The sensing properties of SnO2/CNFs (CNFs = carbon nanofibers) prepared by Atomic Layer Deposition (ALD) have been investigated. By means of a novel ALD approach, which was adapted from the non-hydrolytic sol–gel route, has been possible to achieve the coating of the inner and outer surface of carbon nanofibers with a highly conformal metal oxide film of controllable thickness. The characteristics of oxygen and nitrogen dioxide sensors based on the hybrid nanomaterials have been related to the formation of a p-n heterojunction at the interface between the CNFs and the SnO2 coating.

Sensing Properties of SnO2/CNFs Hetero-Junctions

DONATO, Nicola;LATINO, MARIANGELA;NERI, Giovanni
2012-01-01

Abstract

The sensing properties of SnO2/CNFs (CNFs = carbon nanofibers) prepared by Atomic Layer Deposition (ALD) have been investigated. By means of a novel ALD approach, which was adapted from the non-hydrolytic sol–gel route, has been possible to achieve the coating of the inner and outer surface of carbon nanofibers with a highly conformal metal oxide film of controllable thickness. The characteristics of oxygen and nitrogen dioxide sensors based on the hybrid nanomaterials have been related to the formation of a p-n heterojunction at the interface between the CNFs and the SnO2 coating.
2012
9781461409342
9781461409359
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/1947616
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact