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ABSTRACT Cloud and Fog computing have established a convenient and widely adopted approach for

computation offloading, where raw data generated by edge devices in the Internet of Things (IoT) context is

collected and processed remotely. This vertical offloading pattern, however, typically does not take into

account increasingly pressing time constraints of the emerging IoT scenarios, in which numerous data

sources, including human agents (i.e., Social IoT), continuously generate large amounts of data to be

processed in a timely manner. Big data solutions could be applied in this respect, provided that networking

issues and limitations related to connectivity of edge devices are properly addressed. Although edge

devices are traditionally considered to be resource-constrained, main limitations refer to energy, networking,

and memory capacities, whereas their ever-growing processing capabilities are already sufficient to be

effectively involved in actual (big data) processing. In this context, the role of human agents is no longer

limited to passive data generation, but can also include their voluntary involvement in relatively complex

computations. This way, users can share their personal computational resources (i.e., mobile phones) to

support collaborative data processing, thereby turning the existing IoT into a global cyber-physical-social

system (CPSS). To this extent, this paper proposes a novel IoT/CPSS data processing pattern based on the

stream processing technology, aiming to distribute the workload among a cluster of edge devices, involving

mobile nodes shared by contributors on a voluntary basis, and paving the way for cluster computing at the

edge. Experiments on an intelligent surveillance system deployed on an edge device cluster demonstrate the

feasibility of the proposed approach, illustrating how its distributed in-memory data processing architecture

can be effective.

INDEX TERMS Internet of Things, Internet of People, cyber-physical-social system, edge computing, big

data, stream processing, horizontal and vertical offloading, Apache NiFi.

I. INTRODUCTION

The increasing demand for efficient network communications

and data transferring, as well as the ubiquitous penetration of

‘smart’ devices in almost every aspect of people’s everyday

life have been supported by the rapid progress in information

and communication technologies. These advancements have

boosted the development and wide adoption of the Internet of

Things (IoT), and introduced emerging research challenges

to be addressed by both industrial practitioners and academic

researchers. Among the range of pressing concerns, such as

security and interoperability [1], a particularly demanding

topic for investigation is computational speed and reaction

time of IoT systems in performing complex computational

tasks that require extra resources, given the increasing amount

of data and time constraints.

This is particularly critical in the light of the increasing

number of human agents in the digital world and the active

involvement of people in a wide range of cyber-physical

processes, leading to the emergence of cyber-physical-social

systems (CPSSs). As a result, the amounts of generated

data are already growing exponentially, as the number

of personal and mobile devices has exceeded 7 billions

according to recent statistics.1 On the other hand, however,

the active involvement of people in the IoT opens previously

unseen opportunities for leveraging this global collection of

personal devices to support various computational activities

1http://www.independent.co.uk/life-style/gadgets-and-tech/news/there-
are-officially-more-mobile-devices-than-people-in-the-world-
9780518.html
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in participatory and/or opportunistic way, as envisioned by

the Mobile Crowdsensing [2] approach.

Involving mobile devices in data processing tasks partially

overlaps with the Fog Computing paradigm that has emerged

to complement the remote Cloud-based hardware resources

with much lower network latency of computational nodes

located in close proximity to the actual source of data. This

way, Fog/Cloud resources are usually provisioned as elastic

on-demand services, typically implementing a ‘vertical’

offloading pattern. This established way of task offloading,

data transferring and processing typically includes three main

levels starting from sensing devices at the bottom ‘edge’

of such topologies, which generate data then transferred

through network devices (e.g. gateways, switches, routers)

to the server side (e.g. a ‘cloudlet’ or a public Cloud), to be

permanently stored and processed by a dedicated software

analytics system. As a result of this analysis, a feedback

command may be propagated down the network to enable

edge device actuators. In this light, balanced coordination

across Fog and Cloud to support the IoT data processing

has been widely explored. As a result, existing works aim at

enabling resource allocation and orchestration, which would

transparently provision containerised resources, finding a

right balance between low network latency of the Fog [3]–[7]

and increased computational capacities of the Cloud [8]–[11].

This way, IoT systems can benefit from seemingly infi-

nite computational and storage capabilities of a nearby Fog

node or a remote Cloud platform. On the other hand, however,

there is a considerable delay between the moment when raw

data is first collected and the moment when it is processed,

correctly interpreted, and corresponding reactive actions are

taken. There are more and more scenarios, indeed, where

the established vertical model fails to meet pressing require-

ments in terms of reaction time and network latency, espe-

cially in the presence of considerably large datasets, typically

referred to as Big Data. These scenarios may demand for

near real-time data processing and reaction, and thus cannot

rely on (potentially outdated) results obtained by sending data

over the network to a remote location. Admittedly, there are

emerging situations, when time delays and network latency

cannot be tolerated, and require more timely decision-taking

procedures. This becomes particularly challenging in the

context of CPSSs involving personal mobile devices, which

are typically bandwidth-constrained, calling for novel solu-

tions to address the emerging Big Data issues.

To this end, the presented paper aims to facilitate

computationally-intensive processing of large CPSS datasets,

using clustered computing techniques on top of wireless

communication facilities and exploiting mobile devices

contributed by their owners. More specifically, the paper

proposes a distributed Stream Processing architecture to

enable support for data processing by clustering edge devices

and utilising their shared pool of computational resources.

By pushing intelligence to the very edge of the network

topology – that is, as close to the data source as possible –

the proposed architecture aims at minimising the amount of

data sent to the server, and thus achieve faster execution

results. This way, the proposed solution is able to benefit from

the human participation in CPSSs by aggregating personal

portable devices and involving them in collaborative data

processing activities.

In this light, the main contribution of the paper is five-

fold: i) a solution for Big Data stream processing at the

network edge, implementing the Edge Computing paradigm;

ii) new collaborative, horizontal offloading patterns for

distributed data processing on clustered edge devices;

iii) a Stream Processing architecture extending Apache NiFi

with new services to discover and select devices able to

perform an offloaded task according to specific (hardware

and software) requirements, as well as to orchestrate the

resulting edge cluster; iv) a framework providingmechanisms

for managing social involvements and contributions in the

context of CPSSs; and v) a comparison of vertical (i.e. Cloud)

and horizontal (i.e. Edge) offloading patterns through an

experimental case study.

Section II introduces the existing limitations and chal-

lenges through a running surveillance system example.

