In mathematical physics conservation laws are of very special importance. For variational problems they can be determined by means of Noether’s theorem, whereas for general differential equations a direct method by Anco and Bluman (Eur. J. Appl. Math., 13:545–566, 2002, Eur. J. Appl. Math., 13:567–585, 2002) is available. In this paper, a theorem mapping nonautonomous and nonhomogeneous quasilinear first order partial differential equations to autonomous and homogeneous quasilinear first order partial differential equations is used to obtain from a system of first order balance laws an autonomous system of conservation laws.
Construction of Autonomous Conservation Laws
OLIVERI, Francesco
2014-01-01
Abstract
In mathematical physics conservation laws are of very special importance. For variational problems they can be determined by means of Noether’s theorem, whereas for general differential equations a direct method by Anco and Bluman (Eur. J. Appl. Math., 13:545–566, 2002, Eur. J. Appl. Math., 13:567–585, 2002) is available. In this paper, a theorem mapping nonautonomous and nonhomogeneous quasilinear first order partial differential equations to autonomous and homogeneous quasilinear first order partial differential equations is used to obtain from a system of first order balance laws an autonomous system of conservation laws.File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.