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Abstract: Background: Early in-vivo diagnosis of Alzheimer’s disease (AD) is crucial for accurate 

management of patients, in particular, to select subjects with mild cognitive impairment (MCI) that 

may evolve into AD, and to define other types of MCI non-AD patients. The application of artificial 

intelligence to functional brain [18F]fluorodeoxyglucose (FDG) positron emission tomography 

(PET)/computed tomography(CT) aiming to increase diagnostic accuracy in the diagnosis of AD is 

still undetermined. In this field, we propose a radiomics analysis on advanced imaging 

segmentation method Statistical Parametric Mapping (SPM)-based completed with a Machine-

Learning (ML) application to predict the diagnosis of AD, also by comparing the results with 

following Amyloid-PET and final clinical diagnosis. Methods: From July 2016 to September 2017, 

43 patients underwent PET/CT scans with FDG and Florbetaben brain PET/CT and at least 24 

months of clinical/instrumental follow-up. Patients were retrospectively evaluated by a 

multidisciplinary team (MDT = Neurologist, Psychologist, Radiologist, Nuclear Medicine 

Physician, Laboratory Clinic) at the G. Giglio Institute in Cefalù, Italy. Starting from the cerebral 

segmentations applied by SPM on the main cortical macro-areas of each patient, Pyradiomics was 

used for the feature extraction process; subsequently, an innovative descriptive-inferential mixed 

sequential approach and a machine learning algorithm (i.e., discriminant analysis) were used to 

obtain the best diagnostic performance in prediction of amyloid deposition and the final diagnosis 

of AD. Results: A total of 11 radiomics features significantly predictive of cortical beta-amyloid 

deposition (n = 6) and AD (n = 5) were found. Among them, two higher-order features 

(original_glcm_Idmn and original_glcm_Id), extracted from the limbic enthorinal cortical area 
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(ROI-1) in the FDG-PET/CT images, predicted the positivity of Amyloid-PET/CT scans with 

maximum values of sensitivity (SS), specificity (SP), precision (PR) and accuracy (AC) of 84.92%, 

75.13%, 73.75%, and 79.56%, respectively. Conversely, for the prediction of the clinical-instrumental 

final diagnosis of AD, the best performance was obtained by two higher-order features 

(original_glcm_MCC and original_glcm_Maximum Probability) extracted from ROI-2 (frontal 

cortex) with a SS, SP, PR and AC of 75.16%, 80.50%, 77.68%, and 78.05%, respectively, and by one 

higher-order feature (original_glcm_Idmn) extracted from ROI-3 (medial Temporal cortex; SS = 

80.88%, SP = 76.85%, PR = 75.63%, AC = 78.76%. Conclusions: The results obtained in this 

preliminary study support advanced segmentation of cortical areas typically involved in early AD 

on FDG PET/CT brain images, and radiomics analysis for the identification of specific high-order 

features to predict Amyloid deposition and final diagnosis of AD. 

Keywords: radiomics; Alzheimer’s disease; PET/CT; machine learning  

 

1. Introduction 

Alzheimer’s disease (AD) is the most common form of progressive and irreversible 

dementia. Early in-vivo diagnosis of AD is crucial for accurate management of patients, 

in particular, to select subjects with mild cognitive impairment (MCI) that may evolve into 

AD, and to identify MCI with suspected non-AD pathology [1]. Brain 

[18F]fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed 

tomography(CT) is a functional neuroimaging tool evaluating dysfunction, synaptic 

disconnection, and neuronal loss in AD. Concerning the low membrane permeability, 

[18F]FDG dephosphorylation in the brain occurs slowly due to the low concentration of 

phosphatase in this tissue. Once the glucose analogue has entered the cell, it is 

phosphorylated in position 6 by a hexokinase; the presence of fluorine in the molecule 

also makes it impossible to continue along the glycolytic pathway. Therefore, brain 

[18F]FDG PET/CT has the unique ability to estimate the local cerebral metabolic rate of 

glucose consumption, thus providing information on the distribution of neuronal damage 

in AD in-vivo. Amyloid-PET/CT with several radiotracers ([18F]Florbetaben, 

[18F]Florbetapir, [18F]Flutemetamol, [11C]Pittsburgh compound C-PIB) provide a 

quantitative measure of the insoluble cortical amyloid load in vivo and it is currently 

being recognized to have a determining role in the diagnosis of AD. Although the target 

of these tracers is fibrillar Aβ, they do not represent a specific marker for a particular pool 

of Aβ but rather for the global cerebral amyloid load. Amyloid PET shows detectable 

cortical uptake with high sensitivity and specificity when a moderate-to-severe burden of 

plaque is present, reflecting a high negative predictive value, despite a sub-optimal 

specificity for possible Aβdeposition in some non-AD conditions [2]. One of the main 

issues regards the lack of a quantitative threshold value for the amyloid burden able to 

discriminate accurately patients with AD. The difficulties in identifying a precise cut-off, 

combined with the considerable inter-individual variability of the percentage of amyloid 

deposition in the population, reduce its specificity. Further, in elderly subjects with no 

signs of neuronal dysfunction, for example, the presence of Amyloid-PET positivity may 

be highlighted [3]. It must also be considered that there are other possible conditions such 

as Parkinson’s disease, Lewy body dementia, cerebral amyloid angiopathy, head trauma, 

and Down Syndrome which may show an increasein beta-Amyloid deposition [4–6]. 

The importance of exploring associated biomarkers for the early diagnosis and 

prediction of the disease progress of AD is a major clinical issue. The National Institute 

on Aging- Alzheimer’s Association (NIA-AA) proposed A/T/N diagnostic criteria in 2018, 

including Aβ42, p-tau, and t-tau in cerebrospinal fluid (CSF), and PET [7].However, the 

invasiveness of lumbar puncture for CSF assessment and the limited availability of PET 

with new radiotracers (for Tau and Aβ brain burden), represent a valid reason to develop 
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new approaches with artificial intelligence applied to the more easily available methods 

such as FDG-PET. 

The application of artificial intelligence through the development of radiomics 

predictive models on functional FDG-PET imaging, aiming to increase diagnostic 

accuracy in the diagnosis of AD is still undetermined. In this setting, we propose a 

radiomics analysis based on Statistical Parametric Mapping (SPM) and Pyradiomics, in 

combination with a Machine-Learning (ML) application, to predict Amyloid-PET 

positivity and diagnosis of AD.  

2. Materials and Methods  

From July 2016 to September 2017, 43 patients (median age 64.8 years, Range 53–83 

years; females = 23; males = 20; median Mini-Mental State Examination, MMSE = 19.27, 

Range 4–28) underwent PET/CT scans with FDG and [18F]Florbetaben (FBB) brain 

PET/CT, and at least 24 months of clinical/instrumental follow-up. Patients were 

retrospectively evaluated by a multidisciplinary team (MDT = neurologist, psychologist, 

radiologist, nuclear medicine physician, and laboratory clinic doctor) at the G. Giglio 

Institute in Cefalù, Italy.  

The inclusion criteria were as follows: (a) neurological and neuropsychological 

suspicion of neurodegenerative disease, based on the National Institute on Aging and the 

Alzheimer’s Association (NIA-AA) and European Federation of Neurological 

Societies/European Neurological Society (ENS-EFNS) criteria [8]; (b) MRI brain imaging 

also to rule out moderate or severe cerebrovascular defects; (c) FDG PET/CT performed 

for metabolic assessment ; (d) availability of an amyloid-PET scan with FBB within 6 

months from conventional imaging and FDG PET/CT scan; (e) report of the 

positivity/negativity of FBB-PET and multidisciplinary team meeting with the final 

diagnosis for each patient; (f) minimum duration of neurological and neuropsychological 

follow-up of 24 months after the first neurological evaluation for the cognitive defect. 

Follow-up information were used to estimate the disease status to allow the 

assessment of disease progression over time and confirm/exclude the in-vivo diagnosis of 

AD. 

2.1. PET/CT Acquisition Protocol 

FDG PET/CT: All the subjects underwent an FDG PET/CT imaging examination 

using 3D PET scans, on a GE multi-ring Discovery STE PET/CT tomograph (General 

Electric, Milwaukee, WI, USA), at the Nuclear Medicine Unit of the G. Giglio Institute in 

Cefalù, Italy. All patients underwent an FDG PET before the Amyloid-PET scan. Patients 

received an intravenous injection of FDG (3.7 MBq/kg) at rest, in a supine position, in a 

quiet, dimly lit room. Image acquisition began approximately 45 min after injection, with 

a scan time duration of 15 min. Before the injection of FDG, the subjects were fasted for at 

least 6 h, and a blood glucose <160 mg/dL was measured and required to proceed with 

the scan. The reconstruction of the images was based on an OSEM algorithm. The low-

dose CT was co-registered and used for attenuation correction. 

2.2. Qualitative Evaluation of FDG PET 

FDG PET/ CT brain transverse, sagittal and coronal images were assessed separately 

by two nuclear medicine physicians with expertise in PET neuroimaging. The images 

were classified as normal, possible, or probably suspected of AD. The rainbow scale was 

used to normalize the images with a uniform uptake threshold, using the basal ganglia 

and the cerebellum as a reference to background regions. Patients, whose cortical areas 

showed reduced glucose metabolism in the regions including the posterior cingulate, the 

precuneus, the parietal cortical territories, and the medial and lateral temporal cortex, 

were classified as suffering from possible or probable AD, depending on the intensity and 

extent of the uptake. The collection of anamnestic data played an essential role in the 
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differential diagnosis of patients with ambiguous patterns such as AD—vascular demen-

tia (VD), frontotemporal dementia (FTD), Lewy-body disease (DLB). 

2.3. Image Pre-Processing and ROI Selection 

The entire dataset was spatially pre-processed using the Statistical Parametric Map-

ping (SPM) 12 software package (https://www.fil.ion.ucl.ac.uk/spm/ (accessed on 31 Jan-

uary 2022)). First, each PET scan, comprising 47 Digital Imaging and Communications in 

Medicine (DICOM) images, was converted into a single NIfTI file, preserving the original 

spatial resolution. Then, the resulting 3D volume was spatially normalized to the Mon-

treal Neurological Institute (MNI) 152 space, using the SPM unified segmentation normal-

ization algorithm [9], which combines segmentation, bias correction and spatial normali-

zation in a single process of optimization. This iterative method, which provides better 

results than simple serial applications of each step [9], allowed to directly estimate the 

warping tensors that register the SPM standard spatial priors (i.e., tissue probability 

maps) in each individual subject space. The intensity distribution of each class of tissue 

has been modelled by at least a mixture of two Gaussians, in order to take into account 

the partial volume effect; moreover, a smoothness level of 5 mm was set, in order to derive 

a fudge factor related to the spatial correlation between neighbouring voxels, due to the 

assumption of independence of the unified model [9]. The default settings were used for 

all other parameters. Then, the estimated nonlinear spatial transformations were applied 

and the PET images were resampled in a bounding box with an isotropic voxel size of 2 

mm, reflecting the MNI-152 spatial proportions in a similar way to previous works [10–

12]. 

After spatial normalization, we focused on four different regions of interest (ROI) 

that were extracted from the brain fragmentation available in SPM, whose maximum 

probability tissue labels derived from the “MICCAI 2012 Grand Challenge and Workshop 

on Multi-Atlas Labelling” (https://my.vanderbilt.edu/masi/workshops (accessed on 31 

January 2022)). This neuro-anatomical classification was generated and made public by 

Neuromorphometrics, Inc. under academic subscription and provides a fine subdivision 

of cortical and non-cortical structures, for a total of 138 labels throughout the brain. Each 

selected ROI included 8 to 12 brain areas labelled according to Table 1 and, prior to mask 

extraction, their bounding box and voxel sizes were adapted to the template for alignment 

reasons. 

Table 1. Regions of interest (ROI) extracted from the cerebral segmentation using SPM. 

ROI 1 Areas Label Index ROI 2 Areas Label Index ROI 3 Areas Label Index ROI 4 Areas Label Index 

 Right Hippocampus 47  
Right (AOrG 

anterior orbital 

gyrus 

104  
Right FuG 

fusiform 

gyrus 

122  

Right PO 

parietal 

opercu-

lum 

174 

 Right PHG parahip-

pocampal gyrus 
170  

Right MOrG 

medial orbital 

gyrus 

146  
Right GRe 

gyrus rec-

tus 

124  
Right PoG 

postcen-

tral gyrus 

176 

 Right Ent entorhinal 

area 
116  

Right 

OpIFGopercu-

lar part of the 

inferior frontal 

gyrus 

162  

Right ITG 

inferior 

temporal 

gyrus 

132  

Right SPL 

superior 

parietal 

lobule 

198 

 Right MTG middle 

temporal gyrus 
154  

Right OrIFG 

orbital part of 

the inferior 

frontal gyrus 

164  
Right TMP 

temporal 

pole 

202  

Right 

PCgG 

posterior 

cingulate 

gyrus 

166 
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 Left Hippocampus 48  
Right MFC me-

dial frontal cor-

tex 

140  
Left FuG 

fusiform 

gyrus 

123  
Right 

PCu-

precuneus 

168 

 Left PHG parahip-

pocampal gyrus 
171  

Right MFG 

middle frontal 

gyrus 

142  
Left GRe 

gyrus rec-

tus 

125  
Left PoG 

postcen-

tral gyrus 

177 

 Left Ent entorhinal 

area 
117  

Left MOrG me-

dial orbital gy-

rus 

147  

Left ITG 

inferior 

temporal 

gyrus 

133  

Left PO 

parietal 

opercu-

lum 

175 

 Left MTG middle 

temporal gyrus 
155  

Left AOrG an-

terior orbital 

gyrus 

105  
Left TMP 

temporal 

pole 

203  

Left SPL 

superior 

parietal 

lobule 

199 

    

Left 

OpIFGopercu-

lar part of the 

inferior frontal 

gyrus 

163     Left PCu-

precuneus 
169 

    

Left OrIFG or-

bital part of the 

inferior frontal 

gyrus 

165     

Left PCgG 

posterior 

cingulate 

gyrus 

167 

    

Left MFC 

medial frontal 

cortex 

141       

    

Left MFG 

middle frontal 

gyrus 

143       

2.4. Extraction of Radiomics Features and Machine Learning Classification 

The ROIs described in Table 1 were used to extract the features through a certified 

and image biomarker standardisation initiative (IBSI) [12] compliant software, namely 

Pyradiomics [13]. Subsequently, an innovative descriptive-inferential mixed sequential 

approach for feature reduction and selection was used to identify a small set of radiomics 

features with a strong association with patient outcomes in order to obtain good predic-

tive performance, leading to the exclusion of non-reproducible, redundant and irrelevant 

features from the initial set [14]. After this selection and reduction process, discriminant 

analysis (DA) was used as the predictive model [15,16]. The training phase was performed 

only once and, after being completed, the DA was able to classify new cases. Using the k-

fold cross-validation strategy, the data was split into training and validation sets using a 

random partition. Specifically, the data were divided into k-folds: one of the folds was 

used as a validation set and the remaining folds were combined into the training set. The 

pooling was done so that both the training and validation sets maintained the same posi-

tive/negative percentage for beta-amyloid deposition compared to the original dataset. In 

our study, k = 5 was determined empirically by the trial-and-error method (range k: 5–15, 

a step of 5). 

Based on the above systems (Figure 1), we defined the features capable of obtaining 

the best diagnostic performance in predicting amyloid deposition and the final diagnosis 

of AD.  
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Figure 1. The proposed radiomics workflow, from SPM-based image pre-processing to Pyradiomics 

-based feature extraction process to machine learning-based classification. 

3. Results 

Forty-three patients met the inclusion criteria (Table 2). MMSE was less than 25 in 

29/43 patients (Median MMSE = 19.27, Range 4–28). The clinical dementia rating (CDR) 

scale was greater than 0.5 in 27/43 patients. The qualitative evaluation of FDG was con-

sidered positive in 28 patients (65%), while PET with FBB was positive in 23 patients 

(53%). CSF assay values for quantification by Double-sandwichenzyme-linked immuno-

sorbent assay (ELISA) were available in 18 patients, with 5 subjects showing reduced val-

ues of beta-amyloid protein (Aβ1-42) according to the cut-off < 450 pg/mL 

(InnotesthTAUantigen and amyloid Aβ1-42, Innogenetics). 13/18 patients, instead, 

showed reduced amyloid beta values (Aβ1-42) for the cutoff < 750 pg/mL; 12/18 had high 

CSF values of tau for the cutoff < 500 ng/L and in particular 15/18 patients phospho-tau 

was elevated for the cutoff < 61 pg/mL. Following the MDT evaluation, based on the re-

sults of the neuropsychological tests, the dosage of the levels of specific proteins (amyloid 

and tau) in the cerebrospinal fluid (CSF) if available, integration/comparison with mor-

phological imaging (Magnetic Resonance Imaging), and evaluation of the evolution of the 

disease until last neurological evaluation (>24 months), 22/23 amyloid-PET positive pa-

tients were definitively classified as AD patients, while the remainder as non-AD. Simi-

larly, 22/28 FDG PET-positive patients were classified by the multidisciplinary team as 

AD.  

