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The nonclassical symmetries method is applied to a class of reaction-diffusion equations with nonlinear source,
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279 (2003) 168–179].

Keywords: reaction-diffusion equations; Nonclassical symmetries; heir-equations

2010 Mathematics Subject Classification: 35K57, 58D19, 35C05

1. Introduction

In a recent paper [5] a class of reaction-diffusion equations, i.e.

ut = uxx + cux +R(u,x), (1.1)

with R(u,x) arbitrary function of u and x, was introduced as a model that incorporates climate shift,
population dynamics, and migration for a population of individuals u(t,x) that reproduce, disperse,
and die within a patch of favorable habitat surrounded by unfavorable habitat. It is assumed that due
to a shifting climate, the patch moves with a fixed speed c > 0 in a one-dimensional universea.

Motivated by this study here we look for nonclassical symmetries of equation (1.1) with the
purpose of finding explicit expressions of the function R(u,x) and deriving nonclassical symmetry
solutions when feasible.

Nonclassical symmetries were introduced in 1969 in a seminal paper by Bluman and Cole [8].
After twenty years and few occasional papers, e.g. [50], [9], in the early Nineties there was a sudden
spur of interest and several papers began to appear, e.g. [34], [20], [41], [40], [48], [52], [36], [26],

aActually equation (1.1) corresponds to the original model

ut = uzz +R(u,z−ct)

rewritten in terms of a moving coordinate system with x = z−ct [5].
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[18], [19], [2], [47], [3], [24], [22]. Since then the nonclassical symmetry method has been applied
to various equations and systems in hundreds of published papers, e.g. [27], [37], [16], [28], [17],
[54], [13], [11], [12], [15], [51], [4], the latestb being [14], [31], [55], [10].

One should be aware that some authors call nonclassical symmetries as Q-conditional symme-
triesc of the second type, e.g. [13], while others call them reduction operators, e.g. [51].

The nonclassical symmetry method can be viewed as a particular instance of the more general
differential constraint method that, as stated by Kruglikov [33], dates back at least to the time of
Lagrange... and was introduced into practice by Yanenko [57]. The method was set forth in details in
Yanenko’s monograph [53] that was not published until after his death [21]. A more recent account
and generalization of Yanenko’s work can be found in [39].

Among the papers dedicated to the application of the nonclassical symmetry method to
diffusion-convection equation with source, we single out [11] where some nonclassical symmetries
solutions were determined for the equation:

ut = uxx + k(x)u2(1−u). (1.2)

In particular nonclassical symmetries of the type V (t,x)∂x + ∂t were found in the following three
instances:

(i) k(x) = a2x2, (ii) k(x) = a2 tanh2 x, (iii) k(x) = a2 tan2 x, (1.3)

with a arbitrary constant.

In the next Section we recall the concept of heir-equations [43] and their link to nonclassical
symmetries [46]. In Section 3 the nonclassical symmetries of equation (1.1) are reported, along with
the corresponding reductions and solutions. The last Section contains some final remarks.

2. Heir-equations and nonclassical symmetries

Let us consider an evolution equation in two independent variables and one dependent variable of
second order:

ut = H(t,x,u,ux,uxx) (2.1)

If

Γ =V1(t,x,u)∂t +V2(t,x,u)∂x −F(t,x,u)∂u (2.2)

is a generator of a Lie point symmetryd of equation (2.1) then the invariant surface condition is
given by:

V1(t,x,u)ut +V2(t,x,u)ux = F(t,x,u). (2.3)

bNamely papers published within the first half of 2012.
cIn [25] this name was introduced for the first time.
dThe minus sign in front of F(t,x,u) was put there for the sake of simplicity: it could be replaced with a plus sign without
affecting the following results.
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Let us take the case with V1 = 0 and V2 = 1, so that (2.3) becomese:

ux = G(t,x,u) (2.4)

Then, an equation for G is easily obtained. We call this equation G-equation [42]. Its invariant
surface condition is given by:

ξ1(t,x,u,G)Gt +ξ2(t,x,u,G)Gx +ξ3(t,x,u,G)Gu = η(t,x,u,G) (2.5)

Let us consider the case ξ1 = 0, ξ2 = 1, and ξ3 = G, so that (2.5) becomes:

Gx +GGu = η(t,x,u,G) (2.6)

Then, an equation for η is derived. We call this equation η-equation. Clearly:

Gx +GGu ≡ uxx ≡ η (2.7)

We could keep iterating to obtain the Ω-equation, which corresponds to:

ηx +Gηu+ηηG ≡ uxxx ≡ Ω(t,x,u,G,η) (2.8)

the ρ-equation, which corresponds to:

Ωx +GΩu +ηΩG+ΩΩη ≡ uxxxx ≡ ρ(t,x,u,G,η ,Ω) (2.9)

and so on. Each of these equations inherits the symmetry algebra of the original equation, with the
right prolongation: first prolongation for the G-equation, second prolongation for the η-equation,
and so on. Therefore, these equations were named heir-equations in [43]. This implies that even
in the case of few Lie point symmetries many more Lie symmetry reductions can be performed
by using the invariant symmetry solution of any of the possible heir-equations, as it was shown
in [43], [1], [38].