Section III explains the main aspects of the proposed

approach, whereas Section IV looks into details of the

node involvement, covering subscription, authentication and

networking mechanisms used to enable ad-hoc edge clus-

ters. Section V provides an in-depth description of the

proposed clusterisation process of edge devices. Section VI

describes the design and implementation of the proof-of-

concept prototype, compares the two (i.e. vertical and hori-

zontal) offloading models via benchmarking experiments,

and discusses obtained results. Section VII summarises the

paper.

II. MOTIVATING EXAMPLE

The IoT can be seen as an ecosystem of considerably ‘smart’,

network-connected objects interacting to provide services

and applications. From this perspective, people are typically

seen only as passive users of the IoT services, neglecting the

potential opportunity to involve them in the cyber-physical

loop. The situation is changing with the increasingly popular

social trends on the sharing economy and technological

approaches based on the principles of volunteer computing

and crowdsourcing. According to these approaches, people

are expected to actively play an important role in cyber-

physical processes, thus giving rise to the concepts of the

Internet of People (IoP) [12] and the Social IoT (SIoT) [13].

The two concepts extend the established IoT with social

aspects, highlighting human behaviour, social relationships,

and interactions between people and their cyber-counterparts,

i.e. personal assets, such as mobile and portable devices. By

including people in cyber-physical processes, the traditional

digital ecosystem is converted into a cyber-physical-social

system [14], [15], defined as ‘‘. . . a kind of common complex

system that is constituted by a physical system, its social

system including human beings, and the cyber system that

connects both of them’’ [16].
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FIGURE 1. The ‘vertical’ offloading pattern in CPSS/ISS.

In the context of the SIoT and IoP, CPSSs are characterised

by a constantly growing number of nodes, whose interac-

tions usually generate extreme amounts of data, coming from

devices equipped with sensing capabilities. Such IoT data

streams have introduced previously-unseen workload on the

network communication infrastructures, calling for proper

management, collection, storage and processing solutions to

address challenges related to (Big) data volume, variety and

velocity. Indeed, the ever-increasing amounts of raw data

generated in these contexts render the established ‘vertical’

offloading pattern, depicted in Fig. 1, not scalable enough

to support timely data processing. In the first place, this

affects the very bottom link of the network topology, which is

typically implemented using one of the existingwireless tech-

nologies, potentially limited in their network throughput and

not necessarily designed to handle large amounts of dynam-

ically generated raw data. Nevertheless, the link between

edge devices and IoT gateways is seen as a primary system

component to face the BigData challenges to ensure that large

amounts of raw, unprocessed data are dynamically transferred

from edge devices to network gateways, located at distances

ranging from several meters to several kilometers. As a result,

these links often become system bottlenecks with a negative

impact on the overall performance of IoT systems. As a

result, the delayed data analysis and generation of feedback

commands often cannot be tolerated by some mission-critical

systems, which rely on timely (i.e. near real-time) operation.

As far as the SIoT is concernd, the involvement of people

in the IoT ecosystem further complicates this scenario, but,

on the other hand, can introduce a potentially disruptive

positive effect on the processing capabilities and perfor-

mance. In this respect, volunteer-based and crowdsourcing

approaches can be exploited to support data processing in a

relevant application scenario. This calls for mechanisms and

tools to support such approaches, allowing to enrol contrib-

utors as well as to manage their random and unpredictable

joining and leaving (i.e. churning), in a trusted way.

An example of such emerging CPSS domains, where the

increased amount of data, originated by different, wireless

connected sources, has to be processed in a timely manner,

is Intelligent Surveillance Systems (ISSs) [17], [18]. ISSs

are surveillance systems, where the involvement of human

operators has been minimised to avoid such shortcomings

as, for example, high labour cost or limited capability for

multiple screens. ISSs rely on existing technological achieve-

ments in computer vision, pattern recognition, and artificial

intelligence, used to identify certain patterns (e.g. abnormal

behaviour, suspicious objects, missing people, etc.) in video

streams. More specifically, ISSs are widely adopted to

enable timely detection of crime suspects in crowded public

spaces. Usually, such an ISS consists of a number of

Internet-connected cameras, installed in a public location

(e.g. building, shop, airport, stadium, concert hall, etc.),

constantly streaming video to one central node equipped with

more powerful computational and storage capabilities. Video

streams are then processed using existing image/object recog-

nition techniques to detect suspects and prevent potential

crimes/terrorist attacks by alerting police officers nearby.

Object detection and recognition are considered a

computationally-intensive task, which cannot always be

performed by an edge device (i.e. a CCTV camera) on its

own, and therefore usually requires to transfer raw data

to an external computational service for analysis. This is

illustrated by Fig. 1, in which raw images from a CCTV

camera are transferred through a wireless network to a

Fog/Cloud server for processing. That is, CCTV cameras

are mainly responsible for video capturing and occasionally

for simple detection and recognition operations, whereas

more complex operations (e.g. object detection/recognition

in crowded areas) are usually undertaken on the server side.

In this respect, a typical ISS workflow can be conceptually

split into the following three main steps, as depicted in Fig. 2:

FIGURE 2. A typical ISS workflow.

1) Video capturing is undertaken by edge CCTV cameras,

which continuously capture raw video and transfer it

for processing as a continuous video stream or as a

sequence of sampled static images. Given the increased

adoption of wireless CCTV cameras and the ever-

growing image sensor resolution and quality, this may

result in extremely large amounts of data being trans-

ferred over a wireless network to a remote processing

location.

2) Feature extraction is usually performed by the

server, which applies sophisticated image processing
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techniques to detect specific elements in the input

video. Images, containing detected objects are then

transferred for object recognition.

3) Object recognition is also usually performed by the

server, which recognises detected elements, typically

with respect to an input training set.

Arguably, the resulting three-step workflow might take

quite long, and a corresponding reactive action (e.g. the police

is alerted) might be generated and executed too late. As it

follows from this motivating scenario, the performance of

an ISS is strongly affected by the quality of its connection,

worsening with the number of hops – a limitation hardly

addressable within the context of the ‘vertical’ offloading

model due to the inevitable requirement to send data to

a remote Fog/Cloud processing location. By the time the

Cloud-based face recognition software detects a suspect crim-

inal and sends back a corresponding signal, this person may

have already escaped the initial CCTV-covered area. In these

circumstances, minimisation (or complete elimination) of the

amount of data transferred over the network comes as a

natural fit.

III. PROPOSED APPROACH

As illustrated by the presented ISS scenario, the CPSS data

processing challenges should be addressed by an overar-

ching approach attacking the problem from different perspec-

tives, i.e. Edge/Fog Computing – on the one hand, and Big

Data – on the other, converging into a lightweight solution for

data processing through computation offloading to collocated

edge devices. Given the increasingly important role of human

agents in the SIoT, these may include personal and mobile

devices, contributed by their owners to support dynamic IoT

scenarios, such as the ISS one, by processing computational

tasks offloaded by some other closely-located edge device

(e.g. a CCTV camera surveilling the local area).

Taken together, these considerations propose a solution

that aims at implementing the above discussed idea of

combining Big Data and Edge Computing approaches into a

framework enabling in-memory processing of computational

tasks offloaded to a cluster of edge device using Stream

Processing techniques, thereby paving the way for the novel

approach of Clustered Edge Computing. Three main factors

underpin this idea of ‘horizontal’ offloading using a Stream

Processing architecture.

1) Edge (and especially mobile) devices are getting more

andmore powerful in terms of their hardware specifica-

tions (i.e. CPU and RAM). They have advanced beyond

the simplistic notion of collecting and transferring raw

data, and nowadays act as fully-functional processing

units in their own right. They are widely recognised and

used as effective computing systems, and are more and

more often taken into account for a laptop/desktop PC

replacement.

2) The world is experiencing a continuously growing use

of embedded and mobile devices in all aspects of

people’s daily activities. In the IoT era, the world is

flooded with all kinds of ‘smart’ devices, which can be

seen as potential contributors to the shared pool of local

cluster resources.

3) The last but not the least, despite the increasing

processing capabilities of edge devices, they are still

relatively limited in their storage functionality and

are not yet equipped with full-featured hard disks to

store large data sets. In this light, it naturally follows

that edge devices are more suited for in-memory data

processing – i.e. data processing, which does not write

data to a local mass storage, but rather keeps all the

computation in memory, thus potentially achieving

better performance.

Starting from these three technological trends, the rationale

behind the proposed approach is to maximise the amount of

computation to be performed on edge devices – i.e. as close to

the original source of data as possible – such that minimum

amount of data is sent over the network to the Fog/Cloud,

and results can be achieved almost immediately on the spot.

To this purpose, the traditional ‘vertical’ data processing

pattern and the corresponding IoT reference model [19]

should be revised. As opposed to Fog Computing that actively

involves networking-level processing units (e.g. gateways,

routers, ‘cloudlets’, etc.), the suggested approach assumes

pushing intelligence to the very edge of the network – that is,

to end devices, exploiting Fog Computing mechanisms only

to coordinate their activities. To implement this, the proposed

approach creates an architecture for distributed clusters of

edge devices to share computational tasks immediately on the

spot on top of Stream Processing middleware.

This is seen as a next step from the current state-of-the-

art baseline (i.e. individual edge devices are able to perform

data processing only within their computational and storage

capabilities, otherwise the data are transferred to the Cloud

and/or the Fog) towards an architecture, where the Cloud

is not seen as a central component anymore, but only as

a secondary processing/storage location. In these circum-

stances, the primary location for data analytics remains the

local distributed cluster of edge devices (i.e. the Edge envi-

ronment), which are able to spread the incoming work-

load among themselves, avoiding time delays associated

with network latency, and thus achieving better performance.

Fig. 3 is intended to demonstrate through the ISS example

that the majority of data exchange and computation takes

place at the very edge of the network topology. Smart edge

devices (e.g. mobile phones and smart CCTV cameras) form

a local cluster and are able to spread the workload among

themselves. This way, the CCTV camera can distribute

video/image processing tasks among worker nodes consti-

tuting the local edge cluster.

Clustering, churn management, AAA (authentication,

authorisation, and accounting) and security, job distribution

and scheduling, data serialisation, and synchronisation are all

challenging tasks in their own right, and require an advanced
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FIGURE 3. The ‘horizontal’ offloading pattern in CPSS/ISS.

middleware platform, supporting all these activities. As stated

above, given the relatively constrained nature of edge devices,

such a platform is expected to be lightweight and support

in-memory data processing of continuously streaming raw

data. Taken together, all these factors have paved the way for

Apache NiFi2 to be employed in the context of the presented

research effort as the underlying Stream Processing cluster

middleware.

Apache NiFi is an open-source Stream Processing frame-

work, based on the notion of ‘Flow-Based Programming.’

A data flow conceptually represents a multi-step processing

sequence, through which data is streamed. These processing

steps, known as ‘processors’, range from simple mathe-

matical operations to more advanced ones, such as transla-

tion or data format conversion. To date, there are more than

100 built-in processors in NiFi, with a possibility of devel-

oping and plugging user-customised processors. Processors

are equipped with input/output ports, which serve to connect

them, and thus create complex data flow topologies.

Based on these considerations, a three-tier architecture

on top of NiFi, depicted in Fig. 4, is proposed to deal

with the described CPSS scenarios that involve Big Data

Stream Processing at the very edge. The proposed archi-

tecture includes the hardware, middleware, and software

tiers, adapting and extending them towards edge devices and

associated requirements. The diagram also highlights novel

aspects, which have not been part of the NiFi default stack.

First, the hardware level is extended beyond the traditional

2https://nifi.apache.org/

FIGURE 4. Three-tier architecture on top of Apache NiFi.

concept of full-blown servers, and now also includes edge

devices together with physical sensors/actuators attached to

them. In the context of ISSs, these might include smart CCTV

cameras, as well as any other smart devices, equipped with

processing and networking capabilities. Second, the middle-

ware level implements five additional functions – namely,

Task Partitioning, Node Discovery, Node Selection, Place-

ment and Configuration, and Orchestration, as well as

employs Overlay Networking facilities with support for

ad-hoc network topologies, as required by the dynamic nature

of mobile devices and (wireless) networks. As far as the ISS

scenario is concerned, these activities serve to establish a

cluster of edge devices by discovering and selecting appro-

priate network devices that are then configured to run the

face detection/recognition routine. These novel features are

specifically required to handle dynamic edge clusters, and

their roles in the proposed approach are discussed below in

more details.

