that is involved in their proliferation and whose activation triggers an
intracellular signal involving MAPK phosphorylation pathway [79,80].

Tryptase may also convert pro-MMP to active MMP, enhancing the degradation of
extracellular matrix, VEGF release and neoangiogenesis. Chymase plays this role too [81,82].

The milestone in vitro data stating mast cell tryptase’s capacity to induce microves-
sel formation was first presented by Blair in 1997 [16]. In this study, a coculture of the
human mast cells-1 (HMC-1) line with their products in the presence of human dermal mi-
crovascular ECs led to vessel formation, and the extent of neovascularization was strongly
enhanced when HMC-1 MCs were degranulated. The results of this study indicated that
tryptase from degranulated MCs was able to induce the genesis of microvessels with an
increasing dose–response pattern. To support these findings, the inhibition of tryptase
through a specific tryptase inhibitor led to a strong reduction of microvasculature forma-
tion. More recently, they demonstrated the angiogenic properties of MC tryptase in an
in vivo chorioallantoic membrane assay, showing that the angiogenic potency of tryptase
was similar to VEGF [11,17].

With particular reference to pancreatic cancer, preclinical in vivo data suggest that
mast cell tryptase plays a role in stimulating angiogenesis and cancer growth also via the
activation of the proangiogenic factor angiopoietin-1 [35,83,84]. Based on this biological
background, in a previously published pilot study, we evaluated the correlation among
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MCDPT, MCAPT, MVD and EA in a series of 31 patients with resected primary pancreatic
cancer [23]. Results from our study showed an evident association among these parameters,
suggesting that tryptase-positive mast cells and the magnitude of tryptase expression
correlate well with both MVD and EA in pancreatic cancer angiogenesis. Nevertheless, in
this study, no ANT was evaluated and no MCDP-c-KitR was assessed. In a subsequent
study conducted in a series of 35 PDAT patients, we observed a significant correlation
between MCDP-c-KitR, MCDPT and MVD, and in particular, an increased MCDPT and
MVD were found in PDAT when compared to ANT, confirming the role of mast cell
tryptase in pancreatic cancer angiogenesis and tumour development [25]. In the latter study,
however, no evaluation of MCAPT and EA was performed in normal and cancer tissues.

In the present exploratory research, as innovative technical approaches, immunohis-
tochemistry and an image analysis system allowed us to access MCDP-c-KitR, MCDPT,
MCAPT, MVD and EA simultaneously, both in PDAT and ANT, in a series of patients who
had undergone radical surgery. Endothelial area represents the immunostained vascular
area in a microscopic field, which is independent of their capacity and diameter, and can be
interpreted as a surrogate of angiogenic activity in parallel; MCDPT indicates the number
of local mast cells and not the area in which the mast cells are acting. We maintain that the
identification of a couple of parameters (area and density) is more representative of the
real angiogenic (EA and MVD) and enzymatic (MCDPT and MCAPT) activities. Our data
indicated not only that MCs accumulate in pancreatic cancer tissue, but also MCAPT is in-
creased in PDAT. The strong correlation between MCDP-c-KitR and MCDPT also suggests
that in pancreatic cancer, the majority of MCs are tryptase-expressing cells. As expected,
these data strongly correlate to each other and represent internal controls for the pancreatic
disease. Nevertheless, to our knowledge, this is the first study that clearly shows these
correlations through a new integrated immunohistochemical and image analysis system.

Our data are also supported by Chang’s research involving a transgenic spontaneous
PDAT C57BL/6 mouse model, in which an early influx of MCs into the tumour microenvi-
ronment was assessed [33]. Even more interestingly, the growth of PDAT was significantly
suppressed in mast cell-deficient Kitw-sh/w-sh mice, demonstrating the importance of MCs
and their activation by c-Kit receptor in leading to angiogenesis and pancreatic cancer
development. Moreover, Gorzalczany et al. showed that cell-to-cell contact interactions
by exposing MCs to membranes derived from cancer cells resulted in mast cell activation,
leading to increased phosphorylation of the ERK1/2 MAP kinases and Akt through a
phosphatidylinositol 3-kinase-dependent pathway [85]. These in vitro results indicated a
further mechanism of mast cell activation in tumour stromal microenvironments.

All preclinical data support the results of our investigation, whose message indicates
increased tryptase expression parallel to increased angiogenesis in terms of both MVD and
higher EA extension in surgically treated PDAT patients.

4. Conclusions

Here, we speculate that MCDPT and MCAPT together could be putative tissue
biomarkers of pancreatic cancer angiogenesis status. To this regard, tryptase target-
ing through tryptase inhibitors, such as gabexate or nafamostat mesylate, could be-
come an interesting strategy as a novel antiangiogenetic intervention in pancreatic can-
cer patients [86–90]. On the other hand, MC degranulation could be inhibited by c-KitR
tyrosine kinase inhibitors, such as masitinib, as first applied in veterinary clinical oncol-
ogy and then translated to humans for the treatment of PDAT patients, with interest-
ing results, as reported by the only phase 3 clinical trial [91–95]. Finally, MCDPT and
MCAPT could become potential predictive biomarkers of response to anti-c-Kit or anti-
tryptase therapy, in order to to select patients with a higher risk as assessed by these
biomarkers [96]. Confirmatory study and clinical trials are awaited in this context as well
as novel anti-angiogenic therapies.



Cells 2021, 10, 444 10 of 15

5. Materials and Methods
5.1. Study Population

The clinical–pathological characteristics of the analysed patients are summarized in
Table 1. A total of 45 PDAT patients with stage T2–3N0–1M0 amenable to surgery underwent
potentially curative resection. Employed surgical procedures were pancreaticoduodenec-
tomy, distal pancreatectomy and total pancreatectomy with lymph node dissection [25].
Patients were staged according to the American Joint Committee on Cancer 7th edition
(AJCC-TNM) classification, and the World Health Organization classification (2000 version)
was used for pathological grading. All patients had no distant metastases on computed
tomography. Full ethical approval and signed consent from individual patients were ob-
tained. The study was conducted in accordance with the Declaration of Helsinki, and the
protocol was approved by the Ethics Committee of the “Mater Domini” Hospital, “Magna
Graecia” University, Catanzaro (No. 242; 22 December 2016).

Table 1. Clinical–pathological features of patients (n = 45).

Subgroup No. of Patients

Age
< 65 30 (67%)
> 65 15 (33%)

Gender:
Female 23 (51%)
Male 22 (49%)

Tumour site:
Head 19 (42%)

Body-Tail 26 (58%)

TNM by AJCC Stage
T2N0–1M0 20 (44%)
T3N0–1M0 25 (56%)

Histologic type
Ductal adenocarcinomas 45 (100%)

Histologic grade
G1–G2 34 (77%)

G3 11 (23%)

5.2. Immunohistochemistry

Both MCs positive for c-KitR and tryptase and vessels were assessed by immuno-
histochemistry, employing a three-layer biotin–avidin–peroxidase technique [23–25,43].
In summary, 5 µm-thick serial sections of formalin-fixed and paraffin-embedded PDAT
and ANT were cut. The obtained slides were processed with a microwave oven at 500
watts for 10 min, and then the endogenous peroxidase enzyme was inhibited with a 3%
hydrogen peroxide solution. Soon after, the slides were incubated with the following
primary antibodies:

Anti-CD117 to c-KitR (Dako, Glostrup, Denmark) diluted 1:100 at for 1 h at
room temperature;

Anti-tryptase (clone AA1; Dako, Glostrup, Denmark) diluted 1:100 for 1 h at room
temperature (for MC identification);

Anti-CD31 antibody (QB-END 10; Bio-Optica Milan, Milan, Italy) diluted 1:50 for 1 h
at room temperature (as a pan-endothelial marker).

Immunoreactivity was evidenced by employing a biotinylated secondary antibody, the
red chromogen avidin–biotin–peroxidase complex (LPS, K0640, Dako, Glostrup, Denmark).
Cell nuclei were stained with Gill′s haematoxylin no. 2 (Polysciences, Warrington, PA,
USA). No primary antibody was posted in negative controls.
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5.3. Morphometrical Assay

A light microscope integrated with an image analysis system (AXIO, Scope A1, ZEISS,
Germany) was utilized. For each serial section of PDAT and ANT, the five most heavily
immunostained areas (hot spots) were selected at low magnification. Next, MCDP-C-
KitR, MCDPT, MCAPT, MVD and EA were assessed at ×400 magnification (0.19 mm2

area) in the five identified hot spot areas for each serial section, respectively (Figure 1A,B,
Figure 2A,B, Figure 3A,B). With special reference to MCDP-c-KitR and MCDPT, each
immunostained cell was considered in the count, whereas MVD was detected by counting
single red-brown-stained endothelial cells, endothelial cell clusters and microvessels, clearly
separated from adjacent microvessels, according to the modified Weidner’s method [23–25].
Immunostained MCs positive for tryptase and endothelial cells positive for anti-CD31 were
also evaluated in terms of immunostained area at ×400 magnification (0.19 mm2 area).
Finally, morphological details of MCs positive for c-KitR, MCs positive for tryptase and
endothelial cells were observed at ×1000 magnification in oil (Figure 4A,B, Figure 5A,B,
Figure 6A,B, respectively).

5.4. Statistical Analysis

Mean value for each section and for the global series was obtained for all evaluated
parameters in both PDAT and ANT groups. The differences between the two groups were
measured by Student’s t-test. Mean values ± 1 standard deviation (SD) of all evaluated
tissue parameters are reported in Figure 7.

Correlations between MCDP-c-KitR, MCDPT, MCAPT, MVD and EA were calculated
using Pearson′s (r) analysis (Figure 7). Correlations among all studied parameters and the
most important clinical–pathological characteristics, reported in Table 1, were analysed by
the chi-square test (χ2). All analyses were considered statistically significant with a p value
of < 0.05. Statistical analyses elaboration was performed with the SPSS statistical software
package (SPSS, Inc., Chicago, IL, USA).
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