We recall that the heir-equations are just some of the many possible n-extended equations as
defined by Guthrie in [30].

In [43] it was shown that this iterating method yields both partial symmetries as given by
Vorobev in [56], and differential constraints as given by Olver [49].

Fokas and Liu [23] and Zhdanov [58] independently introduced the method of generalised con-
ditional symmetries, i.e., conditional Lie-Bäcklund symmetries. In [44] it was shown that the heir-
equations can retrieve all the conditional Lie-Bäcklund symmetries found by Zhdanov.

In [29] Goard has shown that Nucci’s method of constructing heir equations by iterating the
nonclassical symmetries method is equivalent to the generalised conditional symmetries method.

The difficulty in applying the method of nonclassical symmetries consists in solving nonlinear
determining equations in contrast with the linearity of the determining equations in the case of
classical symmetries.

The concept of Gröbner basis has been used [19] for this purpose.
In [46] it was shown that one can find the nonclassical symmetries of any evolution equations

of any order by using a suitable heir-equation and searching for a given particular solution among
all its solutions, thus avoiding any complicated calculations. We recall the method as applicable to
equation (2.1).

eWe have replaced F(t,x,u) with G(t,x,u) in order to avoid any ambiguity in the following discussion.
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We derive ut from (2.1) and replace it into (2.3), with the condition V1 = 1, i.e.:

H(t,x,u,ux,uxx)+V2(t,x,u)ux = F(t,x,u) (2.10)

Then, we generate the η-equation with η = η(x, t,u,G), and replace ux = G, uxx = η into (2.10),
i.e.:

H(t,x,u,G,η) = F(t,x,u)−V2(t,x,u)G (2.11)

For Dini’s theorem, we can isolate η in (2.11), e.g.:

η = [h1(t,x,u,G)+F(t,x,u)−V2(t,x,u)G]h2(t,x,u,G) (2.12)

where hi(t,x,u,G)(i = 1,2) are known functions. Thus, we have obtained a particular solution of η
which must yield an identity if replaced into the η-equation. The only unknowns are V2 =V2(t,x,u)
and F = F(t,x,u). If any such solution is singular, i.e. does not form a group then we have found
the nonclassical symmetries, otherwise one obtains the classical symmetries [46].

More recently in [7] Bı̂lă and Niesen presented another method that reduces the partial differ-
ential equation (PDE) to an ordinary differential equation by using the invariant surface condition
and then applies the Lie classical symmetry method in order to find nonclassical symmetries of the
original PDE. We hope that an independent researcher will take up the task of comparing the two
methods as it was done by Goard in [29] since we conjecture that Bı̂lă and Niesen’s method, and its
extension, as given in [12], are equivalent to Nucci’s method [46].

3. Nonclassical symmetries of (1.1)

We use a simple MAPLE program to derive the heir-equations. In particular the G−equation of
(1.1) is:

Gt +RGu−Gxx −2GGxu −G2Guu − cGx −RuG−Rx = 0. (3.1)

and the η−equation is

ηt + Rηu +RuGηG −ηxx −2Gηxu −2ηηxG −G2ηuu −2GηηuG

− η2ηGG − cηx −RuuG2 −Ruη −2GRxu +RxηG −Rxx = 0. (3.2)

The particular solution of the η-equation that we are looking for is

η(t,x,u,G) =−R(u,x)− cG+F(t,x,u)−V2(t,x,u)G, (3.3)

that replaced into (3.2) yields an overdetermined system in the unknowns F , V2 and R(u,x). Since
we obtain a polynomial of third degree in G then we let MAPLE evaluate the four coefficients that
we call di, i = 0,1,2,3 where i stands for the corresponding power of u. We impose all of them to
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be zero. From d3, we obtain

V2(t,x,u) = ss1(t,x)u+ ss2(t,x), (3.4)

while d2 yields

F(t,x,u) =−1
3

ss2
1u3 +

1
2

(
∂ ss1

∂x
−2css1 −2ss1ss2

)
+ ss3(t,x)u+ ss4(t,x), (3.5)

with ss j(t,x), j = 1, . . . ,4 arbitrary functions of t and x. Then after differentiating d[1] four times
with respect to u we obtain

∂ 4R(u,x)
∂u4 = 0, (3.6)

which implies that R(u,x) must be a polynomial in u of third degree at most, i.e.

R(u,x) =−a2
3(x)
6

u3 +
a2(x)

2
u2 +a1(x)u+a0(x), (3.7)

where ai(x), i = 0,1,2,3 are arbitrary functions of x. Since none of the remaining arbitrary func-
tions depends on u, and d1 has now become a polynomial of degree 3 in u, we have to annihilate all
the four coefficients, i.e. d1,i, i = 0,1,2,3. From d1,3 we have that ss1(t,x) must be a constant, and
two cases raise:

Case 1. ss1 =±
√

3
2

a3(x),

Case 2. ss1 = 0.

We discuss the two casesf, separately. We remark that a3(x) = 0 corresponds to a subcase of
Case 2., and consequently in Case 1. we assume a3(x) �= 0.

Interestingly enough in Case 2. nonclassical symmetries exist for

R(u,x) =
f (u)

k2(x)
(3.8)

with f (u) any arbitrary function of u, and k(x) either of the following three particular functions of
x, i.e.

k(x) =−cx+2
2x

, k(x) =
c

ec(b0−x)−1
, k(x) =

1
b1

tan
(

x+b2

b1

)
− c

2
. (3.9)

fIn Case 1., one can choose either the plus or minus sign indifferently.
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3.1. Case 1. R(u,x) =− a2
3(x)
6 u3 + a2(x)

2 u2 +a1(x)u+a0(x)

From coefficients d1,2, d1,1, d1,0 we obtain ss2, ss3, and ss4, respectively. All of them are function of
x only, e.g.

ss2 =− 1
2a3(x)

(
−4a′3(x)+

√
3a2(x)+2ca3(x)

)
, (3.10)

where ′ denotes differentiation with respect to x. Now the only remaining coefficient is d0 which has
become a linear polynomial in u. Therefore we are left with two expressions to annihilate, namely
the following underdetermined system of two equations that contain the derivative of a3(x) up to
fifth order, and fourth order, respectively, and lower derivatives of the other three functions a2(x),
a1(x), and a0(x)

−a3
3a(iv)3 −4a3

3a′′3a1 − c2a3
3a′′3 −5a2

2a3a′′3 +3a2a2
3a′′2 +a3

3

√
3a′′′2 −36a3(a′3)