IV. EDGE NODE CONFIGURATION AND MANAGEMENT

To support the proposed solution andmodules, corresponding

enabling technologies and mechanisms should be provided.

Constituted by multiple mobile and portable smart devices

that can move across different geophysical and network loca-

tions, the CPSS ecosystem is very dynamic in its nature,

mainly due to its social component. Accordingly, the related

challenges can be conceptually split into issues dealing with

user subscription, AAA, and reputation – on the one hand,

and ad-hoc networking – on the other.

A. SUBSCRIPTION AND AAA

Asa fundamental underpinning og the proposed approach,

it is necessary to provide basic subscription and AAA
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mechanisms to enable contributors and edge nodes to join

the CPSS ecosystem. In particular, each contributor/node

has to define a policy regulating the contribution, by, for

example, specifying an upper bound on resource (CPU,

memory, storage) utilisation, or a lower bound on the battery

level, or even more complex compound metrics. Moreover,

a reputation management system associated with proper

incentive mechanisms has to be provided to improve node

discovery and selection, rewarding contributing nodes with

a positive record of completed tasks.

All such features call for an overarching solution that could

be provided by the concept of community, widely adopted

in the IoT, IoP and SIoT contexts such as smart communi-

ties [20]. A community-based approach could be a way of

addressing the issues raised above, relying on a community

management framework providing all the required services,

similarly to the concept of virtual organisation in Grid

Computing.

FIGURE 5. Sequence diagram of subscription and authentication phases.

To establish and manage a CPSS community, a specific

server hosting a Web service on a (physical or virtual)

machine is required (i.e. CPSS Community WS, as shown

in Fig. 5). It is in charge of managing new node subscrip-

tion, also providing AAA facilities and advanced (overlay)

networking mechanisms (which are discussed in the next

section). Subscriptions can be implemented through Web

forms to be filled with personal data (full name, login, pass-

word) and a contribution profile (bounds on resource utilisa-

tion, battery depletion, etc.). The full registration request is

then submitted to the CPSS Community WS which elabo-

rates it and sends back a configuration package including the

contribution client and related settings (such as the contri-

bution profile). This is then installed by the new node that,

upon logging in the CPSS Community, can trustfully interact

with other nodes (thereby becoming a CPSS Community

Node).

It is important to remark that the community-based mech-

anism is not strictly necessary for the proposed approach,

but if computational task offloading has to be performed

with some (even minimal) security/trustworthiness require-

ments, it becomes mandatory. In this regard, the CPSS

Community WS also provides other facilities that can

prove to be useful during cluster node discovery and selec-

tion (in particular, for mobile devices), such as reputation

management and related incentivemechanisms. Furthermore,

as stated above, it also provides advanced networking func-

tionalities in order to overcome networking issues through

overlays, as discussed in the following section.

B. NETWORKING

To establish an edge cluster it is expected that involved

edge nodes are able to communicate via a network. Given

the increasingly important role of mobile devices, relying

on an assumption that edge clusters are based on a fixed

network topology limits the application scope of the proposed

approach to rather static, well-defined scenarios, where

cluster nodes and their network locations are known well

in advance and, therefore, are not necessarily required to be

discovered and selected. On contrary, CPSS network topolo-

gies are typically not fixed, but rather continuously change

with respect to mobile nodes joining and leaving the network

at unpredictable rates.

As a more generic, scalable and flexible alternative, in the

presented approach, dynamic run-time clusterisation is aided

by overlay networking facilities. To this end, we extend the

existing NiFi’s built-in support for static network and cluster

configurations and introduce support for ad-hoc topologies,

in which worker nodes can be discovered, selected, added

and removed dynamically at run-time in a seamless and trans-

parent manner. Since the dynamic nature of such topologies is

underpinned by wireless connectivity coupled with mobility

patterns, possibly inducing the traversal of different network

domains, it is important to take into account some issues

that may arise as a result of these conditions. These issues

may include (sudden) introduction of address/port transla-

tors or security-oriented appliances (e.g. firewalls) between

any two nodes, which may immediately block or significantly

modify inter-node communications, hindering the process of

wireless node discovery and clusterisation.

We rely on existing work [21] for that, to provide

support for (transparent) network communications among

edge devices traveling across heterogeneously-administrated

subnets (e.g. in a Metropolitan Area Network, or even

smaller scope, such as a university campus), with the

help of an (overlay) networking coordinator (i.e. CPSS

Community WS), which gets contacted by all nodes at

the system start-up to establish an always-on command-and-

control stream of messages, compliant to WebSocket-based

WAMP (Web Application Messaging Protocol). Available

commands to be sent by the coordinator include requests for

nodes to establish (reverse) tunnels to the CPSS Community

server, as shown in the bottom of Fig. 5.

In this solution, WebSockets are leveraged to actually

pierce ‘middle boxes’ and implement overlay networks
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among CPSS edge nodes by transporting (node-initiated)

tunnels, as described in [22]. In particular, transparent

Layer-3 (L3) networking is enabled by the overlay coor-

dinator instantiating, managing and routing coordinator-

terminated tunnels to all cluster nodes. Network barriers

are overcome through WebSocket-based (reverse) tunneling,

setting up the functional equivalent of private, isolated, secure

VPN environments. This way, clustered edge devices, such as

smart CCTV cameras, are enabled to discover and interact

with peer nodes, as if they all were on the same physical

network.

V. CLUSTERISATION PROCESS

The clusterisation process covers several steps to be taken by

a node either to i) establish an edge cluster from scratch, or

ii) join an existing cluster. In the former case, the node acts

as the cluster initiator and governs the whole clusterisation

process, eventually becoming the cluster coordinator. In the

latter case, it interacts with the coordinator of an already

existing cluster in order to join the cluster. From a behavioural

perspective, this dynamics of a NiFi edge cluster adopting

the proposed solution is shown in Fig. 6. It highlights the

workflow of a stream processing job in an edge cluster –

i.e. partitioning into tasks to be (horizontally) offloaded to

worker nodes.

FIGURE 6. Sequence diagram of the clusterisation process.

As discussed above, involved nodes are resource-

constrained edge devices, which could be battery-powered

and/or could not have enough resources to support the

requested computation on their own. In the CPSS context,

contribution and mobility of personal devices rise up the

complexity of the problem at hand. In the described ISS

scenario, the activity is initiated by a specific CCTV camera,

referred to as the Initiator (which will later become the

Coordinator), which starts interacting with the other nodes

by sending a broadcast discovery offloading request through

the Node Discovery service provided by the framework.

