This paper identifies the total number of gaps of object pixels in a binary picture, which solves an open problem in 2D digital geometry (or combinatorial topology of binary pictures). We obtain a formula for the total number of gaps as a function of the number of object pixels (grid squares), vertices (corners of grid squares), holes, connected components, and 2 × 2 squares of pixels. It can be used to test a binary picture (or just one region: e.g., a digital curve) for gap-freeness.
Titolo: | The number of gaps in binary pictures |
Autori: | |
Data di pubblicazione: | 2005 |
Abstract: | This paper identifies the total number of gaps of object pixels in a binary picture, which solves an open problem in 2D digital geometry (or combinatorial topology of binary pictures). We obtain a formula for the total number of gaps as a function of the number of object pixels (grid squares), vertices (corners of grid squares), holes, connected components, and 2 × 2 squares of pixels. It can be used to test a binary picture (or just one region: e.g., a digital curve) for gap-freeness. |
Handle: | http://hdl.handle.net/11570/1435630 |
Appare nelle tipologie: | 14.a.2 Proceedings in extenso su rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.