2a′′3
−2a3

3a′′′3 c+8a2
3a′3a′′′3 +a′0

√
3a5

3 −2a′3a3
3a′1 −18a′33

√
3a2 + ca4

3a′1 +4a2
3a′23 a1

−a3
2

√
3a′3 −2a2

√
3a2

3a′′3c+16a3a′3a′′3
√

3a2 +14a2
3a′3a′′3c+3a2

3a′22 +5a2
3a′′23

+ca3
3

√
3a′′2 −5a2

3a′3
√

3a′′2 −6a2
3a′′3

√
3a′2 −2a2

√
3a2

3a′′′3 +13a′23 a2
2 +a′1a3

3

√
3a2

+a3
3

√
3a′2a1 +14a3a′23

√
3a′2 −a2

2a3ca′3 +a0
√

3a4
3a′3 +a2

2

√
3a3a′2

−12a3a′33 c+ c2a2
3a′23 +4a3a′23 c

√
3a2 −a2

3a′3
√

3a2a1 −3a2
3ca′3

√
3a′2

+24a′43 −14a3a′3a2a′2 +a2a2
3ca′2 +3a4

3a′′1 = 0, (3.11)
6√
3
a4

3a(v)3 +7c
√

3a2
3a′3a′2a2 − ca6

3a′0 −3a′23 a3
2 +192

√
3a′53 −26c

√
3a3

3a′′′3 a′3

+2c
√

3a4
3a′1a′3 −264a′43 a2 +5a3

3a(iv)3 a2 +104
√

3a′23 a2
3a′′′3 −18

√
3a3

3a(iv)3 a′3
+2c2

√
3a4

3a′′′3 +4c
√

3a4
3a(iv)3 −2c

√
3a5

3a′′1 −26c
√

3a3
3a′′23 +19ca3

3a′′2a′3 +27ca3
3a′2a′′3

+6ca3
3a′′′3 a2 + c2a3

3a′′3a2 −416
√

3a′33 a3a′′3 +10
√

3a4
3a′′3a′1 +178

√
3a2

3a′′23 a′3
−42

√
3a3

3a′′3a′′′3 −6a3
3

√
3a′2a′′2 +

√
3a2

3a′′′3 a2
2 −

√
3a3

3a′′′2 a2 +350a′23 a3a′′3a2 −204a2
3a′′3a′2a′3

−56a′3a2a2
3a′′′3 +2a1

√
3a4

3a′′′3 +5a1a3
3a′′3a2 −54ca2

3a′3a′′3a2 − c2a4
3a′′2 −4ca4

3a′′′2

−2
√

3a5
3a′′′1 +3a0a5

3a′′3 −88a′23 a2
3a′′2 +39a3

3a′′3a′′2 −55a2
3a′′23 a2 +24a3

3a′2a′′′3

+20a3
3a′′′2 a′3 −3a1a4

3a′′2 −4a′0a5
3a′3 +34

√
3a′33 a2

2 −4a′23 a4
3a0 +232a′33 a3a′2

−6a4
3a′2a′1 −3a2

3a′22 a2 −a1a4
3ca′2 +6c2

√
3a2

3a′33 −2c
√

3a3
3a′22 −64c

√
3a3a′43

+3c2a3
3a′3a′2 −3c2a2

3a′23 a2 −56ca2
3a′23 a′2 +62ca3a′33 a2 −12

√
3a′23 a3

3a′1 +16a2
3

√
3a′22 a′3

−a0a5
3a′3c+a′0a5

3

√
3a2 +6a3a′2a′3a2

2 +6a′3a2a3
3a′1 +a1a3

3ca′3a2 −50a3
√

3a′2a′23 a2

−5c
√

3a3a′23 a2
2 +a′3

√
3a2a4

3a0 −2a1
√

3a5
3a′1 +8a1

√
3a2

3a′33 +8a1a3
3a′2a′3 −10a1a2

3a′23 a2

−a1
√

3a3
3a′2a2 −2a1

√
3a3

3ca′23 +a1
√

3a2
3a′3a2

2 −3a6
3a′′0 −3a4

3a(iv)2 − c
√

3a3
3a′′2a2

+11a′3
√

3a2a2
3a′′2 +16

√
3a2

3a′′3a′2a2 −8c2
√

3a3
3a′3a′′3 +112c

√
3a2

3a′23 a′′3 + c
√

3a2
3a′′3a2

2

−21
√

3a3a′′3a′3a2
2 −10a1

√
3a3

3a′′3a′3 +2a1
√

3a4
3ca′′3 +4

√
3a4

3a′′1a′3 = 0. (3.12)

Since this system has infinite solutions we look for some particular solutions.
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3.1.1. R(u,x) =− 1
2x2u3 +3u2 + 1

2c2u

If we assume a3(x) =
√

3x, and a2(x), a1(x),a0(x) to be constants then from system (3.11)-(3.12)
we obtain that

R(u,x) =−1
2

x2u3 +3u2 +
1
2

c2u, (3.13)

and

ss1(t,x) =
3x
2
, ss2(t,x) =−1+ cx

x
, ss3(t,x) = c

−2+3cx
4x

, ss4(t,x) = 0. (3.14)

Thus, (3.3) becomes

η =−x3u3 +2cu− c2xu+6x2uG−4G
4x

, (3.15)

namely

uxx =−x3u3 +2cu− c2xu+6x2uux −4ux

4x
, (3.16)

that can be solved in closed form, i.e.

u(t,x) =
c2R2(t)e

cx
2 − c2(1+ cx)e

−cx
2

R1(t)+ (cx−2)R2(t)e
cx
2 +(10+5cx+ c2x2)e

−cx
2
, (3.17)

with Rk(t),k = 1,2 arbitrary functions of t. Substituting (3.17) into (1.1) yields the following non-
classical symmetry solution

u(t,x) =
c2c1ec2t+ cx

2 − c2(1+ cx)e
−cx

2

c2e
−c2t

4 + c1(cx−2)ec2t+ cx
2 +(10+5cx+ c2x2)e

−cx
2

, (3.18)

with ck,k = 1,2 arbitrary constants. We observe that

lim
t→∞

u(t,x) =
c2

cx−2
, lim

x→±∞
u(t,x) = 0 (3.19)

and that u(t,x)< 0 for t > 0,x < 0. This means that the solution (3.18) is not defined at x = 2/c and
is positiveg if x ≥ 0.

gIt depends also on the values given to the arbitrary constants.
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3.1.2. R(u,x) =−1
2

ecxu3 +
c2

4
u+ e

cx
2

If we assume a3(x) =
√

3ecx, a2(x) = 0, and a1(x) = b1,a0(x) = b0, i.e. constants, then from system
(3.11)-(3.12) we obtain that

R(u,x) =−1
2

ecxu3 +b1u+b0e
cx
2 , [b1,b0 = const.] (3.20)

and thus η becomes

η =−1
8

(
2ecxu3 +(3c2 −4b1)u+8cG+6e

cx
2 cu2 +12e

cx
2 uG−4b0e−

cx
2

)
, (3.21)

namely

uxx =−1
8

(
2ecxu3 +(3c2 −4b1)u+8cux +6e

cx
2 cu2 +12e

cx
2 uux −4b0e−

cx
2

)
, (3.22)

that can be solved in closed form, although the solution is very lengthy. If we assume

b1 =
c2

4
, b0 = 1, (3.23)

then the solution of (3.22) becomes:

u(t,x) =
3
√

2

2
(

R1(t)e
3√2x
2 −R2(t)e−

3√2x
4 sin

(
3√2

√
3x

4

)
+ e−

3√2x
4 cos

(
3√2

√
3x

4

))
e

cx
2

×

×
[

2R1(t)e
3√2x
2 +R2(t)e

− 3√2x
4

(
sin

(
3
√

2
√

3x
4

)
−
√

3cos

(
3
√

2
√

3x
4

))

−e
− 3√2x

4

(√
3sin

(
3
√

2
√

3x
4

)
+ cos

(
3
√

2
√

3x
4

))]
(3.24)

which if replaced into (1.1) yields

R1(t) = 0, R2(t) =− tan

(
3
√

3 3
√

4
8

(t + c1)

)
. (3.25)

This solution oscillates between negative and positive values. Consequently it is not a valid solution
for the biological model set in [5]. However, equation

ut = uxx + cux − 1
2

ecxu3 +
c2

4
u+ e

cx
2 (3.26)

maybe of interest for other biological or physical models.
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3.1.3. R(u,x) =−u3