These requests specify the main functional requirements

(both hardware and software) each node has to provide to

become part of the clustered computation.

Edge nodes meeting such requirements could either

accept or refuse the offloading request. In the former

case, available nodes could be further selected depending

on other (non-functional) parameters (e.g. distance, battery

life-time, potential security issues) at the Selection step.

Next, the worflow topology is placed and configured on

the selected nodes at the Selection and Configuration step.

Once the cluster configuration is finalised, the Processing

phase will run on the selected nodes in parallel to

Orchestration/Lifecycle Management on the Coordinator.

The latter is in charge of the Orchestration service, which

interacts with the Job Scheduling & Synchronisation module

of the customised NiFi framework. Further details on these

stages are reported below.

A. TASK PARTITIONING

Usually tasks to be processed are computationally-intensive

to an extent making individual edge devices not capable of

accomplishing them on their own. This limitation requires

edge devices to partially offload computation to peer

network nodes. In the Stream Processing paradigm, such

task offloading can be seen as a multi-step data processing

workflow, in which each individual step is performed by

a dedicated software component deployed on one of the

nodes, constituting a local-area cluster. From this perspective,

a computational task is seen as a pipelined sequence of atomic

data processing operations. In this light, task partitioning –

i.e. identifying individual steps of a more complex task, and

their interconnections – becomes an important challenge.

Moreover, task partitioning also serves to outline functional

requirements for future cluster nodes – that is, by identifying

specific operations within the workflow and understanding

what resources are required to perform them, it is possible

to discover and select corresponding devices with matching

capabilities.

Task partitioning is acknowledged to be the most chal-

lenging functionality to be implemented in an automated

manner. Closely related to the notion of software compos-

ability, it requires exhaustive descriptions of all the indi-

vidual elements of a complex task, including intermediate

processing steps and input/output ports. Such descriptions

are expected to model both the semantic (e.g. what informa-

tion is being transferred or processed, or what functionality

an individual processing step implements) and the syntactic

(i.e. the structure and the format of the data) aspects. Ideally,

taking these self-describing building blocks, the system is

able to chain complex workflows, validate information flows,

as well as input data and output results in a completely auto-

mated manner. Admittedly, task partitioning is a challenging

research topic in its own right, going beyond the scope of the

presented research.

Therefore, in the ISS example, it is assumed to be

performed manually – i.e. the system administrator is aware
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of the individual atomic steps constituting the use case

scenario, and thus is able to design the workflow. This way,

also reflecting Fig. 2, the following three tasks have been

identified for the ISS workflow:
1) CaptureVideo (CV) continuously captures video from

a camera, splitting the stream into separate frames

(i.e. static images) and sending them to an output port.

2) DetectFaces (DF) implements feature extraction by

detecting and cropping human faces in each of the

received frames. Once faces have been detected, corre-

sponding objects are serialised and transferred to the

next task/processor.

3) RecogniseFaces (RF) is responsible for the actual

recognition of faces detected at the previous stage. This

component is first trained against a predefined set of

human faces. Once trained, the processor is ready to

perform the face recognition routine: it takes as input an

image (containing a face), processes it with respect to

its training set, and outputs a prediction value for each

of the faces in the training set. Simply put, it decides

to which extent the detected face resembles each of the

faces in the training set.

B. RUN-TIME NODE DISCOVERY

To tap into the idle potential of ubiquitous edge devices, it is

important to discover them first, thus facilitating their inte-

gration into a local-area cluster. This process should happen

dynamically at run-time, since many of the edge devices

are expected to be mobile (e.g. mobile phones, tablets,

and other hand-held portable devices) – i.e. joining and

leaving the wireless network at unpredictable rates. Further-

more, it becomes particularly challenging, as far as edge

devices with sensing/actuating capabilities are concerned –

i.e. as opposed to more traditional Stream Processing servers,

these need to be (semantically) described to be discoverable.

Accordingly, node discovery is seen as a first step of

the two-phase procedure, in which suitable cluster nodes

are first discovered and then selected. In the presence of a

wide range of ‘heterogeneous’ edge devices, it is not guar-

anteed that all of these nodes will necessarily be capable

of processing the current workload for a number of reasons

(e.g. missing hardware/software components, low compu-

tational capabilities, high network latency, etc.). In these

circumstances, it is important to check first whether a

particular node is indeed suitable for processing a given

task – that is, to discover nodes and check their functional

compliance for the aforementioned task. To enable such kind

of analysis, it is expected that the cluster initiator, after

partitioning the task and identifying corresponding require-

ments, will send a broadcast request to potential cluster nodes

(which could be conveyed though the CPSS Community

WS to enlarge the scope). This offloading request may

include both functional and non-functional requirements,

specifying, for example, available hardware resources and

software components, the type of power supply (power line vs

battery), the type of network connection (wired vs wireless),

the distance from/to the cluster initiator, the type of device

(static vs mobile), security and privacy mechanisms available

on-board, etc. Next, these nodes are expected to perform

basic compliance check by analysing whether they meet the

incoming task requirements or not, by matching them against

their self-descriptions. For example, in the considered ISS

scenario, there may be a set of ten computational nodes, out

of which only five are actually equipped with face detec-

tion/recognition software, and, therefore, only these five will

reply to the cluster initiator, acknowledging they are function-

ally suitable to participate in the given ISS scenario.

Implementation-wise, in the ISS proof of concept,

discovery can be implemented by means of the TCP port

scanning facilities integrated into NiFi’s initialisation code.

As a result, the cluster initiator (i.e. the smart CCTV camera)

first scans for other nodes with a specific network port

open – this way, it becomes aware of other nodes running

the NiFi middleware, and, therefore, potentially ready to join

the cluster. To avoid situations when some other software

occupies the given port, nodes discovered via the port scanner

are also expected to report their unique ID, as part of the

heartbeat payload. If no node ID is reported, the network

device is assumed not to be running a NiFi instance, and

therefore is no longer considered for clustered processing.

Thus, a prerequisite for node discovery lies in leveraging the

aforementioned overlay networking capabilities to establish a

virtual network for unhindered communication among nodes,

as discussed in Section IV-B.