Table 2. Patients’ main characteristics. 

pt N° Sex Age Schooling MMSE CDR MRI FDG PET Amy-PET Final Diagnosis (MDT) 

1 F 64 21 19 1 1 1 1 1 

2 M 81 5 27 0 0 0 0 0 

3 F 59 8 23 0.5 1 0 0 0 

4 M 63 18 21 1 1 1 1 1 

5 F 79 5 20 0.5 1 0 0 0 

6 F 80 5 18 2 1 1 1 1 

7 F 75 5 22 1 1 1 1 1 

8 F 72 5 12 1 1 1 1 1 

9 F 77 5 19 2 1 0 0 0 

10 F 71 13 20 2 1 1 1 1 
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11 F 75 5 17 2 1 1 0 0 

12 F 83 5 20 1 1 0 0 0 

13 M 58 18 9 2 1 1 1 1 

14 F 61 13 22 2 0 0 1 1 

15 M 66 13 21 1 0 1 1 1 

16 F 75 8 26 0.5 1 0 0 0 

17 F 53 13 13 1 1 1 1 1 

18 M 66 8 28 0.5 1 1 1 1 

19 M 72 18 24 0.5 1 0 0 0 

20 M 79 13 17 1 1 1 1 1 

21 M 69 13 28 0.5 1 1 0 0 

22 F 73 13 25 1 1 1 1 1 

23 M 76 8 28 0.5 1 1 0 0 

24 M 74 5 29 0.5 1 0 0 0 

25 M 61 18 22 2 0 1 1 1 

26 F 70 8 25 1 1 1 0 0 

27 F 68 13 15 2 1 1 1 1 

28 M 65 8 25 0,5 1 1 1 1 

29 M 80 8 18 1 1 0 0 0 

30 F 71 5 4 3 0 1 1 1 

31 M 78 8 13 1 1 1 0 0 

32 F 74 8 10 2 1 1 1 1 

33 M 80 0 18 1 1 0 0 0 

34 M 78 5 22 0.5 1 0 0 0 

35 M 71 0 17 1 1 1 0 0 

36 M 58 8 21 1 1 1 1 1 

37 F 63 18 24 1 1 0 0 0 

38 F 74 5 28 0.5 1 1 1 1 

39 M 77 5 30 0.5 1 0 0 0 

40 M 65 8 20 1 0 1 1 1 

41 M 62 17 21,46 0.5 1 1 1 0 

42 F 77 5 22 1 1 1 1 1 

43 F 66 8 26 0.5 1 0 0 0 

Legend: N° = number; MMSE = Mini Mental State Examination; CDR = Clinical dementia rating; 

MRI = Magnetic Resonance Imaging. 

Analysis of Radiomics Features 

Based on the SPM-based segmentation process described in the “Image pre-pro-

cessing and ROI selection” section, 43 brain areas were selected for radiomics feature ex-

traction and machine-learning classification. After the reduction and selection process 

based on the descriptive-inferential mixed sequential approach proposed in [14], we fo-

cused on the radiomics features capable of obtaining the best performances, expressed as 

sensitivity (SS), specificity (SP), precision (PR) and accuracy (AC) in the diagnostic pre-

diction of AD in relation to the results obtained with amyloid-PET and with clinical diag-

nosis. 

As regards the performances of prediction of PET-amyloid positivity (see Table 3), 

we obtained the following features, respectively, for each selected ROI (Table 3 and Figure 

2): 

 ROI 1 

 original_glcm_Idmn 
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 original_glcm_Id: with the following values of SS 84.92%, SP 75.13%, PR 73.75%, 

AC 79.56% (p<0.001). 

 ROI 2 

 original_glcm_MaximumProbability: with the following values of SS 88.67%, SP 

46.81%, PR 59.47%, AC 65.57% (p<0.001). 

 ROI 3 

 original_glcm_Id: with the following values of SS 93.83%, SP 61.80%, PR 67.51%, 

AC 76.15% (p<0.001). 

 ROI 4 

 original_glcm_MaximumProbability 

 original_firstorder_Maximum: with the following values of SS 86.33%, SP 

64.93%, PR 66.88%, AC 74.58% (p<0.001). 

As regards the performance in the prediction of the final clinical-instrumental diag-

nosis of AD defined by MDT evaluating all the available data, we obtained the following 

features from the 4 different ROIs (Table 4 and Figure 3): 

ROI 1 

 original_glcm_Idmn: with the following values of SS 66.39%, SP 57.51%, PR 

58.46%, AC 61.51% and (p = 0.004). 

ROI 2 

 original_glcm_MCC 

 original_glcm_MaximumProbability: with the following values of SS 75.16%, SP 

80.50%, PR 77.68%, AC 78.05% and (p = 0.002). 

ROI 3 

 original_glcm_Idmn: with the following values of SS 80.88%, SP 76.85%, PR 

75.63%, AC 78.76% and (p < 0.001). 

ROI 4 

 original_glcm_MaximumProbability: with the following values of SS 75.50%, SP 

55.25%, PR 59.53%, AC 64.96% (p = 0.0040). 

Table 3. Performances of FDG-PET derived features in the prediction of Amyloid-PET positivity. 

Features Selected for Each ROI Sensitivity[%] Specificity[%] Precision [%] Accuracy[%] p-Value 

ROI 1      

original_glcm_Idmn 

original_glcm_Id 
84.92 75.13 73.75 79.56 <0.05 

ROI 2      

original_glcm_MCC 88.67 46.81 59.47 65.57 <0.05 

ROI 3      

original_glcm_Id 93.83 61.80 67.51 76.15 <0.05 

ROI 4      

original_glcm_Maximum Probability 86.33 64.93 66.88 74.58 <0.05 
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Figure 2. AUROC Curves of FDG-PET derived features in the prediction of Amyloid-PET positivity. 

Table 4. Performances of FDG-PET derived features in the prediction of AD. 

Features Selected for Each ROI Sensitivity[%] Specificity[%] Precision[%] Accuracy[%] p-Value 

ROI 1      

original_glcm_Idmn 66.39 57.51 58.46 61.51 0.004 

ROI 2      

original_glcm_MCC 

original_glcm_MaximumProba

bility 

75.16 80.50 77.68 78.05 0.002 

ROI 3      

original_glcm_Idmn 80.88 76.85 75.63 78.76 <0.05 

ROI 4      

original_glcm_Maximum 

Probability 

original_firstorder_Maximum 

75.50 55.25 59.53 64.96 0.004 
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Figure 3. AUROC Curves of FDG-PET derived features in the prediction of AD. 

4. Discussion 

So far, few studies have investigated the use of artificial intelligence on FDG PET/CT 

brain images in the evaluation of neurodegenerative diseases. Early in-vivo diagnosis of 

AD is critical for accurate patient management, particularly for the selection of subjects 

with MCI who may evolve into AD and for defining prodromal forms of AD from other 

non-AD forms. Brain FDG PET/CT is a functional neuroimaging technique able to provide 

information on neuronal damage as dysfunction, synaptic disconnection, and neuronal 

loss. Amyloid-PET is currently recognized as a determinant in the diagnosis of AD in con-

sideration of its high negative predictive value, albeit with a suboptimal specificity, deter-

mined by the possible cortical deposition of beta-amyloid in some non-AD conditions [3]. 

In this context, the first objectives of our study concerned the application of artificial in-

telligence on FDG PET/CT brain images in predicting PET-Amyloid positivity, eventually 

avoiding the additional execution of an amyloid-PET as a diagnostic method not widely 

diffuse compared to FDG-PET/CT, ultimately reducing the social and economic impact on 

the health system. Secondly, the opportunity to select those patients who can benefit from 

the diagnostic use of amyloid-PET and to evaluate how the integration of the functional 

and pathophysiological information of the two investigations can improve the diagnostic 

accuracy for AD through the help of artificial intelligence. 