6
−

√
3u2

x
+

c2u
6

+

√
3c2

3x
If we assume a3(x) = b3,a1(x) = b1 and substitute them into system (3.11)-(3.12), after some further
simplifications such b1 = c2/6 and having to impose thath b3 =−1, then we obtain

R(u,x) =−u3

6
−

√
3u2

x
+

c2u
6

+

√
3c2

3x
. (3.27)

Thus (3.3) becomes

η =
36xG−36u+6

√
3Gux2 −u3x2 −6

√
3u2x+ c2ux2 +12

√
3c+2

√
3c2x

12x2 , (3.28)

namely

uxx =
36xux −36u+6

√
3uxux2 −u3x2 −6

√
3u2x+ c2ux2 +12

√
3c+2

√
3c2x

12x2 . (3.29)

If we assume c = 0 then we find that its solution is

u(t,x) =−2
√

3(4R2(t)x3 +2x)
R1(t)+R2(t)x4 + x2 (3.30)

that substituted into (1.1) yields the following solution

u(t,x) =
4
√

3x(2x2 + c1 +12t)
6c1t +36t2 − c2 − x4 − x2c1 −12tx2 . (3.31)

Although this solution is not valid for the biological problem set in [5] since c = 0, we are reporting
it since equation

ut = uxx +
u2(xu+6

√
3)

6x
(3.32)

maybe of interest for other biological or physical problems. We observe that solution (3.31) is such
that

lim
t→∞

u(t,x) = 0, lim
x→±∞

u(t,x) = 0 (3.33)

Moreover (3.31) is not defined for the following set of values of x and t:{
x =

1
2

√
−2c1 −24t +2

√
c12 +48c1t +288t2 −4c2,∀t

}
, (3.34){

x =−1
2

√
−2c1 −24t +2

√
c12 +48c1t +288t2 −4c2,∀t

}
, (3.35){

x =
1
2

√
−2c1 −24t −2

√
c12 +48c1t +288t2 −4c2,∀t

}
, (3.36){

x =−1
2

√
−2c1 −24t −2

√
c12 +48c1t +288t2 −4c2,∀t

}
. (3.37)

hIt is also possible to have b3 = 1 although it leads to very lengthy calculations.
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3.1.4. R(u,x) =−u3 +6
u
x2 +6

√
2

x3 , [c = 0]

If we impose a3(x) = b3,a2(x) = 0, and c = 0, then we obtain

R(u,x) =−u3 +6
u
x2 +6

√
2

x3 . (3.38)

Thus (3.3) becomes

η =−6
√

2−6xu+3
√

2x3uG+ x3u3

2x3 , (3.39)

namely

uxx =−6
√

2−6xu+3
√

2x3uux + x3u3

2x3 . (3.40)

We find its solution, i.e.

u(t,x) =

√
2(−R1(t)+3R2(t)x4 + x2)

x(R1(t)+R2(t)x4 + x2)
(3.41)

that substituted into (1.1) yields the following solution

u(t,x) =− 3
√

2
(
12c2

2 +24c2t +4c2x2 +4c1 +12t2 +4tx2 + x4
)

x
(
36c2

2 +72c2t −12c2x2 +12c1 +36t2 −12tx2 − x4
) . (3.42)

Although this solution is not valid for the biological problem set in [5] since c = 0, we report it here
because equation

ut = uxx −u3 +6
u
x2 +6

√
2

x3 (3.43)

maybe of interest for other biological or physical problems. We observe that solution (3.42) is such
that

lim
t→∞

u(t,x) =−
√

2
x

, lim
x→±∞

u(t,x) = 0 (3.44)
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and that u(t,x)< 0 for t > 0,x < 0. Moreover (3.42) is not defined for the following set of values of
x and t:

x = 0, (3.45){
x =

√
−6t −6c2 +2

√
18t2 +36tc2 +18c2

2 +3c1,∀t

}
, (3.46)

{
x =−

√
−6t −6c2 +2

√
18t2 +36tc2 +18c2

2 +3c1,∀t

}
, (3.47)

{
x =

√
−6t −6c2 −2

√
18t2 +36tc2 +18c2

2 +3c1,∀t

}
, (3.48)

{
x =−

√
−6t −6c2 −2

√
18t2 +36tc2 +18c2

2 +3c1,∀t

}
, (3.49)

{
∀x, t =

1
6

x2 − c2 +
1
6

√
2x4 −12c1

}
, (3.50){

∀x, t =
1
6

x2 − c2 − 1
6

√
2x4 −12c1

}
. (3.51)

3.2. Case 2. R(u,x) =
f (u)

k2(x)

If we assume ss1 = 0 then V2(t,x,u) = ss2(t,x) and d0 yields that

R(u,x) =
f (u)

k2(x)
, ss2 = k(x). (3.52)

Following [11] we impose F(t,x,u) = 0, thus the annihilation of d1 imposes that k(x) is either one
the three particular functions of x in (3.9) and their nonclassical symmetry operators are

∂t − cx+2
2x

∂x ∂t +
c

ec(b0−x)−1
∂x, ∂t +

(
1
b1

tan
(

x+b2

b1

)
− c

2

)
∂x, (3.53)

respectively. In each case we can solve the corresponding invariant surface condition (2.3) and
reduce the original diffusion equation (1.1) to an ordinary differential equation that involves an
arbitrary function of the unknown due to the arbitrariness of f (u). We consider some instances
where f (u) has a given expression in order to derive the nonclassical symmetry solution of equation
(1.1).