C. NODE SELECTION

There are many situations when functional compliance check

of task requirements performed by potential cluster initia-

tors is not enough to identify suitable nodes and establish

the cluster. There is a crucial distinction to be taken into

consideration, in this respect – it is important to differen-

tiate between suitability for a task and suitability for being

part of the cluster. The motivation behind this difference

is that nodes have a limited view on the arrangement of a

cluster – that is, they are only able to evaluate their individual

capabilities to address the task requirements, but not their

suitability to be engaged in the cluster. For example, a device

might be equippedwith sufficient hardware resources, as well

as face recognition software (i.e. thus meeting the ISS task

requirements). However, it might turn out that, due to its

network location and configuration, network latency between

the cluster initiator and this node is unacceptably high, which

might become a cluster bottleneck in the future. Admittedly,

the node itself is not expected to be aware of this ‘external’

context-related information, which becomes known only to

the cluster initiator once it receives acknowledgements from

nodes. In these circumstances, the cluster initiator has to

govern these internal cluster dependencies, aiming to achieve

an efficient and robust topology.

Accordingly, the selection of edge nodes – i.e. the second

step after the node discovery – becomes an important duty

of the cluster initiator that receives replies from all nodes,
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and, therefore, has a global view on the system, including

context-related information. The cluster initiator has to

further analyse and evaluate available nodes that acknowl-

edged its offloading requests, with respect to their suitability

to become part of the cluster for the given task. The selection

process is supposed to be underpinned by a set of corre-

sponding policies, which manage the selection process and

provide the initiator with selection decision rules.

Referring to the target ISS implementation, after discovery,

the initiating CCTV camera is aware of other network nodes,

which have ‘advertised’ themselves (e.g. unique ID, node

type, available hardware resources, network location, avail-

able software functionality, etc.) by exchanging heartbeats.

The heartbeat payload can be a JSON message, which

includes all relevant fields. Next, the CCTV camera, based

on node selection policies and task requirements on the one

hand, as well as on available nodes and resources on the other,

is able to configure the cluster as required. More specifically,

in the context of the presented ISS scenario, based on internal

selection rules, the smart camera decides to involve mobile

phones only if they will have sufficiently high reputation and

reliability. Furthermore, a corresponding policy for personal

and mobile devices contributing to the ISS can force their

owners to inform the system before leaving and complete

ongoing task processing. This way, more stable behaviour

of the overall system and guaranteed job processing are

expected since there would be no dropped tasks.

D. PLACEMENT AND CONFIGURATION

Once all nodes and their capabilities are identified, it is time

to actually deploy and configure the workflow topology on

the resulting cluster, taking into account available resources.

More specifically, it is important to align the software require-

ments with the number of cluster nodes and their computa-

tional resources. For example, having identified that there are

mobile nodes present in the cluster, it makes sense to assign

these nodes with less intensive tasks – i.e. taking less time to

be accomplished, given that these nodes may disconnect from

the cluster at any point.

From this perspective, such behaviour can be described

as ‘software-defined’ – that is, high-level software require-

ments determine and modify the underlying infrastructure

and network topology. To implement such kind of software-

defined functionality, the proposed approach utilises NiFi’s

API and extends its core functionality in following three

ways.
1) Creating custom prioritisers that define the order,

in which jobs are delivered to processors, is the

simplest, yet limited way of implementing ‘software-

defined’ behaviour inNiFi. In addition to default priori-

tisers (e.g. ‘First In – First Out’, ‘Last In – First

Out’, etc.), an attribute-based custom prioritiser can be

defined. Based on flowfile attributes, such a custom

processor is able to define which flowfile in a queue

has the highest priority, and, therefore, has to be

processed first. Prioritisers, however, are not expected

to modify the underlying cluster configuration or

workflow topology, but are rather used to manage the

order of job processing.

2) The Stream Processing paradigm typically assumes

that individual processors within a workflow are

loosely coupled and there is no direct communication

between them – that is, when a NiFi topology execution

is triggered, a flowfile is transferred forward from one

processing step to another via flowfile queues. This

way, processors are isolated from each other, and are

not ‘aware’ of upcoming processors (and their capabil-

ities) that are yet to appear down the workflow pipeline.

This means that dynamic run-time flowfile routing

based on characteristics of upcoming processors does

not seem to be feasible (or at least is not so straightfor-

ward). In these circumstances, flowfile attribute-based

compliance check might be a solution. For example,

to ensure that a flowfile containing a video frame will

be processed by processors running on a node with

sufficient software/hardware resources, it is required

to put corresponding requirements as attributes on the

flowfile. Thus, once received, flowfile attributes will be

parsed to decide whether the current node is an appro-

priate candidate for processing. If not, the processor

will roll back – i.e. the flow file will be first placed back

on the input queue, and eventually will be transferred

to a different node.3

3) NiFi can be accessed and managed via its RESTful

interface.4 Among other things, the API provides

entry points for querying and updating the current

cluster configuration by, for example, connecting/

disconnecting nodes. More specifically, by checking

compliance of the nodes, currently constituting the

cluster, it is possible to isolate (i.e. temporarily discon-

nect) non-compliant ones from the cluster, and spread

the workload only among the rest of the nodes, which

acknowledged themselves as computation-ready, thus

ensuring that only suitable cluster nodes participate in

the current computation. This kind of node discovery

can be implemented as a programming script or a sepa-

rate custom processor – in both cases they need to be

invoked before executing the main topology.5

Once the CCTV camera (now – the Coordinator) knows

all nodes within the cluster, it is time to deploy the work-

flow topology specified by partitioning, as described in

Section V-A. This functionality can be implemented by

3To avoid situations where a flowfile is being infinitely queued due to
the absence of relevant processing nodes, it is also possible to implement a
custom processor, which would query the list of available processing nodes
in the system, and, if there are no suitable ones, remove the flowfile from the
queue and persist it in a repository for later processing.

4NiFi’s Web interface is essentially a visual user-friendly ‘wrapper’ for
invoking RESTful commands.

5Please note that the RESTful API, including cluster and topology
re-configuration commands, can be invoked at any point during run-time.
These calls are, however, not recommended after the processing starts,
as they may result in inconsistent and unstable behaviour of the overall
system.
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FIGURE 7. The ISS scenario of face detection/recognition on a park or suburban area.

means of the previously described NiFi’s RESTful API.