Inthe present study, through a radiomics system based on SPM, Pyradiomics, and 

DA to performimage normalization, the selection of the cerebral cortical areas typically 

involved in AD, the feature extraction process, and the development of predictive models, 

a total of 11 radiomics features were identified for the study objectives (6 FDG-PET fea-

tures in the prediction of amyloid deposition and 5 FDG-PET features for the final diag-

nosis of AD). The brain FDG PET/CT metabolism alteration in the medial temporal cortex 

resulted in two higher-order features (original_glcm_Idmn and original_glcm_Id), as the 

best predictive of PET-amyloid positivity with SS, SP, PR, and AC of 84.92%, 75.13%, 

73.75%, and 79.56%, respectively. The regions from which these features were extracted 

belonged to ROI 1, including the hippocampal, para-hippocampal, entorhinal cortex, and 

the territories of the middle temporal gyrus. These areas are considered in the literature 



Diagnostics 2022, 12, 933 11 of 14 
 

 

as the most involved sites of AD-related functional damage in the initial/prodromal forms 

[17–20]. Hypometabolism in this area, therefore, appears to be the possible result of a par-

ticular correlation between functional damage in the limbic regions and a particular tro-

pism for the cortical deposition of the beta-amyloid protein. Regarding the type of features 

obtained, the Gray Level Co-occurrence Matrix (GLCM) texture features belong to that 

group of higher-order features that have shown a significant clinical impact both in radi-

ology and in nuclear medicine [1,21,22]. 

The achievement of predicting the deposition of beta-amyloid using radiomics fea-

tures extracted from FDG PET/CT has not been previously reported in the literature. Fur-

thermore, the application of artificial intelligence through the development of predictive 

radiomics models on functional FDG PET/CT brain imaging aimed at increasing diagnos-

tic accuracy in the final diagnosis of AD is still highly debated. In our analysis for the 

prediction of AD, the best values were obtained for SS, SP, PR, and AC (75.16%, 80.50%, 

77.68%, and 78.05%, respectively) for two higher-order features (original_glcm_MCC and 

original_glcm_MaximumProbability). The regions from which these features were ex-

tracted concerned the ROI 2, including the anterior and medial orbital gyri of the inferior 

frontal cortex and the medial frontal cortex. The population studied was characterized by 

a median age of 64.8 years and a median MMSE value of 19.27, thus configuring a good 

number of patients with MCI and early onset. The optimal performance of our radiomics 

models obtained for the limbic areas (ROI 1) in the prediction of amyloid burden and for 

the frontal cortex (ROI 2) in the predictive analysis for the final diagnosis of AD, could 

support, as noted in the scientific literature, the possible metabolic involvement of the 

frontotemporal synaptic connections in early-onset Alzheimer Disease (EOAD) forms. 

These results should be considered relevant considering the purely prognostic and non-

diagnostic objective of the study.  

In the same field of our study, Zhou et al. in 2019 [23], investigated the risk factors 

most associated with the conversion from MCI to AD, through a dual-model radiomics 

analysis with Cox proportional hazards, based on T1-MRI and [18F]FDG PET/CT scans 

data from the AD Neuroimaging Initiative (ADNI) database including 131 MCI patients 

who converted to AD and 132 MCI patients without conversion within 3 years[23]. Dif-

ferently to Zhou et al., our study presents an added value in evaluating patients enrolled 

in the same Institute, despite the absence of the aid of linear regression analysis. However, 

our patients’ cohort performed the same clinical questionnaire and the same multidisci-

plinary evaluation, allowing a reduction of potential bias in the definition of the reference 

standard of positivity that may affect the innovative machine-learning tools and DA 

adopted in this study. We implemented the analysis using DA as a predictive model with 

a k-fold cross-validation strategy, first to test the prediction of FDG-PET radiomics fea-

tures for PET-Amyloid positivity, and then, assessing the follow-up data of all patients, to 

confirm the predictive accuracy of FDG PET/CT radiomics features in defining the typical 

regions/patterns of hypometabolism for the diagnosis of AD. Further studies have evalu-

ated, albeit differently, the application of radiomics models in increasing diagnostic accu-

racy for the diagnosis of AD, particularly in the prodromal stages of the disease, as in the 

article published in 2019 by Yupeng Li et al. [24]. In their multicenter study, FDG PET/CT 

brain data and clinical evaluations were collected in a cohort of 466 individuals (including 

