The index (or spectral radius) of a simple graph is the largest eigenvalue of its adjacency matrix. For connected graphs of fixed order and size the graphs with maximal index are not yet identified (in the general case). It is known (for a long time) that these graphs are nested split graphs (or threshold graphs). In this paper we use the eigenvector techniques for getting some new (lower and upper) bounds on the index of nested split graphs. Besides we give some computational results in order to compare these bounds. © 2009 Elsevier Inc. All rights reserved.
Connected graphs of fixed order and size with maximal index: Some spectral bounds
BELARDO, FRANCESCO;LI MARZI, Enzo;
2010-01-01
Abstract
The index (or spectral radius) of a simple graph is the largest eigenvalue of its adjacency matrix. For connected graphs of fixed order and size the graphs with maximal index are not yet identified (in the general case). It is known (for a long time) that these graphs are nested split graphs (or threshold graphs). In this paper we use the eigenvector techniques for getting some new (lower and upper) bounds on the index of nested split graphs. Besides we give some computational results in order to compare these bounds. © 2009 Elsevier Inc. All rights reserved.File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.