Among other things, the API provides entry points for

querying and updating the current cluster configuration by,

for example, connecting/disconnecting nodes or specifying

standalone processes (i.e. to be executed on a single node).

E. ORCHESTRATION/LIFECYCLE MANAGEMENT

AND PROCESSING

Once the cluster has been initialised, the selected cluster

nodes are ready to proceed with the processing step. The

processing tasks run in parallel on worker nodes, returning

results to the elected cluster coordinator (i.e. the CCTV

camera), which periodically reduces and aggregates them,

according to the application/business logic. In parallel to

this, the coordinator keeps on periodically scanning the

network for new edge nodes appearing on the network in

the meanwhile, supported by the CPSS Community WS.

Whenever a new node appears, it should expect to receive

a task offloading request from the coordinator, perform the

initial compliance check and reply back to the coordinator.

If eventually selected by the coordinator, the node will be

integrated into the running cluster andwill start receiving jobs

for processing. The clustered processing will continuously

iterate on new tasks till completion.

This functionality is also supported by NiFi’s built-in

‘zoo keeping’ functionality that handles node churning and

synchronises topology changes across all cluster nodes –

that is, whenever a new node is added (or an existing node

disconnects), these changes are propagated across the whole

cluster.

VI. CASE STUDY

As discussed in Section II, the presented proof-of-concept

focuses on an ISS use case scenario, where slow or congested

FIGURE 8. The streaming workflow in the context of the ISS scenario.

(mobile) network connectivity prevents sending video

streams for analysis to a remote processing location. This

could apply, for example, to a city park or suburban area,

where a CCTV smart camera is tasked with monitoring

a given area to detect (and recognise faces of) potential

suspects. When the region of interest is clear or just few

people are within the camera field of view, the full processing

workflow (face detection and recognition) can be performed

on the camera itself. If the region of interest becomes

crowded (i.e. exceeding 3-4 people), the camera is no longer

able to process the images, and has to request support

from third parties, i.e. static and mobile devices currently

located nearby. Fig. 7 schematically depicts this case

study.

To implement this case study, NiFi supports custom

processors to be defined and added to the set of existing

built-in processors. The NiFi code base was therefore

extended accordingly to provide the enhanced functionality

and support data processing on an edge cluster, applying

the reference architecture in Fig. 4 to the face detec-

tion/recognition problem for the described ISS scenario. As a

result, the schematic workflow topology depicted in Fig. 8 is

placed on the cluster for execution.
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To implement the processors, an established open-source

face detection/recognition library JavaCV6 has been used.

Essentially, it is a collection of Java wrappers for the C++

library OpenCV.7 which contains a wide range of utility

methods for handling various face detection/recognition

tasks.

A. TESTBED SETUP

The goal of the experiments is two-fold: i) to demon-

strate how the performance of an edge cluster changes,

as volunteering mobile devices join and leave the cluster, and

ii) to evaluate the performance of the cluster of edge (static

and mobile) devices with respect to a similar Cloud setup.

To achieve the former goal, the experiments were conducted

over a relatively long timeline, where mobile nodes randomly

join and leave the cluster of static nodes. Performance corre-

sponding to each time segment, as well as the average

value, were measured accordingly. To address the latter

goal, in addition to the setup with an edge cluster of static

and mobile nodes, two Cloud setups were implemented,

providing similar face recognition functionality.

1) APACHE NIFI EDGE CLUSTER SETUP

To establish the described ISS scenario using the proposed

approach, the following equipment was used:

• an 8-Megapixel camera acted as the CCTV source;

• three Raspberry Pi 3 boards (ARM Cortex A53 CPU

1.2 GHZ, 1GB RAM) were the default static processing

nodes;

• three Android smartphones (Google Nexus 4 – Qual-

comm Snapdragon S4 Pro CPU 2.3GHz, 2GB RAM)

were the selected mobile processing nodes, qualified for

the given scenario.

All devices, connected through a local wireless network,

run a Linux OS with the installed enhanced NiFi middle-

ware. To emulate the Linux environment on top of Android

OS on smartphones, Linux Deploy8 was used.9 The exper-

iments were conducted in a public park, as discussed

above.

2) CLOUD SETUP

The same ISS scenario has been implemented using the tradi-

tional ‘vertical’ pattern, in which a similar NiFi architecture

6https://github.com/bytedeco/javacv/
7http://opencv.org/
8https://github.com/meefik/linuxdeploy
9Admittedly, the performance of such a setup is somewhat lowered by the

virtualised architecture. Also, for demonstration purposes we were running
‘clean’ versions of Android OS with minimum number of user apps and
processes running at the background. In practice, however, it is expected
that mobile smartphones are primarily busy with their personal jobs, and
can contribute their resources to the cluster only partially. We expect this
kind of aspect to be also specified in the contribution profile submitted when
subscribing to the system, as described in Section IV-A.

was deployed on a single cloud instance.10 Such an archi-

tecture includes a Cloud-based NiFi deployment, running

the face detection/recognition processors, which receive

images from a CCTV camera, serialised, and transferred

via a messaging queue. NiFi then extracts images from

the queue, detects and recognises faces in the frames. The

detection/recognition workflow is identical to the one in the

edge cluster setup – i.e. the system is first trained on a set

of images, and then executes the recognition routine over

the incoming frames. With a few modifications, the camera

performs a similar role in this setup – it captures a video

stream, samples it into frames, and sends the resulting images

to the Cloud-based queue service using a public broadband

Internet connection.

To conduct the described experiments, Heroku11 (VM

instance Standard-1X – Intel Xeon CPU 2.5GHz, 512MB

RAM) and Amazon EC212 (VM instance T2 Medium –

Intel Xeon CPU 2.4GHz, 4GB RAM) – two well-established

Cloud platforms – were chosen. As queueing facili-

ties, Amazon Simple Queue Service13 (SQS) and Heroku

CloudAMQP14 services were used respectively.

3) NETWORK CONFIGURATION AND

BENCHMARKING METRICS

The network configuration of the three testbeds is

summarised in Table 1.

TABLE 1. Testbed network configuration.

It is worth noting that unlike the local NiFi setup, both

Cloud setups are assumed to be dependent on the quality

of the external Internet connection. The latter factor puts

the following constraints on the scenario under discussion:

i) the CCTV camera in charge of image capturing is expected

to be connected to the Internet to be able to transfer captured

frames; ii) the network itself might range from dedicated

broadband connections to mobile (i.e. 3G/4G) networks;

10It is worth noting that we also implemented a similar clustered setup
on the cloud, which is composed of five interconnected NiFi-enabled cloud
instances. This, however, turned out to be a redundant and inefficient solution
due to the increased network latency. As it will be demonstrated below
by the experiments, primary time delays in the Cloud setups were due to
the network communication, rather than insufficient processing capabilities.
That is, even in the presence of multiple cloud instances, task processing
is undertaken only by one of them, while the rest always stay idle. For this
reason, the cloud-based NiFi setups are deployed on a single instance, which
is sufficient as far as processing capabilities are concerned.

11https://www.heroku.com/
12https://aws.amazon.com/ec2/
13https://aws.amazon.com/sqs/
14https://elements.heroku.com/addons/cloudamqp
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FIGURE 9. Benchmarking results for the edge cluster. (a) Mobile nodes randomly join and leave the static cluster. (b) Time delay benchmarking results.

iii) the bandwidth of the network might also be limited

in some way (e.g. either traffic-shaped by the network

provider, or throttled by the client system software due to

metered subscription fees).

To be able to compare different setups, it is important

to agree on common benchmarks, against which each of

the them has to be evaluated. Accordingly, the main bench-

marking metric was time delay – i.e. the time difference

between the moment when an image is first captured by the

camera and the moment when the system accomplishes the

face recognition task and returns the results to the Coordi-

nator. This time difference includes all possible delays asso-

ciated with network latency, data serialisation, and queueing.

To achieve more stable and deterministic results, the exper-

iments were conducted over several days with more than

1000 iterations in each setup. In all experiments the size

of images sent over the network for face recognition is

3264 × 2448 pixels, which results in 1200 KB aggregate

payload transferred on average. Considering the sampling

frequency of 5 frames per second, this requires a bandwidth

of 5.86 MB/s.

B. EXPERIMENTS AND BENCHMARKING

Figure 9a illustrates the dynamic behaviour of the edge

cluster, where constantly present three static nodes are

supported by randomly joining mobile devices. Each time

interval on the graph corresponds to 10 minutes, and the blue

time-wise graph depicts how many nodes were present in

the cluster at different time intervals. The horizontal red line

indicates 4.6 – an average number of nodes constituting the

cluster over the overall timeline of 200 minutes.

Please note that for demonstration purposes the graph

in Fig. 9a does not include the transient intermediate phases –

i.e. the time periods, when nodes join and leave the cluster –

which, nevertheless, need to be benchmarked for a fair

overview of the viability of the presented solution. As it

was explained, the current implementation of node discovery

and selection is based on broadcast network scanning, which

makes this process relatively fast (i.e. up to 3 seconds to scan

up to 256 LAN addresses, collect acknowledgements, and

reconfigure device settings accordingly). The performance

drops, however, with restarting the devices – that is, after

each node has overwritten its cluster settings, it is required to

reboot in order for the new configuration to be applied. This

process might take up to 1 minute (depending on the number

of cluster nodes and deployed NiFi processors). Same applies

to a situation, when a node joins an already running cluster –

i.e. having received cluster configuration, it needs to update

its settings, which takes up to 1 minute. This lack of support

for ‘hot plug’ is seen as a limitation of the current version of

Apache NiFi, albeit this feature is already announced to be

included in one of the future releases. In any case, the clus-

terisation process is a one-off process that is not expected to

affect the system performance in the long run.

Figure 9b illustrates how the performance of the cluster

is affected, as more nodes are added to the cluster. More

specifically, the default cluster of three static nodes is able

to process incoming images at the rate of 7.274 seconds per

frame, whereas by including the other three mobile nodes,

this number gets as low as 1.813 seconds per image. Accord-

ingly, taking the considered time frame of 200 minutes and

4.6 as the average number of nodes present in the cluster,

it can be assumed that the average performance of the cluster

approximately equalled to 2.967 seconds per frame.

The results obtained from running the second set of exper-

iments are summarised in Fig. 10, which depicts average

values for time delay for a single job (face detection and

recognition) processing on (edge cluster vs Cloud) nodes,

including the 95% confidence interval, which is negligible

(±1.18 for the cluster, ±4.26 for Heroku, and ±4.14 for

EC2) due to the high number of experiments (>1000).

By looking at the histogram chart, it can be highlighted that

the proposed Stream Processing architecture on top of the

wireless Apache NiFi edge cluster consisting of 6 nodes
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FIGURE 10. Time delay in three setups, ms.

performs up to 5-6 times faster than the Cloud deployments

on top of either EC2 or Heroku, respectively.

VII. CONCLUSIONS

The IoT is still primarily acting as just a source of data, only

capable of pushing this data upwards to the Fog and/or the

Cloud over a network in a vertical manner. However, with

the new generation of users increasingly dependent on their

mobile and portable devices, the IoT has transformed into a

complex cyber-physical-social ecosystem, in which humans

(and their personal devices) are seen not only as passive data

generators and IoT service consumers, but rather as active

participants and contributors. More specifically, the emerging

Social IoT and IoP reveal a great potential of increasingly

powerful portable devices to be leveraged in the context of

various data processing tasks in close proximity to actual data

sources, thereby addressing network latency issues.

As a potential way of fulfilling this vision based on

the principles of volunteer computing and mobile crowd-

sensing, this paper presented a novel approach to perform

collaborative data processing at the very edge of an IoT

network topology, utilising idle resources of mobile devices.

As opposed to the established practice to offload computa-

tional tasks to the Cloud (through the Fog) in a ‘vertical’

manner, the proposed approach relies on enabling local clus-

ters of edge devices on top of the NiFi stream processing

middleware. In these circumstances, wireless edge devices,

belonging to the cluster, are able to spread workload among

themselves – that is, implement a ‘horizontal’ offloading

pattern – andminimise the amount of data sent over the poten-

tially congested link to the wide-area network. As demon-

strated by the ISS proof-of-concept implementation and

a number of benchmarking experiments, the proposed

approach has the potential to outperformCloud-centric setups

by i) keeping the computation locally, close to the data source,

and ii) involving volunteering mobile devices in clustered

computation at the Edge.
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