3.2.1. k(x) =−cx+2
2x

We solve the invariant surface equation (2.3), i.e.

ut − cx+2
2x

ux = 0 (3.54)

and derive its complete solution as

u(t,x) = H(ξ ), ξ =
4log(cx+2)−2cx− c2t

c2 (3.55)
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where H(ξ ) is an arbitrary function of ξ . After substituting this solution into equation (1.1), i.e.

ut = uxx + cux +
4x2

(cx+2)2 f (u), (3.56)

we obtain the following ordinary differential equation

4
d2H
dξ 2 − c2 dH

dξ
+4 f (H) = 0. (3.57)

Let us consider f (u) = 1/u. In this instance equation (3.57) admits a two-dimensional nonabelian
transitive Lie point symmetry algebrai generated by

∂ξ , e
c2ξ

4
(
4∂ξ + c2H∂H

)
, (3.58)

and equation (3.57) can be integrated by quadrature. In fact taking a canonical representation of the
generators of the two-dimensional Lie point symmetry algebra, i.e.

4e
c2ξ

4
(
4∂ξ + c2H∂H

)
, − 4

c2 ∂ξ +4e
c2ξ

4
(
4∂ξ + c2H∂H

)
, (3.59)

we can derive the corresponding canonical variables, i.e.

ξ̃ = He
−c2ξ

4 , H̃ = 1+ e
−c2ξ

4

(
− 1

4c2 +H
)
. (3.60)

These variables transform equation (3.57) into its canonical form, i.e.

d2H̃

dξ̃ 2
=

1

ξ̃

(
256

(
dH̃

dξ̃

)3

−3
(

dH̃

dξ̃

)2

+3
dH̃

dξ̃
−1

)
(3.61)

that can be solved by two quadratures and thus its general solution is

H̃ = ξ̃ + c2 ±16
∫ d ξ̃√

2c1 −2log(ξ̃ )
. (3.62)

Unfortunately the last integral cannot be expressed in finite terms.
If we assume c = 0 then (3.56) becomes

ut = uxx + x2 f (u). (3.63)

In [11] the same nonclassical symmetry was determined if f (u) = u2(1− u) – (i) in(1.3) –. We
found that this is true for any f (u).

iWe recall that the classification of real two-dimensional Lie symmetry algebra and derivation of corresponding canonical
variables were done by Lie himself [35], retold in Bianchi’s 1918-textbook [6] and also in more recent textbooks, e.g. [32].
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3.2.2. k(x) =
c

ec(b0−x)−1
We solve the invariant surface equation (2.3), i.e.

ut +
c

ec(b0−x)−1
ux = 0 (3.64)

and derive its complete solution as

u(t,x) = H(γ), γ =−cx+ c2t + ec(b0−x)

c2 , (3.65)

where H(γ) is an arbitrary function of γ . After substituting this solution into equation (1.1), i.e.

ut = uxx + cux +

(
ec(b0−x)−1

)2

c2 f (u), (3.66)

we obtain the following ordinary differential equation

d2H
dγ2 + f (H) = 0. (3.67)

Its general solution in implicit form is

±
∫ dH√

c1 −2
∫

f (H)dH
− γ − c2 = 0. (3.68)

Let us consider some instances:

(A) f (u) = u2 =⇒ u(t,x) =−6WeierstrassP(γ + c1,0,c2),

where WeierstrassP represents Weierstrass elliptic function.

(B) f (u) = u3 =⇒ u(t,x) = c2JacobiSN
((

γ√
2
+ c1

)
c2,

√−1
)

where JacobiSN(z,k) = sin(JacobiAM(z,k)) and JacobiAM represents the Jacobi ampli-
tude function am.

(C) f (u) = u2(1−u) =⇒ ∫ 6dH√
18H4 −24H3 +36c1

− γ − c2 = 0

Let us consider two particular values of c1.

If we assume c1 =
1
6

then we obtain

u(t,x) =
(1−H)

√
18H2 +12H +6√

18H4 −24H3 +6
arctanh

(
2(1+2H)√

18H2 +12H +6

)
− γ − c2 = 0,

although still an implicit solution of (3.66);
instead c1 = 0 yields

u(t,x) =− 12
4c2γ +2c2

2 +2γ2 −9
,
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a nonclassical symmetry solution of equation (3.66), i.e.

ut = uxx + cux +

(
ec(b0−x)−1

)2

c2 u2(1−u). (3.69)

This solution tends to zero when t (or x) goes to infinity. Also it blows up in finite time if

t =
1

2c2

(
2c2c2 −2cx−2ec(b0−x)± c2

√
18
)
, ∀x.