152 AD, 130 MCI and 184 healthy controls—HC) from the ADNI. A Support Vector Ma-

chine (SVM) was used to test the radiomics features’ ability to classify patients with HC, 

MCI, and AD. Brain regions were identified by ROIs distributed in the temporal, occipital, 

and frontal areas. A total of 168 radiomics features of AD were defined (alpha> 0.8). The 

classification experiment resulted in maximum accuracies of 91.5%, 83.1%, and 85.9% for 

the classification of AD versus HC, MCI versus HC and AD versus MCI [24]. The most 

evident limitation of the study, as in the previous one, was to use a predefined patient 

database (ADNI), with the limits resulting from a poor homogenization between different 

centers that inevitably use different tomographs, administration and acquisition times, in 
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addition to the lack of clinical data from the same center for a complete clinical-instru-

mental evaluation.  

Another study published in October 2021 by Ping Zhou et al., proposed the applica-

tion of a new deep-learning radiomics (DLR) model, based on images obtained by FDG-

PET integrated with clinical parameters (DLR + C) to improve diagnostic performance 

and predict, according to the authors, the conversion of MCI to AD patients [25]. FDG 

PET/CT brain data were collected, also from the ADNI database, for a total of 168 patients 

with MCI who converted to AD within 3 years and 187 MCI patients without conversion 

within 3 years. In comparative experiments, the DLR + C method was compared with four 

other methods: the standard absorption value ratio (SUVR) method, the Radiomics-ROI 

method, the clinical method, and the clinical SUVR + method. The results obtained 

showed that the DLR + C model produced the best performance in terms of recognition 

capacity of the MCI to AD conversion with AC, SS, and SP values of 90.62 ± 1.16, 87.50 ± 

0.00, and 93.39 ± 2.19%, respectively [25].  

Finally, even more recently with an FDG PET study just published in January 2022, 

Jiang et al. evaluated MCI-to-AD conversion prediction in a dataset of 884 subjects 

through a radiomics- based predictive modelling (RPM) Cox model that demonstrated a 

better performance than that of other Cox models [26].  

In comparison with our preliminary study, none of the mentioned studies imple-

mented the analysis by comparing the results of the brain FDG PET/ CT scans in predic-

tion of amyloid-PET positivity and then integrating these data to create a reference stand-

ardfor predicting the diagnosis of AD.  

Brain FDG-PET is an established diagnostic tool for the evaluation of AD by defining 

the functional damage and differentiate most of the neurodegenerative disease with a cru-

cial role in the management of patients. The implementation of AI applicated to brain 

FDG-PET demonstrated in this study to potentially predict Amyloid-PET positivity and 

AD condition with a possible future role of these methods from a prognostic tool to an 

augmented-diagnostic approach for the improvement of the early diagnosis. 

Nevertheless, the preliminary results in our study have several limitations. First of 

all, the population described is unfortunately slightly inhomogeneous (MCI and prodro-

mal AD). To obtain the results presented in a single patient a long time is still required 

due to the use of different software and statistical analysis, needing the involvement of 

informatic engineers which makes the application currently not easily reproducible in 

clinical practice. Furthermore, the study was limited to the comparison of FDG PET/CT 

with amyloid-PET and the final diagnosis, as an overall judgment of a multidisciplinary 

report, without a direct comparison with MRI findings, precise correlation/comparison 

with single clinical variables such as scores, functional tests of cognitive performance or 

laboratory data deriving from the analysis of CSF proteins.  

5. Conclusions 

The results obtained in this study, albeit still preliminary, support the potential ex-

perimental development of this new automated learning approach based on the extraction 

and selection of higher-order radiomics “features” obtained from FDG PET/CT brain im-

ages for predicting the presence of beta-amyloid deposition and the final diagnosis of AD. 

The preliminary results of the present study support the potential role of specific radi-

omics features from FDG-PET images able to improve the prognostic stratification of pa-

tients who could obtain real diagnostic benefits from amyloid-PET. Furthermore, our data 

suggest that specific radiomics features may improve the diagnostic AC of PET/CT in the 

early diagnosis of AD. We aim to increase our study cohort and the number of clinical-

instrumental variables to improve the predictive models. Also, further developments in 

this area could concern the stratification of patients with AD based on individual sensi-

tivity to new monoclonal therapies that are currently being validated and that could mod-

ify clinical management. 
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