In the paper a Soft Sensor design strategy for an industrial process, via neural NMA model, is described. A general design strategy, based on the automatic selection of regressors of a NAM model is proposed. It is based on the minimization of the cost function of a Gath Geva clustering algorithm. The obtained soft sensor will be implemented in a refinery in order to replace the measurement device during maintenance to guarantee continuity in the monitoring and control of the plant.

Soft Sensor design for a Sulfur Recovery Unit using a clustering based approach

XIBILIA, Maria Gabriella
2008-01-01

Abstract

In the paper a Soft Sensor design strategy for an industrial process, via neural NMA model, is described. A general design strategy, based on the automatic selection of regressors of a NAM model is proposed. It is based on the minimization of the cost function of a Gath Geva clustering algorithm. The obtained soft sensor will be implemented in a refinery in order to replace the measurement device during maintenance to guarantee continuity in the monitoring and control of the plant.
2008
9781424415403
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/1906378
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 1
social impact