In mathematical physics conservation laws are of very special importance. For variational problems they can be determined by means of Noether’s theorem, whereas for general differential equations a direct method by Anco and Bluman (Eur. J. Appl. Math., 13:545–566, 2002, Eur. J. Appl. Math., 13:567–585, 2002) is available. In this paper, a theorem mapping nonautonomous and nonhomogeneous quasilinear first order partial differential equations to autonomous and homogeneous quasilinear first order partial differential equations is used to obtain from a system of first order balance laws an autonomous system of conservation laws.

Construction of Autonomous Conservation Laws

OLIVERI, Francesco
2014-01-01

Abstract

In mathematical physics conservation laws are of very special importance. For variational problems they can be determined by means of Noether’s theorem, whereas for general differential equations a direct method by Anco and Bluman (Eur. J. Appl. Math., 13:545–566, 2002, Eur. J. Appl. Math., 13:567–585, 2002) is available. In this paper, a theorem mapping nonautonomous and nonhomogeneous quasilinear first order partial differential equations to autonomous and homogeneous quasilinear first order partial differential equations is used to obtain from a system of first order balance laws an autonomous system of conservation laws.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/2808968
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact