In this work is indicated how it could be possible to evaluate the limit stress of the thermo-elastic phase of deformation by thermo-analysing the surface of the specimen during a static traction test. Adding the temperature curve measured on a small area of the surface (the hottest) to the classic stress-strain curve, it is possible to evaluate a limit temperature T 0 coincident with the beginning of the non linear trend of the curve. The corresponding stress value is coincident with the fatigue limit of the analyzed component. As an example, the results of traction tests performed on two notched specimens, where the change of linearity in the temperature curve during static traction test was evident, are reported.

Determination of fatigue limit by mono-axial tensile specimens using thermal analysis

RISITANO, GIACOMO
2011-01-01

Abstract

In this work is indicated how it could be possible to evaluate the limit stress of the thermo-elastic phase of deformation by thermo-analysing the surface of the specimen during a static traction test. Adding the temperature curve measured on a small area of the surface (the hottest) to the classic stress-strain curve, it is possible to evaluate a limit temperature T 0 coincident with the beginning of the non linear trend of the curve. The corresponding stress value is coincident with the fatigue limit of the analyzed component. As an example, the results of traction tests performed on two notched specimens, where the change of linearity in the temperature curve during static traction test was evident, are reported.
2011
9780878492411
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/2589980
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 14
social impact