3.2.3. k(x) =
1
b1

tan
(

x+b2

b1

)
− c

2
We solve the invariant surface equation (2.3), i.e.

ut +

(
1
b1

tan
(

x+b2

b1

)
− c

2

)
ux = 0 (3.70)

and derive its complete solution as

u(t,x) = H(ρ),

ρ = t +
2b1

4+b2
1c2

[
c(x+b2)+ log

(
1+ tan2

(
x+b2

b1

))

−2log
(

2tan
(

x+b2

b1

)
−b1c

)]
, (3.71)

where H(ρ) is an arbitrary function of ρ . After substituting this solution into equation (1.1), i.e.

ut = uxx + cux +
4b2

1(
2tan

(
x+b2

b1

)
−b1c

)2 f (u), (3.72)

we obtain the following ordinary differential equation

4b2
1

d2H
dρ2 +(4+b2

1c2)
dH
dρ

+4b2
1 f (H) = 0. (3.73)

If f (u) = u, namely if equation (3.72) is linear then we obtain that the general solution is

u(t,x) = c1e
−

4+b2
1c2 −ρ

√
(b2

1c2 +4)2 −64b4
1

8b2
1

+c2e
−

4+b2
1c2 +ρ

√
(b2

1c2 +4)2 −64b4
1

8b2
1 . (3.74)

4. Final remarks

The application of the nonclassical symmetry method to equation (1.1) yields different possible
expressions of R(u,x) and in several instances even a class of solutions in finite form. These solu-
tions may not be all suitable for the problem set in [5] since they may take negative values, and also
have singularities for finite values of t and x.
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However, we have found that nonclassical symmetries exist for the following reaction-diffusion
equations, i.e.

ut = uxx + cux − a2
3(x)
6

u3 +
a2(x)

2
u2 +a1(x)u+a0(x), (4.1)

with a0,a1,a2,a3 satisfying system (3.11)-(3.12). Particular instances have been obtained, i.e.

ut = uxx + cux − 1
2

x2u3 +3u2 +
1
2

c2u, (4.2)

ut = uxx + cux − 1
2

ecxu3 +
c2

4
u+ e

cx
2 , (4.3)

ut = uxx + cux − u3

6
−

√
3u2

x
+

c2u
6

+

√
3c2

3x
, (4.4)

ut = uxx −u3 +
6u
x2 +

6
√

2
x3 . (4.5)

Moreover we have found that nonclassical symmetries exist for the following three families in the
class of equation (1.1), i.e.

ut = uxx + cux +
4x2

(cx+2)2 f (u), ∀ f (u) (4.6)

ut = uxx + cux +

(
ec(b0−x)−1

)2

c2 f (u), ∀ f (u) (4.7)

ut = uxx + cux +
4b2

1(
2tan

(
x+b2

b1

)
−b1c

)2 f (u), ∀ f (u). (4.8)

We conclude by observing that the method of heir-equations [46] very much facilitates the search
for nonclassical symmetries.
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[7] N. Bı̂lă and J. Niesen, On a new procedure for finding nonclassical symmetries, J. Symbol. Comp. 38

(2004) 1523-1533.
[8] G.W. Bluman and J.D. Cole, The general similarity solution of the heat equation, J. Math. Mech. 18

(1969) 1025-1042.
[9] G.W. Bluman, G.J. Reid, S. Kumei, New classes of symmetries for partial differential equations, J.

Math. Phys. 29 (1988) 806-811.

Co-published by Atlantis Press and Taylor & Francis 
                        Copyright: the authors 
                                        58



M.S. Hashemi, M.C. Nucci

[10] G.W. Bluman, S.-f. Tian, Z. Yang, Nonclassical analysis of the nonlinear Kompaneets equation J. Eng.
Math. (2012).

[11] B.H. Bradshaw-Hajek, M.P. Edwards, P. Broadbridge, G.H. Williams, Nonclassical symmetry solutions
for reactiondiffusion equations with explicit spatial dependence, Nonlin. Anal. 67 (2007) 2541-2552.

[12] M.S. Bruzón and M.L. Gandarias, Applying a new algorithm to derive nonclassical symmetries, Com-
mun. Nonlinear Sci. Numer. Simul. 13 (2008) 517-523.

[13] R. Cherniha, New Q-conditional symmetries and exact solutions of some reaction-diffusion-convection
equations arising in mathematical biology, J. Math. Anal. Appl. 326 (2007) 783-799.

[14] R. Cherniha and V. Davydovych, Conditional symmetries and exact solutions of nonlinear reaction-
diffusion systems with non-constant diffusivities, Commun. Nonlinear Sci. Numer. Simulat. 17 (2012)
3177-3188.

[15] R. Cherniha and O. Pliukhin, New conditional symmetries and exact solutions of reaction-systems with
power diffusivities, J. Phys. A: Math. Gen. 41 (2008) 185208-185222.

[16] R.M. Cherniha and M.I. Serov, Symmetries, Ansätze and exact solutions of nonlinear second-order
evolution equations with convection term, European J. Appl. Math. 9 (1998) 527-542.

[17] R. Cherniha and M. Serov, Nonlinear systems of the Burgers-type equations: Lie and Q-conditional
symmetries, Ansätze and solutions, J. Math. Anal. Appl. 282 (2003) 305-328.

[18] P.A. Clarkson, Nonclassical symmetry reductions of nonlinear partial differential equations, Math.
Comput. Modell. 18 (1993) 45-68.

[19] P.A. Clarkson and E.L. Mansfield, Symmetry reductions and exact solutions of a class of nonlinear heat
equations, Physica D 70 (1993) 250-288.

[20] P.A. Clarkson and P. Winternitz, Nonclassical symmetry reductions for the Kadomtsev-Petviashvili
equation, Physica D 49 (1991) 257-272.

[21] V.G. Dulov, S.P. Novikov, L.V. Ovsyannikov, B.L. Rozhdestvenskii, A.A. Samarskii, Yu.I. Shokin,
Nikolai Nikolaevich Yanenko (obituary), Russ. Math. Surv. 39 (1984) 99-110.

[22] P.G. Estevez, P.R. Gordoa, Nonclassical symmetries and the singular manifold method: The Burgers
equation, Theor. Math. Phys. 99 (1994) 562-566

[23] A.S. Fokas and Q.M. Liu, Generalised conditional symmetries and exact solutions of nonintegrable
equations, Theor. Math. Phys. 99 (1994) 263-277.

[24] W.I. Fushchych, M.I. Serov, L.A. Tulupova, The conditional invariance and exact solutions of the non-
linear diffusion equation, Proc. Acad. of Sci. Ukraine 4 (1993) 37-40.

[25] W.I. Fushchych, W.M. Shtelen, M.I. Serov, Symmetry Analysis and Exact Solutions of Equations of
Nonlinear Mathematical Physics, Kluwer, Dordrecht, (1993).

[26] W.I. Fushchych, W.M. Shtelen, M.I. Serov, R.O. Popovych, Q-conditional symmetry of the linear heat
equation, Proc. Acad. of Sci. Ukraine 12 (1992) 28-33.

[27] M.L. Gandarias, Nonclassical symmetries of a porous medium equation with absorption, J. Phys. A:
Math. Gen. 30 (1997) 6081-6091.

[28] M.L. Gandarias, J.L. Romero, J.M. Dı́az, Nonclassical symmetry reductions of a porous medium equa-
tion with convection, J. Phys. A: Math. Gen. 32 (1999) 1461-1473.

[29] J. Goard, Generalised conditional symmetries and Nucci’s method of iterating the nonclassical symme-
tries method, Appl. Math. Lett. 16 (2003) 481-486.

[30] G. Guthrie, Constructing Miura transformations using symmetry groups, Research Report No. 85
(1993).

[31] D.-J. Huang and S. Zhou, Group-theoretical analysis of variable coefficient nonlinear telegraph equa-
tions, Acta Appl. Math. 117 (2012) 135-183.

[32] N.H. Ibragimov, Elementary Lie Group Analysis and Ordinary Differential Equations, Wiley, Chich-
ester (1999).

[33] B. Kruglikov, Symmetry approaches for reductions of PDEs, differential constraints and Lagrange-
Charpit method, Acta Appl. Math. 101 (2008) 145-161.

[34] D. Levi and P. Winternitz, Nonclassical symmetry reduction: Example of the Boussinesq equation, J.
Phys. A: Math. Gen. 22 (1989) 2915-2924.

Co-published by Atlantis Press and Taylor & Francis 
                        Copyright: the authors 
                                        59



Nonclassical Symmetries for a Class of Reaction-Diffusion Equations

[35] S. Lie, Vorlesungen über Differentialgleichungen mit bekannten infinitesimalen Transformationen,
Teubner, Leipzig (1912).

[36] S.-Y. Lou, Nonclassical symmetry reductions for the dispersive wave equations in shallow water, J.
Math. Phys. 33 (1992) 4300-4305.

[37] D.K. Ludlow, P.A. Clarkson, A.P. Bassom, Nonclassical symmetry reductions of the three-dimensional
incompressible Navier-Stokes equations, J. Phys. A: Math. Gen. 31 (1998) 7965-7980.

[38] S. Martini, N. Ciccoli, M.C. Nucci, Group analysis and heir-equations of a mathematical model for thin
liquid films, J. Nonlinear Math. Phys. 16 (2009) 77-92.

[39] S.V. Meleshko, Methods for Constructing Exact Solutions of Partial Differential Equations: Mathemat-
ical and Analytical Techniques with Applications to Engineering, Springer, New York (2005)

[40] M.C. Nucci, Interactive REDUCE programs for calculating classical, non-classical, and approximate
symmetries of differential equations, in Computational and Applied Mathematics II. Differential Equa-
tions, W.F. Ames and P.J. Van der Houwen, Eds., Elsevier, Amsterdam (1992) 345-350.

[41] M.C. Nucci, Symmetries of linear, C-integrable, S-integrable, and non-integrable equations, in Nonlin-
ear Evolution Equations and Dynamical Systems. Proceedings NEEDS ’91, M. Boiti, L. Martina, and
F. Pempinelli, Eds., World Scientific, Singapore (1992) 374-381.
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