Magnetite particles with nanoscale sizes were deposited along multiwalled carbon nanotubes (MWCNT) through a simple, effective and reproducible chemical route. The structure, morphology and magnetic properties of the hybrid materials were characterized by XRD, SEM, TEM, EDX, VSM. The characterization results show that that the surface of nanotubes was loaded with iron oxides nanoclusters and each nanocluster is composed by several nanocrystals with a mean diameter of 10 nm. The experimental magnetic hysteretic behavior has been also studied by means of the Preisach model and a good agreement between experimental data and numerical computations was found.

Synthesis and magnetic properties of multiwalled carbon nanotubes decorated with magnetite nanoparticles.

PISTONE, Alessandro;IANNAZZO, Daniela;FAZIO, MARIANNA;GIORDANO, ANNA;AZZERBONI, Bruno;GALVAGNO, Signorino
2014-01-01

Abstract

Magnetite particles with nanoscale sizes were deposited along multiwalled carbon nanotubes (MWCNT) through a simple, effective and reproducible chemical route. The structure, morphology and magnetic properties of the hybrid materials were characterized by XRD, SEM, TEM, EDX, VSM. The characterization results show that that the surface of nanotubes was loaded with iron oxides nanoclusters and each nanocluster is composed by several nanocrystals with a mean diameter of 10 nm. The experimental magnetic hysteretic behavior has been also studied by means of the Preisach model and a good agreement between experimental data and numerical computations was found.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/2603169
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 23
social impact