An A-hypergroup is obtained from a group G and from a non-empty subset A of G if one defines the hyperoperation as follows: for all (x,y)∈G×G , x∘y=xAy . This notion was introduced by T. Vougiouklis [Rend. Circ. Mat. Palermo (2) 36 (1987), no. 1, 114--121]. The author studies A -hypergroups obtained from abelian groups. After some general properties, the author analyses those of length 2 (i.e., for all (x,y) , |x∘y|=2) , finding some interesting results (such as Theorem 3.1); then he determines the number of the A-hypergroups obtainable from a cyclic finite group or from a group G such that |G|<12 .

Commutative Finite A-Hypergroups of Length Two Combinatorics ′86, Proceedings of the International Conference on Incidence Geometries and Combinatorial Structures

DE SALVO, Mario
1988-01-01

Abstract

An A-hypergroup is obtained from a group G and from a non-empty subset A of G if one defines the hyperoperation as follows: for all (x,y)∈G×G , x∘y=xAy . This notion was introduced by T. Vougiouklis [Rend. Circ. Mat. Palermo (2) 36 (1987), no. 1, 114--121]. The author studies A -hypergroups obtained from abelian groups. After some general properties, the author analyses those of length 2 (i.e., for all (x,y) , |x∘y|=2) , finding some interesting results (such as Theorem 3.1); then he determines the number of the A-hypergroups obtainable from a cyclic finite group or from a group G such that |G|<12 .
1988
9780444703699
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/2077224
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact